A Random Walk Around The Block

Johan Ugander
Stanford University

Joint work with:
Isabel Kloumann (Facebook)
& Jon Kleinberg (Cornell)

Google Mountain View
August 17, 2016
Seed set expansion

• Given a graph $G=(V, E)$, goal is to accurately identify a target set $T \subset V$ from a smaller seed set $S \subset T$.

![Graph Diagram]

target set T
Seed set expansion

• Given a graph $G=(V, E)$, goal is to accurately identify a target set $T \subset V$ from a smaller seed set $S \subset T$.
Seed set expansion

• Given a graph $G=(V, E)$, goal is to accurately identify a target set $T \subset V$ from a smaller seed set $S \subset T$.
Seed set expansion

- Given a graph $G=(V, E)$, goal is to accurately identify a target set $T \subset V$ from a smaller seed set $S \subset T$.

Scored by Personalized PageRank
Seed set expansion

• Given a graph $G = (V, E)$, goal is to accurately identify a **target set** $T \subset V$ from a smaller **seed set** $S \subset T$.

• Applications:
 - **Broadly**: ranking on graphs, recommendation systems
 - Spam filtering (Wu & Chellapilla ’07)
 - Community detection (Weber et al. ’13)
 - Missing data inference (Mislove et al. ’14)

• Common methods:
 - Semi-supervised learning (Zhu et al. ’03)
 - Diffusion-based classification (Jeh & Widom ’03, Kloster & Gleich ’14)
 - Outwardness, modularity and more (Bagrow ’08, Kloumann & Kleinberg ’14)
Seed set expansion

• Given a graph $G=(V, E)$, goal is to accurately identify a target set $T \subset V$ from a smaller seed set $S \subset T$.

• Applications:
 • Broadly: ranking on graphs, recommendation systems
 • Spam filtering (Wu & Chellapilla ’07)
 • Community detection (Weber et al. ’13)
 • Missing data inference (Mislove et al. ’14)

• Common methods:
 • Semi-supervised learning (Zhu et al. ’03)
 • Diffusion-based classification (Jeh & Widom ’03, Kloster & Gleich ’14)
 • Outwardness, modularity and more (Bagrow ’08, Kloumann & Kleinberg ’14)
Recall curves for seed set expansion

Kloumann & Kleinberg ‘14

- Recall curve: true positive rate, as a function of the number of items returned based on small uniformly random seed set.
- Kloumann & Kleinberg ’14 tested many different methods on data, broadly found Personalized PageRank to be best.
Recall curves for seed set expansion

- **Recall curve**: true positive rate, as a function of the number of items returned based on small uniformly random seed set.
- Kloumann & Kleinberg ’14 tested many different methods on data, broadly found **Personalized PageRank** to be best.
- **Truncated PPR** (first K steps) comparable to PPR from K=4.
- **Heat Kernel** later found comparable to PPR.
Diffusion-based node classification

- Classification based on random walk landing probabilities
 - r_k^v, probability that a random walk starting in S is at v after k steps.
 - $(r_1^v, r_2^v, \ldots, r_K^v)$, truncated vector of landing probabilities.

- **Personalized PageRank** and **Heat Kernel** ranking:
 \[
 \text{PPR}(v) \propto \sum_{k=1}^{\infty} (\alpha^k)r_k^v \quad \text{HK}(v) \propto \sum_{k=1}^{\infty} \left(\frac{t^k}{k!} \right) r_k^v
 \]

- General diffusion score function:
 \[
 \text{score}(v) = \sum_{k=1}^{\infty} w_k r_k^v
 \]
Diffusion-based node classification

- **Personalized PageRank** and **Heat Kernel**
 = two parametric families of linear weights

 $$\text{score}(v) = \sum_{k=1}^{K} w_k r^v_k$$

 - **PPR** \(w_k = \alpha^k \)
 - **HK** \(w_k = \frac{t^k}{k!} \)

- **Question in this work:**
 What weights are “optimal” for diffusion-based classification?
The stochastic block model

- \(C \) blocks
 - **Focus on \(C=2 \) blocks:** 1=“Target”, 2=“Other”
- \(n_1, n_2 \) nodes in blocks
- Independent edge probabilities:
 - Edge probability within a block = \(p_{\text{in}} \)
 - Edge probability across blocks = \(p_{\text{out}} \)
- (Results for \(C>2 \) as well, see paper)

- Model with many names:
 - Stochastic Block Model (Holland et al. ’83)
 - Affiliation Model (Frank-Harary ’82)
 - Planted Partition Model (Dyer-Frieze ’89)
The SBM resolution limit

- **Find true partition in poly(n) time w.h.p. as \(n \to \infty \):**
 - Dyer-Frieze ’89: If \(p_{in} - p_{out} = O(1) \)
 - Condon-Karp ’01: If \(p_{in} - p_{out} \geq \Omega(n^{-1/2}) \)
 - McSherry ’01: If \(p_{in} - p_{out} \geq \Omega((p_{out}(\log n)/n)^{-1/2}) \)
The SBM resolution limit

• Find true partition in poly(n) time w.h.p. as $n \to \infty$:
 • Dyer-Frieze ’89: If $p_{\text{in}} - p_{\text{out}} = O(1)$
 • Condon-Karp ’01: If $p_{\text{in}} - p_{\text{out}} \geq \Omega(n^{-1/2})$
 • McSherry ’01: If $p_{\text{in}} - p_{\text{out}} \geq \Omega((p_{\text{out}}(\log n)/n)^{-1/2})$

• Find partition positively correlated with true partition:
 • Coja-Oghlan ’06: If $p_{\text{in}} - p_{\text{out}} \geq \Omega((p_{\text{out}}/n)^{-1/2})$,
The SBM resolution limit

- Find true partition in poly(n) time w.h.p. as $n \to \infty$:
 - Dyer-Frieze ’89: If $p_{in} - p_{out} = O(1)$
 - Condon-Karp ’01: If $p_{in} - p_{out} \geq \Omega(n^{-1/2})$
 - McSherry ’01: If $p_{in} - p_{out} \geq \Omega((p_{out}(\log n)/n)^{-1/2})$

- Find partition positively correlated with true partition:
 - Coja-Oghlan ’06: If $p_{in} - p_{out} \geq \Omega((p_{out}/n)^{-1/2})$,
 - If and only if $(a-b)^2 > 2(a+b)$ ($p_{in} = a/n$, $p_{out} = b/n$):
 - Decelle et al ’11: Conjecture and belief propagation numerics
 - Mossel et al ’12,’13, Massoulié ’13, Abbe et al. ’14: Proven

- Recent extensions:
 - More than two blocks (e.g. Neeman-Netrapalli ’14)
 - Unequal block sizes (e.g. Zhang et al. ’16)
The SBM resolution limit

- **Is block recovery/classification over? No!**
 - Unsupervised vs. semi-supervised
 - Empirical graphs != SBMs
 - Optimal algorithms not practical
 - Beyond asymptotic limits, what are decay rates?

- Rather than being “problem down” (SBM classification), this talk will be “method up”: how to tune diffusion weights to find seed sets?

\[
\text{score}(v) = \sum_{k=1}^{K} w_k r^v_k
\]

- Possible variations: Diffusion weights for seed set expansion in core-periphery models? Latent space models (Hoff et al. 2002)? Etc.
Diffusion-based classification in SBMs

- SBMs present a natural binary classification problem.
- Recall notation:
 - r^v_k, probability that a random walk starting in S is at v after k steps.
 - $(r^v_1, r^v_2, \ldots, r^v_K)$, truncated vector of landing probabilities.
- Choices of (w_1, \ldots, w_K) define sweep directions through space.
- Optimistically:
The space of landing probabilities

- SBM: 2000 nodes, **Target** & **Other** blocks, $p_{in} = 0.2$, $p_{out} = 0.05$
- One seed node (uniformly at random from Target set)
The space of landing probabilities

- SBM: 2000 nodes, **Target** & **Other** blocks, $p_{in} = 0.2$, $p_{out} = 0.05$
- One seed node (uniformly at random from Target set)
The space of landing probabilities

- **Geometric discriminant function**: sweeps through the space of landing probabilities following vector from b to a.
The space of landing probabilities

- **Fisher discriminant functions**: Clearly exist better linear and quadratic functions. Forward pointer, will return.
The space of landing probabilities

- Focus on deriving optimal Geometric discriminant function first.
Geometric discriminant functions

- Let \(\mathbf{r} = (r_1, \ldots, r_K) \) be the landing probabilities of a node
- Let \(\mathbf{a} = (a_1, \ldots, a_K) \) be the **Target** class centroid
- Let \(\mathbf{b} = (b_1, \ldots, b_K) \) be the **Other** class centroid
- Then \(f(\mathbf{r}) = (\mathbf{a} - \mathbf{b})^T \mathbf{r} \) is the geometric discriminant function.

- Notice: \(f(\mathbf{r}) \) increases when \(\mathbf{r} \) moves in direction of \(\mathbf{a} - \mathbf{b} \).
- Can classify nodes based on thresholds of \(f(\mathbf{r}) \).
Personalized PageRank is “optimal”

- **Main Theorem (informal version).**
 For 2-block SBM with equal sized blocks and edge densities p_{in}, p_{out}:

 $$a_k - b_k = \left(\frac{p_{in} - p_{out}}{p_{in} + p_{out}} \right)^k,$$

 and the optimal geometric classifier is therefore:

 $$\sum_{k=1}^{K} (\alpha_*)^k r_k.$$

 which is PPR(!) with $\alpha_* = \left(\frac{p_{in} - p_{out}}{p_{in} + p_{out}} \right).$
Personalized PageRank is “optimal”

- **Main Theorem (informal version).** For 2-block SBM with equal sized blocks and edge densities p_{in}, p_{out}:

\[a_k - b_k = \left(\frac{p_{in} - p_{out}}{p_{in} + p_{out}} \right)^k, \]

and the optimal geometric classifier is therefore:

\[\sum_{k=1}^{K} (\alpha_*)^k r_k. \]

which is PPR(!) with $\alpha_* = \left(\frac{p_{in} - p_{out}}{p_{in} + p_{out}} \right)$.

- **Two main parts:**
 1. Centroids a, b concentrate on quantities determined by the solution to a linear recurrence relation.
 2. That linear recurrence relation can be solved and yields PPR.
PPR is “optimal”: Proof idea

• **Part 1: Concentration of landing probabilities**

 Lemma 1. For any $\epsilon, \delta > 0$, there is an n sufficiently large such that the random landing probabilities $(\hat{a}_1, \ldots, \hat{a}_K)$ and $(\hat{b}_1, \ldots, \hat{b}_K)$ for a uniform random walk on G_n starting in the seed block satisfy the following conditions with probability at least $1 - \delta$ for all $k > 0$:

 \begin{align*}
 N\hat{a}_k &\in \left[(1 - \epsilon) \frac{A_k}{A_k + B_k}, (1 + \epsilon) \frac{A_k}{A_k + B_k} \right] \quad \text{and} \quad (1) \\
 N\hat{b}_k &\in \left[(1 - \epsilon) \frac{B_k}{A_k + B_k}, (1 + \epsilon) \frac{B_k}{A_k + B_k} \right], \quad (2)
 \end{align*}

 where A_k, B_k are the solutions to the matrix recurrence relation

 \[
 \begin{cases}
 A_k = N(p_{in}A_{k-1} + p_{out}B_{k-1}) \\
 B_k = N(p_{out}A_{k-1} + p_{in}B_{k-1}),
 \end{cases}
 \]

 with $A_0 = 1, B_0 = 0$.
PPR is “optimal”: Proof idea

- Part 1: Concentration of landing probabilities

Lemma 1. For any $\epsilon, \delta > 0$, there is an n sufficiently large such that the random landing probabilities ($\hat{a}_1, \ldots, \hat{a}_K$) and ($\hat{b}_1, \ldots, \hat{b}_K$) for a uniform random walk on G_n starting in the seed block satisfy the following conditions with probability at least $1 - \delta$ for all $k > 0$:

\[
N\hat{a}_k \in \left[(1 - \epsilon)\frac{A_k}{A_k + B_k}, (1 + \epsilon)\frac{A_k}{A_k + B_k}\right] \quad \text{and} \quad (1)
\]

\[
N\hat{b}_k \in \left[(1 - \epsilon)\frac{B_k}{A_k + B_k}, (1 + \epsilon)\frac{B_k}{A_k + B_k}\right], \quad (2)
\]

where A_k, B_k are the solutions to the matrix recurrence relation

\[
\begin{cases}
A_k = N(p_{in}A_{k-1} + p_{out}B_{k-1}) \\
B_k = N(p_{out}A_{k-1} + p_{in}B_{k-1}),
\end{cases}
\]

with $A_0 = 1, B_0 = 0$.

- A_k, B_k interpretable as length-k walk count to nodes in block 1 vs. 2.
- For large n, block walk counts increase by factors of $\sim \mathbb{E}[\text{degree}]$.

More general SBMs

- For SBMs with \(C > 2 \) blocks and/or with arbitrary \(P \):
 - Seed set expansion asks: identify nodes in a target block set.
 - With conditions on equal expected degrees, PPR(!).
 - Without conditions, still:
 - Asymptotically optimal weights for geometric classification still obtainable from solutions to a matrix recurrence relation.
Empirical vs. theoretical centroids

- 2048-node, 4-block SBM, empirical class centroids vs. theory:

 - a, Target blocks
 - b, Other blocks
Empirical vs. theoretical centroids

- 2048-node, 4-block SBM, empirical class centroids vs. theory:

 - a, Target blocks
 - b, Other blocks

From matrix recurrence relation
Theories of graph diffusion

- Other motivations for PPR:
 - Random Surfer Model (Brin-Page ’98)
 - Cheeger inequalities for PPR, HK (Andersen et al ’06, Chung ’09)
 - Local spectral algorithm with regularization (Mahoney et al. ’12)
- Our work shows PPR can be derived as “optimal” geometric classifier.
- Also motivates how to choose PPR α, as $\alpha = \frac{\text{pin} - \text{pout}}{\text{pin} + \text{pout}}$.
Theories of graph diffusion

- Other motivations for PPR:
 - Random Surfer Model (Brin-Page ’98)
 - Cheeger inequalities for PPR, HK (Andersen et al ’06, Chung ’09)
 - Local spectral algorithm with regularization (Mahoney et al. ’12)
- Our work shows PPR can be derived as “optimal” geometric classifier.
- Also motivates how to choose PPR α, as $\alpha = \left(\frac{p_{\text{in}} - p_{\text{out}}}{p_{\text{in}} + p_{\text{out}}}\right)$.
- Most importantly: also opens door to methods beyond PPR.
PPR is “optimal” in a narrow sense

- Discriminant functions that model higher moments of point clouds?
Fisher discriminant functions

- Discriminant functions that model higher moments of point clouds.
Fisher discriminant functions

- Let \(z \) be the latent class of each node.
- Capture (mean, variance) of class point clouds:

\[
\begin{align*}
\Pr(r|z = 1) &\propto |\Sigma_a|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (r - a)^T \Sigma_a^{-1} (r - a) \right) \\
\Pr(r|z = 0) &\propto |\Sigma_b|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (r - b)^T \Sigma_b^{-1} (r - b) \right)
\end{align*}
\]

- Log-likelihood ratio as discriminant function:

\[
g(r) = \log \frac{\Pr(r|z = 1) \Pr(z = 1)}{\Pr(r|z = 0) \Pr(z = 0)}
\]
Fisher discriminant functions

- **Three approaches:**

 General: \(g_2(r) \propto \left(\Sigma_a^{-1} a - \Sigma_b^{-1} b \right)^T r + \frac{1}{2} r^T \left(\Sigma_b^{-1} - \Sigma_a^{-1} \right) r \)

 Assume \(\Sigma_a = \Sigma_b = \Sigma \): \(g_1(r) \propto \Sigma^{-1} (a - b)^T r \)

 Assume \(\Sigma_a = \Sigma_b = I \): \(g_0(r) \propto (a - b)^T r \)

- We call the first two methods **QuadSBMRank**, **LinSBMRank**.
- Perhaps reasonable to assume equal covariances; effective.
- PPR follows from an assumption of uniform variance, no covariance.
Fisher discriminant functions

- **Three approaches:**
 - General: \(g_2(r) \propto (\Sigma_a^{-1}a - \Sigma_b^{-1}b)^T r + \frac{1}{2}r^T (\Sigma_b^{-1} - \Sigma_a^{-1}) r \)
 - Assume \(\Sigma_a = \Sigma_b = \Sigma \): \(g_1(r) \propto \Sigma^{-1}(a - b)^T r \)
 - Assume \(\Sigma_a = \Sigma_b = I \): \(g_0(r) \propto (a - b)^T r \)

- We call the first two methods **QuadSBMRank**, **LinSBMRank**.
- Perhaps reasonable to assume equal covariances; effective.
- PPR follows from an assumption of uniform variance, no covariance.
- **Open challenge:** Possible to show asymptotic normality and characterize covariance matrices?
Evaluation: recall curves

- SBM with 2 blocks, 64 nodes/block, 1 seed node.
- Recall that Belief Propagation reaches resolution limit.
- Easy instance ($p_{in} >> p_{out}$):
 - Everything does well.
Evaluation: recall curves

- SBM with 2 blocks, 64 nodes/block, 1 seed node.
- Recall that Belief Propagation reaches resolution limit.

Hard instance...
- PPR/HK lost all recall, LinSBMRank and QuadSBMRank near BP.
Evaluation: recall curves

- SBM with 2 blocks, 64 nodes/block, 1 seed node.
- Recall that Belief Propagation reaches resolution limit.

- **Even** harder instance…
 - LinSBMRank and QuadSBMRank outperforming BP by a hair…?
Evaluation: recall curves

- SBM with 2 blocks, 64 nodes/block, 1 seed node.
- Recall that Belief Propagation reaches resolution limit.

Impossible ($p_{in} = p_{out}$):
 - Nothing works.
Evaluation: resolution limit

- Pearson correlation r between true partition and inferred partition.
- Empirically, we see LinSBMRank and QuadSBMRank get very close to resolution limit (dotted line), with slower decay rate.
Conclusions

• Personalized PageRank with $\alpha = \left(\frac{p_{in} - p_{out}}{p_{in} + p_{out}} \right)$ is optimal geometric discriminant function for balanced 2-block SBM.

• Geometric discriminant functions for more general block models follow from recurrence relation.

• Landing probabilities are correlated; correcting for higher moments in the space of landing probabilities greatly improves classification.

• In practice: fit GMMs in space of landing probs.

• A new perspective on diffusion-based ranking that can hopefully open new doors.

• Pre-print:
 Isabel Kloumann, Johan Ugander, Jon Kleinberg
 “Block Models and Personalized PageRank”
 arXiv:1607.03483
Open directions

- Model covariance of landing probabilities?
- Currently requires at least \simlogarithmic degrees (we think); possible to derive weights for bounded degree SBMs?
- Better classifiers in the space of landing probabilities for other random walks? (Non-backtracking, etc.)
- Not just SBM? Optimal weights for dcSBM, core-periphery, Hoff latent space model, etc, etc.
- Slow decay beyond resolution limit?

- Pre-print:
 Isabel Kloumann, Johan Ugander, Jon Kleinberg
 “Block Models and Personalized PageRank”
 arXiv:1607.03483