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SUMMARY 

A computationally feasible method for the full information maximum-likelihood estimation of models 
with rational expectations is described in this paper. The stochastic simulation of such models is also 
described. The methods discussed in this paper should open the way for many more tests of the rational 
expectations hypothesis within macroeconomic models. 

1. INTRODUCTION 

In an earlier paper (Fair and Taylor, 1983) we presented methods for the solution and full 
information estimation of models with rational expectations. The basic solution method, called 
the 'extended path' method, has come to be widely used for deterministic simulations of 
rational expectations models' but, probably because of the expense, the full information 
estimation method has not to our knowledge been tried by others. We discussed in this earlier 
paper a 'less expensive' method for obtaining full information estimates, but our preliminary 
results using the method were mixed. We have since experimented more with the less expensive 
method, and it seems much more promising than we originally thought. 

This paper has two objectives. First, we examine the results that we have obtained using the 
less expensive method, and argue that full information estimation now seems feasible. In the 
process of doing this we correct some errors in our earlier paper regarding the treatment of 
models with rational expectations and autoregressive errors. Second, we examine methods for 
stochastic simulation of rational expectations models, something we only briefly touched on 
in the earlier paper. 

'For example, the extended path method has been programmed as part of the TROLL computer package and is 
routinely used to solve large-scale rational expectations models at the IMF, the Federal Reserve, the Canadian 
Financial Ministry, and other government agencies. It has also been used for simulation studies such as DeLong and 
Summers (1986) and King (1988). Other solution methods for rational expectations models are summarized in Taylor 
and Uhlig (1990). These other methods do not yet appear practical for medium-size models and up. 
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2. THE SOLUTION METHOD 

The model we consider is 

where y, is an n-dimensional vector of endogenous variables, xt is a vector of exogenous 
variables, ,-1Eis the conditional expectations operator based on the model and on information 
through period t - 1, ai is a vector of parameters, pi is the serial correlation coefficient for the 
error term ui,, and &it is an error term that may be correlated across equations but not across 
time. The function fi may be nonlinear in variables, parameters, and expectations. The 
following is a brief review of the solution method for this model. More details are presented 
in Fair and Taylor (1983). In what follows i is always meant to run from 1 through n. 

Consider solving the model for period s. It is assumed that estimates of ai are available, that 
current and expected future values of the exogenous variables are available, and that the 
current and future values of the error terms have been set to their expected values (which we 
will always take to be zero). If the expectations ,-,Ey,, s - lEyS+~ ,  ...,,-lEys+h were known, (1) 
could be solved in the usual ways (usually by the Gauss-Seidel algorithm). The model would 
be simultaneous, but future predicted values would not affect current predicted values. The 
extended path (EP) method iterates over solution paths. Values of the expectations through 
period s + h + k + h are first guessed, where k is a fairly large number relative to  h.2 Given 
these guesses, the model can be solved for periods s through s + h + k in the usual ways. This 
solution provides new values for the expectations through period s +  h + k-the new 
expectations values are the solution values. Given these new values the model can be solved 
again for periods s through s + h + k, which provides new expectations values, and so on. This 
process stops (if it does) when the solution values on one iteration are within a prescribed 
tolerance criterion of the solution values on the previous iteration for all periods s through 
s + h + k .  

So far the guessed values of the expectations for periods s + h + k + 1 through s + h + k + h 
(the h periods beyond the last period solved) have not been changed. If the solution values for 
periods s through s + h depend in a non-trivial way on these guesses, then overall convergence 
has not been achieved. To check for this, the entire process above is repeated for k one larger. 
If increasing k by one has a trivial effect (based on a tolerance criterion) on the solution values 
for s through s + h, then overall convergence has been achieved; otherwise k must continue to 
be increased until the criterion is met. In practice what is usually done is to experiment to find 
the value of k that is large enough to  make it likely that further increases are unnecessary for 
any experiment that might be run, and then do no further checking using larger values of k. 

The expected future values of the exogenous variables (which are needed for the solution) 

'Guessed values are usually taken to be the actual values if the solution is within the period for which data exist. 
Otherwise, the last observed value of a variable can be used for the future values or the variable can be extrapolated 
in some simple way. Sometimes information on the steady-state solution (if there is one) can be used to help form 
the guesses. 
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can either be assumed to  be the actual values (if available and known by agents) or be projected 
from an assumed stochastic process. It is also possible to assume that agents have incorrect 
expectations about the exogenous variables, in which case one extra step is needed at the end 
of the overall solution. In the above process the expected values of the exogenous variables 
would be used for all the solutions, the expected values of the exogenous variables being 
chosen ahead of time. This yields values for ,-~Eys,s- 1EyS+ 1, ...,s- ~ E y s + ~ .Given these values, 
(1) is then solved for period s using the actual value of x,, which yields the final solution value 
9,. To the extent that the expected value of xs differs from the actual value, s- lEys will differ 
from 9,. 

Two points about this method should be mentioned. First, no general convergence proofs 
are available. If convergence is a problem, one can sometimes 'damp' the solution values to 
obtain convergence. In practice convergence is usually not a problem. There may, of course, 
be more than one set of solution values, and so there is no guarantee that the particular set 
found is unique. If there is more than one set, the set that the method finds may depend on 
the guesses used for the expectations for the h periods beyond s + h + k. 

Second, the method relies on the certainty equivalence assumption even though the model 
is nonlinear. Since expectations of functions are treated as functions of the expectations in 
future periods in equation (I), the solution is only approximate unless fi is linear. This 
assumption is like the linear-quadratic approximation to rational expectations models that has 
been proposed, for example, by Kydland and Prescott (1982). Although the certainty 
equivalence assumption is widely used, including in the engineering literature, it is, of course, 
not always a good approximation. 

Case 2: pi $0 and Data Before s - 1 Available 

The existence of serial correlation complicates the problem considerably. The error terms for 
period t - 1 (uit- I ,  i = 1, . . .,n )  depend on expectations that were formed at the end of period 
t - 2, and so a new viewpoint date is introduced. This case is discussed in section 2.2 in Fair 
and Taylor (1983), but an error was made in the treatment of the second viewpoint date. The 
following method replaces the method in section 2.2 of our earlier paper. 

Consider again solving for period s. If the values of uis-l were known, one could solve the 
model as above. The only difference is that the value of an error term like ui,+r-l would be 
p[uis-l instead of zero. The overall solution method first uses the E P  method to solve for 
period s - j ,  where j > 0, based on the assumption that uis-j- 1 = 0. Once the expectations are 
solved for, (1) is used to solve for uis-j. The actual values of ys-j and x,-j are used for this 
purpose (although the solution values are used for the expectations) because these are 
structural errors being estimated, not reduced form errors. Given the values for uis-j, the 
model is solved for period s - j + 1 using the E P  method, where an error term like ui,-j+, is 
computed as p [ ~ i s - ~ .  Once the expectations are solved for, (1) is used to solve for uis- j+~,  
which can be used in the solution for period s -j + 2, and so on through the solution for 
period s. 

The solution for period s is based on the assumption that the error terms for period s - j - 1 
are zero. To see if the solution values for period s are sensitive to  this assumption, the entire 
process is repeated starting in period s - j - 1 and assuming that the error terms for period 
s - j - 2 are zero. If going back one more period has effects on the solution values for period 
s that are within a prescribed tolerance criterion, then overall convergence has been achieved; 
otherwise j must continue to be increased. Again, in practice one usually finds a value of j 
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that is large enough to make it likely that further increases are unnecessary for any experiment 
that might be run, and then do no further checking using larger values of j. 

It should be noted that once period s is solved for, period s+ 1 can be solved for without 
going back again. From the solution for period s, the values of uis can be computed, which 
can then be used in the solution for period s + 1 using the E P  method. 

Case 3: p i  f 0 and Data Before Period s - 1 not Available 

This case is based on the assumption that &is-l = 0 when solving for period s. This type of an 
assumption is usually made when estimating multiple equation models with moving average 
residuals. The solution problem is to find the values of ui,-I that are consistent with this 
assumption. The overall method begins by guessing values for ui,-2. Given these values, the 
model can be solved for period s- 1 using the E P  method and the fact that uiscr-2 = p[uis-2. 
From the solution values for the expectations, (1) and (2) can be used to solve for &is- 1 .  If 
the absolute values of these errors are within a prescribed tolerance criterion, convergence has 
been achieved. Otherwise, the new guess for uis-2 is computed as the old guess plus &is-l/pi. 
The model is solved again for period s - 1 using the new guess and the EP  method, and so 
on until convergence is reached. 

At the point of convergence uis- 1 can be computed as ~ i ~ i ~ - 2 ,  where uis-2 is the estimated 
value on the last iteration (the value consistent with &is- being within a prescribed tolerance 
criterion of zero). Given the values of ui,-1, one can solve for period s using the EP  method, 
and the solution is finished. 

Computational Costs 

The easiest way to think about the computational costs of the solution method is to  consider 
how many times the equations of a model must be 'passed' through. Let Nl be the number 
of passes through the model that it takes to solve the model for one period, given the 
expectations. Nl is usually some number less than 10 when the Gauss-Seidel algorithm is used. 
The EP  method requires solving the model for h + k + 1 periods. Let N2 be the number of 
iterations it takes to achieve convergence over these periods. Then the total number of passes 
for convergence is N2Nl(h + k +  1). If, say, h is 5, k is 30, N2 is 15, and Nl is 5, then the 
total number of passes needed to solve the model for one period is 11,250, which compares 
to only 5 when there are no expectations. If k is increased by one to check for overall 
convergence, the total number of passes is slightly more than doubled, although, as noted 
above, this check is not always done. 

For case 2 above, the number of passes is increased by roughly a factor of j if overall 
convergence is not checked. Checking for overall convergence slightly more than doubles the 
number of passes. j is usually a number between 5 and 10. If q is the number of iterations 
it takes to achieve convergence for case 3 above, the number of passes is increased by a factor 
of q + 1. In practice q seems to be between about 5 and 10. Note for both cases 2 and 3 that 
the number of passes is increased relative to the non-serial correlation case only for the 

3 ~ h e s eare again estimates of the structural error terms, not the reduced form error terms. Step (iii) on page 1176 
in Fair and Taylor (1983) is in error in this respect. The errors computed in step (iii) should be the structural error 
terms. 
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solution for the first period (period s). If period s + 1 is to be solved for, no additional passes 
are needed over those for the regular case. 

3. FULL INFORMATION MAXIMUM-LIKELIHOOD (FIML) ESTIMATION 

Assume that the estimation period is 1 through T. The objective function that FIML 
maximizes (assuming normality) is 

where S is the covariance matrix of the error terms and Jt is the Jacobian matrix for 
period f. S is of the dimension of the number of stochastic equations in the model, and Jt is 
of the dimension of the total number of equations in the model. The ij element of S is 
(11 T ) C ~  I &il&jl.Since the expectations have viewpoint date t - 1, they are predetermined from 
the point of view of taking derivatives for the Jacobian, and so no additional problems are 
involved for the Jacobian in the rational expectations case. In what follows a will be used to 
denote the vector of all the coefficients in the model. In the serial correlation case a also 
includes the pi coefficients. 

FIML estimation of moderate-to-large models is expensive even in the standard case, and 
some tricks are needed to make the problem computationally feasible. An algorithm that can 
be used for large-scale applications is discussed in Parke (1982) and Fair and Parke (1980), and 
this algorithm will not be discussed here. Suffice it to say that FIML estimation of large-scale 
models is computationally feasible. What any algorithm needs to  do is to evaluate L many 
times for alternative values of a in the search for the value that maximizes L. 

In the standard case computing S for a given value of a is fairly inexpensive. One simply 
solves (1) and (2) for the &it error terms given the data and the value of a. This is only one 
pass through the model, since it is the structural error terms that are being computed. In the 
rational expectations case, however, computing the error terms requires knowing the values of 
the expectations, which themselves depend on a. Therefore, to compute S for a given value 
of a ,  one has to solve for the expectations for each of the T periods. If, say, 11,250 passes 
through the model are needed to solve the model for one period and if T is 100, then 1,125,000 
passes are needed for one evaluation of S and thus one evaluation of L. In the 25-coefficient 
problem below, the Parke algorithm required 2817 evaluations of L to converge, which would 
be over 3 trillion passes if done this way.4 

It should be clear that the straightforward combination of the EP  solution method and 
FIML estimation procedures is not likely to be computationally feasible for most applications. 
There is, however, a way of cutting the number of times the model has to be solved over the 
estimation period to roughly the number of estimated coefficients. The trick is to compute 
numerical derivatives of the expectations with respect to the parameters and use these 
derivatives to compute S (and thus L )  each time the algorithm requires a value of L for a given 
value of a .  

Consider the derivative of t - 1Eyt+,with respect to the first element of a .  One can first solve 
the model for a given value of a and then solve it again for the first element of a changed by 
a certain percentage, both solutions using the EP  method. The computed derivative is then the 
difference in the two solution values of ,-lEyt+, divided by the change in the first element of 

Note that these solutions of the error term &it are only approximations when f;is nonlinear. Hence, the method gives 
an approximation of the likelihood function. 
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a .  To compute all the derivatives requires K + 1 solutions of the model over the T number of 
observations, where K is the dimension of a .  One solution is for the base values, and the K 
solutions are for the K changes in a ,  one coefficient change per solution. From these K + 1 
solutions, K .  T .  (h+ 1) derivatives are computed and stored for each expectations variable, 
one derivative for each length ahead for each period for each c~eff icient .~ Once these 
derivatives are computed, they can be used in the computation of S for a given change in a ,  
and no further solutions of the model are needed. In other words, when the maximization 
algorithm changes a and wants the corresponding value of L, the derivatives are first used to  
compute the expectations, which are then used in the computation of S. Since one has an 
estimate of how the expectations change when a changes (from the derivatives), one does not 
have to  solve the model any more to get the expectations. 

Assuming that the solution method in Case 3 above is used for the FIML estimates, 
derivatives of uit- 1 with respect to  the coefficients are also needed when the errors are serially 
correlated. These derivatives can also be computed from the K +  1 solutions, and so no extra 
solutions are needed in the serial correlation case. 

Once the K + 1 solutions of the model have been done, and the maximization algorithm has 
found what it considers to be the optimum, the model can be solved again for the T periods 
using the optimal coefficient values and then L computed. This value of L will in general differ 
from the value of L computed using the derivatives for the same coefficient values, since the 
derivatives are only approximations. At this point the new solution values (not computed using 
the derivatives) can be used as new base values and the problem turned over to the 
maximization algorithm again. This is the second 'iteration' of the overall process. Once the 
maximization algorithm has found the new optimum, new base values can be computed, a new 
iteration performed, and so on. Convergence is achieved when the coefficient estimates from 
one iteration to the next are within a prescribed tolerance criterion of each other. This 
procedure can be modified by recomputing the derivatives at the end of each iteration. This 
may improve convergence, but it obviously adds considerably to the expense. At a minimum, 
one might want to recompute the derivatives at the end of overall convergence and then do 
one more iteration. If the coefficients change substantially on this iteration, then overall 
convergence has not in fact been achieved. 

Table I reports the results of estimating three models by FIML using the derivatives. The 
first model, model 1, is a version of the wage contracting model in Taylor (1980): 

with the restrictions that all = a 1 3  = 113, a 1 2  = a14  = 116, a 1 5  = (216 = 0117, and a 2 1  = a 2 2  = (223. 
There are two free parameters to estimate, a 1 5  and a z l .  Data for this model were generated 
using normally distributed serially independent errors with zero correlation between equations. 
Values of a15and a 2 1  of 0.0333333 and -0.333333 were used for this purpose. Fifty 
observations were generated. 

Because this model is very small and linear, a factorization procedure can be used to evaluate 

'Derivatives computed this way are 'one-sided'. 'Two-sided' derivatives would require an extra K solutions, where 
each coefficient would be both increased and decreased by the given percentage. For the work in this paper two-sided 
derivatives seemed unnecessary. For the results below each coefficient was increased by 5 per cent from its base value 
when computing the derivatives. Five per cent seemed to  give slightly better results than 1 per cent, although no 
systematic procedure of trying to find the optimal percentage size was undertaken. 
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L exactly. This procedure can in turn be used in the maximization of L using an algorithm 
like DFP. The coefficient estimates computed this way are a15= 0.0260125 and 
a21= -0.3916. 

Table I shows the results using the 'derivative' method discussed above. The results for 
model 1 show that convergence was essentially achieved after one iteration. Three solutions of 
the model over the 50 periods were needed for the derivatives for the first iteration, which 
compares to 61 that would have been needed had the derivatives not been used. The difference 
between L computed using the derivatives and L computed from the full solution after the first 
iteration is very small, and so the method worked quite well. The DFP algorithm was used for 

Table I. FIML Results for three models 

Model 1: Taylor model, no serial correlation 

i L NO. of 
using using full function 

2 1 5  2 2  1 derivatives solution evaluations 

Starting values 0.0333333 -0.333333 508.6022 
Iteration 

1 0.0252994 -0.391662 509.0470 509.0462 61 
2 0.0260233 -0.391609 509.0467 509.0467 50 
3 0.02601 17 -0.391612 509.0467 509.0466 37 

Model 2: Taylor model, serial correlation 

i i NO. of 
using using full function 

2 1 5  $1 2 2I derivatives solution evaluations 

Starting value 0.0200000 0.600 -0.200000 501 .8234 
Iteration 

1 0.0335672 0.635 -0.210860 505.5016 531.1740 77 
2 0.0289718 0.673 -0.321878 532.0178 531.7876 166 
3 0.0495646 0.745 -0.321324 532.1676 531.8590 103 
4 0.0778620 0.837 -0.322183 532.3424 531.9918 103 
5 0.0886905 0.878 -0.322699 532.1248 531.9346 96 
6 0.0903430 0.889 -0.322646 531.9557 531.9032 90 

Model 3: Six-Equation Model, 25 Coefficients 

i i NO. of 
using using full function 

derivatives solution evaluations 

Starting values 170.3100 
Iterations 

1 189.1670 184.3381 2817 
2 189.2047 189.0098 1103 
3 189.0450 189.0297 538 
4 189.0784 189.0784 258 

Notes: DFP algorithm used for models 1 and 2. Parke algorithm used for model 3.  Derivatives recomputed after each 
iteration for models 1 and 2, not for model 3.  
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this problem since the model was not large enough to require the Parke algorithm. The two 
further iterations for model 1, which were based on recomputing the derivatives, led to very 
small changes. The third iteration in particular was unnecessary. 

For model 2, the error term in equation (4) is assumed to be serially correlated: 

where p l  was set equal to 0.7 to generate the data. The coefficient estimates using the 
factorization routine and the DFP algorithm are a15= 0.0738367, pl = 0.83545, and 
a21 = -0.3221 1. The results in Table I show that the derivative method of this paper got close, 
but not quite to, the answer. The largest value of L occurred after the fourth iteration, 
531 -9918, with coefficient estimates fairly close to the exact answer. On iterations 5 and 6, 
however, the method moved slightly further away from the answer. The derivatives were 
computed after each iteration for this problem. The value of L using the exact coefficient 
estimates (not reported in the table) was 532.0333. The method thus moved from L equal to 
501.8234 to L equal to 531.9918, but it could not go the rest of the way to 532.0333. When 
the method was started off from the exact answer it moved away from it slightly, like the case 
for iterations 5 and 6 in Table I. This basically seems to be a hard computational problem. 
The likelihood function is fairly flat near the top, especially with respect to a15 and pl, and 
we have found at least one other local ~ p t i m u m . ~  

Model 3 is a simple six-equation macroeconomic model with 25 coefficients, one of which 
is a serial correlation coefficient. The model is meant for computational exercises only; it is 
not meant to be a good approximation of the economy. The equations are shown in Table I1 
(C  is consumption, I is investment, M is the nominal money supply, P is the GNP deflator, 
R is the interest rate, Y is GNP, YS is an estimate of potential GNP, PM is the import price 
deflator, Q is government spending plus net exports, t is the time trend, RHO means that the 
error term in the equation is first-order serially correlated, and C, I ,  Y, YS, and Q are in real 
terms). The exogenous variables in the model are PMt, YSt, Qt, and t .  Future expected values 
are in equations (I), (2), (4), and (5), and the longest lead length is 2. 

The equations were first estimated using Hansen's (1982) method of moments estimator. 
The estimation period was 1954 1-1984 IV, for a total of 124 observations. The Hansen 
estimates were then used as starting values for the FIML calculations. 

The results in Table I for model 3 are based on only one set of calculations of the derivatives. 
The model was solved 26 times for the 124 observations to get the derivatives for the 25 

Table 11. Six-equation model 3 

1 .  log Ct 	 cnst, log Ct-1,t-1E log Yt+2, Rt 
2. I t -  It-1 	 cnst, Yt - Yt-1, I- lE(Yt+l - Yt ) ,  Rt, t ,  11-1 
3 .  log(Mt/Pt) 	 cnst, log(Mt- 11Pt- 1 1 ,  log Yt, Rt 
4. 	log Pt cnst, log Pt- 1 ,  log PM,, (YSt - Yt)/  YS1, 


t-iE((YSt+l- Yt+l)/YSt+l),R?O 

5 .  	Rt cnst, Rt-1, t-~E100((Pt+2/Pt+l) I ) ,  1 0 0 ( ( ~ ~ / ~ ~ - 1 ) ~11, 

1 0 0 ( ( M t - l / ~ t - 2 ) ~1 )-

6 .  Y t=Ct+It+Qt.  

6Also, although not reported in Table I, model 2 is much harder to solve than model 1 in requiring a much larger 

value of k and many more iterations of the solution paths to converge. 

'See Fair (1989) for a discussion of the use of Hansen's estimator in this context. 
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coefficients. The Parke algorithm was used for the maximization. It can be seen in Table I that 
the use of the derivatives worked quite well. After the first iteration the difference between L 
computed using the derivatives and L computed from the full model solution is fairly large 
(189.1670-184.3381), but the differences are quite small for iterations 2, 3, and 4. 
Convergence had been achieved after iteration 4. 

The good results for model 3 are encouraging. Model 3 is probably more representative of 
models likely to be used in practice than is model 2. Model 2 is probably extreme in the degree 
to which future predicted values affect current predicted values, and this may be one of the 
reasons results are not as good for it. 

The estimate of the FIML covariance matrix of the coefficient estimates (say P )  is 

where the derivatives are evaluated at the optimum. P can be computed using numerical 
derivatives,' and this was done at the end of the estimation for each model. The covariance 
computations are feasible because the expectations derivatives can be used in calculating the 
derivatives in (7). In other words, no further solutions of the model are needed to compute 
P i n  (7). P for model 3 is used in the next section for the stochastic simulation results. 

4. STOCHASTIC SIMULATION 

For models with rational expectations we must state very carefully what we mean by a 
stochastic simulation of the model and what we use stochastic simulation for. Here we do not 
use stochastic simulation to  improve on the accuracy of the solutions of the expected values. 
The expected values are computed exactly as described above-using the E P  method. This way 
of solving for the expected values can be interpreted as assuming that agents at the beginning 
of period s form their expectations of the endogenous variables for periods s and beyond by 
(1) forming expectations of the exogenous variables for periods s and beyond, (2) setting the 
error terms equal to  their expected values (say zero) for periods s and beyond, (3) using the 
existing set of coefficient estimates for the model, and then (4) solving the model for periods 
s and beyond. These solution values are the agents' expectations. 

What we mean by stochastic simulation begins once the expected values have been solved 
for. Given the expected values for periods s through s + h,  stochastic simulation is performed 
for period s. The problem is now no different from the problem for a standard model because 
the expectations are predetermined. Assume that the errors are distributed N(0,S^), where Ŝ  
is the FIML estimates of S from the previous section. From this distribution one can draw a 
vector of error terms for period s. Given these draws (and the expectations), the model can 
be solved for period s in the usual ways. This is one 'trial'. Another trial can be done using 
a new draw of the vector of error terms, and so on. Let yjs be the solution value of yis on 
the jth trial. For J trials the estimate of the expected value of yi,, denoted jis, is 

The estimated variance of the forecast error, denoted 3fS, is 

' ~ ~ a i n ,there are some tricks needed to do this for large models; see Parke (1982) and Fair and Parke (1980). 
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One can also use this approach to analyse the effects of uncertainty in the coefficients cr by 
assuming that the coefficients are distributed N(&,P), where & is the FIML estimate of a and 
P i s  the estimated covariance matrix as computed in (7). In this case each draw also involves 
the vector of coefficients. 

If Uir is serially correlated as in (2), then an estimate of uis- 1 is needed for the solution for 
period s. This estimate is, however, available from the solution of the model to get the 
expectations (see case 2 in the previous section), and so no further work is needed. The estimate 
of uis-l is simply taken as predetermined for all the trials, and uis is computed as piuis-l plus 
the draw for Cis.  (Note that the E errors are drawn, not the u errors.) 

Stochastic simulation is quite inexpensive if only results for periods are needed, because the 
model only needs to be solved once using the EP method. Once the expectations are obtained, 
each trial merely requires solving the model for period s. If, on the other hand, results for more 
than one period are needed and the simulation is dynamic, the EP method must be used p 
times for each trial, where p is the length of the period. 

Consider the multi-period problem. As above, the expectations with viewpoint dates - 1 can 
be solved for and then a vector of error terms and a vector of coefficients drawn to compute 
the predicted value of y,,. This is the first step. 

Now go to periods + 1. An agent's expectation of, say, yis+z is different with viewpoint date 
s than with viewpoint date s - 1. In particular, the value of yi, is in general different from what 
the agent at the end of period s- 1 expected it to be (because of the error terms that were 
drawn for period s ) . ~  A new set of expectations must thus be computed with viewpoint date 
s. Agents are assumed to use the original set of coefficients (not the set that was drawn) and 
to set the values of the error terms for periods s + 1 and beyond equal to zero. Then, given 
the solution value of yis and the actual value of X S ,  agents are assumed to solve the model for 
their expectations for periods s + 1 and beyond. This requires a second use of the EP method. 
Given these expectations a vector of error terms for period s + 1 is drawn and the model is 
solved for period s + 1. If equation i has a serially correlated error, then is equal to 
P ? ~ i r - l  plus the draw for Now go to period s + 2 and repeat the process, where another 
use of the EP method is needed to compute the new expectations. The process is repeated 
through the end of the period of interest. At the end, this is one trial. The overall process is 
then repeated for the second trial, and so on. Note that only one coefficient draw is used per 
trial, i.e. per dynamic simulation. After J trials one can compute means and variances just as 
above, where there are now means and variances for each period ahead of the prediction. Also 
note that agents are always assumed to use the original set of coefficients, and to set the current 
and future error terms to zero. They do not perform stochastic simulation themselves. 

Stochastic simulation results for model 3 are presented in Table 111. The FIML estimates of 
S,  a ,  and V from the previous section were used for the draws. The length of the prediction 
was taken to be four, and 100 trials were performed. This meant that the number of times the 
model had to be solved for the expectations was 400. Again, had the length been taken to be 
one, the number of solutions for the expectations would have been one. The results show, as 
is common with most macroeconometric models, that the stochastic-simulation estimates of 
the means are quite close to the deterministic-simulation estimates. The deterministic- 
simulation estimates are simply based on setting the error terms to zero and solving once for 
each period (as the agents are assumed to do). The real use of stochastic simulation is to 
compute standard deviations or variances. The estimated standard deviations are presented in 

It may also be that the actual value of x, differs from what the agent expected it to be at the end of s - 1. 
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Table 111. Stochastic simulation results for model 3 

1983 

I I I I11 IV 

Consumption (a) 2095.4 2111.9 2129.6 2146.5 
(b) 2094.0 2113.0 2130.8 2149.0 
(c) 13.1 17.9 23.1 29.4 

Investment (a) 259.3 264.2 268.2 272.5 
(b) 259.1 264.1 269.1 274.4 
(c) 6.7  8 .7  9 .8  12.3 

Money Supply (a) 521 -5  532.2 543.2 554.5 
(b) 521.1 533.1 543.8 556.0 
(c) 5 .5  8 .4  10.9 11.7 

Price Level (a) 1 0293 1.0435 1.0587 1 a0751 
(b) 1.0293 1 a0437 1.0595 1 ~0762  
(c) 0.0046 0.0083 0.01 10 0.0125 

Interest Rate (a) 8.39 8.57 8.75 8.94 
(b) 8.28 8.40 8.74 9.01 
(c) 0.79 0-96 1.09 1 a21 

Real GNP (a) 3201.2 3243 - 9  3273 1 3305.4 
(b) 3199.6 3244.8 3275.2 3309.8 
(c) 17.6 23.3 28.1 35.7 

Notes: (a) predicted values from deterministic simulation. 
(b) estimated mean values from stochastic simulation. 
(c) estimated standard deviations from stochastic simulation. 

The results are based on 100 trials. 

row (c) in the table. For real GNP, for example, the estimated standard deviation of the four- 
quarter-ahead forecast error is $35.7 billion, which is about 1 per cent of the mean value of 
$3309.8 billion. 

Stochastic simulation has also been used to evaluate alternative international monetary 
systems using the multicountry models in Carloyzi and Taylor (1985) and Taylor (1988). For 
this work values of &it were drawn, but not values of the coefficients. The vector of coefficients 
a was taken to  be fixed. 

It should be clear that stochastic simulation as defined above is computationally feasible for 
models with rational expectations. It is in fact likely to be cheaper than even FIML estimation 
using the derivatives. If, for example, the FIML estimation period is 100 observations and 
there are 25 coefficients to estimate, FIML estimation requires that the model be solved 2600 
times using the EP method to get the derivatives. For a stochastic simulation of eight periods 
and 100 trials, on the other hand, the model has to  be solved using the EP method only 800 
times. 

5. CONCLUSION 

The results in this paper are encouraging regarding the use of models with rational 
expectations. FIML estimation is computationally feasible using the procedure of computing 
derivatives for the expectations, and stochastic simulation is feasible when done in the manner 
described in section 4. FIML estimation is particularly important because it takes into account 
all the nonlinear restrictions implied by the rational expectations hypothesis. It is hoped that 
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the methods discussed in this paper will open the way for many tests of models with rational 
expectations. lo 
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