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Abstract— This paper studies the problem of optimally plac-
ing energy storage devices in power networks. We explicitly
model capital and installation costs of storage devices because
these fixed costs account for the largest cost component in
most grid-scale storage projects. Finding an optimal placement
strategy is a challenging task due to (i) the discrete nature
of such placement problems, and (ii) the spatial and temporal
transfer of energy via transmission lines and distributed energy
storage resources. To develop an efficient placement framework
with performance guarantees, we investigate the structural
properties of the optimal value function for the multi-period
economic dispatch problem with storage dynamics, and an
analytical characterization of optimal storage controls and
locational marginal prices. In particular, we provide a tight
condition under which the optimal placement value function is
submodular and an efficient computational method to certify
the condition. When this condition is valid, a modified greedy
algorithm for maximizing a submodular function subject to a
knapsack constraint provides a (1− 1/e)-optimal solution.

I. INTRODUCTION

Recent years have witnessed a strong growth of energy
storage deployment around the world. For example, the total
storage deployment in the United States is increased by 243%
in power capacity and 188% in energy capacity from 2014
to 2015 [1]. This is in part driven by an increasing need
for energy storage in modern power systems. The value
of storage in the power grid under a large penetration of
renewables has been quantified in a number of prior studies
(e.g., [2], [3]). It has also been shown that energy storage
can be used to shift load in a way to reduce the system cost
and improve system reliability. Another primary driving force
is the rapidly decreasing cost of storage devices, especially
batteries, partly as a consequence of increasing public and
commercial interests in electric vehicles [4].

The bulk of newly deployed storage devices is front-of-
meter deployment. In the U.S., 84.6% of storage deployment
in the year of 2015 is utility- or grid-scale. The value of
such grid-scale storage depends critically on the location at
which it is installed due to the geographical heterogeneity of
generation and load profiles and the possibility of network
congestions [5], [6]. Therefore, developing efficient strategies
for placing storage devices in power networks has attracted
significant attention.
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A majority of prior studies have treated the placement
problem together with the problem of storage sizing. As a
result, the placement problem is usually formulated as a form
of continuous optimization. For instance, Thrampoulidis et
al. [7] study the problem of allocating a fixed total storage
capacity over the network to minimize the generation cost.
By optimizing the capacity of each storage device together
with the decision variables in economic dispatch, they obtain
a structural characterization of the optimal allocation ruling
out the need for placing storage at certain generation-only
buses. Similar formulations are considered in [8], [9], where
the multi-level nature of the placement problem is stressed
and numerical approaches are provided to solve associated
continuous optimization problems. With chance constraints
to limit the system operation risk generated by volatile re-
newable energy sources, Sjödin et al. [10] study the problem
of jointly optimizing generator dispatch and storage control
and sizing. Qin and Rajagopal [11] derive a constrained LQG
controller for (networked) distributed storage devices under
uncertainty, and formulate a storage sizing problem as a
convex program. Recognizing the complexity of AC power
flow model, all these studies use DC approximation of AC
power flow. Bose et al. [12] develop a semidefinite relaxation
for storage placement problem with AC power flow model,
and demonstrate its effectiveness through simulations.

Departing from continuous optimization approaches, we
propose a discrete optimization formulation for energy stor-
age placement. This is motivated by the cost structure of
storage deployment: the operation and maintenance costs of
storage are usually negligible compared to the fixed costs,
which include the installation and capital costs. Depending
on the type of storage technologies, the installation cost
can be as high as the capital cost. Therefore, the cost of
deploying ten units of 1 MWh battery could be dramati-
cally different from the cost of deploying one unit of 10
MWh battery due to the differences in the installation costs.
Furthermore, additional fixed cost components such as site
acquisition costs could be sensitive to the location at which
the storage device is to be installed. Due to the discrete nature
of these heterogeneous cost factors, it is difficult to take
into account all of them using a continuous optimization
framework. However, discrete optimization with a budget
constraint limiting the total fixed cost offers a natural and
accurate modeling of these cost factors. Additionally, a
discrete optimization framework also has an advantage when
handling practical scenarios in which storage devices with
fixed capacities are to be placed.

We formulate the placement problem as maximization of
a set function, representing the value of a storage placement



decision, subject to a knapsack constraint modeling the
budget for the aforementioned fixed costs. Unfortunately, this
class of problems is in general NP-hard. To overcome this
challenge, we identify rich structures of the placement value
function. In particular, we characterize conditions under
which the value function is submodular, suggesting that the
marginal benefit of adding a storage device decreases as more
devices are installed. This submodular structure allows us
to employ a greedy algorithm that provides a near-optimal
solution with a provable suboptimality bound [13], [14]. The
submodularity of energy storage placement is not intuitively
unexpectable but characterizing conditions under which it
holds has been recognized, e.g., in [15], as an unanswered
question.

We summarize our contributions and main results as
follows. First, we provide a novel discrete optimization
approach to energy storage placement that allows an ac-
curate modeling of fixed costs for storage deployment.
Second, by analyzing the solution of an associated multi-
period economic dispatch problem with storage dynamics,
we analytically characterize the optimal system-wide cost
and locational marginal prices as a function of installed
storage capacities. We also show that the submodularity of
the storage placement value function is not guaranteed over
all problem instances through an example although such
situations are unlikely to occur in practice. Our third and the
most important contribution is to construct a tight condition
under which the value function is submodular through a
polyhedral characterization of critical regions. Furthermore,
we provide an efficient and rigorous computational procedure
to certify the submodularity property.

The following notations are used throughout this paper.
For a transmission network with n buses and m lines, we use
i ∈ N := {1, . . . , n} to index the buses, and ` = 1, . . . ,m to
index the lines. We also use t ∈ T := {1, . . . , T} to index
the time periods. For a matrix x ∈ Rd×T with any given
positive integers d and T , we use xi,t to denote its (i, t)-
th entry, xt := (x1,t, · · · , xd,t)> ∈ Rd×1 to denote its tth
column, and x>i := (xi,1, · · · , xi,T ) ∈ R1×T to denote its
ith row. For any real number z, we use (z)+ := max(z, 0)
to denote the positive part of z and (z)− := −min(z, 0) to
denote the negative part of z so that z = (z)+ − (z)−. For
any Euclidean vector space Rd, we use 1 ∈ Rd to denote
the all-one vector and 1k ∈ Rd to denote the kth elementary
vector, i.e., the vector with all zeros except for its kth element
which is 1.

II. PROBLEM FORMULATION

A. Power Flow and Storage Model

We first consider the operation of a connected power
transmission network with n buses and m lines operated
over a finite horizon of T time periods. Let M ∈ Rn×m
be the node-edge incidence matrix defined for the network.1

1More precisely, Mi,` = 1 if i is the tail of line `; Mi,` = −1 if i is
the head of line `; otherwise, Mi,` = 0. Here, the direction of the lines are
pre-determined for the purpose of defining the positive direction of flow on
each line.

Under the classical DC approximation to the steady-state
AC power flow [16], the lines are characterized by their
susceptance b ∈ Rm and real power flow capacity ĉ ∈ Rm.
Let Y ∈ Rn×n be the DC network admittance matrix, which
can be represented as Y = M∆yM

>, where ∆y ∈ Rm×m
is the diagonal matrix with the `th diagonal element being
y` > 0 which is the reciprocal of the reactance of the line.
Note that rank(Y ) = n−1. Taking bus 1 to be the reference
bus, we let Ȳ ∈ R(n−1)×(n−1) to be the sub-matrix of Y
which contains the all entries of Y except its first row and
first column. Define a constrained generalized inverse of Y

to be Y † :=

[
0 0
0 Ȳ −1

]
. For each time period t = 1, . . . , T ,

we can then relate the line flows ft ∈ Rm with nodal power
injection pt ∈ Rn using a linear map Ĥ ∈ Rm×n:

ft = Ĥpt, with Ĥ := ∆yM
>Y †,

where the matrix Ĥ is commonly referred to as the shift-

factor matrix. Let H :=

[
I
−I

]
Ĥ ∈ R2m×n and c :=[

ĉ
ĉ

]
∈ R2m. The power flow constraints can be compactly

expressed as

1>pt = 0, Hpt ≤ c, (1)

for all time periods t ∈ T , where pt ∈ Rn denotes the
nodal power injection vector and c := [ĉ>, ĉ>]> ∈ R2m

with the real power flow capacity vector ĉ. The first equation
above enforces net power balance in the network, while the
second inequality limits the line flows induced by the power
injection vector pt within the line capacities. The matrix H ,
models the linear mapping from the nodal injections to line
flows, is commonly referred to as the shift-factor matrix.

We consider a stylized model of energy storage:2 for each
bus i, the storage’s state of charge (SOC) xi,t evolves as

xi,t+1 = xi,t − ui,t, t = 1, . . . , T − 1, (2)

where ui,t is the amount of energy discharged (if ui,t > 0) or
charged (if ui,t < 0) in time period t and the initial state of
charge is assumed to be xi,1 = 0. Given the storage capacity
si ≥ 0, the following constraints model the energy limit of
the storage device

0 ≤ xi,t ≤ si, t ∈ T , (3)

where si = 0 if there is no storage connected to bus i.
Equations (2) and (3) can be compactly expressed in the
following vector form: 0 ≤ Lui ≤ si1, where ui ∈ RT is
the vector of storage control over T periods, and L ∈ RT×T
is a lower triangular matrix with entries Lij = −1 for i ≥ j.
In other words, the information about the storage dynamics
is embedded in the matrix L.

2Our analysis and results can be straightforwardly extended using a more
detailed storage model with charging efficiency and SOC decay. For the
sake of simplicity, we use the idealized model.



B. Multi-Period Economic Dispatch
For net demand dt ∈ Rn, t ∈ T , which is defined as load

minus uncontrollable (renewable) generation, the economic
dispatch problem aims to identify an efficient generator
dispatch to serve the net demand. When there are storage
devices connected to the network, by moving energy across
time periods, a careful operation of storage could reduce the
total system cost. This is achieved by linking T -single period
economic dispatch problems, which results in the multi-
period economic dispatch problem with storage dynamics:

J(s) := min
g,u

T∑
t=1

Ct(gt) (4a)

subject to βt : H(gt + ut − dt) ≤ c, t ∈ T , (4b)

γt : 1>(gt + ut − dt) = 0, t ∈ T , (4c)
µi : Lui ≤ si1, i ∈ N , (4d)
νi : Lui ≥ 0, i ∈ N . (4e)

Here, gt ∈ Rn is the vector of controllable power generation
for each time period t ∈ T , Ct(gt) :=

∑
i∈N Ci,t(gi,t) is

the system-wise cost for time period t, and is taken to be
quadratic as common in the literature [17], so that

Ct(gt) :=
1

2
g>t Qtgt + a>t gt, t ∈ T ,

where Qt is a diagonal matrix whose diagonal entries are
positive, modeling the increasing incremental (marginal) heat
rate3, and at ∈ Rn is the linear cost coefficient for generators
over the network. The cost function mainly models the fuel
cost of generating gi,t MW of real power. The constraints
(4b) and (4c) enforces power flow constraints (1) with the
nodal power injection pt = gt+ut−dt for each period t. The
storage dynamics and energy limit constraints are captured
by (4d) and (4e). At buses with no storage connected, we
set si = 0, and (4d) and (4e) reduce to ui,t = 0 for all t.

C. Storage Placement as Optimization of A Set Function
Note that the optimal cost of this multi-period economic

dispatch problem depends critically on the storage capacity
vector s ∈ Rn over the network. When only a finite budget is
available for installing storage devices, the location at which
a storage device is installed could have a large impact on
its contribution to the cost reduction due to line congestions
that could isolate the benefits of storage.

In particular, given K different types of storage devices,
each with some storage capacity s̄k and capital and instal-
lation cost rk, k = 1, . . . ,K, we want to place the storage
devices to minimize the system operation cost with a given
budget R for the total capital and installation cost.

We proceed to formulate the problem as an optimization
of a set function. Consider the collection of all n×K (bus,
storage type) pairs

Ω := {(i, k) : i = 1, . . . , n, k = 1, . . . ,K}.
3Heat rate is the unit amount of heat contained in fuel needed to produce

a unit MW of power output. For each generator with a fixed type of fuel
supply, an increasing marginal heat rate implies an increasing marginal cost
with a given fuel price.

Each subset X of Ω represents a valid placement decision,
and all placement decisions can be represented by a subset
of Ω if we assume that only one storage with each type
can be placed at each bus.4 For notational convenience, let
I : 2Ω → {0, 1}n×K be a set indicator function such that
Ii,k(X) := 0 if (i, k) /∈ X and Ii,k(X) := 1 if (i, k) ∈ X .
Note that the ith entry of the matrix-vector product I(X)s̄ is

(I(X)s̄)i =
∑

k:(i,k)∈X

s̄k, (5)

which is equal to the total storage capacity at bus i. We
introduce a function, V : 2Ω → R, which we call the storage
placement value function, defined as

V (X) := J(I(∅)s̄)− J(I(X)s̄).

For each fixed placement decision X , the value V (X) repre-
sents the reduction in the minimum T -period total generation
cost by placing and optimally operating the storage devices
according to the (bus, storage type) pairs contained in X .
The value function V is normalized such that V (∅) = 0. An
optimal placement solution can be obtained by solving the
following combinatorial optimization problem:

max
X⊆Ω

V (X) (6a)

s.t.
∑

(i,k)∈X

rk ≤ R. (6b)

We claim that our problem formulation as discrete optimiza-
tion has practical advantages over continuous optimization
formulations. First, our framework can handle the practical
scenarios in which storage devices with fixed capacities are
to be placed. Existing continuous optimization formulations
are valid under a strong assumption that the System Operator
can optimize the storage capacity at each bus. One can
perform a post-processing, such as thresholding, to convert
the solutions of continuous optimization problems into dis-
crete solutions. However, such post-processing does not give
a performance guarantee in general, whereas our method
directly computes a discrete solution with a provable subop-
timality bound. Second, our problem formulation naturally
incorporates investment and installation costs for storage
devices through the knapsack constraint (6b). In contrast, it
is difficult to expect such a precise regulation in continuous
optimization formulations as discussed in Section I. Lastly,
the proposed discrete optimization formulation yields a very

4This assumption can be easily relaxed by extending the size of Ω.
Suppose that we can place R number of storage devices with the same
type at each bus. For each type of storage, we can create R “sub-types”,
each of which presents the rth appearance of the same type of the storage at
the same bus, r = 1, . . . , R. In other words, we have Ω := {(i, k′) : i =
1, . . . , n, k′ = (k − 1)R + r, k = 1, . . . ,K, r = 1, . . . , R}, where the
type k′ = (k−1)R+r corresponds the rth appearance of the original type
k. This is a classical technique to convert a integer program into a binary
program. For the sake of simplicity, we will use the problem formulation
(4), but all of our results are valid when we can place multiple storage
devices with the same type at each bus. A similar treatment can be used to
model different fixed costs for placing the same type of storage at different
buses to take into account site acquisition costs.



simple placement algorithm that only requires an input-
output (blackbox) model of a power system. Specifically, our
greedy algorithm utilizes simulations that capture electricity
market input-ouput without using detailed information about
the network. This is a notable advantage over continuous
optimization formulations as they often require a full network
model with complete information (e.g., parameters) about
markets to calculate (sub)gradients of objective functions.

III. STRUCTURES OF OPTIMAL COST AND PRICES

In order to obtain efficient methods to solve the placement
problem (6), which is NP-hard, we proceed to establish struc-
tural properties of the value function through an analytical
characterization of the optimal prices, i.e., the solution to the
dual program of (4).

We begin by considering the standard dual QP of (4):

max
λ,γ,β,µ,ν

φ(λ, γ, β, µ, ν)

s.t. λt = γt1−H>βt, t ∈ T ,
λi = L>(µi − νi), i ∈ N ,
β, µ, ν ≥ 0,

where the Lagrange dual function is given by

φ(λ, γ, β, µ, ν) :=

T∑
t=1

−1

2
(λt − at)>Q−1

t (λt − at)

+ d>t λt − c>βt − s>µt,
and the new variable λi,t represents the locational marginal
price (LMP) vector at bus i in period t.

The standard dual QP above can be further simplified.
Observe that (4d) and (4e), representing the lower and upper
limits of state of charge, cannot bind simultaneously for any
storage i and time period t. In other words, if the storage
device connected to bus i is empty in period t, i.e., xi,t =
(Lui)t = 0, then it must be the case that xi,t = (Lui)t <
si. Similarly, (Lui)t = si signifies that (Lui)t > 0. By
complementary slackness, this implies that µi,tνi,t = 0 for
all i and t, that is, at most one of µi,t and νi,t can be positive
at the optimal solution. Combining this fact with constraint
(7), which is equivalent to (µi − νi) = L−>λi, we have

µi = (L−>λi)
+ and νi = (L−>λi)

−, i ∈ N .

One can verify that, given the structure of matrix L, a more
explicit display of the previous relation is

µt = (λt+1−λt)+ and νt = (λt+1−λt)−, t ∈ T , (8)

where for convenience we define λT+1 := 0 ∈ Rn. That is,
the storage congestion price µi,t is nonzero only when the
LMP λi ramps up in the next time period in which case its
value equals the LMP increment.

Substituting the expression of µt into the dual QP, we get
the following reduced dual program:

max
λ,γ,β

φ̃(λ, β) (9a)

s.t. λt = γt1−H>βt, t ∈ T , (9b)
β ≥ 0, (9c)

where φ̃ is a piecewise quadratic function defined as

φ̃(λ, β) :=

T∑
t=1

−1

2
(λt − at)>Q−1

t (λt − at)

+ d>t λt − c>βt − s>(λt+1 − λt)+.

By strong duality, we can characterize the function J(s) via
a sensitivity analysis of the primal-dual pair (4) and (9). Let
(g?t (s), u?t (s), λ

?(s), γ?(s), β?(s)) be a pair of primal and
dual solutions to (4) and (9) for a given capacity vector s. We
focus on s values which will induce nondegenerate solutions
of (4). In particular, we assume the following constraint
qualification for the rest of this paper.

Assumption 1 (Flow LICQ): For each t ∈ T , let Ht be
the collection of H’s rows corresponding to the congested
(oriented) lines for the flow induced by (g?t (s), u?t (s)), when
there exists at least one congested line in period t.5 Then,
Ht is of full row rank for all t ∈ T .

We first show that in almost all practical scenarios the
prices are uniquely defined:

Proposition 1 (Uniqueness of prices): For each fixed
s ∈ Rn+, the optimal dual variables λ?(s) and γ?(s)
are unique. Furthermore, if Assumption 1 holds, then
(λ?(s), γ?(s), β?(s)) is the unique solution to the dual
problem (9).

Proof: As the objective function of (9) is strongly
convex in λ, we know that λ?(s) must be unique. Suppose
that the first bus is the reference bus of the network, then
by the definition of the shift-factor matrix, H11 = 0. Thus
constraint (9b) implies that γ?t (s) = λ?1,t(s), and therefore
γ?(s) is also unique. Under Assumption 1, the set of primal
flow constraints (4b) that are binding at the optimal solution
is given by those corresponding to Ht. That is, βt can be
partitioned into β̃t for the binding constraints and β′t for
the slack constraints for which we know that β′t = 0 by
complementary slackness. In fact, using this decomposition,
the dual constraint (9b) can be written as

λt = γt1−H>t β̃t, t ∈ T .

Now as Ht has full row rank, β̃t is uniquely determined by
the equation above holding λt and γt fixed. This implies that
β is also unique.

In view of Proposition 1, we assume the constraint qual-
ification and take (λ?(s), γ?(s), β?(s)) as the unique dual
solution for the rest of the paper. The following result
characterizes the locational marginal value of storage via
the optimal LMP:

Remark 1: Coined in Bose and Bitar [6], the term loca-
tional marginal value of storage is used to refer the quantity
−∇sJ(s), which characterizes the benefit of placing storage
at different locations of the network when the size of storage
is infinitesimal. They also obtain the expression (10) for the
case where the marginal cost of generation and marginal
benefit of consumption are both constants (i.e., the cost
function is a piecewise linear function with two pieces). In

5The matrix Ht is formally defined later in (11).



fact, the expression (10) holds for any smooth convex cost
function under mild regularity assumptions as in the standard
sensitivity theorem of nonlinear programming.

Lemma 1 (First order sensitivity): The optimal cost func-
tion J(s) is continuously differentiable and its gradient is
given by

∇sJ(s) = −
T∑
t=1

(
λ?t+1(s)− λ?t (s)

)+
, (10)

where again λ?T+1(s) := 0. Consequently, the optimal cost
function J(s) is nonincreasing in si for each i ∈ N .

Proof: Consider the primal program (4), which has
an infinitely differentiable objective function and linear con-
straints. Under the non-degeneracy condition, we can apply
standard sensitivity theorem of nonlinear programming [18],
which suggests the differentiability of J(s) and that

∂J(s)

∂si
= −

T∑
t=1

µ?i,t = −
T∑
t=1

(
λ?i,t+1(s)− λ?i,t(s)

)+
,

for any i ∈ N . To show that ∂J(s)/∂si itself is again a
continuous function, we observe that λ?(s) is the unique
solution of the dual QP (7). By the smoothness of the
objective and constraints of (7), we know that the parameter
to solution mapping λ?(s) is continuous in s. Furthermore,
the positive part function (·)+ is a continuous function
from R to R+. Therefore, we conclude that ∂J(s)/∂si
is continuous and J(s) is continuously differentiable. As
∂J(s)/∂si ≤ 0, the function J(s) is nonincreasing in si
for each i ∈ N .

When the cost function is nonlinear and the size of the
storage to be placed is far from infinitesimal, the first-order
approximation of the value function using the gradient for-
mula (10) may not be accurate.6 We proceed to obtain a finer
characterization of the optimal cost J(s) by investigating its
higher order derivatives. An immediate observation is that
J(s) is convex in s:

Lemma 2: The optimal cost function J(s) is convex in s.
Proof: We write the primal problem (4) as

J(s) = min
g

T∑
t=1

Ct(gt) + ω(g, s),

where extended real-valued function ω(g, s) is defined to be
0 if, given (g, s), there exists a control u satisfying all the
constraints of (4), and +∞ otherwise. Let s1, s2 ∈ Rn+ be
two arbitrary vectors of storage capacities, and let (g1, u1)
and (g2, u2) be the optimal primal solutions associated with
s1 and s2 respectively. We claim that the function ω(g, s)
is convex in (g, s). Indeed, it is easy to verify that, for ρ ∈
[0, 1], ω(ρg1+(1−ρ)g2, ρs1+(1−ρ)s2) = 0 if ω(gi, si) = 0
for i = 1, 2, as ρu1 + (1− ρ)u2 is a feasible solution for the
set of constraints given (ρg1 + (1− ρ)g2, ρs1 + (1− ρ)s2).

6The first-order approximation can be used for storage placement. We
utilize it with an approximation algorithm proposed in [19] to find a solution
with 0.6–0.7-a posteriori suboptimality bound.

Therefore, J(s) is convex as it is the minimum value of
another convex function optimized in g over a convex set.

Given that the objective function is quadratic, one would
expect that the curvature information summarized by the
Hessian matrix would be sufficient. This is confirmed by
the following result:

Lemma 3: The optimal cost function J(s) is a piecewise
quadratic function with a finite number of pieces, each of
which is defined on a polytope in Rn+. In each polytope
where J(s) is a quadratic function, the optimal LMPs λ?(s)
is affine in s.

Proof: This is a standard multi-parametric quadratic
programming result. See e.g. [20].

Remark 2: The polytopes in Lemma 3 are referred to as
critical regions in the literature of multi-parametric quadratic
programming (e.g., [20], [21]). In our context, each critical
region is defined as a set of s values such that the inequality
constraints binding at the optimum remain unchanged. In a
single period economic dispatch problem, the set of binding
constraints conveys the network congestion pattern. When
there are storage devices connected to the system, the defi-
nition of critical regions also depends on whether the storage
constraints (4d) and (4e) bind at the solution.

Considering each critical region, we can characterize the
optimal LMPs based on the network and storage congestion
patterns at the optimum. For each (i, t) ∈ N × T , let
χi,t(s) = 1 if the constraint (Lui)t ≤ si is binding at
the optimum and χi,t(s) = 0 otherwise. In other words,
χ represents the storage congestion pattern. Under strict
complementary slackness, we use (8) to obtain

χi,t := χi,t(s) =

{
1 if λ?i,t+1(s)− λ?i,t(s) > 0

0 otherwise.

We now let ECt ⊂ {1, . . . , 2m} denote the set of oriented
lines that are congested at the solution in period t and
mt := |ECt| denote the number of congested lines. Define a
selection matrix Wt ∈ Rmt×2m such that for ` = 1, . . . ,mt

and `′ = 1, . . . , 2m,

(Wt)`,`′:= (Wt(s))`,`′=

{
1 if the `th element in ECt is `′

0 otherwise,

and the shift factor matrix for congested lines as

Ht := WtH. (11)

Note that Wt = 0 if all lines are uncongested in period t.
Theorem 1: In the critical region where the storage and

network congestions are represented by χt and Wt, t ∈ T ,
the optimal locational marginal prices are affine in s and can
be expressed as

λ?t (s) = At(Wt)(∆χt −∆χt−1)s+ λ̄t(Wt), (12)

where ∆χt
is the diagonal matrix with vector χt on the



diagonal with χ0 := 0, and

At(Wt) :=
1

1>Q−1
t 1

11> +QtMtRtMtQt,

λ̄t(Wt) :=At(Wt)
(
dt +Q−1

t at
)

+Bt(Wt)Wtc, (13)

Bt(Wt) :=QtMtH
>
t K

−1
t

with Mt := Q−1
t − (Q−1

t 11>Q−1
t )/(1>Q−1

t 1), Kt :=
HtMtH

>
t and Rt := H>t K

−1
t Ht. When there is no line

congested in period t, all the expressions above hold with
Rt := 0 and Bt(Wt) := 0.

Proof: See Appendix A.
To comprehend these formulas, we first set s = 0, in

which case we obtain that locational marginal prices are
the same as that for each single period economic dispatch
problem without storage, i.e., λ?t (0) = λ̄t(Wt). Focusing
on equation (13), we see that matrix At(Wt) captures the
price sensitivity of perturbing the load given the network
congestion pattern Wt, while Bt(Wt) represents the sen-
sitivity of perturbing the congested lines’ capacities Wtc.
If s 6= 0, equation (12) suggests that when the congestion
state of a storage device is changed, i.e., χi,t − χi,t−1 6= 0,
perturbing storage capacity si has a sensitivity contribution
to the prices at the period similar to that of load at the same
bus. This is consistent with the intuition that the benefits of
storage is achieved by modifying the effective load profile
and the storage capacity could have a role in defining the
prices when the storage congestion states are changed over
two consecutive time periods.

As a byproduct of Theorem 1, we can obtain closed-form
expressions of the (reference) energy price γ?t = 1>1 λ

?
t and

the congestion price β?t with respect to the capacity vector
s.

Corollary 1: Under the setting of Theorem 1, γ?t (s) and
β?t (s) are affine functions of s ∈ Rn+. we have

γ?t (s) = 1>1
[
At(Wt)(∆χt

−∆χt−1
)s+ λ̄t(Wt)

]
, (14)

β?t (s) = W>t Bt(Wt)
>(∆χt−1 −∆χt)s+ β̄t(Wt), (15)

where

β̄t(Wt) := −W>t Bt(Wt)
>(dt +Q−1

t at)−W>t K−1
t Wtc.

Proof: See Appendix A.
Using Theorem 1 and Lemma 1, we can obtain a closed

form expression for the Hessian of J(s) as follows:
Theorem 2: The optimal cost function J(s) is twice dif-

ferentiable almost everywhere with respect to the Lebesgue
measure on Rn+. Furthermore, for any s such that ∇2

ssJ(s)
exists,

∇2
ssJ(s) = HS(s) + HN(s),

where HS(s) is the component depending on the storage
congestion pattern while HN(s) is the component depending

on the network congestion pattern, defined as

HS(s) :=

T∑
t=1

(χt − χt−1)(χt − χt−1)>

1>Q−1
t 1

,

HN(s) :=

T∑
t=1

(∆χt
−∆χt−1

)QtMtRtMtQt(∆χt
−∆χt−1

).

Proof: See Appendix A.
As network congestions are only expected in a small

percentage of all the operation hours, here we focus on the
component HS(s). We show that the sign of entries of HS(s)
depends on whether the local peaks and valleys of the LMP
processes are aligned. We define the set of time indices for
which each price sequence reaches a local peak (LP) and a
local valley (LV) as

T LP
k = {t ∈ T : λ?k,t(s) > λ?k,t−1(s), λ?k,t(s) ≥ λ?k,t+1(s)},

T LV
k = {t ∈ T : λ?k,t(s) ≤ λ?k,t−1(s), λ?k,t(s) < λ?k,t+1(s)},

respectively, where k = i, j, λ?k,T+1(s) := 0, and λ?k,0(s) :=
+∞ (which is consistent with the definition χ0 := 0).
Furthermore, we denote the number of aligned peaks and
valleys of these two price sequences as

T align
ij = |T LP

i ∩ T LP
j |+ |T LV

i ∩ T LV
j |,

and the number of time periods when these price sequences
exhibit opposite local extrema as

T opp
ij = |T LP

i ∩ T LV
j |+ |T LV

i ∩ T LP
j |.

Then, we can express HSij(s) simply using these two
statistics of the price sequences.

Proposition 2 (LMP fluctuations and Hessian): Suppose
that the quadratic cost coefficients are fixed over time, i.e.,
Qt ≡ Q for all t ∈ T . Then, we have

HSij(s) =
1

1>Q−11

[
T align
ij − T opp

ij

]
.

Therefore, HSij(s) ≥ 0 if and only if the fluctuations of
λ?i (s) and λ?j (s) are similar in the sense that T align

ij ≥ T opp
ij .

Proof: Given that

HSij(s) =
T∑
t=1

1

1>Q−11
(χi,t − χi,t−1)(χj,t − χj,t−1),

we note that each term in the summation is nonzero only
when both (χi,t − χi,t−1) and (χj,t − χj,t−1) are nonzero,
i.e., the storage congestion states at both buses change
simultaneously. By the definition of χ, for k = i, j we have

χk,t − χk,t−1 =


1 if t ∈ T LV

k ,

−1 if t ∈ T LP
k ,

0 otherwise.

Thus

(χi,t − χi,t−1)(χj,t − χj,t−1)

=


1 if t ∈ T LP

i ∩ T LP
j , or t ∈ T LV

i ∩ T LV
j ,

−1 if t ∈ T LV
i ∩ T LP

j , or t ∈ T LP
i ∩ T LV

j ,

0 otherwise,



and therefore the claim follows.
Proposition 2 states that when the quadratic coefficients
of generation cost functions are not time-varying, we can
evaluate HSij(s) simply by counting the number of times the
local peaks and valleys of the LMP processes on bus i and
j are aligned, and the number of times of the co-occurrence
of opposite local extrema. When the LMPs are aligned in
the sense of Proposition 2, possibly driven by the similarity
of the load profiles, then this Hessian component will have
nonnegative entries. We also note that this result can be
easily generalized to the setting where the quadratic cost
coefficients are different in each time period t, by weighting
each aforementioned occurrence differently according to
1>Q−1

t 1.

IV. SUBMODULARITY OF PLACEMENT VALUE FUNCTION

Equipped with the structural properties of the optimal cost
function J(s), we now characterize the set function V (X).
Recall that the placement value function V (X) models the
reduction of the optimal operational cost by employing the
placement decision X , which is defined as a subset of
Ω that contain all admissible (bus, storage type) pairs. In
particular, we provide conditions under which the value
function belongs to the class of submodular functions, one
of the most tractable classes in discrete optimization.

Definition 1 (Submodularity and monotonicity): For a fi-
nite set Ω, a set function F : 2Ω → R is said to be
submodular if for any X ⊆ Y ⊆ Ω and e ∈ Ω \ Y ,

F (X ∪ {e})− F (X) ≥ F (Y ∪ {e})− F (Y ). (17)

The function is said to be monotonically nondecreasing if
for any X ⊆ Ω and e ∈ Ω \X ,

F (X ∪ {e}) ≥ F (X). (18)
In our case, (18) implies that the marginal benefit of

installing a new storage device is nonnegative and (17)
states that such marginal benefit should diminish when more
storage devices are connected to the system. It is straight-
forward to check that any modular function is submodular.
Evidently, the nondecreasing property of V (X) follows from
the fact that J(s) is nonincreasing (Lemma 1). To check
whether V (X) is submodular, it is instrumental to consider
an alternative characterization of submodularity, based on
discrete derivatives defined for set functions.

Definition 2: For any set function F : 2Ω 7→ R, the
discrete derivative of F in e ∈ Ω is defined as

DeF (X) := F (X ∪ {e})− F (X\{e}).
It is straightforward to check that the following theorem pro-
vides a necessary and sufficient condition for submodularity
[22].

Theorem 3: A set function F : 2Ω 7→ R is submodular if
and only if

De (De′F (X)) ≤ 0, (19)

for all e, e′ ∈ Ω, e 6= e′ and X ⊆ Ω.
This condition allows us to relate the submodularity of

V (X) to the sign of the Hessian entries of J(s). We relate

the submodularity of V (X) to the sign of the Hessian entries
of J(s) as follows:

Theorem 4 (Sufficient condition for submodularity): The
storage placement value function V : 2Ω → R is submodular
if (

∇2
ssJ(s)

)
ij
≥ 0, ∀i, j ∈ N ,

for all s ∈ S := [0, s̄max]
n, where s̄max :=

∑K
k=1 s̄k is the

maximum storage capacity to be achieved at each bus.
Proof: For any X ⊆ Ω, and without loss of generality

ei := (i, ki) 6∈ X , ej := (j, kj) 6∈ X , we have DeiV (X) =
V (X ∪ {(i, ki)})− V (X) and

Dej (DeiV (X))

= [V (X ∪ {(i, ki), (j, kj)})− V (X ∪ {(j, kj)})]
− [V (X ∪ {(i, ki)})− V (X)].

Let s0 := I(X)s̄. Using the definition of V , we have

Dej
(Dei

V (X)) =
[
J(s0 + s̄j1j)− J(s0 + s̄i1i + s̄j1j)

]
− [J(s0)− J(s0 + s̄i1i)].

Since J(s) is continuously differentiable, the following in-
tegral expression is well-defined:

Dej (DeiV (X))

=

∫ s̄i

0

[
∂J

∂si
(s0 + x1i)−

∂J

∂si
(s0 + s̄j1j + x1i)

]
dx.

Meanwhile, given that ∂J/∂si is differentiable almost ev-
erywhere with respect to Lebesgue measure, we have

Dej (DeiV (X))

= −
∫ s̄i

0

∫ s̄j

0

∂2J

∂sj∂si
(s0 + x1i + y1j) dy dx.

As
(
∇2
ssJ(s)

)
ij
≥ 0, we have Dej

(Dei
V (X)) ≤ 0 for any

i, j ∈ N and any ki and kj . Thus, using (19), we conclude
that the set function V is submodular.

Theorem 4 provides a sufficient condition for the submod-
ularity of V by just checking the sign of the Hessian entries
of the optimal cost function J(s), which can be computed
using Theorem 2. The characterization is essentially tight, in
the following sense.

Corollary 2: If
(
∇2
ssJ(s)

)
ij
< 0 for some s ∈ Rn+ and

i, j ∈ N , then there exists a storage capacity vector s̄ ∈ Rn+
and the corresponding Ω such that V (X) is not submodular
on the subsets of Ω.

Of course, this corollary is only a partial converse of
Theorem 4 as the critical regions in which

(
∇2
ssJ(s)

)
ij
< 0

may not be contained in the region S of interest given
the fixed storage capacity vector s̄. Even if the point s
resulting in negative Hessian entries is contained in S, the
function V (X) could still be submodular if the critical region
with negative Hessian entries is relatively small (or the
magnitude of the negative Hessian entries is small) so that its
contribution to the discrete derivative is overweighed by the
contribution from other critical regions with positive Hessian
entries.



By the convexity of the optimal cost function J(s)
(Lemma 2), it is always the case that the diagonal entries
of the Hessian matrix ∇2

ssJ(s) are nonnegative. To build
intuitions on the sign of the off-diagonal entries of the
Hessian matrix, we considered a two bus example.

A. Two-Bus Network

To gain qualitative insight, we fix the cost function to be
Ct(gt) = 1

2g
>
t gt, for t = 1, . . . , T := 3, that is Qt ≡ I ∈

R2×2 and at ≡ 0. With this cost function, given a time
varying demand profile over the network, if neither storage
nor line capacity is constraining, then the solution exhibits
a form of “water-filling” behavior where the optimal flows
result in equalized generation from each bus and each time
period. We also notice that g?t = λ?t for this cost function,
by the first order optimality condition of (4).

We investigate the property of J(s) and the optimal primal
and dual solution of the multi-period economic dispatch
problem for all storage capacities s in the region S =
[0, 1] × [0, 1]. The line capacity is fixed to be 0.5. We
consider the following two cases: one commonly observed
in simulation where all critical regions inside of S have
J(s) with only nonnegative Hessian entries, and the other
specially constructed such that one of the critical regions
has negative off-diagonal Hessian entries.

• Case A: dA =

[
1 2 0
1 2 2

]
.

• Case B: dB =

[
1 2 1
3 2 3

]
.

The critical regions for these cases are depicted in Figure 1.
For each critical region, we obtain the expression of the
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Fig. 1: Critical regions for the two-bus examples. In the figure
with a slight abuse of notation, we use RA

r and RB
r to denote

the rth critical region for each case.

optimal cost function J(s) (which includes its quadratic and
linear coefficients), and for a set of points on the a mesh
grid inside of each critical region, we solve the multi-period
economic dispatch problem and obtain the optimal primal
dual solution. In the all 6 critical regions across these two
cases, only the red region in case B, i.e., RB

1 , has negative
Hessian entries. Due to space limit, we focus on this region
for the rest of this subsection. The optimal primal variables

for s̃ = [0.2, 0.2]> is shown in Figure 2.7 The optimal cost
function in the critical region is

J(s) =
1

2
s>
[

1.5 −0.5
−0.5 1.5

]
s+

[
−0.5 −0.5

]
s+ 12.5,

with J(s̃) = 12.34.
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Fig. 2: Optimal flow for the case with negative Hessian
entries.

A key observation for the specialty of this case can be
made. The optimal prices λ?, as read from the generation
values, follow a low-high-low pattern on one bus and a high-
low-high pattern on the other bus. This is unusual in practical
settings especially in planning scenarios, as the LMPs are
often driven by load profiles. If occurred in practice, such
a phenomenon would indicate that (a) the load profiles on
these two buses complement each other in the sense that
the load on bus 1 peaks when the load on bus 2 falls to
its valley, and (b) the transmission link between these two
buses is weak and congested so that the optimal/equilibrium
prices still follow such patterns. Given that each load bus in
transmission network often represents a collection of smaller
loads, the condition in (a) means that the aggregates of
these small loads follow very different temperol patterns at
different locations in the network. Furthermore, if we were
concerned with the transmission planning problem of deter-
mining which transmission lines to strengthen, conditions (a)
and (b) are often strong indicators for increasing the capacity
of the line connecting these two buses. In fact, for case B,
doubling the line capacity eliminates the critical region with
negative Hessian entries. We will further make some of these
notions solid in the next subsection.

B. Certificate for Submodularity

Albeit the negative Hessian case above looks unlikely to
occur in practice and in all our simulations with PJM price
and load data we have not yet observed negative Hessian
entries, there is no a priori theoretical guarantee that V is
submodular. In other words, its submodularity depends on the

7Here, each node in the graph represents a (bus, time period) pair. The
vertical edges of the graph represent the transmission line connecting the two
buses, while the horizon edges represent storage device storing power for
future use. Around each node (i, t), the value associated with an “inflow
arrow” is the generation g?i,t, and the value associated with an “outflow
arrow” is the demand di,t. The value on each edge is the optimal flow sent
through the edge; for storage edges such flow is the amount of energy stored
at the end of last time period. Red edges are congested at the solution.



problem instance, in particular, the load and network data.
Thus, it is of interest to develop an efficient computation
procedure which certifies the submodularity of V .

This is generally a challenging task, as verifying the
submodularity of V by definition involves checking an
exponential number of inequalities. Theorem 4 reduces this
problem to checking the sign of Hessian entries of a contin-
uous function, J(s), on the region of interest S. Theorem 2
provides a formula to compute the Hessian for almost every
s ∈ S. This formula is invariant in each critical regions
(Theorem 3), and hence it suffices to evaluate the Hessian
once per critical region inside of S. It remains to specify
how one would iterate over the critical regions, which we
address here.

We start by providing an explicit characterization of the
critical region containing almost every capacity vector s.8

Upon solving the multi-period economic dispatch problem
at s, we can identify the set of binding constraints and
the associated χt and Wt for t ∈ T . The critical region
containing s can then be expressed as the set of storage
capacity vectors where the storage and network congestion
states are not changed:

Theorem 5: Given χt(s) and Wt(s), t ∈ T evaluated at
an arbitrary s ∈ S (except a set of measure zero), the critical
region containing s is a open convex polytope Rs defined
by the set of s̃ ∈ Rn+ satisfying the linear inequalities

λ?i,t+1(s̃)− λ?i,t(s̃) > 0, (i, t) ∈ N × T s.t. χi,t(s) = 1,

β?`,t(s̃) > 0, (`, t) ∈ ECt × T .

In other words, for each s̃ ∈ Rs, the associated storage
congestion pattern χ̃t and network congestion pattern W̃t

satisfy χ̃t = χt(s) and W̃t = Wt(s), t ∈ T .
Proof: By the proof of Theorem 1 and Corollary 1,

we know that (λ?(s), γ?(s), β?(s)) is a stationary point
of the objective of the dual QP (9). In other words,
(λ?(s), γ?(s), β?(s)) is the unconstrained local maximizer
of (9) in an affine subspace defined by the set of equality
constraints of (9) and inequality constraints of (9) which are
binding at s. Recall that, given the storage congestion state
χ ∈ Rn×T , the objective of (9) can be written as

φ̃(λ, β) =

T∑
t=1

−1

2
(λt − at)>Q−1

t (λt − at)

+ d>t λt − c>βt − s>∆χt(λt+1 − λt).

Now consider a vector s̃ in a neighborhood of s. The
first condition (20) in the definition of Rs ensures that, at
s̃, the storage congestion state χ(s̃) given by (11) is un-
changed from χ(s). Therefore, (λ?(s̃), γ?(s̃), β?(s̃)) is still
the unconstrained local maximizer of (9) in the same affine
subspace when s is replaced with s̃ in the above expression

8When s is on the boundary of two critical regions, strict complementary
slackness fails to hold and in general one may get a degenerate solution.
However, the set of boundary points has Lebesgue measure 0 and hence no
contribution to our submodularity characterization as shown in the proof
of Theorem 4.

of the objective function φ̃. The second condition (20) in
the definition of Rs guarantees that (λ?(s̃), γ?(s̃), β?(s̃)) is
feasible for (9). Indeed, we see that by the expression of
β?t (s) in (15), modifying s does not affect β?`,t(s) for a line
` that is not congested and hence β?`,t(s̃) is 0 if line ` is
uncongested, while (20) ensures that β?`,t(s̃) remains positive
if line ` is congested . Therefore, (λ?(s̃), γ?(s̃), β?(s̃)) must
be a global maximizer of the dual QP (9) because the
problem is concave. By strict complementary slackness,
the conditions defining Rs ensure that the set of binding
inequality constraints is unaltered.

Given this polyhedral characterization of the critical re-
gions, the iterative construction of all the critical regions and
the complexity of such a process follow from the standard
practice of multi-parametric quadratic programming [20].
Here, we only provide a brief description. To start, pick an
initial point s ∈ S0 := S and compute the critical region Rs
containing it using Theorem 5. Focusing on the part of the
critical region inside of S0, i.e., Rs ∩ S0, and writing the
inequality constraints defining this polytope as Y s ≤ v, we
can partition the remaining region in S0 as

Si := {s ∈ S0 : y>i s ≥ vi, y>j s ≤ vj ,∀j < i},

where y>i is the ith row of Y , and i ranges from 1 to the
number of rows of Y . Recursively applying this process to
Si, we will get the collection of all critical regions in S.

The rest of this subsection is devoted to a special case
that bears a substantial amount of practical interests given
the relative small size of storage devices to be placed9:

Definition 3: A storage placement problem is said to
satisfy the small storage condition, if the capacity region
of interest is a subset of the closure of the critical region
containing s = 0, i.e., S ⊆ R̄0, with R0 as defined in
Theorem 5.

Remark 3: Verifying the small storage condition involves
checking whether the polytope R̄0 contains the box S =
[0, s̄max]n. Instead of checking whether all 2n vertices of
the box belong to the polytope, we can simply compare
the optimal value of the optimal set containment problem
min {ρ ∈ R+ : S ⊆ ρR0} with 1, where the scaled set ρR0

is {s : (1/ρ)s ∈ R0}. Write R̄0 as {s : Y s ≤ v}. This
set containment problem can be formulated as the following
linear program [23]:

min
ρ,Λ

ρ

s.t. Λ[I, −I]> = Y,

Λ[s̄max1>, 0>]> ≤ ρv,
ρ,Λ ≥ 0.

If the small storage condition holds, the submodularity of
V can be checked using merely the LMP vector λ?t (0) and
the network congestion pattern Wt in the base case where
no storage has been installed. In other words, we can certify
submodularity by just using the solutions of the single-period
economic dispatch problems for time periods t ∈ T .

9To get a sense, the total power capacity of storage installation in the
U.S. in 2015 is 221 MW [1] while the average U.S. generation in the same
year is 467 GW.



Corollary 3: Under the small storage condition, all s ∈ S
share the same storage and line congestion patterns as χt(0)
and Wt(0), t ∈ T which can be obtained by solving T
single-period economic dispatch problems. Furthermore, if
the network topology is a tree, χt(0) and Wt(0), t ∈ T are
uniquely determined using only the LMP data λ?(0).

C. Placement Algorithms via Submodular Maximization

If the submodularity of the value function is verified, we
can employ a (modified) greedy algorithm to obtain a near-
optimal solution. In particular, Nemhauser et al. [13] show
that a greedy algorithm gives a (1 − 1

e )-approximation of
an optimal solution when maximizing monotone submodular
functions subject to cardinality or matroid constraints. This
algorithm is applicable to our problem when there is only one
type of storage devices, i.e., K = 1. In the case of multi-
type devices, this standard greedy algorithm may not fully
utilize the diminishing return property as it can get stuck at
a possibly unreasonable solution due to a knapsack (budget)
constraint. However, a modification of the greedy algorithm
is shown to achieve the same performance guarantee [24],
[25]. This algorithm for knapsack constraints uses the partial
enumeration heuristic proposed by Khuller et al. [14] which
enumerates all subsets of up to three elements. Its details
are presented in Algorithm 1. The first candidate X1 of
the solution maximizes the benefit V among all feasible
sets of cardinality one or two as shown in Line 1. The
second candidate X2 is constructed in a greedy way by
locally optimizing the incremental benefit-cost ratio [V (X ∪
{(i, k)})−V (X)]/rk starting from each set X of cardinality
three as illustrated in Lines 2–15. Finally, the algorithm
generates an output by comparing the two candidates X1

and X2.

Algorithm 1: Modified greedy algorithm for energy
storage placement

1 X1 ← argmax{V (X) : |X| ≤ 2,
∑

(i,k)∈X rk ≤ R};
2 X2 ← ∅;
3 foreach X ⊆ Ω s.t. |X| = 3,

∑
(i,k)∈X rk ≤ R do

4 Candidates← Ω \X;
5 while Candidates 6= ∅ do
6 e← argmax(i,k)∈Candidates

V (X∪{(i,k)})−V (X)
rk

;
7 if

∑
k:(i,k)∈X∪{e} rk ≤ R then

8 X ← X ∪ {e};
9 Candidates← Candidates \ {e};

10 end
11 end
12 if V (X) > V (X2) then
13 X2 ← X;
14 end
15 end
16 X? ← argmaxX∈{X1,X2} V (X);

V. NUMERICAL EXPERIMENTS

The placement algorithms are tested using the network
data of IEEE 14 bus test case. Hourly zonal aggregated
locational marginal price and load data are obtained from
PJM interconnection. The data corresponds to 14 zones
inside PJM RTO for the year of 2014. We consider the hourly
operation of storage over a representative day. The input data
for the representative day is obtained by averaging over all
the 365 days of the year for each hour of the day. The hourly
price and load data distribution over 14 zones are plotted in
Figure 3. The hourly average load in the system is 80.5 GW.
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Fig. 3: Boxplots of price and load data.

The load and price time series for these 14 zones are
assigned to the 14 buses of the network, where the price data
is used to specify the linear coefficient of generation cost. We
set the quadratic cost coefficients of all the generators to be
0.01, which is the median value of quadratic cost coefficients
specified for IEEE 14 bus test case in MATPOWER [26]. The
capacity of all lines are set to be the average load per bus
over the 24 hours. We consider a simple setting in which
exhaustive search is still feasible so that the performance of
the greedy placement can be compared with the exact optimal
solution in the quadratic case. To this end, we let the type
of storage to be K = 1 and denote s̄1 = s̄. Consequently,
the budget constraint becomes a constraint on the number of
storage to be placed.

We consider placing 5 storages over the 14 buses, with the
total energy capacity being 150 MWh. Using the optimal set
containment optimization (21), it is verified that this setting
satisfies the small storage assumption and in the critical
region the Hessian condition in Theorem 4 holds. The greedy
strategy in Algorithm 1 is implemented. We also perform
an exhaustive search over all the feasible storage placement
to verify the actual performance of the algorithm. Instead
of being (1 − 1/e) suboptimal as suggested by the worst
case performance bound, the greedy algorithm has in fact
identified the exact optimal placement in this case, with buses
{5, 11, 12, 1, 9} selected to place storage.



VI. CONCLUSIONS AND FUTURE WORK

We have developed a discrete optimization framework
for energy storage placement in power networks taking
into account heterogeneous storage installation and capital
costs. Exploring the structural properties of a multi-period
economic dispatch problem with storage dynamics and its
dual program, we have derived several salient features of
the placement problem including a tight characterization
of conditions under which the placement value function is
submodular. In particular, representing each critical region
in the parametric economic dispatch problem as a convex
polytope, we have proposed a rigorous and efficient method
to certify the submodularity property. This work can be
extended in several directions including uncertainty-aware
placement strategies.

APPENDIX

A. Proof of Theorem 1, Corollary 1 and Theorem 2

By strict complementary slackness,

β`,t = 0 if ` 6∈ ECt and β`,t > 0 if ` ∈ ECt.

Thus we can focus on the reduced dual variable

β̃t := Wtβt ∈ Rmt , t = 1, . . . , T,

and the following reduced form of dual program (9) in a
neighborhood of the given s vector

max
λ,γ,β̃

ψ(λ, γ, β̃)

s.t. λt = γte−H>t β̃t, t = 1, . . . , T,

where the objective function is

ψ(λ, γ, β̃) :=

T∑
t=1

− 1

2
(λt − αt)>Q−1

t (λt − αt) + d>t λt

− c>t β̃t − s>∆χt
(λt+1 − λt)

and ct := Wtc. Define for convenience constants χi,0 = 0
for i = 1, . . . , n. Then optimization above is separable across
time, and we can solve each of the following T optimizations
given the binding constraints

Jt(s) := max
λt,γt,β̃t

ψt(λt, γt, β̃t)

s.t. λt = γte−H>t β̃t,

where

ψt(λt, γt, β̃t) :=− 1

2
(λt − αt)>Q−1

t (λt − αt) + d>t λt

− c>t β̃t + s>(∆χt
−∆χt−1

)λt.

This equality constrained quadratic program can be solved
analytically provided that solution of the original dual pro-
gram is unique. In particular, we have that the optimal LMP
and reduced congestion prices as follows

λ?t = (QtMtRtMtQt+ρt11
>)
(
(∆χt
−∆χt−1

)s+dt+Q
−1
t αt

)
+QtMtH

>
t K

−1
t ct,

β̃?t = −K−1
t

[
HtMt

(
Qt(∆χt −∆χt−1)s+Qtdt + αt

)
+ ct

]
,

where ρt := 1/[1>Q−1
t 1], and Mt, Kt and Rt are as defined

in Theorem 1. Collecting terms, we have

λ?t (s) = At(Wt)(∆χt
−∆χt−1

)s+ λ̄t(Wt),

with At(Wt), Bt(Wt) and λ̄t(Wt) as defined in Theorem 1.
This proves Theorem 1. Meanwhile,

β̃?t = −Bt(Wt)
> [(∆χt

−∆χt−1
)s+ dt +Q−1

t αt
]
−K−1

t ct.

Corollary 1 then follows from the relationship between the
(reference) energy price γ?t and the LMP λ?t and the fact that
β?t = W>t β̃

?
t .

The optimal cost is then

Jt(s) =
1

2
s>(∆χt

−∆χt−1
)At(Wt)(∆χt

−∆χt−1
)s

+
[
At(Wt)(dt +Q−1

t αt) +Bt(Wt)ct
]>

(∆χt −∆χt−1)s

+ J̄t,

where the last term J̄t does not depend on s and has the
following form

J̄t =
1

2
(dt +Q−1

t αt)
>At(Wt)(dt +Q−1

t αt)−
1

2
α>t Q

−1
t αt

+ c>t Bt(Wt)
>(dt +Q−1

t αt) +
1

2
c>t K

−1
t ct.

Theorem 2 then follows from computing the Hessian of Jt(s)
and summing over t.
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