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Set-up

• Consider the problem of estimating the mean µ of Y1, · · · ,Yn, where

Ik ∼ Ber(pk) is an indicator of whether or not unit k was observed.

• Horvitz–Thompson and Hájek (self-normalizing) estimators of µ:

µ̂HT = Ŝ/n and µ̂Hájek = Ŝ/n̂

where

Ŝ =
n∑

k=1

Yk Ik
pk

and n̂ =
n∑

k=1

Ik
pk
.

• What about the following?

µ̂λ =
Ŝ

(1− λ)n + λn̂
, λ ∈ R.

1



IPW: Horvitz–Thompson vs. Hájek

• Fundamental to survey sampling, causal inference, policy learning.

• Only difference between HT and Hájek is how they normalize Ŝ :

n vs. n̂, an unbiased estimate of n.

• Hájek introduced his ratio estimator in a reply to Basu’s “elephants”

essay (Basu, 1971).

• Hájek’s approach introduces bias, but typically reduces variance

(Särndal et al., 2003).

• Connections to self-normalized importance sampling (SNIS) in

Monte Carlo, which trace back to Trotter & Tukey (1956) . . .
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Self-normalization in Monte Carlo

Trotter and Tukey, 1956:

CONDITIONAL MONTE CARLO FOR NORMAL SAMPLES+

Hale F. Trotter and John W. Tukey

Princeton University

The techniques presented here represent what sometimes
happens to lazy people who start doing a computation before
they quite know what they are going to do. Contrary to
experience and high moral principles, this time it worked
out all right. We solved our problem (cp. "Monte Carlo
technique~ in a complex problem about normal samples" pp.
80 ff., below) and we were able to extract some relatively
general techniques from what we were driven to do in at-
tempting to solve a particular problem.

2. We have not tried to express our results in the
greatest possible generality, suspecting that there may be
enough difficulty in coming to grips with them in a rela-
tively special case -- however, we shall say a word or two
about greater generality at the end of the account. In
very rough terms we seek to use a family of transformations
to convert given samples into samples conditioned on a
given characteristic. We find that we can do this legiti-
mately, and can even reuse the same samples when condition-
ing to another value. This seems unlikely and of doubtful
legitimacy, but adequate arguments can be given for its
validity and wisdom.

MONTE CARLO IN GENERAL

3. We shall begin by talking about Monte Carlo in
general. One of our neighbors in the audience was asking
us about the previous paper -- asking whether it was an
example of Monte Carlo, or of synthetic (experimental) samp-
ling, or whether Monte Carlo had taken synthetic sampling
over. Our answer was that we thought that the last paper
was experimental sampling -- that we should not like to call
it Monte Carlo unless the sampling was a bit trickier.
Leaving aside the important ways of using ratio and regres-
sion estimates (and covariance in general), the way in which
sampling is made trickier is by the use of weights. (In the
simplest situations, the weights are, of course, inversely
proportional to the factor by which the probability of occur-
rence has been distorted.)

+Prepared in connection with research sponsored by the
Office of Naval Research.
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As aside, famous for: “the only good Monte Carlos are dead Monte

Carlos — the one’s we don’t have to do.”
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Self-normalization in Monte Carlo

Trotter & Tukey consider both HT and Hájek estimators . . .

convergence can be established by arguments which we shall
omit. Notice that condition (a) is always fulfilled in
two limiting situations

(1) the x are a sample, and w - w(x) depends on
x alone

(2) the x are a sample, w is independent of x, the
ware a sample (in particular, are constant).

7. If we have N weighted samples (Yl' wI)' (Y2' w2),

••., (YN' wN) from some distribution and are interested in

ave l'(Z) I distribution] we can estimate the average
eith r by

or by

Experience shows that the former is almost always better
than the latter (as well as being unbiased).

R. The equivalence for large sam~les of these two
estimates follows from 5(b) by taking ~(z) ~ 1, whence

ave [w I process] - 1.

Initially we didn't realize how important it was to dis-
tinguish these two estimates -- but experience showed the
advantage of dividing by N, the average total weight,
rather than by the realized total weight, ~wi' Indeed,
it is possible to use

for any real", and there is some ground for anticipating
that 1\ 's somewhat larger than unity will often be best.
(We don't know of any practical experience with such more
general estimates.)
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and their “experience” favors HT over Hájek.
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Self-normalizing in Monte Carlo

Now consider this uncut gem:

convergence can be established by arguments which we shall
omit. Notice that condition (a) is always fulfilled in
two limiting situations

(1) the x are a sample, and w - w(x) depends on
x alone

(2) the x are a sample, w is independent of x, the
ware a sample (in particular, are constant).

7. If we have N weighted samples (Yl' wI)' (Y2' w2),

••., (YN' wN) from some distribution and are interested in

ave l'(Z) I distribution] we can estimate the average
eith r by

or by

Experience shows that the former is almost always better
than the latter (as well as being unbiased).

R. The equivalence for large sam~les of these two
estimates follows from 5(b) by taking ~(z) ~ 1, whence

ave [w I process] - 1.

Initially we didn't realize how important it was to dis-
tinguish these two estimates -- but experience showed the
advantage of dividing by N, the average total weight,
rather than by the realized total weight, ~wi' Indeed,
it is possible to use

for any real", and there is some ground for anticipating
that 1\ 's somewhat larger than unity will often be best.
(We don't know of any practical experience with such more
general estimates.)
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Trotter–Tukey proposal

• In our notation, consider the family

µ̂λ =
Ŝ

(1− λ)n + λn̂
, λ ∈ R.

• At first, λ ∈ [0, 1] seems reasonable. Or?

• Consider a toy example where

Y1 = Y2 = · · · = Y10 = 1, p1 = 10−5, p2 = · · · = p10 = 0.5.

What happens to HT/Hájek when Y1 is observed?
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Realistic example, MSE of µ̂λ
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Based on a realistic example from later in talk.
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Adaptive normalization



Model

• Suppose pairs (Y1, p1), · · · , (Yn, pn) are drawn i.i.d. from a

super-population distribution D on R× [0, 1].

• Our goal is to estimate µ = E[Yk ].

• We assume throughout that |Yk | ≤ M and δ ≤ pk ≤ 1− δ almost

surely.

• Our results continue to hold in a finite population model, with

slightly different assumptions.
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Choosing a value of λ

Recall:

µ̂λ =
Ŝ

(1− λ)n + λn̂
, λ ∈ R.

How do we pick values of λ other than λ = 0 and λ = 1?

Theorem

For any fixed λ ∈ R, we have the CLT

√
n(µ̂λ − µ)

d−→ N
(
0, σ2

λ

)
, σ2

λ = E
[

1− pk
pk

(Yk − λµ)2

]
.

Minimizing asymptotic variance suggests that we should use

λ∗ =
E
[

1−pk
pk

Yk

]
E
[

1−pk
pk

]
µ

:=
T

πµ
.
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Interpreting λ∗

• What does

λ∗ =
E
[

1−pk
pk

Yk

]
E
[

1−pk
pk

]
E[Yk ]

:=
T

πµ

look like in different cases?

• If Yk and pk are positively correlated, then Yk and 1−pk
pk

are

negatively correlated, so T < µπ and λ∗ < 1.

• If Yk and pk are negatively correlated, we have λ∗ > 1.

• Extends the conventional wisdom that Hájek is preferable to HT

when Yk and pk are negatively correlated (Särndal et al., 2003).

• Trotter–Tukey’s Monte Carlo experience was probably in a setting

where Yk and pk were positively correlated.
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Estimating λ∗ from the data

• Since we do not know λ∗, we have to estimate it from the data.

• We can estimate µ by µ̂HT and T , π by the IPW estimators

T̂ =
1

n

n∑
k=0

1− pk
pk

Yk
Ik
pk
, π̂ =

1

n

n∑
k=0

1− pk
pk

Ik
pk
,

• This leads to the estimators

λ̂∗ =
T̂

π̂µ̂HT
, µ̂λ̂∗ =

Ŝ

(1− λ̂∗)n + λ̂∗n̂
.

• Wouldn’t it be better to estimate λ∗ using µ̂λ̂∗ instead of µ̂HT?
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Estimating λ∗ from the data

• In general, there is an EM-like iteration: a better estimate of λ∗

leads to a better estimate of µ, and a better estimate of µ leads to a

better estimate of λ∗.

• Suggests an iterative sequence of estimators initialized at

(λ̂(0), µ̂(0)) = (0, µ̂HT) and defined for t ≥ 1 by

λ̂(t) =
T̂

π̂µ̂(t−1)
, µ̂(t) =

Ŝ

(1− λ̂(t))n + λ̂(t)n̂
.
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Fixed points of the iteration

• The iterations

λ̂(t) =
T̂

π̂µ̂(t−1)
, µ̂(t) =

Ŝ

(1− λ̂(t))n + λ̂(t)n̂
.

have two possible limiting behaviors

• One is µ(t) → 0, λ̂(t) →∞.

• The other is convergence to the fixed point

µ̂AN =
Ŝ

n
+

T̂

π̂

(
1− n̂

n

)
.

• µ̂AN is µ̂HT plus a correction factor(!?).

• Can also derive µ̂AN as a direct joint minimization, over (λ, µ), of

the asymptotic variance.
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Convergence of the iterations

Theorem

Suppose µ 6= 0, and consider the sequence of estimators (λ̂(t), µ̂(t))

initialized at λ̂(0) = 0, µ̂(0) = µ̂HT and defined for t ≥ 1 by the

recursions above. Then

(i) the sequence µ̂(t) converges as t →∞ to an estimator µ̂lim;

(ii) the estimator µ̂lim satisfies

lim
n→∞

P (µ̂lim = µ̂AN) = 1,

so that µ̂lim − µ̂AN converges in probability to 0.

So the process of repeatedly learning better and better estimates of λ∗

culminates in µ̂AN.
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Proof sketch

• The first step is to show that the µ̂(t) converges to µ̂AN on the event∣∣∣∣∣ Ŝn
∣∣∣∣∣ >

∣∣∣∣∣ T̂π̂
(

1− n̂

n

)∣∣∣∣∣
• The second step is to establish that the above event occurs with

high probability using the fact that Ŝ/n concentrates around µ and
T̂
π̂

(
1− n̂

n

)
concentrates around 0.
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Asymptotic variance of µ̂AN

Recall:

µ̂AN =
Ŝ

n
+

T̂

π̂

(
1− n̂

n

)
.

Theorem

The estimator µ̂AN satisfies the CLT

√
n(µ̂AN − µ)

d−→ N

(
0,E

[
1− pk
pk

(
Yk −

T

π

)2
])

.

Furthermore, the asymptotic variance above is always smaller than the

asymptotic variances of µ̂HT and µ̂Hájek, and is strictly smaller except if

equivalent.
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Connections to regression controls

• Consider the regression control family

µ̂β =
1

n

n∑
k=1

Yk Ik
pk
− β

(
1

n

n∑
k=1

Ik
pk
− 1

)

and selecting β∗ to minimize the variance.

• The choice of Ik/pk as a regression control in Monte Carlo problems

is considered in Hesterberg (1995). Owen (2013) recommends µ̂β∗

over HT/Hájek for Monte Carlo!

• The regression control estimator µ̂β∗ is, surprisingly, algebraically

equivalent to µ̂AN, i.e. adaptive normalization.

17



A finite-sample variance conjecture

• Starting from µ̂(0) = µ̂HT, move to better estimates µ̂(1), µ̂(2), . . .

based on better information about the correlation structure.

• See paper for (incomplete!) contraction mapping argument for

finite-sample variance reduction.

• See also Hansen & Lee (2021), studying variance reduction from

iterated GMM proceedure. Same incomplete argument.
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A finite-sample variance conjecture
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• The variance of the iterative estimator µ̂(t) as a function of t.

• Although a single iteration may increase the variance, we observe

that, always in simulation, every two iterations reduce variance.
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Applications

beyond survey sampling



AIPW estimation

• Consider the more general model where we have pairs

(Y1,X1), · · · , (Yn,Xn) and pk = p(Xk) is a function of the

covariates.

• In this context, the AIPW estimator (Robins, Rotnitzky, & Zhao

1994) of µ first estimates the response surface µ(Xk) = E[Yk | Xk ]

and the propensity map p(Xk) non-parametrically, and then

estimates µ by

µ̂AIPW =
1

n

n∑
k=1

µ̂(Xk) +
1

n

n∑
k=1

(Yk − µ̂(Xk))Ik
p̂(Xk)

.

• The second term here is a Horvitz–Thompson estimator—can we

replace it with an adaptively normalized estimator?
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Adaptively normalized AIPW estimation

• This suggests the estimator

µ̂AIPW,AN =
1

n

n∑
k=1

µ̂(Xk) +
1

n

n∑
k=1

(Yk − µ̂(Xk))Ik
p̂(Xk)

+
1

π̂

(
n∑

k=1

(Yk − µ̂(Xk))
1− p̂(Xk)

p̂(Xk)

Ik
p̂(Xk)

)(
1− n̂

n

)
Theorem

Assume that µ̂(·) and p̂(·) are uniformly consistent and that they also

satisfy the risk decay condition

E
[
(µ̂(Xk)− µ(Xk))2 | Tn

]
× E

[
(p̂(Xk)− p(Xk))2 | Tn

]
= oP(n−1).

Then √
n(µ̂AIPW,AN − µ̂AIPW)

P−→ 0.
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Policy learning

• Suppose individual k has potential outcomes Yk(1) and Yk(0)

depending on whether or not they receive a treatment, and we wish

to learn a policy π that maps known covariates Xk to a treatment

assignment in {0, 1}.
• The value of a policy π is V (π) = E[Yk(π(Xk))]. We would like to

maximize V , but we cannot compute it, so Kitagawa &

Tetenov (2018) propose estimating V from historical data

(Y1(I1),X1), · · · , (Yn(In),Xn) by the surrogate

V̂IPW(π) =
1

n

n∑
k=1

1 {Ik = π(Xk)}Yk

P(Ik = π(Xk) | Xk)
.
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Adaptively normalized policy learning

• Continuing our theme, we propose minimizing V̂AN(π) = V̂IPW(π)+∑n
k=1 Yk

1−P(Ik=π(Xk )|Xk )
P(Ik=π(Xk )|Xk )

1{Ik=π(Xk )}
P(Ik=π(Xk )|Xk )∑n

k=1
1−P(Ik=π(Xk )|Xk )
P(Ik=π(Xk )|Xk )

1{Ik=π(Xk )}
P(Ik=π(Xk )|Xk )

(
1− 1

n

n∑
k=1

1 {Ik = π(Xk)}
P(Ik = π(Xk) | Xk)

)

instead.

Theorem

Fix a class of policies Π with finite VC-dimension and assume the

potential outcomes Yk(1),Yk(0) are bounded. Let

π̂AN = arg maxπ∈Π V̂AN(π) and π∗ = arg maxπ∈Π V (π). Then

E[V (π∗)− V (π̂AN)] ≤ O

(
M

δ

√
VC(Π)

n

)
.
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Experiments



Survey sampling of Swiss municipalities

• Data set of 2896 municipalities in Switzerland.

• Two responses: Y1, the wooded area, and Y2, the industrial area.

• Assume sampling scheme in which pk is proportional to total area of

municipality and
∑

k pk is either 50 or 250.

• Want to estimate sum from sample with non-uniform probabilities.

• Test problem from R package sampling.
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Problem specification∑
= 50,Y1

∑
= 250,Y1

∑
= 50,Y2

∑
= 250,Y2

µ̂HT 68.4 27.8 2.51 1.07

µ̂Hájek 95.3 39.3 2.52 1.06

µ̂AN 61.5 23.1 2.45 1.01

Table 1: RMSE of estimators on Swiss municipality data; Y1 is wood area and

Y2 is industrial area, while Σ is the sum of the pk ; probabilities are chosen

proportional to total municipality area, which is strongly positively correlated

with Y1 and weakly positively correlated with Y2. RMSEs are averaged over

100,000 trials.
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ATE estimation in a normal model

• Consider data generated according to the normal model

(Yk(0),Xk) ∼ N

([
µ

0

]
,

[
1 θ

θ 1

])
, Yk(1) = Yk(0) + τ,

and pk = 1
1+exp(−2Xk ) .

• This represents a setting where Yk and pk have an approximately

linear relationship, the strength of which is controlled by θ.

• For the AIPW estimators, we estimate pk from logistic regression on

Xk and Yk from a GAM fit on Xk .

26



Normal model simulations
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The estimated MSE of all discussed estimators on data generated from

the normal model with n = 500 and µ = 1 for different values of θ.
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Survey sampling in a power law model

• For a more challenging setting, we generate

pk ∼ Uni(ε, 1− ε), Yk(0) = p−αk + N(0, σ2),

and Yk(1) = Yk(0) + τ,Xk = log
(

1−pk
pk

)
.

• This corresponds to Yk and pk with a strong negative relationship,

whose strength is controlled by α.
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Power law model simulations
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The estimated MSE of all discussed estimators on data generated from

the power law model with n = 500 and α varying.
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Policy learning experiments

• We generate data inspired by Athey & Wager (2021):

Xk ∼ N(0, I3×3), p(Xk) =
1

1 + exp(−Xk,1)
,

Yk(0) = Xk,1,Yk(1) = Yk(0) + sgn(Xk,2 + Xk,3)

where Xk,i is the i th entry of Xk .

• We learn a policy of the form 1{Xk,2 > T} for T ∈ [−1, 1] by grid

search on V̂IPW and V̂AN.

Sample size

Objective n = 250 n = 500 n = 750 n = 1000

V̂IPW −0.057 −0.035 −0.026 −0.020

V̂AN −0.039 −0.015 −0.010 −0.004

Table 2: Thresholds learned by optimizing V̂IPW and V̂AN on samples of

different sizes of data generated. Each entry is the average threshold chosen

over 100,000 trials. The optimal policy is to threshold at 0, so we see that

minimizing V̂AN consistently learns better thresholds. 30



Summary

• Trotter & Tukey (1956) had a simple, powerful, overlooked idea.

• IPW with adaptive normalization, minimizing asymptotic variance, is

a good idea.

• Magic upgrade for IPW in AIPW, ATE estimation, policy learning,

your problem?

• Open problem: finite sample variance reduction?

• Khan & Ugander (2021): arXiv:2106.07695

• Trotter & Tukey (1956): stanford.edu/∼jugander/rare/

• Thank you! Questions?
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