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Abstract— The price of uncertainty measures the impact of
uncertainty in the total cost of power dispatch in networks with
significant penetration of renewables. It has been shown to exist
in problems with deterministic prices and two stage markets.
The existence of this price in multistage dispatch problem
has remained an open question. This paper demonstrates the
existence of the price of uncertainty in multiple stage stochastic
power dispatch problems with stochastic prices. The existence
proof requires a careful derivation of the structure of the
optimal dispatch for this scenario. The paper concludes with
various examples and applications of the price of uncertainty.

I. INTRODUCTION

Power systems with deep penetration of renewable gen-
eration face significant costs to mitigate the increase in
supply variability. In the existing power grid, generators
are progressively scheduled limited by the lead times they
require to ramp up outputs. This scheduling process re-
quires utilizing sequentially updated forecasts of loads and
renewable generator outputs. It also relies on prices decided
according to the marginal cost of generation at each stage.
Since stage by stage schedules are unknown in advance,
uncertainty in prices at different periods needs to be con-
sidered. Various forms of stochastic and robust dispatch
methods have been proposed as potential approaches to
reduce energy and reserve capacity costs [1], [2], [3], [4],
[5], [6]. Other settings including storage [7] and generator
ramping constraints [8] have been developed as well. In
common to all these approaches is the significant role of
uncertainty in determining both the optimal control decisions
and the total expected cost of the process. Therefore it is
important to benchmark the impact of uncertainty in the
power dispatch process.

The price of uncertainty has been proposed as a fun-
damental measure of performance of a stochastic dispatch
procedure [5], [9]. It captures the idea that the additional
cost of the dispatch process due to uncertainty is linear in
the standard deviation of the forecast of the net of all loads
and generators. The price of uncertainty has been shown to
exist under mild assumptions in two-stage dispatch problems
with prices assumed to be deterministic. Stochastic prices
have been considered in [10] in a two stage setting, but the
existence of this price was not verified. In this paper we
demonstrate the existence of the price of uncertainty in a
general setting with multiple stages and stochastic prices.
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In particular, we provide a more appropriate definition of
this price as the partial variation of the expected cost with
respect to forecast standard deviation. Calculating the price
of uncertainty requires a formal derivation of the optimal
dispatch control for sequential allocation with stochastic
prices and multiple stages, significantly generalizing the
results in [2]. Besides proving as a useful benchmark to
measure the performance of arbitrary dispatch procedures
and improvements in forecasts, the price of uncertainty also
is a very useful structural result. We show its applicability,
for example in renewable aggregation design problems where
the existence of this price enables decoupling of uncertainty
consideration from optimal selection of participating gener-
ators.

The paper is organized as follows. Section II formulates
the stochastic control problem for multistage dispatch with
forecast revisions and stochastic prices. Section III then
analyzes the structural property of the problem, and derives
closed form solution to the optimal dispatch policy and the
cost-to-go function. The notion of price of uncertainty is then
formalized for this setting in Section IV, where conditions for
constant price of uncertainty are established together with its
evaluation in various settings. Section V concludes the paper.

II. PROBLEM FORMULATION

We consider the problem faced by a system operator,
who needs to dispatch power production from a sequence
of forward markets to meet an uncertain net demand. We
call the time when the demand is serviced the delivery time.
These markets are organized at different times; for instance,
a day ahead of, an hour ahead of, and 15 minutes ahead
of the delivery time. Two effects differentiate these markets
from each other:
• More information about the net demand becomes avail-

able in later markets. As such, the forecast of the net
demand is expected to improve as the delivery time
approaches.

• Shorter lead times (that is, time for the generators to
ramp up) are allowed in later markets. This restricts the
participation of those cheap but slow generators, such
as coal generators, into markets closer to the delivery
time. Consequently, the price of later markets can be
higher.

The system operator aims to strike a balance between econ-
omy and reliability. Here the reliability is defined in terms
of supplying enough power to meet the demand. In each
market, the system operator dispatches energy at a fixed
price, which is random and becomes realized at the beginning
of the market. We characterize the system reliability with a
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Fig. 1: Percentage root mean squared forecast error v.s.
forecast horizon for a single wind farm. Data are obtained
from Iberdrola Renewables.

risk measure, which is a function of the power imbalance at
the delivery time. Thus the balance is achieved by utilizing
all the information that is presently available at each of
the markets, and taking a sequence of dispatch decisions
to minimize an expected sum of the economic cost and
systematic risk. The mathematical details of the the decision
problem are provided in the following subsections.

A. Information Updates and Statistical Models of the De-
mand and Prices

Variable power generation is easier to forecast in a shorter
forecast horizon. Figure 1 shows a typical error curve for
wind forecasting for a single wind farm [2]. Intraday markets
have been advocated and implemented in some countries or
regions, in part to leverage the improved forecast quality for
corrective dispatch actions.

In this paper, we explicitly model the information updates
(or forecast revision) process. Let the sequence of markets
(or stages) be indexed by t = 1, . . . , T , with the delivery
time be indexed by T + 1. Evidently, the information that
is available at market t is a subset of that available at
market t+ 1, for t = 1, . . . , T . This effect is captured using
a version of the “onion-layer peeling” information update
models developed for inventory control problems [11]. In
particular, we model the forecast revision process for the net
demand as an additive process, that is, the forecast of the net
demand is updated as

d̂t+1 = d̂t + εt+1, t = 1, . . . , T, (1)

where d̂t is the stage-t forecast of the net demand, and εt+1

is the forecast correction contributed by the newly available
information during stage t. Note that because at the delivery
time T + 1, the net demand d is realized, we have d̂T+1 =
d. This indicates that, if εt’s are zero-mean and mutually
independent for all t , then the {d̂t} process is a sequence of
unbiased estimators of d with decreasing mean square errors,
i.e.,

E
[(
d− d̂t

)2]
= E

( T+1∑
`=t+1

ε`

)2
 =

T+1∑
`=t+1

Var(ε`)

decreases as t approaches T + 1.

The prices for each unit of power in the future stages are
usually not known ahead of time. Thus we model the price at
each stage t as a random variable pt, which is realized at the
beginning of stage t. 1 Since the realization of the price pt is
part of the additional information revealed at the beginning of
stage t, it may have an effect in the forecast update of stage
t. More specifically, we assume that the price and forecast
update at stage t have a joint probability density function
(pdf) ft(εt, pt). For convenience in exposition, we assume
(εt, pt) and (εs, ps) are independent for different stages s
and t. Remark 3 discusses the relaxation of this assumption.

B. Decision Problem

The decision making problem can be described as follows:
• Before the first stage (for each delivery time), the system

operator obtains the statistical information about the
forecast corrections and prices, possibly from historical
data. Such information contains ft(εt, pt) for t =
1, . . . , T + 1.

• At the beginning of each stage t, t = 1, . . . , T , new
information since the last decision is collected; quanti-
ties εt and pt are revealed to the system operator. The
forecast update (1) is performed. (For convenience, we
write d̂1 = d̂0 + ε1 = ε1.)

• The system operator makes a dispatch decision gt ≥ 0
at the cost of ptgt.

• The accumulated power xt is updated as

xt+1 = xt + gt, t = 1, . . . , T. (2)

• At the terminal stage T + 1, d = d̂T+1 = d̂T + εT+1

and pT+1 are realized. A cost for imbalance J(d −
xT+1; pT+1) is incurred.

This decision problem can be cast as a stochastic control
program:

minimize E

[
T∑
t=1

ptgt + J(d− xT+1; pT+1)

]
(3a)

subject to xt+1 = xt + gt, (3b)

d̂t+1 = d̂t + εt+1, (3c)
gt ≥ 0, (3d)

where x1 = 0, and we aim to find a control policy at each
stage t that maps the information available at the stage to the
optimal dispatch gt. Here J is penalty function characterizing
the systematic risk (or financial loss) due to the unmet
demand z = d − xT+1. We impose the following technical
conditions on J :
A1 Convexity: For each p ∈ R, the function J(z; p) is

convex in z, and thus is continuous and differentiable
Lebesgue almost everywhere (a.e.).

A2 Integrability: J(z + εt; pt) is integrable for all z ∈ R,
that is, E|J(z + εt; pt)| < ∞, and differentiable a.e.
with respect to the probability measure induced by the
distribution of (εt, pt), t = 1, . . . , T + 1.

1We choose not to use a detailed information update model for the price
process as the randomness in the price is usually not a primary concern for
the system operator.



An example of primary interest in the power system
literature is the Value of Loss Load (VOLL) penalty

J(d− xT+1; pT+1) = pT+1(d− xT+1)+,

where (u)+ = max(u, 0). The penalty characterizes the cost
of serving (or curtailing) the unfulfilled demand d−xT+1 at a
stochastic price pT+1. Its expectation sometimes is referred
to as a measure of operational risk of the power system.
Although we are working mostly with the function J before
taking expectation, we note that, as our assumptions on J
is mild, upon taking expectation, such form can incorporate
many other risk measures studied in the finance and portfolio
management literature (cf. coherent risk measures discussed
in [12]).

III. OPTIMAL DISPATCH

Observing the additive structure of the updates in xt and
d̂t, and the fact that the last-stage cost only depends on d−
xT+1, we can re-write (3) in the following form:

minimize E

[
T∑
t=1

ptgt + J(zT+1; pT+1)

]
(4a)

subject to zt+1 = zt − gt + εt+1, (4b)
gt ≥ 0, (4c)

where zt = d̂t − xt, t = 1, . . . , T + 1, is the (expected)
residual net demand after accounting for the accumulated
power xt.

From the theory of stochastic dynamic programming, the
following sequence of the functions are the key to solving
(4):

Definition 1: The cost-to-go functions are defined via the
Bellman’s recursion:

JT+1(zT+1; pT+1) = J(zT+1; pT+1), (5a)

Jt(zt; pt) = min
gt≥0

{
ptgt + E[Jt+1(zt − gt + εt+1; pt+1)]

}
,

(5b)

for t = 1, . . . , T , where the expectation is taken over εt+1

and pt+1. The objective of (5b) is defined as the state-action
cost-to-go function2, i.e., for stage t = 1, . . . , T , we have

Qt(zt, gt; pt) = ptgt + E[Jt+1(zt − gt + εt+1; pt+1)]. (6)
For each fixed stage t and realization pt, the cost-to-go

function summarizes the minimum expected cost from the
current stage with the given residual net demand zt to the
end of the decision process. The optimal dispatch can then
be solved from

g?t (zt; pt) = argmin
gt≥0

Qt(zt, gt; pt).
3 (7)

Equations (5), (6), and (7) can be thought of as a charac-
terization of the optimality condition for (4). However, they
do not directly lead to an efficient algorithm for computing
the optimal dispatch, because, for example, using (5b) to

2The terminology is borrowed from the literature of Markov decision
processes and reinforcement learning.

3When the minimizer is not unique, an arbitrary minimizer is selected.
We use the same convention in the sequel.

obtain the function JT from JT+1 would require solving
an optimization for each possible (zT ; pT ) pair, whereas the
total number of such pairs is clearly infinite. Thus a closer
investigation of the problem is necessary. We start with a
convexity result about the cost-to-go functions.

Lemma 1: For each stage t = 1, . . . , T +1 and each fixed
pt, the cost-to-go function Jt is convex in zt. Similarly, for
each stage t = 1, . . . , T and each fixed pt, the state-action
cost-to-go function Qt is convex in (zt, gt).

Proof: By a set of standard arguments, see, for example,
[13] and references therein.

A direct consequence of this result is the following
structural characterization of the optimal dispatch policy
g?t (zt; pt):

Lemma 2: For each stage t = 1, . . . , T , there exists an
adjustment ∆t(pt) which is independent of zt, such that the
optimal dispatch takes the form

g?t (zt; pt) = (zt −∆t(pt))+. (8)
Proof: Consider the Bellman’s recursion at stage t, in

which for each fixed zt and pt, the following optimization
is solved

min
gt≥0
{ptgt + E[Jt+1(zt − gt + εt+1; pt+1)]}

= ptzt + min
yt≤zt

{−ptyt + E[Jt+1(yt + εt+1 : pt+1)]}, (9)

where the identity follows from a change of variable yt =
zt − gt. Let ∆t(pt) = argminyt∈R h(yt), where h(yt) =
−ptyt+E[Jt+1(yt+εt+1; pt+1)], and notice that h is convex
in view of Lemma 1. Thus the constrained minimizer of yt
in (9) is of the form y?t = min(∆t(pt), zt). Indeed, the claim
obviously holds when ∆t(pt) ≤ zt. When ∆t(pt) > zt and
y?t = zt, suppose there is another y′t < y?t < ∆t(pt) such
that h(y′t) < h(y?t ). It follows that there exists a θ ∈ (0, 1)
such that y?t = θy′t + (1− θ)∆t(pt). By convexity of h, we
have

h(y?t )=h(θy′t + (1− θ)∆t(pt))≤θh(y′t) + (1− θ)h(∆t(pt))

≤ θh(y′t) + (1− θ)h(y′t) = h(y′t),

thus a contradiction. Recalling the relation between yt and
gt, we conclude that g?t (zt; pt) = (zt −∆t(pt))+.

This result is intuitive: whenever feasible, the optimal
dispatch is the expected residual net demand zt plus a
price-dependent adjustment (−∆t(pt)) (We will see in later
examples that ∆t(pt) is likely to be negative.) The reserve
(−∆t(pt)) is optimally selected to hedge against the un-
certainty. Such structural results are in particular appealing
when the prices are deterministic.

Remark 1 (The case of deterministic prices): If the {pt}
sequence can be forecast accurately ahead of time, then
∆t(pt) ≡ ∆t and may be computed offline.

We proceed to give a closed-form characterization of these
adjustments. To that end, the following functions turn out to
be pivotal for the development of the analytical solutions to
(4):



Lemma 3: Recursively, from backward, define

KT (y) = E[J ′(y + εT+1; pT+1)], (10a)

Kt(y) = E
{
pt+11(Kt+1(y + εt+1) ≥ pt+1) (10b)

+Kt+1(y + εt+1)1(Kt+1(y + εt+1) < pt+1)
}
,

for t = 1, . . . , T − 1, where J ′(y; p) is the derivative of J
with respect to y.4 Let Kmin

t = infy∈RKt(y) and Kmax
t =

supy∈RKt(y). Define, for t = 1, . . . , T ,

∆̃p
t = ∆̃t(pt) =


K−1t (pt) if Kmin

t ≤ pt ≤ Kmax
t ,

−∞ if pt < Kmin
t ,

+∞ if pt > Kmax
t ,

(11)
where K−1t (p) = inf{y : Kt(y) ≥ p}, and

GT (y) = E[J(y + εT+1; pT+1)], (12a)

Gt(y) = E
{[

pt+1(y + εt+1 − ∆̃p
t+1) +Gt+1(∆̃p

t+1)
]

× 1(Kt+1(y + εt+1) ≥ pt+1) (12b)

+Gt+1(y + εt+1)1(Kt+1(y + εt+1) < pt+1)

}
,

for t = 1, . . . , T − 1. The following claims hold for each
t = 1, . . . , T :
(a) ∆̃p

t is well-defined;
(b) Gt(y) is convex and differentiable;
(c) G′t(y) = Kt(y);
(d) Kt(y) is nondecreasing, so Kmin

t = limy→−∞Kt(y),
and Kmax

t = limy→+∞Kt(y).
Proof: See appendix.

Different from the cost-to-go functions {Jt} defined in (5),
the sequences of functions {Kt} and {Gt} can be evaluated
without optimization. Given the joint density of (εt, pt)’s,
many efficient simulation or numerical integration schemes
can be utilized to compute these {Kt} and {Gt} functions.
We now state the optimal dispatch and cost-to-go functions
in terms of the quantities defined in Lemma 3.

Theorem 1: For t = 1, . . . , T , the adjustment in (8) is the
same as ∆̃p

t defined in (11), that is, the optimal dispatch is

g?t (zt; pt) = (zt −∆t(pt))+ = (zt − ∆̃p
t )+, (13)

and the cost-to-go function is

Jt(zt; pt) =

{
pt(zt −∆t(pt)) +Gt(∆t(pt)) if ∆t(pt) ≤ zt,
Gt(zt) if ∆t(pt) > zt.

(14)
Proof: See appendix.

We provide an illustrative example to demonstrate the use of
Lemma 3 and Theorem 1.

Example 1 (Two-stage with VOLL penalty): We consider
an instance of the problem with two stages. In the first stage
(e.g., day-ahead market), a net demand z1 = d̂1−x1 = d̂1 >
0 is predicted. In the second stage (e.g., real-time market),
the actual net demand d = d̂2 = d̂1 + ε2 is realized. The

4At points where J is non-differentiable (which form a set of measure
zero), we can define J ′ to be any of J’s subderivative at the point.

VOLL penalty is used, i.e., J(z2) = p2(z2)+, where p2 is
random in the first stage. Then we have

K1(y) = E[p21(y + ε2 ≥ 0)]

with Kmin
1 = 0 and Kmax

1 = Ep2. Note that if p1 < Kmin
1 =

0, in the first stage it is optimal to dispatch infinite amount
of power; if p1 > Kmax

1 = Ep2, it is expected to be cheaper
to dispatch power in the real time and thus there is little
incentive to dispatch any power in the first stage. The case
of most practical interest is 0 ≤ p1 ≤ Ep2. In this case, we
have ∆̃p

1 = K−11 (p1) and so the optimal first stage dispatch
is g?1(z1; p1) = (d̂1 −K−11 (p1)).

To further crystallize the intuition for the optimal adjust-
ment ∆̃p

t and connect our results to earlier results in the
literature, we consider a special case of Example 1 where
the prices are deterministic.

Example 2 (Two-stage with deterministic prices): In the
same setting as Example 1, we further assume all prices
are known ahead of time. Let F ε2(·) = 1 − Fε2(·) be the
complementary cumulative distribution function of ε2. Then
∆̃p

1 = −F−1ε2 (p1/p2), and g?1(z1; p1) = (d̂1 + F
−1
ε2 (p1/p2)).

Note that if the distribution of ε2 is such that P(ε2 ≥ 0) =

P(ε2 ≤ 0), then F
−1
ε2 (p1/p2) ≥ 0 whenever p1/p2 ≤ 1/2.

The condition p1/p2 ≤ 1/2 is usually the case when the
second stage price corresponds to the marginal cost of
using fast ramping generators to supply the shortfall, whose
marginal cost can easily be ten times higher than that of the
first stage slow generators.

We give several remarks regarding the evaluation of the
optimal policy in general cases and the relaxation of the
inter-temporal independence assumption.

Remark 2 (Computation for general cases): We focus
our analytical examples on two-stage cases, as in these
cases, simple closed-form results can obtained and they
are usually easy to be interpreted. However, the optimal
dispatch procedure for the general multistage and stochastic
price case, as developed in Lemman 3 and Theorem 1 can
be implemented for numerical solutions to the dispatch
problem as numerical integration is a mature field with
many well-developed software routines. We also hint that
an efficient implementation may exploit the fact that the
integration in εt terms can be expressed as a convolution
integral, which allows efficient implementations.

Remark 3 (Removing the independence assumption):
The sequences {Kt} and {Gt} provide sufficient information
in computing the optimal dispatch and optimal cost-to-
go functions. Under the inter-temporal independence
assumption, evaluating Gt (for instance) from Gt+1

requires an two dimensional integration, with respect to
the realizations of (εt+1, pt+1) and weighted by the joint
density ft+1(εt+1, pt+1). One can obtain analytical results
similar to that in this section without the inter-temporal
independence assumption. In this case, instead of iterated
integration, evaluating Gt would require integration with
respect to {(εs, ps) : t + 1 ≤ s ≤ T + 1} weighted by
their joint density conditional on the observed realization of
{(εs, ps) : s < t + 1}. As such, the computation is much



more cumbersome. In practice, the independence assumption
is widely used also because obtaining the joint density for
the entire process {(εs, ps) : s ≤ T + 1} requires high order
information and may not be feasible from historical data.

IV. PRICE OF UNCERTAINTY

The term price of uncertainty (PoU) is coined in [5] as
a key quantity to characterize the dependence between the
integration costs of variable energy resources and the level
of uncertainty in the system. In a simple setting (that of
Example 2 with the forecast correction being Gaussian), it is
shown in [5] that the expected integration cost, defined as the
difference between the optimal cost of (4) and the expected
clairvoyant cost conditional on the first stage forecasts 5, is
a linear function of the standard deviation of the forecast
error, when the uncertainty in the system is small. Here we
take an alternative approach to reduce the last requirement;
we consider the realized integration cost, which replaces the
expected clairvoyant cost in the previous definition by its
actual realized value. Because the actual clairvoyant cost
is independent from the ability to forecast the demand and
prices in forward markets, the PoU defined using the realized
integration cost is the same as the sensitivity of the optimal
cost of (4) to the uncertainty level. We will show later
that this treatment not only simplifies the calculation, but
also leads to consistent results as in [5] and at the same
time is obtained without invoking the assumption that the
uncertainty level is small.

A. Existence in Two-Stage Dispatch

We start by formalizing these notions for a two-stage
problem with the following additional requirement on the
function J :
A3 Positive homogeneity: For all a ≥ 0, J(ay) = aJ(y).
Note that convexity and positive homogeneity are com-
mon requirements on “good” risk measures. (Coherent risk
measures also satisfy translation invariant and monotonicity
conditions which we do not assume here.)

Furthermore, based on discussions in the previous section,
we rule out degenerate cases by requiring the support of pt
be a subset of [Kmin

t ,Kmax
t ], that is,

ft(ε, p) = 0, if p 6∈ [Kmin
t ,Kmax

t ], (15)

for any ε and all t. Then the two-stage price of uncertainty
can be defined as follows.

Definition 2 (Price of uncertainty, two-stage case): For a
two-stage problem with a fixed z1 = d̂1, let the forecast
correction be ε2 = σE, where E has zero mean and unit stan-
dard deviation. The optimal dispatch cost is J1(σ; d̂1, p1) ,
J1(d̂1; p1), and the price of uncertainty is defined as

pPoU(σ, d̂1, p1) , ∂J1(σ; d̂1, p1)/∂σ.

In the sequel, we often omit the dependence of pPoU on
certain parameters whenever appropriate.

5The clairvoyant cost is the minimum cost of (4) assuming all stochastic
elements are known ahead of time.

The next result gives a necessary and sufficient condition
for the PoU to be a constant independent of σ (or the
integration cost is a linear function of σ); formulas for the
PoU are also provided.

Theorem 2: Let KE,1(y) , E[J ′(y + E; p2)] and
GE,1(y) , E[J(y + E; p2)] be the K-function and G-
function defined as in Lemma 3 for the normalized forecast
correction E. Then the following statements are true for each
p1 and d̂1:

(a) The PoU is independent of σ and the integration cost is
affine in σ if and only if

∆̃p
1 , σK−1E,1(p1) ≤ d̂1, (16)

in which case, the PoU is

pPoU(p1) = −p1K−1E,1(p1) +GE,1

(
K−1E,1(p1)

)
, (17)

and the optimal dispatch cost is

J1(σ; d̂1, p1) = p1d̂1 + σpPoU(p1). (18)

We refer to this case as the constant PoU case as our
primary focus is on the dependence of PoU on the
uncertainty level σ, and p1 is known at the beginning
of stage 1.

(b) If the condition (16) fails, i.e., ∆̃p
1 > d̂1, then

pPoU(σ, d̂1) = GE,1

(
d̂1/σ

)
− d̂1
σ
KE,1

(
d̂1/σ

)
. (19)

Proof: See appendix.

B. Examples

We illustrate the use of Theorem 3 and discuss the
intuitions behind it through two simple examples.

Example 3 (Condition of constant PoU for Example 2):
Using the setup of Example 2, we have that the PoU is
constant whenever

d̂1 ≥ σK−1E,1(p1) = −σF−1E (p1/p2). (20)

It can be seen that under this condition, the unconstrained
minimizer of g is no smaller than 0, that is, no nonlinear
effect of the thresholding on g is introduced. Assuming d̂1 >
0 (the renewable penetration is less than 100%), P(E > 0) =
P(E < 0), the above condition can be written as

σ

d̂1
≥ − 1

F
−1
E (p1/p2)

if p2 > 2p1,

σ

d̂1
≤ − 1

F
−1
E (p1/p2)

if p2 < 2p1,

where the case p2 = 2p1 reduces to d̂1 ≥ 0 which holds by
assumption. This indicates when the price in second stage is
sufficiently higher (p2 > 2p1), the PoU is always a constant.
When the second stage price is such that p2 < 2p1, the PoU
is constant only if the (normalized) uncertainty level σ/d̂1 is
smaller than a certain threshold. Figure 2 indicates that for a
dominant portion of the parameter regions, PoU is constant
in the uncertainty level.



Example 4 (Expressions of PoU for Example 2): For the
constant PoU case (when (20) holds), by (17),

pPoU(p1) = p1F
−1
E (p1/p2) +GE,1

(
−F−1E (p1/p2)

)
= p1F

−1
E (p1/p2) + p2E

[(
E − F−1E (p1/p2)

)
+

]
= p2E

[
E; E ≥ F−1E (p1/p2)

]
,

and in the Gaussian case, the last expression further simpli-
fies to p2fE

(
F
−1
E (p1/p2)

)
, where fE is the pdf of E. In

the other case where PoU is not a constant, (19) reduces to

pPoU(σ, d̂1)

= p2E
[
(d̂1/σ + E)+

]
− d̂1
σ
E
[
1(d̂1/σ + E ≥ 0)

]
= p2E[E;E ≥ −d̂1/σ],

and similarly when the forecast correction is Gaussian, the
last expression reduces to p2fE(−d̂1/σ). Figure 2 depicts
the values of the PoU for various p1/p2 and σ/d̂1 ratios.
These results are consistent with that in [5].
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Fig. 2: Values of the PoU for Gaussian forecast errors and
p2 = 1. The PoU values are computed for various p1/p2 and
σ/d̂1 values. PoU is not constant in the uncertainty level only
in the area where both ratios p1/p2 and σ/d̂1 are close to 1.

Example 5 (Placement of a single forward market):
One important application is to decide at which time to
place a single forward market. Theoretical guidance about
such decision may be obtained by studying the relation
between the PoU and the lead time, denoted by τ , of the
market. Selecting a lead time that has a small PoU may
facilitate renewable integration; in this case, increasing the
renewable penetration (which in turn increases σ) results in
relatively small growth of system cost due to the increased
uncertainty. Mathematically, suppose one has the empirical
relation characterizing how the forecast error standard
deviation, denoted by σ(τ), and the price for each unit
of power generation in the forward market, denoted by
p(τ), depend on the lead time τ . We expect σ(τ) to be
non-decreasing and p(τ) to be non-increasing. Substituting
these functions in the expressions of PoU in Theorem 2,

one obtains an explicit relation between PoU and the lead
time.

Example 6 (Separation between forecast and uncertainty):
In applications that involve the aggregation of diverse and
stochastic power consumption, under mild assumptions,
it has been shown that the level of uncertainty σ usually
depends primary on the level of aggregation (e.g., the
number of users that have been aggregated) [14]. PoU,
in this context, captures the sensitivity of the system
cost conditioning on an optimal stochastic dispatch to the
uncertainty level. The optimal cost formula (18) for the
constant PoU case is extremely useful in such applications,
as it allows optimization of design choices, such as deciding
the optimal aggregation group size and the selection of users
without the need to solves a stochastic control program.

C. Existence in Multiple Stage Dispatch

We proceed to generalize these results to multi-stage
settings. The following definition is analogous to Definition 2

Definition 3 (Price of uncertainty, general case): For
general multi-stage problem with a fixed z1 = d̂1, let the
forecast correction be εt = σEt, t = 2, . . . , T + 1, where
[E2, . . . , ET+1] is a reference forecast correction vector.
The optimal dispatch cost is J1(σ; d̂1, p1) , J1(d̂1; p1), and
the price of uncertainty is defined as

pPoU(σ; d̂1, p1) , ∂J1(σ; d̂1, p1)/∂σ.

The key to calculate the PoU in multi-stage settings is the
following lemma regarding scaling properties of function Kt

and Gt:
Lemma 4: Let the K-functions and G-functions for the

reference forecast correction, denoted by {KE,t} and
{GE,t}, be defined via (10) and (12), respectively, with εt
replaced by Et. Given J is positive homogeneous, we have

Gt(y) = σGE,t(y/σ), (21)

Kt(y) = KE,t(y/σ), (22)

and
∆̃p
t = σK−1E,t(pt) (23)

for t = 1, . . . , T .
We summarize our results for the PoU in multi-stage

setting in the following theorem:
Theorem 3: For each stage t = 1, . . . , T , the cost-to-go

depends on the uncertainty level in the form

Jt(σ; zt, pt) ={
pt(zt−σK−1E,t(pt))+σGE,t(K

−1
E,t(pt)) if σK−1E,t(pt)≤zt,

σGE,t(zt/σ) if σK−1E,t(pt)>zt,

where {KE,t} and {GE,t} are defined for the reference
problem and are independent of σ. Replacing KE,1 and
GE,1 in Theorem 2 by that in Lemma 4, then all results
in Theorem 2 hold for the multistage case.

Proof: See Appendix.



V. CONCLUSIONS

In this paper, we formulate the stochastic control problem
of multistage risk limiting dispatch with forecast revisions
and stochastic prices. The structure of the problem is studied,
based on which the closed form solutions of the optimal con-
trol and cost-to-go are obtained. These formula are then used
to give analytical characterization of the price of uncertainty
in a general setting. Necessary and sufficient conditions for
the price of uncertainty to be independent of the uncertainty
level have been established. Simple numerical examples
demonstrate that in a two stage setting and with Gaussian
forecast error, the region where the price of uncertainty is
constant is large. Formula for the price of uncertainty are also
developed. In future work, we present efficient numerical
algorithm for the general problem setting, and investigate
the possibility of including forecast updates for prices.
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APPENDIX

We prove all claims in Lemma 3 and Theorem 1 via
backward induction, together with the following additional
claim for each stage:

Proposition 1: For each t = 1, . . . , T and all y ∈ R, y +
εt ≥ ∆t(pt) if and only if Kt(y + εt) ≥ pt.
Base case: For stage T , GT (y) is convex as J is convex and
it is differentiable such that

G′T (y) =
dE[J(y + εT+1); pT+1]

dy
= E[J ′(y+εT+1; pT+1)];

see e.g., [15] for more details. Thus we have G′T (y) =
KT (y). It follows that KT is nondecreasing, with Kmax

T

and Kmin
T defined as in Lemma 3. By intermediate value

theorem, ∆̃T = K−1T (pT ) is well-defined whenever Kmin
T ≤

pT ≤ Kmax
T . Consider the stage-T optimization. Using the

change of variable discussed in the proof for Lemma 2, we
aim to solve the optimization

pT zT + min
yT≤zT

{−pT yT + E[J(yT + εT+1 : pT+1)]}, (24)

whose objective is convex and its derivative with respect to
yT is −pT +KT (y). If pT < Kmin

T , −pT +KT (y) is non-
decreasing for y ∈ R; if pT > Kmax

T , −pT + KT (y) is
non-increasing for y ∈ R; if Kmin

T pT ≤ Kmax
T , by the first-

order optimality condition, K−1T (pT ) is the unconstrained
minimizer of (24). Thus on extended reals R ∪ {±∞}, one
can summarize the unconstrained minimizer of (24) in the
form of (11). Per Lemma 2 and using yT = zT − gT , the
optimal last stage dispatch is of the form g?T (zT ; pT ) = (zT−
∆T (pT ))+ = (zT − ∆̃p

T )+ as claimed. Then depending on
whether zT − ∆̃p

T ≥ 0, JT has the form

JT (zT ; pT )

=

{
pT (zT −∆T (pT )) +GT (∆T (pT )) if ∆T (pT ) ≤ zT ,
GT (zT ) if ∆T (pT ) > zT .

For the statement in Proposition 1, we have that

{y + εT ≥∆T (pT )} ={y + εT ≥ K−1T (pT )} ∪ {pT < Kmin
T }

= {KT (y + εT ) ≥ pT } ∪ {pT < Kmin
T }

= {KT (y + εT ) ≥ pT }.

Inductive step: Suppose all claims hold for stage t + 1.
In particular, Jt+1(zt+1; pt+1) has the form as in (5b) and
1(Kt+1(y + εt+1) ≥ pt+1) = 1(∆t+1(pt+1) ≤ zt+1). It is
easy to check that, by definition of Gt in (12),

Gt(y) = E[Jt+1(y + εt+1; pt+1)], (25)

and so is convex by Lemma 1. Again by [15] 6 and using
G′t+1(y) = Kt+1(y), we have

G′t(y) = E
{
pt+11(Kt+1(y + εt+1) ≥ pt+1)

+Kt+1(y + εt+1)1(Kt+1(y + εt+1) < pt+1)

}
,

that is, G′t(y) = Kt(y). Therefore Kt(y) is nondecreasing.
The rest of the claims in Lemma 3 and the claim in
Proposition 1 follow from the same arguments as in the

6One can alternatively check this calculation using Leibniz’s rule.



base case. For the claims in Theorem 1, consider stage-t
optimization

min
gt≥0
{ptgt + E[Jt+1(zt − gt + εt+1; pt+1)]}

= ptzt + min
yt≤zt

{−ptyt +Gt(yt)},

where the identity follows from the usual change of variable
and (25). Repeating the arguments in the base case with
Gt(yt) in the place of E[J(yT + εT+1; pT+1)] = GT (yT )
concludes the thesis.
Proof of Lemma 4:
By induction. For the base case, we have

GT (y) =E[J(y + σET+1; pT+1)]

=σE[J((y/σ) + ET+1; pT+1)]

=σGE,T (y/σ).

Since J(ty; p) = tJ(y; p), on the set that J is differentiable
in its first argument, we have t∂J(ty; p)/∂y = t∂J(y; p)/∂y,
and so J ′(ty; p) = J ′(y; p). As a result,

KT (y) =E[J ′(y + σET+1; pT+1)]

=E[J ′((y/σ) + ET+1; pT+1)]

=KE,T (y/σ).

Under the assumption (15), ∆̃p
T satisfies

Kt(∆̃
p
T ) = KE,T (∆̃p

T /σ) = pt,

and so ∆̃p
T = σK−1E,T (pT ). Now suppose the claims hold for

the (t+ 1)th stage, we have

Kt(y) = E
{
pt+11(Kt+1(y + σEt+1) ≥ pt+1)

+Kt+1(y + σEt+1)1(Kt+1(y + σEt+1) < pt+1)
}

=E
{
pt+11(KE,t+1(y/σ + Et+1) ≥ pt+1)

+KE,t+1(y/σ + Et+1)1(KE,t+1(y/σ + Et+1) < pt+1)
}

=KE,t(y/σ).

Similarly,

Gt(y) = E
{
1(KE,t+1(y/σ + Et+1) ≥ pt+1)

×
[
pt+1(y + σEt+1 − σK−1

E,t+1(pt+1)) +Gt+1(σK
−1
E,t +1(pt+1))

]
+Gt+1(y + σEt+1)1(KE,t+1(y/σ + Et+1) < pt+1)

}
= σE

{
1(KE,t+1(y/σ + Et+1) ≥ pt+1)

×
[
pt+1(y/σ + Et+1 −K−1

E,t+1(pt+1)) +GE,t+1(K
−1
E,t+1(pt+1))

]
+GE,t+1(y/σ + Et+1)1(KE,t+1(y/σ + Et+1) < pt+1)

}
= σGE,t(y/σ).

The same arguments as for the base case give
∆̃p
t = σK−1E,t(pt), thus all claims indeed hold for all

t.

Proof of Theorem 2 and Theorem 3:
We prove the general case (Theorem 3); the two-stage results
(Theorem 2) follow from the general case as a corollary.

Notice that the sequences {KE,t} and {GE,t} are defined
for the reference problem and thus are independent of σ.
Therefore, substituting the results from Lemma 4 into the
expression of J1 in Theorem 1, we have

Jt(σ; zt, pt) ={
pt(zt−σK−1E,t(pt))+σGE,t(K

−1
E,t(pt)) if σK−1E,t(pt)≤zt,

σGE,t(zt/σ) if σK−1E,t(pt)>zt,

and in particular, for the first stage

J1(σ; d̂1, p1) ={
p1(d̂1−σK−1E,1(p1))+σGE,1(K−1E,1(p1)) if σK−1E,1(p1)≤ d̂1,
σGE,1(d̂1/σ) if σK−1E,1(p1)>d̂1.

If σK−1E,1(p1) ≤ d̂1, taking derivative of J1 with respect to
σ gives

pPoU(σ; d̂1, p1) = −p1K−1E,1(p1) +GE,1

(
K−1E,1(p1)

)
,

which does not depend on σ. Re-writing the expression of
J1 in terms of PoU, we have, in this case,

J1(σ; d̂1, p1) = p1d̂1 + σpPoU,

that is J1 is linear in σ. If σK−1E,1(p1) > d̂1, taking derivative
gives

pPoU(σ; d̂1, p1) = GE,1

(
d̂1/σ

)
− d̂1
σ
KE,1

(
d̂1/σ

)
,

which completes the proof.


