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1. 	 INTRODUCTION complex models and apply them to practical policy or 
other applied problems. 

During the last few years, there has been an increased The purpose of this article is to report on a compar- 
demand for numerical solution methods for nonlinear ison of several alternative numerical solution techniques 
rational-expectations models. The demand has come for nonlinear rational-expectations models. All of the 
from economic researchers with diverse research goals techniques are currently under development and rely 
and modeling strategies. In almost all areas of macro- on high-speed computer technology or will eventually 
economics, rational-expectations models are becoming need this technology when they are moved beyond sim- 
increasingly complex and richer in structure. Empirical ple test problems. The comparison is one of the activities 
researchers studying real business-cycle models are at- of a research group called the Nonlinear Rational Ex- 
tempting to go beyond simple representative-agent pectations Modelling Group supported by the National 
models with convenient, but sometimes unrealistic, Bureau of Economic Research. Participants in the 
functional forms for the utility functions; they are also group meetings at Stanford and Minneapolis have in- 
beginning to study models with distortions and exter- cluded Marianne Baxter, Wilbur John Coleman, Law- 
nalities. Researchers focusing on monetary models are rence Christiano, Darrell Duffie, Ray Fair, Joseph 
finding it necessary to solve large nonlinear stochastic Gagnon, Lars Hansen, Beth Ingram, Kenneth Judd, 
systems to apply rational-expectations techniques to Pamela Labadie, David Luenberger, Rodolfo Manuelli, 
practical problems of monetary policy, including inter- Albert Marcet, Ellen McGrattan, David Runkle, John 
national monetary policy. Finance economists inter- Rust, Thomas Sargent, Christopher Sims, Kenneth Sin- 
ested in dynamic "consumption-beta" models are gleton, John Taylor, George Tauchen, and Harald 
finding it necessary to go beyond simple analytical Uhlig. The comparison was made by asking individual 
models to confront the theory with the data. As elec- researchers to apply different solution techniques to a 
tronic computing power becomes faster and cheaper, simple representative-agent, optimal, stochastic growth 
numerical solution procedures will enable macroecon- model designed to describe the behavior of aggregate 
omists and financial economists to study these more consumption and the capital stock. Though simple, the 
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problem does not have an analytic solution. Hence the 
solution results are of interest in their own right in 
addition to enabling a comparison of alternative meth- 
ods. 

Section 2 describes the stochastic growth model. Sec- 
tion 3 very briefly describes the solution methods. More 
details about each of the techniques are contained in 
articles by the individual authors that accompany this 
article. Section 4 presents the comparison of the dif- 
ferent solution methods on the test problem. Section 5 
considers issues for future research. 

2. THE STOCHASTIC GROWTH MODEL 

The following problem was proposed by Christopher 
Sims to be solved by the individual researchers. Let C, 
be consumption and Kt be the capital stock. Agents are 
assumed to maximize 

subject to 

and to the side conditions that Kt > 0 and C, > 0 for 
all t. Note that Equation (2 )  implies that there is no 
depreciation of the capital stock. A slightly more gen- 
eral formulation would have some depreciation in which 
a coefficient less than 1 would multiply the lagged value 
of the capital stock in Equation (2 ) .  Agents at time t 
choose Kt and C,. Agents are assumed to know the 
history of all variables dated t and earlier when they 
choose variables dated t. 

The stochastic process for 8, is given by 

where E is a serially uncorrelated, normally distributed 
random variable with mean 0 and constant variance 
a$ 


For this problem, decision rules for consumption C, 
and the capital stock K, in any period t are given by the 
functions f ( K t _  8,) and g(K, - I,8,) of the capital stock 
in period t - 1 and the random shock in period t. Exact 
solutions for f and g are not known for this problem. 
If the utility function is logarithmic ( T  = 1) and there 
is full depreciation rather than zero depreciation as in 
Equation ( 2 ) ,  then there is a simple closed-form solu- 
tion (e.g., see Sargent 1987, p. 122). For the problem 
in Equations ( 1 ) and ( 2 ) ,the functions f and g must be 
evaluated numerically. 

To compare the different solution methods, the sto- 
chastic growth problem was solved for 10 cases of pa- 
rameter values. The parameters for the 10 cases are 
given in Table 1 with a = .33 and p = .95 for all cases. 
These values of the coefficient of relative risk aversion 
( 5 )  allow for considerable differences in the degree of 
risk aversion. Note also that the technology shock has 
a very large variance in cases 1-4, indicating a high 
degree of uncertainty. 

Table 1. Parameter Choices for the 10 Cases 


Case B 5 a, 


Individual researchers reported results in two basic 
forms, decision rules ( f  and g )  for consumption and 
capital and stochastic simulation paths for consumption 
and capital. The decision rules f and g were evaluated 
for a grid of values of capital and the technology shock. 
For the stochastic simulations, shocks on E ,  were drawn 
so as to generate a path for C, and K, over time. 

3. THE SOLUTION METHODS 

Ten researchers participated in the solution compar- 
ison by submitting decision rules andlor stochastic 
simulation paths. The names of the researchers, in 
alphabetical order, along with the type of method that 
each researcher used, an indication of whether decision 
rules were submitted, and the number of periods in the 
simulated time series submitted in each case are listed 
in Table 2. 

A very brief overview of the general features of each 
method is provided for convenience here. Details of 
how these methods are implemented in the stochastic 
growth model can be found in the articles by the in- 
dividual authors that accompany this article. To use the 
methods, one, of course, needs to read these articles. 

Value-Function Grid. The basic idea here is to ap- 
proximate the continuous valued-growth problem by a 
discrete-valued problem over a grid of points. In other 
words, the values of K and the shocks are discretized. 
By making the grid finer, the actual solution for K can 
be approximated arbitrarily closely. These approxi- 
mations result in a discrete state-space dynamic opti- 
mization model that is solved by iterating on the value 
function. The finer the grid is, the more expensive will 
be the computation for this method. Higher dimensions 
for the control variable increase computation time 
greatly, but for the test problem there is only one di- 
mension, and computing time is not a problem. Chris- 
tiano used this method to solve the growth problem in 
Equation (1 ) .  See Christian0 (1990) for details. 

Quadrature Value-Function Grid. This method also 
discretizes the state space, but it is potentially more 
efficient than the simple grid in that a quadrature rule 
is used to discretize the state space. Tauchen has applied 
this method successfully in several problems. See 
Tauchen (1987, 1990) for a description of the method 
and for a discussion of some applications. 
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Table 2. Summav of the Methods 

Researcher Type of method 

Baxter Euler-equation grid 
Christian0 Lin-LQ-Normal 
Christian0 Lin-LQ-discrete 
Christian0 Log-LQ-Normal 
Christian0 Log-LQ-discrete 
Christian0 Value-function grid 
Coleman Euler-equation grid 
Gagnon Extended path 
lngram Backsolving 
Labadie Least square projection 
Marcet Parameterizing expectations 
McGrattan Lin-LQ-Normal 
Sims Backsolving 
Tauchen Quadrature value-function grid 

Linear-Quadratic (lin-LQ-Normal, fin-LQ-discrete, 
log-LQ-Normal, log-LQ-discrete). This method ap- 
proximates the control problem in Equation (1) with a 
standard linear-quadratic (LQ) control problem to 
which linear decision rules for K and C are optimal and 
can be computed easily. The linear decision rules are 
then treated as approximations to the exact solutions. 
The approximation is made by first substituting the con- 
straint (2) into the objective function (1) and then mak- 
ing a quadratic approximation of the utility function at 
each time period. The approximation is taken about the 
steady-state values of the problem. This method was 
used by Kydland and Prescott (1982). Its application to 
the problem considered in this article is described by 
Christiano (1990) and McGrattan (1990). 

In preparing calculations for the LQ method reported 
in this article, Christiano did four variants of this 
method. In one variant, log(K) was treated as a control 
variable, and in another variant, K was treated as a 
control variable. The two solutions are referred to as 
log-LQ and lin-LQ respectively. Moreover, for each of 
these two variants, Christiano drew the shocks in the 
stochastic simulations either according to a continuous- 
valued normal distribution or according to a discrete 
distribution. The identifiers "Normal" and "discrete" 
are used to indicate these two variants. The latter type 
of draws were made for comparison with the value- 
function-grid methods. McGrattan's LQ results are 
based on treating K as the control variable and drawing 
normal errors and, therefore, are referred to as the lin- 
LQ-Normal method in this article. 

Backsolving. This method was proposed by Sims 
(1984, 1989). The implementation for the stochastic 
growth problem is described by Ingram (1990) and Sims 
(1990). The backsolving method is a general approach 
rather than a specific algorithm, and, in fact, the Ingram 
and Sims backsolving implementations are considerably 
different in this application. The backsolving method 
starts out by solving a problem that is more analyti- 
cally tractable than the actual problem and then ap- 
proximates the actual problem at the stage when the 
stochastic shocks are drawn. For example, in this 

Decision Simulation 
rules periods Cases 

Yes 2,009 All cases 
Yes 2,000 All cases 
Yes 2,000 All cases 
Yes 2,000 All cases 
Yes 2,000 All cases 
No 2,000 Cases 5-1 0 
Yes 1,999 All cases 
Yes 500 All cases 
No 1,000 All cases 
No 680 Cases 1, 5, 7 
Yes 1,649 All cases 
Yes 2,000 All cases 
No 2,000 All cases 
Yes 2,000 All cases 

application Sims solves a linear-quadratic approxima- 
tion to the original problem and draws shocks for the 
Euler equation, backsolving for the shocks in the pro- 
duction function. Ingram modifies the original problem 
by adding another shock with a convenient distribution, 
thus relaxing the budget constraint. 

Extended Path. This method was described in gen- 
eral terms by Fair and Taylor (1983), and its imple- 
mentation in the stochastic growth problem is described 
by Gagnon (1990). When applied to the optimal-control 
problems like the one in Equation (I),  it works by solv- 
ing the nonlinear dynamic first-order conditions that 
are implied from the discrete-time calculus-of-varia- 
tions formulation of the problem. These first-order con- 
ditions at time t involve conditional expectations of 
Kt+ , .  These future expectations are solved out itera- 
tively to solve the first-order conditions, thereby ob- 
taining the decision rule solution for Kt. The decision 
rule for consumption is then computed from the budget 
identity. Atthough stochastic iterations may improve 
the accuracy of the method in some cases, only deter- 
ministic iterations were performed by Gagnon. 

Euler-Equation Grid. Coleman's method and Bax- 
ter's method fall into this category. Coleman's method 
works by approximating the decision rules for con-
sumption and capital (by piecewise linear functions, for 
example). Using these approximate functions, the 
method then iteratively solves the Euler equations di- 
rectly rather than by iterating on the value function. 
Convergence is checked over a grid of values. [See 
Coleman (1990) and the references therein.] Baxter's 
method discretizes the state space and then iterates to 
find the value for capital, restricted to the grid, that 
comes closest to solving the Euler equations. [See Bax- 
ter, Crucini, and Rouwenhorst (1990) for the imple- 
mentation of the method in the stochastic growth 
problem .] 

Parameterizing Expectations. This method was 
originally proposed by Marcet (1988), and its imple- 
mentation for the stochastic growth problem is de- 
scribed by Den Haan and Marcet (1990). Like the 
Euler-equation-grid and extended-path methods, this 
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method uses the first-order conditions (Euler equa- 
tions) for the dynamic-optimization problem. The gen- 
eral idea is to hypothesize a general functional form 
with undetermined parameters for the conditional ex- 
pectation of future variables that appear in the first- 
order conditions. The parameters of this functional 
form are then "estimated" by least squares using a sin- 
gle set of simulated values. The functional form can 
then be generalized until convergence of the solution 
is achieved. 

Least Squares Projections. This method was origi- 
nally proposed by Labadie (1986), and its implemen- 
tation for the stochastic growth problem is described 
by Labadie (1990). Like the method of parameterizing 
expectations, this method focuses on obtaining expres- 
sions for the conditional expectations implicit in the 
first-order conditions (Euler equations). It attempts to 
"estimate" certain parameters of the conditional ex- 
pectations functions by using a single simulation of the 
random shocks in the model. 

Counting the LQ methods only once, there are a total 
of eight different solution methods examined in this 
article, which reports on 14 different sets of solutions 
because there are four variants of the LQ method and 
because the backsolving method, the lin-LQ-Normal 
method, and the Euler-equation-grid method are each 
used by two researchers (though in some cases with a 
very different implementation procedure). 

4. A COMPARISON OF THE RESULTS 

As indicated previously, researchers reported results 
both in the form of decision rules and stochastic sim- 
ulation paths. The stochastic simulation paths were 
plotted graphically and were also used to calculate sev- 
eral summary statistics to aid in the comparison of the 
solution algorithms. In the first part of this section, we 
discuss the plots of the simulation paths and then go on 
to discuss the decision rules and the summary statistics. 

4.1 Plots of the Stochastic Simulations 

The reported stochastic simulation paths for all 10 
cases are available on request. Due to space limitations, 
we only report plots of a sample of cases here. These 
cases were selected with several criteria in mind-to 
include as many researchers as possible, to demonstrate 
differences in behavior most clearly, and to illustrate 
that the differences are not particular to just one case. 

4.1.1 Time Series Charts. Figure 1 shows the re- 
alizations for consumption and capital for a single sto- 
chastic simulation for case 1 for 13 of the different 
solution methods. (To assist readers in scanning the 
figures, the charts in each figure are organized in the 
same order, and in cases in which a solution method is 
not available, a blank appears in the figure.) Note that 
each researcher used different sets of draws of the 
random variable so that the actual realizations will be 

much different for each method. Even if two methods 
gave exactly the same accuracy, only the general pat- 
terns of the stochastic simulations would appear similar 
for the different methods. On an absolute basis, the 
level of consumption is, of course, much less than the 
level of the capital stock. The fluctuations in consump- 
tion are also smaller than the fluctuations in the capital 
stock. All of the methods show a high degree of con- 
temporaneous correlation between consumption and 
the level of capital. Most of the variance in both con- 
sumption and capital is in the low frequencies (assuming 
an annual time frame). The discretization of capital in 
Tauchen's method is quite evident, as is the resulting 
erratic behavior of consumption. Note also the en-
counters with 0 in the lin-LQ-Normal simulation and 
the shock-and-convergence-back behavior in the lin- 
LQ-discrete simulation. But even aside from this "ex- 
otic" behavior, differences among the solution methods 
may be quite large: compare, for example, the plots for 
McGrattan's solution and Marcet's solution. Marcet's 
parameterizing-expectations solution finds a much 
higher variance for capital and a much lower frequency 
of fluctuations than does McGrattan's linear-quadratic 
method. The macroeconomic interpretations of these 
two simulations would be much different. 

Figure 2 shows the time series plots of investment (Kt 
- Kt_,)  for 12 of the methods for case 10. This case 
has a much higher coefficent of relative risk aversion 
and a much lower technology shock than case 1. This 
comparison also shows considerable differences be-
tween the methods. Some of the methods in which the 
shocks are drawn discretely (Christiano-lin-LQ-dis- 
Crete, Christiano-value-function grid, and Tauchen) 
show long periods of no change in the investment series. 
Note that Ingram's solution appears to have a higher 
volatility of investment than the other methods. 

4.1.2 Empirical Density Functions for Consumption 
and Investment. In Figure 3, we present empirical den- 
sity functions for consumption for case 5 (50 grid 
points), and in Figure 4, we present empirical density 
functions for investment for case 10 (25 grid points to 
achieve more smoothness). The density functions all 
integrate to 1, but notice the different vertical scales. 
(Frequently, a histogram is drawn as a step function 
with certain heights for each bin. Note however, that 
connecting these heights by straight lines, as we do in 
Figs. 3 and 4, results in a function with the same integral 
as the original step function if the boundary values 
are 0.) 

As with the time series plots, the differences between 
the empirical density functions are quite striking. Ex-
cept for those of Coleman and possibly McGrattan, 
none of the density functions are particularly smooth. 
Obviously, even with 2,000 simulated data points the 
variance on these estimated density functions is quite 
high. Nonetheless, the differences between the solu- 
tions are large with some methods showing very little 
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Figure 1. The Realizations for Consumption and Capital for a Single Stochtistic Simulation for Case 1 for 13 of the Different Solution 
Methods. A blank appears here and in Figures 2, 4, 5, and 6 if a solution method is not available. Different cases have been used for different 
figures to illustrate the points most clearly. Here the time span is 200 to 800. The range for consumption and capital is 0 to 50 for all simulations 
except Labadie's; in her case the range is 0 to 120. The smaller of the two time series is always the consumption series. Gagnon's and 
Labadie's series were shorter than the 800 periods and are, therefore, cut off. Note that only patterns can be compared, since different 
researchers used different random numbers. Note the effect of discretization in the simulations Christiano lin-LQ-discrete, Christiano log-LQ- 
discrete, and Tauchen. 

spread, some showing double peaks, and others show- 4.1.3 Scatter Diagrams for Consumption and Cap- 
ing a very wide spread. In particular, the question of ital. Figure 5 shows scatterplots of the decision vari- 
whether investment is sharply peaked cannot be de- ables capital K, and consumption C, for case 4 on a scale 
cided from these different methods at this point. common to all researchers. Figure 6 shows scatter dia- 
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Figure 2. The Time Series Plots of Investment K, - K, , for 72 of the Methods for Case 10 and Time Periods 200 to 800. The range for 
investment is - 1.5 to 1,5. Case 70 has a much higher coefficient of relative risk aversion than case 1. Some of the discrete methods show 
long periods of (almost) no investment (Christiano lin-LQ-discrete, Christiano log-LQ-discrete, Christiano value-function grid, and Tauchen). 
Ingram's solution is quite volatile compared to others. 

grams for a selected sample of points for each method without ever dropping below a rather rigid bound- 
(again case 4) with the points connected to show the ary. The lin-LQ-discrete solution moves along steadi- 
general direction of movement. Note that the scales ly on apparently parallel lines with "quantum leaps" 
differ in Figure 6. The solutions for Ingram, Sims, and in between. Moreover, sudden drops in consumption 
Coleman seem to move along rather large loops, can be observed in Tauchen's solution and Gagnon's 
whereas the log-LQ-Normal solution jumps around solution. Notice in the latter how the values accumu- 
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C h r ~ s L ~ o n oL L ~ L O- Norma l  C h r ~ s t ~ a n oLogLO - Norm01 

- 1.2 2 . 1  1.6 2 8  1.0 1.2 3 4  
cmaunplron conrumptron consumption 

Figure 3. The Empirical Density Functions for Consumption for Case 5 and for all Available Data of a Simulation. The range for consumption 
is 1.8 to 3.4 (actually, these numbers are rounded from the original bin bounds, which explains the cutoff in Ingram's graph). Fifty bins are 
used, and the heights are connected by a straight line; this still results in a density integrating to 1 if the boundary values are 0. Most density 
functions are surprisingly ragged. Some-for example, Christiano's discrete methods-show double peaks. The shapes vary considerably 
across methods, but it is possible that this is largely due to the rather small length of the simulated time series (mostly 2,000 data points). 

late to two "islands." These islands are probably be- into a simple large scatter, as do most of the other 
cause Gagnon has provided a small sample of points. methods. 
Gagnon has reported that additional simulations (not re- Additional scatterplots not reported here show ad- 
ported here) show that more data points begin to fill ditional anomalies. For example, scatter diagrams of 
in the sparse areas and the scatter diagram develops investment versus the change in consumption showed 
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B o x t e r  C h r ~ s L ~ a n a  - No rma l  L L ~ L O  D ~ s c r e L e  LoqLOL L ~ L O  C h r ~ s t ~ o n a  - C h r ~ s L ~ o n o  - Normal 

C h r ~ n t ~ a n oLogLO - D ~ s c r e L e  - VoLve F u n c L ~ o n  Coleman GagnanC h r ~ s t ~ o n o  G r ~ d  

Figure 4. The Density Functions for Investment K, - K,-,in Case 10, Using 25 Bins to Achieve More Smoothness. Again, for example, 
Christian0 log-LQ-discrete shows double peaks. The density for Gagnon and Tauchen is very narrow and sharply peaked compared with 
the other methods. It is, therefore, difficult to decide whether this is actually a feature of the true solution. The range for investment is - 1.0 
to 1.0 in all graphs. 

a strikingly curved scatter with a sharp boundary on the the curvature in the log-LQ-Normal solution comes 
inside for the log-LQ-Normal method, and Tauchen's from. It appears to disappear for cases 5 to 10. Since 
solution showed star-like patterns that were probably cases 1-4 are parameterized with higher disturbance 
the result of discretization. It is not clear to us where variance, it is possible that the curvature is a result of 
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Figure 5. Scatterplots of the Decision Variables, Capital K, Versus Consumption C,, in Case 4. A common scale is used for all researchers: 
0 to 300 for capital and -4.0 to 12.0 for consumption. Note how a sharp boundary is visible in Christiano lin-LQ-Normal, Christiano log-LQ- 
Normal, and McGrattan-that is, in the most commonly used linear-quadratic methods. Observe that the points scatter around two "islands" 
in Gagnon's solution. Gagnon reports that this island structure starts to disappear with longer simulations. 

the quadratic approximation. Since the linear-quadratic 4.2 Decision Rules 
method is probably one of the most commonly used 
methods, this is an important issue for future research. For 10 of the 14 methods, researchers reported de- 
These diagrams reveal large differences among the dif- cision rules Kt = f (Kt- I ,  8,) and Cl = g ( K r -1 ,  0,) for 
ferent methods. consumption and capital. The results for cases 1 and 2 
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C h r ~ s L ~ a n oL L ~ L O- Normal  C h r ~ s L ~ o n o  -LoqLO Normal 

Coleman Gagnon 

S ~ m s  Touchen 


Figure 6. Scatterplots Similar to Figure 5 Except That Subsequent Data Points Are Connected by a Straight Line and the Scale Varies 
Across Methods. Subsamples of 100data points were used for these diagrams. Note the sharp adjustments in, for example, Baxter, Christiano 
/in-LQ-discrete and log-LQ-discrete, and Tauchen. The simulations of Coleman, Ingram, and Sims show rather large loops. Shorter loops 
can be seen in the simulations of, for example, Christiano lin-LQ-Normal and Marcet. Again the features and the behavior of the methods 
are quite different. This can be relevant in economic applications. 

are reported in Tables 3-10. The decision rules were Note first that the results for the two independent 
evaluated for a grid of values of K,-,  and 8,. The grid calculations of the lin-LQ are identical. (For the deci- 
of values for the tabulation of the function f and g in sion rules there is, of course, no difference between lin- 
cases 1 and 2 were 8, = .4, .7, 1.0, 1.3, and 1.6 and LQ-Normal and lin-LQ-discrete.) This is, of course, not 
KO = 5, 10, 15, 20, and 25. surprising, but it provides a useful check on the results. 
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Table 3. Decision Rules for Euler-Equation Grid (Baxter) Table 5. Decision Rules for Log-LO (Christiano) 

Capital: case 1 

5.19 5.62 
10.01 10.36 
14.41 15.01 
18.98 19.67 
23.54 24.23 

Consumption: case 1 

1 .OO 1.08 
1.49 1.78 
2.30 2.43 
2.90 3.02 
3.48 3.66 

Capital: case 2 

5.02 5.19 
9.93 10.01 

14.84 14.93 
19.84 19.92 
24.75 24.84 

Consumption: case 2 

1.17 1.51 
1.57 2.13 
1.87 2.51 
2.04 2.77 
2.27 3.05 

The log-LQ results are somewhat different from the lin- 
LQ results. The log-LQ results are very similar to the 
quadrature-value-function-grid solution (Tauchen) or 
the Euler-equation-grid solution (Coleman). Assuming 

Table 4. Decision Rules for Lin-LQ (Christiano) 

Capital: case 1 

5.13 5.80 6.30 
9.75 10.42 10.91 

14.36 15.04 15.53 
18.98 19.65 20.15 
23.60 24.27 24.77 

Consumption: case 1 

1.06 .90 .91 
1.75 1.72 1.86 
2.35 2.41 2.64 
2.90 3.03 3.34 
3.43 3.62 3.99 

Capital: case 2 

4.90 5.40 5.76 
9.71 10.21 10.58 

14.52 15.02 15.39 
19.33 19.83 20.20 
24.14 24.64 25.01 

Consumption: case 2 

1.29 1.30 1.45 
1.79 1.93 2.20 
2.19 2.43 2.79 
2.55 2.86 3.30 
2.88 3.25 3.75 

Capital: case 7 

5.22 5.45 
9.90 10.34 

14.40 15.04 
18.78 19.61 
23.08 24.10 

Consumption: case 1 

.97 1.25 
1.60 1.80 
2.31 2.41 
3.10 3.07 
3.95 3.79 

Capital: case 2 

5.05 5.22 
9.84 10.17 

14.54 15.02 
19.18 19.81 
23.77 24.55 

Consumption: case 2 

1.14 1.48 
1.65 1.97 
2.17 2.43 
2.70 2.88 
3.25 3.34 

that these grid solutions are fairly accurate, this shows 
the advantages of choosing functional forms when using 
the linear-quadratic method. The values for the quad- 
rature method reported in the table are interpolated 

Table 6. Decision Rules for Euler-Equation Grid (Coleman) 

01 

KO .40 .70 7.00 1.30 1.60 

Capital: case 7 

Consumption: case 7 

5.0 .80 .92 1.03 1.13 1.23 
10.0 1.42 1.59 1.74 1.88 2.01 
15.0 2.02 2.23 2.41 2.57 2.73 
20.0 2.60 2.84 3.04 3.23 3.41 
25.0 3.17 3.43 3.66 3.87 4.07 

Capital: case 2 

5.08 5.36 
9.86 10.21 

14.63 15.03 
19.39 19.84 
24.16 24.64 

Consumption: case 2 

1.1 1 1.34 
1.64 1.93 
2.09 2.41 
2.49 2.85 
2.86 3.25 
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Table 7. Decision Rules for Extended Path (Gagnon) 

KO .40 .70 7.00 1.30 1.60 

Capital: case 1 

Consumption: case 1 

Capital: case 2 

Consumption: case 2 

from the grid values that automatically emerge from 
the method, so there is some question about the ac- 
curacy of these numbers as estimates of the exact so- 
lution. Given the small computation time for the linear- 

Table 8. Decision Rules for Parameterizing Expectations (Marcet) 

01 

Capital: case 1 

5.27 5.70 
9.88 10.39 

14.47 15.03 
19.05 19.64 
23.64 24.24 

Consumption: case 1 

.92 1 .OO 
1.62 1.74 
2.24 2.42 
2.83 3.05 
3.39 3.65 

Capital: case 2 

5.01 5.36 
9.77 10.17 

14.54 14.98 
19.34 19.80 
24.15 24.62 

Consumption: case 2 

1.18 1.34 
1.73 1.97 
2.17 2.46 
2.54 2.89 
2.88 3.27 

Table 9. Decision Rules for Lin-LQ (McGrattan) 

Capital: case 1 

Consumption: case 1 

1.06 .90 
1.75 1.72 
2.35 2.41 
2.90 3.03 
3.43 3.62 

Capital: case 2 

4.90 5.40 
9.71 10.21 

14.52 15.02 
19.33 19.83 
24.14 24.64 

Consumption: case 2 

quadratic approximations, these preliminary results are 
very promising for the log-LQ method. 

One puzzle about the linear-quadratic method (es- 
pecially the lin-LQ version) is that the response of 

Table 10. Decision Rules for Quadrature Grid (Tauchen) 

Capital: case 1 

5.26 5.65 
9.97 10.43 

14.40 15.00 
19.20 19.67 
23.69 24.00 

Consumption: case 1 

.93 1.05 
1.54 1.70 
2.31 2.44 
2.68 3.02 
3.33 3.89 

Capital: case 2 

5.05 5.37 
9.95 10.24 

14.40 15.00 
19.20 20.00 
24.00 24.91 

Consumption: case 2 

1.14 1.33 
1.55 1.90 
2.31 2.44 
2.68 2.69 
3.02 2.99 
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consumption to the technology shock is surprisingly 
nonmonotonic; over some regions, lower values of the 
technology shock actually increase consumption, and 
over other regions, lower values more plausibly de- 
crease consumption. This result may reflect the inac- 
curacies of the method that could lead to theoretical 
misconceptions. Note that the grid methods do not have 
this property. One exception is the rise in the value of 
C, in case 1 for Tauchen's method when K,-, = 15 and 
8, falls from .7 to .4. This does not occur for Coleman's 
solution at this point. 

There is also a broad similarity between the results 
for the extended-path method and the two grid methods 
of Tauchen and Coleman. Given the relatively low cost 
of the extended-path method, these results are prom- 
ising, especially for application in higher dimension 
problems or in problems that are mixtures of optimi- 
zation equations and other equations. Note that the 
extended-path method does not have the nonmonoto- 
nicity property mentioned in the previous paragraph. 
The decision rule for consumption shows that con-
sumption is a positive function of the technology shock 
over the entire region of initial capital stocks and tech- 
nology shocks. 

4.3 Summary Statistics 

From the stochastic simulations, the contempo-
raneous covariance matrix of (C,, K,)', univariate 
autoregressions of C, and K, [AR(l),  AR(2), AR(3), 
and AR(4)J and bivariate autoregressions of (C,, K,)' 
[VAR(l), VAR(2), VAR(3), and VAR(4)J were com- 
puted. These statistics are available on request. All of 
the statistics reveal a high degree of serial dependence 
for consumption and capital and a high degree of cor- 
relation between consumption and capital. These prop- 
erties were also evident from the time series charts. 

In addition, four other summary statistics were com- 
puted and are reported and discussed hereafter. These 
include the following: 

1. The statistic 

where 

is the usual ordinary least squares estimator in a regres- 
sion of the Euler-equation residual 

on a list x, of a constant and five lags of consumption 
and 8. The statistic m provides a test for the martingale- 
difference property E,-,q, = 0, a property that is sat- 
isfied by the theoretical solution. Focusing on q, and 
the statistic m was suggested by Den Haan and Marcet 
(1989) as a way to overcome the fact that an analytical 
solution to this problem was not available. We call m 
the Den Haan-Marcet statistic in the sequel. The sta- 

tistic is closely related to the statistic suggested by White 
(1980). 

2. TR2 from the regression of the productivity shock 
E ,  on five lags of consumption, capital, and 0. The idea 
is to test for the martingale-difference property 
= 0. 

3. R2 from the regressions of the first difference of 
consumption on both lagged consumption and capital. 
This is a test of the random-walk hypothesis for con- 
sumption; note that in general the random-walk hy- 
pothesis will not hold with the utility function in this 
simple growth model, but the differences in the test 
statistic are a useful way to assess the different solution 
methods. 

4. Ratios of the variance of investment to the variance 
of the change in consumption. This ratio is a measure 
of the relative volatility of consumption and investment, 
a frequently discussed feature of economic fluctuations. 
(Note that this ratio has a flow variable in the numerator 
and a change in a flow in the denominator but still is a 
useful measure of relative volatility.) 

The differences among the methods turned out to be 
quite substantial for some of these statistics. The results 
for the statistic m (for q,) are found in Table 11. Under 
the null hypothesis of a martingale difference, this sta- 
tistic has approximately a %'(11) distribution asymptot- 
ically (see Den Haan and Marcet 1989). A two-sided 
test at a significance level of 2.5% for each side would 
be 3.82 < m < 21.92, using the asymptotic distribution. 
Unless, of course, a solution method works directly to 
enforce the Euler equation (like the backward-solution 
methods, in which case the statistic m must be %?(11) 
by construction), the Euler-equation residual is likely 
to have a predictable component, which will be picked 
up by this statistic. 

The same approach can be used for E,, although we 
do not have to correct for heteroscedasticity here. Thus 
the statistic TR2 suffices. The test statistics are reported 
in Table 12. Since there are 15 regressors plus a constant -
term in each regression, TR2 has an asymptotic x2(15) 
distribution. Observe that this test does not detect a 
deviation from 0 for the mean of the residual. A solution 
method would probably not generate a systematic bias 
without being linked to past data in the model, however. 
The majority of the methods generated the technology 
shocks directly from a random number generator, in 
which case the test statistic is ~'(1.5) by construction. 
But several methods do not, or they generate the shocks 
for a slightly modified problem. In these cases, Table 
12 provides a genuine accuracy check. The two-sided 
test at the significance level of 2.5% for each side is 
given by 6.26 < TR2 < 27.49. 

Table 13 shows the significance of a regression of the 
first difference in consumption on past data, which is a 
test for the random-walk hypothesis for consumption 
in the simulated data. We report the R2 statistic. An R2 
close to 0 supports the random-walk hypothesis. 
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Table 11. The Den Haan-Marcet Statistic m for the Martingale Difference on v t  

Case 

Method 1 2 3 4 5 6 7 8 9 

Baxter 
Christiano 


Log-LQ-Normal 

Log-LQ-discrete 

Lin-LQ-Normal 

Lin-LQ-discrete 

Value-function grid 


Coleman 
Gagnon 
lngram 
Labadie 
Marcet 
McGrattan 
Sims 
Tauchen 

The two bottom lines of the table report the total methods with few exceptions; as the coefficient of rel- 
range and the range for those simulations that were ative risk aversion rises, the tabulated R2for the random 
within the confidence range for both the statistics m walk declines. The exceptions are the Gagnon ex-
and TR2.Since the random-walk hypothesis might be tended-path results in cases 3-4 and cases 8-10, the 
considered an important issue in this model, the finding Christiano value-function grid for cases 9-10, and the 
that the different solution techniques seem to be rather Coleman Euler-equation grid for cases 9-10. There is 
far apart are disturbing. The different solution methods no evidence either way on this issue for the methods of 
are delivering different answers to the same question. Baxter and Labadie. 

Restricting the comparison to those models that In Table 14, we report the ratio of the variance of 
passed the preceding tests narrows the range substan- investment to the variance of the first difference of 
tially, however. In case 4 this narrowing may occur consumption. As noted previously, this ratio is meant 
simply because the range is smaller for a much smaller to measure the relative volatilities of investment and 
number of models (in case 4, only Sims's method), but consumption. The four lines at the bottom of Table 12 
in other cases there are a fairly large number of methods report the total range of the methods, as well as those 
and the range is small. In unpublished work (and using that were within the stated range for both the m statistic 
a TR2statistic instead of the Den Haan-Marcet statistic and the TR2statistic. Again the results show large dif- 
m also for q),Sims demonstrated that discrimination ferences among the different methods. For methods 
based on the TR2test increases agreement among the that only allow discrete choices for some or all of their 
methods. He showed this by using a weighted regression variables, differences can arise if one variable is bearing 
approach in which methods with high TR2values in both relatively too much of the adjustment burden either 
the q, and the E,  test are given less weight. because the grid is much finer for that variable or be- 

Note also that there is at least one general pattern of cause the variable is chosen in a continuum to begin 
some economic interest that emerges from all of the with. This makes Tauchen's numbers, in particular, 

Table 12. TRZ Statistic for the Martingale Difference on 8 ,  

Case 

Method 1 2 3 4 5 6 7 8 9 1 0 

Baxter 30 673 317 214 254 187 189 66 230 267 
Christiano 

Log-LQ-Normal 31 16 12 25 10 10 19 20 25 16 
Log-LQ-discrete 30 31 31 34 33 32 33 32 34 35 
Lin-LQ-Normal 16 18 17 13 14 8 11 6 20 15 
Lin-LQ-discrete 14 16 16 14 15 15 15 16 16 15 
Value-function grid 12 12 17 16 14 17 

Coleman 22 19 19 19 24 21 21 20 21 23 
Gagnon 17 19 16 16 21 19 19 19 18 17 
lngram 46 123 75 172 17 165 394 15 203 381 
Labdie  122 167 107 
Marcet 12 11 11 12 15 14 13 15 14 14 
McGrattan 21 20 18 14 19 19 19 19 17 16 
S~ms 27 26 22 19 24 24 22 19 16 14 
Tauchen 8 9 19 12 11 9 14 16 13 10 
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Table 13. R2 Tests for Random Walk for Consumption 

Case 

Method 1 2 3 4 5 6 7 8 9 1 0 

Baxter 
Christiano 


Log-LQ-Normal 

Log-LQ-discrete 

Lin-LQ-Normal 

Lin-LQ-discrete 

Value-function grid 


Coleman 

Gagnon 

lngram 

Labadie 

Marcet 

McGrattan 

Sims 

Tauchen 

Maximin for group 


Min 

Max 


Maximin for subgroup 

Min 

Max 


NOTE. The subgroup conslsts of solution methods that are w~thin the symmetric 95% conf~dence bands in Table 11 and Table 12 

very small: in his method, it is mainly the consumption compute the simulations. The numbers are hard to com- 
series that adjusts (look also at the time series plots pare because they certainly vary strongly with the ma- 
discussed previously). Note also the dependencies of chine and the software used, as well as with the 
the results on the parameters of each case. precision desired and the number of grid points, for 

4.4 	 Computing Times example. It is desirable to perform all calculations on 
the same machine with the same software and with some 

In Table 15, we compare the computing times in sec- common standard for precision in future comparisons. 
onds. The data were reported to us by the individual Still it is probably fair to state that the methods of, 
researchers. Time 1 refers to the computation of the for example, Baxter, Gagnon, Tauchen, and Christ- 
decision rules, whereas time 2 is the time needed to iano's value-function grid-that is, grid methods and 

Table 14. Ratios of the Variance of Investment to the Variance of the 

First Difference in Consumption 


Case 

Method 1 2 3 4 5 6 7 8 9 10 

Baxter 
Christiano 


Log-LQ-Normal 

Log-LQ-discrete 

Lin-LQ-Normal 

Lin-LQ-discrete 

Value-function grid 


Coleman 

Gagnon 

lngram 

Labadie 

Marcet 

McGrattan 

Sims 

Tauchen 

Maximin for group 


Min 

Max 


Maxlmin for subgroup 

Min 

Max 


NOTE: The subgroup consists of solution methods that are within the symmetric 95% confidence bands in Table 11 and Table 12. 
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Table 15. Computing Times 

Method Machine Co-chip Megahertz Software Time 1 Time 2 
-

Baxter IBM PS2-80 80287 16 	 FORTRAN 3 31 1,1880 
Matlab 3 13 1640 

Chr~st~ano 
Log-LQ-Normal Amdahl 5860 244 RATS Total 6 
Log-LQ-d~screte Amdahl 5860 244 RATS Total 1 2 
Lln-LQ-Normal Amdahl 5860 244 RATS Total 6 
Lln-LQ-d~screte Amdahl 5860 244 RATS Total 1 2 
Value-funct~on gr~d Amdahl 5860 IBM FORTRAN 1 4 1 Total 5 hours 

Coleman Amdahl5890-300 VS-FORTRAN 2 3 11092 32 
Gagnon Amdahl 5850 TROLL 13 0 396 5,320 
lngram HP Vectra ESl12 80287 12110 GAUSS 2 0 Total 72 01 
Labadle IBM Model 30 Yes GAUSS 1 496 Total 4 hours 
Marcet Compaq 386125 We~tek 25 R McFarland FORTRAN Total 60 
McGrattan Compaq 386120 We~tek 11 67 20 Matlab 3 25 Total 0 7 
S~ms Dell System 310 80386 20 MICROSOFT C 20 107 
Tauchen Compaq 386125 80387-25 25 GAUSS 1 49b Total 2,768 

NOTE T~meIrefers to the central processing unlt (CPU) t~meIn seconds to compute the declslon rule for one case (typlcally case 1) T~me2 refers to the CPU tlme In seconds to Compute 
a slrnulat~onof 2 000 data polnts for one case (typlcally case 1) The term total ~nd~catesthat the sum of time 1 and tlme 2 IS glven In Chrlstlano s value-functlon grld 20 000 grld polnts 
were used 

the extended-path method-are computationally quite martingale-difference tests for the Euler-equation re- 
involved, whereas linear-quadratic methods are typi- sidual, however. 
cally quite fast for the simple stochastic growth model. 3. Summary statistics, which researchers might typ- 

One should recognize that differences in computing ically examine to test theoretical hypotheses, are sig- 
costs can be enormous once the problem at hand goes nificantly different for many of the solution methods, 
beyond only a few dimensions and the "curse of di- even though the theoretical problem solved is exactly 
mensionality" starts to matter. It might be quite im- the same for each method. For example, the solution 
possible to compute the solution for a model with 15 methods give very different answers to  basic questions 
state variables, say, using some grid method. Methods concerning the relative volatility of investment and con- 
that work with linear-quadratic approximation or pa- sumption. There is some similarity among the methods 
rameterizing expectations (including backsolving) or ex- in detecting the effects of risk aversion on random-walk 
tended-path methods will still be available at reasonable consumption behavior, however, and the methods that 
costs for these problems, however. satisfy both the Den Haan-Marcet test for the accuracy 

of the Euler equation and the TR2 test for the distri- 
5. 	 CONCLUSION bution of the disturbance term-Sims's backsolving im- 

plementation, Marcet's parameterizing-expectations 
The conclusions from this comparison of different method, and Coleman's Euler-equation iteration

solution techniques for nonlinear rational-expectations method-produce similar summary statistics and plots. 
models can be summarized briefly as follows. 	 Given these large differences in the solution methods, 

1. The simulated sample paths generated by the dif- the most obvious question is who won? Unfortunately, 
ferent solution methods have significantly different this question is still very difficult to answer, the criteria 
properties. Although certain common time series fea- of success for the solution methods are different. For 
tures of the behavior of consumption and investment some researchers, the appropriate measuring stick 
emerge from time series plots for all the methods, other might be the closeness of the numerical solution to the 
features show up in the empirical density functions and true decision rule. Grid methods are likely to do very 
scatter diagrams that reveal quite different behavior well here, and we noted that the log-LQ and the ex- 
even though the same model is being solved by each tended-path methods come close to the grid methods 
method. in terms of the decision rules. For others, it is computing 

2. The decision rules indicate that some of the easily time that is most important, as long as the results are 
computed rules-the linear-quadratic (log-LQ) method within reason. This might be the case for estimation 
and the extended-path method-are fairly close to the applications or with applications with a large number 
"exact" decision rule as represented here by the quad- of state variables. Applications of this type can poten- 
rature-value-function-grid method of Tauchen or the tially exhibit financially significant savings in computing 
Euler-equation grid method of Coleman. Given the rel- time when solved with methods that work with linear- 
atively low computation times for these methods and quadratic approximations or parameterization of the 
their relatively easy generalization to higher dimen- expectations or extended-path methods instead of one 
sions, it is important to establish whether this property of the grid methods. In other applications, it might be 
holds up in other problems. Neither the log-LQ nor the important to be accurate with respect to first-order con- 
extended-path method performs particularly well in the ditions to test, for example, asset-pricing relationships; 
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Sims's backsolving method or Marcet's parameter-
izing-expectations method are likely to perform very 
well in this respect. Finally, the level of difficulty and 
the judgment required to implement a particular 
method can be of great importance to the practi-
tioner. 

The comparisons performed previously did not single 
out one or several of the methods as performing at the 
very top in every respect. For a researcher who wants 
to select one of the techniques, it seems important to 
consider the particular problem and the budget con- 
straint. Researchers might want to be careful not to use 
any solution method blindly hoping that the results are 
within acceptable bounds. An article that relies pri- 
marily on one method could include at least a partial 
set of results using an alternative, preferably unrelated 
method as an accuracy check and a diagnostic of po- 
tential areas where results or inference might be dis- 
torted. For example, a researcher who uses linear-
quadratic methods might want to compare the results 
to those from some grid method for a few simple cases. 
Tests like the Den Haan-Marcet statistic seem reason- 
able as an additional diagnostic device. More checks of 
this type are desirable. 

Even in a simple model such as that considered in 
this article, the different solution methods can yield 
quite different econometric results. It is essential to get 
a better understanding of where these differences come 
from and how big they can be in a particular application 
before relying too much on conclusions drawn from 
these solution methods. 
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