Learning Mean-Field Games

Junzi Zhang
Stanford ICME
e-mail: junziz@stanford.edu

Joint work with Prof. Xin Guo, Anran Hu and Renyuan Xu
UC Berkeley, IEOR
Outline

Mathematical Framework
- Motivating Problem
- General N-player game and GMFG
- RL for $N = 1$

GMFG with RL
- Existence and Uniqueness of GMFG solution
- Convergence and Complexity of RL
- Numerical Performance
Outline

Mathematical Framework
 Motivating Problem
 General N-player game and GMFG
 RL for $N = 1$

GMFG with RL
 Existence and Uniqueness of GMFG solution
 Convergence and Complexity of RL
 Numerical Performance
Mathematical Framework

Motivating Problem
General N-player game and GMFG
RL for $N = 1$

GMFG with RL
Existence and Uniqueness of GMFG solution
Convergence and Complexity of RL
Numerical Performance
Motivation: a sequential auction game

Ad auction problem for advertisers:

- **Ad auction**: a stochastic game on an ad exchange platform among a large number of players (the advertisers)
- **Environment**: in each round, a web user requests a page, and then a Vickrey-type *second-best-price* auction is run to incentivize advertisers to bid for a slot to display advertisement
- **Characteristics**:
 - partial information (unknown conversion of clicks, unknown bid price of other competitors)
 - changing states: budget constraint

Question: how should one bid in this sequential game with a large population of competing bidders and unknown distributions of the conversion of clicks/rewards and bids/actions of other bidders?
Motivation: sequential auction game

Solution: the simultaneous learning and decision-making problem in a sequential auction with a large number of homogeneous bidders.

- Full model approach: solve it as an N-player game
 - multi-agent reinforcement learning: computationally intractable

- Approximation approaches:
 - independent learners (regarding others as environment) (IL)
 - multi-agent reinforcement learning with first-order (expectation) mean-field approximation (MF-Q, Yang et al., 2018)

- Our approach: Reinforcement Learning (RL) + full distribution Mean-Field Game (MFG) approximation
Outline

Mathematical Framework
- Motivating Problem
- General N-player game and GMFG
- RL for $N = 1$

GMFG with RL
- Existence and Uniqueness of GMFG solution
- Convergence and Complexity of RL
- Numerical Performance
Overview of MFG

Mean-Field Game (MFG) is
- a game with very large population of small interacting individuals
 - **large population**: a continuum of players
 - **small interacting**: strategy based on the aggregated macroscopic information (mean field)
- originated from physics on weakly interacting particles
- theoretical works pioneered by Lasry and Lions (2007) and Huang, Malhamé and Caines (2006)
Main Idea of MFG

- Take an N-player game;
- When N is large, consider instead the “aggregated” version of the N-player game;
- By (f)SLLN, the aggregated version, MFG, becomes an “approximation” of the N-player game, in terms of ϵ-Nash equilibrium.
N-player game

\[
\begin{align*}
\text{maximize}_{\pi_i} & \quad V^i(s, \pi) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(s_t, a^i_t) \mid s^0 = s \right] \\
\text{subject to} & \quad s^i_{t+1} \sim P^i(s_t, a^i_t)
\end{align*}
\]

- \(N \) players, state space \(S \), action space \(A \);
- \(s_t = (s^1_t, \ldots, s^N_t) \in S^N \) is the state vector;
- \(a_t = (a^1_t, \ldots, a^N_t) \in A^N \) is the action vector;
- admissible (Markovian) policy \(\pi_i : S^N \rightarrow \mathcal{P}(A) \), with \(\mathcal{P}(X) \) the space of all probability measures over \(X \);
- \(r^i \) is the reward function for player \(i \);
- \(P^i \) is the transition dynamics for player \(i \);
- \(\gamma \) is the discount factor;
N-player Games

Definition (N-player game: Nash equilibrium (NE))

NE is a set of strategies such that no agent can benefit from unilaterally deviating from this set of strategies. Formally, π^* is an NE if for all i and s,

$$V^i(s, \pi^*) \geq V^i(s, (\pi^*_1, \ldots, \pi_i, \ldots, \pi^*_N))$$

holds for any $\pi_i : S^N \rightarrow \mathcal{P}(A)$.

From N-player Game to MFG

N-player game

| maximize $V^i(s, \pi)$:= $\mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(s_t, a^i_t) | s_0 = s \right]$ |
| subject to $s_{t+1}^i \sim P^i(s_t, a^i_t)$ |

Assume identical, indistinguishable and interchangeable players. When the number of players goes to infinity, view the limit of $s_{-i}^t = (s_1^t, \ldots, s_{i-1}^t, s_{i+1}^t, \ldots, s_N^t)$ as population state distribution μ_t.

MFG

| maximize $V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) | s_0 = s \right]$ |
| subject to $s_{t+1} \sim P(s_t, a_t, \mu_t)$ |

Mean-Field Games (MFG)

MFG

maximize\(\pi\) \(V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) | s_0 = s\right]\)

subject to \(s_{t+1} \sim P(s_t, a_t, \mu_t)\).

- infinite number of homogeneous players, state space \(S\), action space \(A\);
- \(s_t \in S\) and \(a_t \in A\) are the state and action of a representative agent at time \(t\);
- \(\mu_t \in \mathcal{P}(S)\) is the population state distribution at time \(t\);
- admissible policy \(\pi : S \times \mathcal{P}(S) \to \mathcal{P}(A)\);
- \(r\) is the reward function, \(P\) is the transition dynamics.
Mean-Field Games (MFG)

Definition (Stationary NE for MFGs)

In MFGs, a pair \((\pi^*, \mu^*)\) is called a stationary NE if

1. *(Single agent side)* For any policy \(\pi\) and any initial state \(s \in S\), we have
 \[
 V(s, \pi^*, \{\mu^*\}_{t=0}^\infty) \geq V(s, \pi, \{\mu^*\}_{t=0}^\infty).
 \]

2. *(Population side)* \(\mathbb{P}_{s_t} = \mu^*\) for all \(t \geq 0\), where \(\{s_t\}_{t=0}^\infty\) is the dynamics under control \(\pi^*\) starting from \(s_0 \sim \mu^*\), with \(a_t \sim \pi^*(s_t, \mu^*)\), \(s_{t+1} \sim P(\cdot|s_t, a_t, \mu^*)\).
General N-player Games

N-player game

maximize $V^i(s, \pi) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(s_t, a^i_t) | s_0 = s \right]$

subject to $s^i_{t+1} \sim P^i(s_t, a^i_t)$.

General N-player game

maximize $V^i(s, \pi) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(s_t, a^i_t) | s_0 = s \right]$

subject to $s^i_{t+1} \sim P^i(s_t, a^i_t)$

$\triangleright a_t = (a^1_t, \cdots, a^N_t)$.
General N-player Games

N-player game

| maximize $V_i(s, \pi) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_i(s_t, a^i_t) \mid s_0 = s \right]$ |
| subject to $s^i_{t+1} \sim P^i(s_t, a^i_t)$ |

General N-player game

| maximize $V_i(s, \pi) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_i(s_t, a_t) \mid s_0 = s \right]$ |
| subject to $s^i_{t+1} \sim P^i(s_t, a^i_t)$ |

$\triangleright\ a_t = (a^1_t, \ldots, a^N_t)$.

Generalized Mean-Field Games (GMFG)

MFG

\[
\begin{align*}
\text{maximize}_\pi & \quad V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) \mid s_0 = s\right] \\
\text{subject to} & \quad s_{t+1} \sim P(s_t, a_t, \mu_t).
\end{align*}
\]

GMFG

\[
\begin{align*}
\text{maximize}_\pi & \quad V(s, \pi, \{L_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L_t) \mid s_0 = s\right] \\
\text{subject to} & \quad s_{t+1} \sim P(s_t, a_t, L_t).
\end{align*}
\]

- \(L_t \in \Delta^{|S||A|}\) is the population state-action pair distribution at time \(t\), with state marginal \(\mu_t\) and action marginal \(\alpha_t\) (population action distribution);
- \(\alpha_t\) as an approximation of \(a_t^{-i} = (a_1^t, \ldots, a_{i-1}^t, a_{i+1}^t, \ldots, a_N^t)\).
Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair \((\pi^*, L^*)\) is called a stationary NE if

1. (Single agent side) For any policy \(\pi\) and any initial state \(s \in S\), we have
 \[
 V(s, \pi^*, \{L^*\}_{t=0}^\infty) \geq V(s, \pi, \{L^*\}_{t=0}^\infty).
 \]

2. (Population side) \(P_{s_t, a_t} = L^*\) for all \(t \geq 0\), where \(\{s_t, a_t\}_{t=0}^\infty\) is the dynamics under control \(\pi^*\) starting from \(s_0 \sim \mu^*\), with \(a_t \sim \pi^*(s_t, \mu^*), s_{t+1} \sim P(\cdot|s_t, a_t, L^*),\) and \(\mu^*\) being the population state marginal of \(L^*\).
Outline

Mathematical Framework
- Motivating Problem
- General N-player game and GMFG
- RL for $N = 1$

GMFG with RL
- Existence and Uniqueness of GMFG solution
- Convergence and Complexity of RL
- Numerical Performance
Reinforcement learning: Overview

▶ Single agent problem with unknown P and r

$$\text{maximize}_{\pi} \quad V(s, \pi) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s \right],$$

subject to

$$s_{t+1} \sim P(s_t, a_t), \quad a_t \sim \pi(s_t), \quad t \geq 0.$$

▶ Simultaneous decision making of a_t and learning of r and P, optimal value $V^*(s) := \max_{\pi} V(s, \pi)$

▶ Examples: Chess/Go/Poker
Existing Algorithms for RL

- **Discrete state and action spaces:**
 - Q-learning (Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, & Riedmiller, 2013)
 - PSRL (Osband, Russo & Van Roy, 2013)
 - UCRL2 (Jaksch, Ortner & Auer, 2010)

- **Continuous state and action spaces:**
 - Policy gradient (Williams, 1992)
 - Actor-Critic (Konda & Tsitsiklis, 2000)
 - Linear Quadratic Regulator (LQR): Abbasi-Yadkori & Szepesvári, 2011; Dean, Mania, Matni, Recht, Tu, 2018
Q-learning

- \textbf{Q-function: } $Q^*(s, a) := \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s')$

- \textbf{Bellman equation (for } Q\text{-function):}

$$Q^*(s, a) = \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q^*(s', a')$$

- \textbf{Q-learning: } stochastic approximation to the Bellman equation:

$$Q^{k+1}(s, a) \leftarrow (1 - \beta_t(s, a)) Q^k(s, a) + \beta_t(s, a) \left[r(s, a) + \gamma \max_{a'} Q^k(s', a') \right]$$
Q-learning

- **Q-function:** \(Q^*(s, a) := \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s') \)

- **Bellman equation (for Q-function):**
 \[
 Q^*(s, a) = \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q^*(s', a')
 \]

- **Q-learning: stochastic approximation to the Bellman equation:**
 \[
 Q^{k+1}(s, a) \leftarrow (1 - \beta_t(s, a)) Q^k(s, a) + \beta_t(s, a) \left[r(s, a) + \gamma \max_{a'} Q^k(s', a') \right]
 \]
Key gradients in Q-learning

- With finite state and action spaces, Q^k are matrices
- Choice of appropriate $\beta_t(s, a)$ and exploration in a:
 - ϵ-greedy: $a_k \in \arg \max Q^k(s_k, a)$ with probability $1 - \epsilon$, and a_k chosen randomly from A with probability ϵ
 - Boltzmann policy: based on a softmax operator parameterized by c
- $Q^k \rightarrow Q^*$
Outline

Mathematical Framework
- Motivating Problem
- General N-player game and GMFG
- RL for $N = 1$

GMFG with RL
- Existence and Uniqueness of GMFG solution
- Convergence and Complexity of RL
- Numerical Performance
(Recall) Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair \((\pi^*, L^*)\) is called a stationary NE if

1. **(Single agent side)** For any policy \(\pi\) and any initial state \(s \in S\), we have

\[
V (s, \pi^*, \{L^*\}_{t=0}^\infty) \geq V (s, \pi, \{L^*\}_{t=0}^\infty).
\]

2. **(Population side)** \(\mathbb{P}_{s_0, a_0} = L^*\) for all \(t \geq 0\), where \(\{s_t, a_t\}_{t=0}^\infty\) is the dynamics under control \(\pi^*\) starting from \(s_0 \sim \mu^*\), with \(a_t \sim \pi^*(s_t, \mu^*)\), \(s_{t+1} \sim P(\cdot|s_t, a_t, L^*)\), and \(\mu^*\) being the population state marginal of \(L^*\).
fixed point/three-step approach

- Step 1: given L, solve the stochastic control problem to get π^*_L:

$$
\begin{align*}
\text{maximize}_{\pi} \quad & V(s, \pi, L) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L) | s_0 = s \right], \\
\text{subject to} \quad & s_{t+1} \sim P(s_t, a_t, L).
\end{align*}
$$

- Step 2: given π^*_L, update from L for one time step to get L' following the dynamics.

- Step 3: Check whether L' matches L, and repeat.
Mappings Γ_1 and Γ_2

- Take any fixed population action-state distribution $L \in \mathcal{P}(S \times A)$,
 \[
 \Gamma_1 : \mathcal{P}(S \times A) \rightarrow \Pi := \{\pi \mid \pi : S \rightarrow \mathcal{P}(A)\},
 \]
 such that $\pi^*_L = \Gamma_1(L)$ is an optimal policy given L.

- For any admissible policy $\pi \in \Pi$ and $L \in \mathcal{P}(S \times A)$, define $\Gamma_2 : \Pi \times \mathcal{P}(S \times A) \rightarrow \mathcal{P}(S \times A)$ as
 \[
 \Gamma_2(\pi, L) := L' = \mathbb{P}_{s_1, a_1},
 \]
 where $a_1 \sim \pi(s_1)$, $s_1 \sim \mu P(\cdot|\cdot, a_0, L)$, $a_0 \sim \pi(s_0)$, $s_0 \sim \mu$, and μ is the population state marginal of L.
Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L.
Remark 2: Similar assumption and result can be found in (Huang, Malhamé & Caines, 2006) for MFGs.
Remark 3: We indeed established Theorem 1 in much more general settings without directly assuming contractivity, and we allow for

- non-stationarity, general compact state and action spaces, and Wasserstein metrics.

See our draft for more details.

Question: How to solve the GMFG when there is uncertainty in r and P? Assume in the following that \mathcal{S} and \mathcal{A} are both finite.
Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L.

Remark 2: Similar assumption and result can be found in (Huang, Malhamé & Caines, 2006) for MFGs.

Remark 3: We indeed established Theorem 1 in much more general settings without directly assuming contractivity, and we allow for

- non-stationarity, general compact state and action spaces, and Wasserstein metrics.

See our draft for more details.

Question: How to solve the GMFG when there is uncertainty in r and P? Assume in the following that S and A are both finite.
Three-step approach revisited:

- **Step 1:** given L, solve the stochastic control problem to get π^*_L:

 \[
 \text{maximize}_{\pi} \quad V(s, \pi, L) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L) | s_0 = s \right], \\
 \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, L).
 \]

- **Step 2:** given π^*_L, update from L for one time step to get L' following the dynamics.

- **Step 3:** Check whether L' matches L.

Three-step approach revisited (when P and R are unknown):

- **Step 1:** given L, solve a RL problem with transition dynamics $P_L(s'|s, a) := P(s'|s, a, L)$ and reward $r_L(s, a) := r(s, a, L)$ via Q-learning:

 \[
 Q^{k+1}_L(s, a) \leftarrow (1 - \beta_t(s, a))Q^k_L(s, a) + \beta_t(s, a) \left[r(s, a, L) + \gamma \max_{a'} Q^k_L(s', a') \right].
 \]

- **Step 2:** given π^*_L, update from L for one time step to get L' following the dynamics.

- **Step 3:** Check whether L' matches L.

Remark: $\pi^*_L(s) \in \arg\max_a Q^*_L(s, a)$. When $\arg\max$ is non-unique, replace it with $\arg\max-e$, which assigns equal probability to the maximizers.
Algorithm 1 Naive Q-learning for GMFGs

1: \textbf{Input}: Initial population state-action pair L_0
2: \textbf{for} $k = 0, 1, \cdots$ \textbf{do}
3: \hspace{1em} Perform Q-learning to find the Q-function $Q_k^*(s, a) = Q_{L_k}^*(s, a)$ of an MDP with dynamics $P_{L_k}(s'|s, a)$ and reward distributions $R_{L_k}(s, a)$.
4: \hspace{1em} Solve $\pi_k \in \Pi$ with $\pi_k(s) = \text{argmax}_e (Q_k^*(s, \cdot))$.
5: \hspace{1em} Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k, and obtain L_{k+1} from $G(s, \pi_k, L_k)$.
6: \textbf{end for}
Failure of the Naive Algorithm

Failure examples:

(a) fluctuation in l_∞.

(b) fluctuation in l_1.

Figure: Fluctuations of Naive Algorithm (30 sample paths).
Algorithm 1 Naive Q-learning for GMFGs

1: **Input**: Initial population state-action pair L_0
2: **for** $k = 0, 1, \cdots$ **do**
3: Perform Q-learning to find the Q-function $Q_k^*(s, a) = Q_{L_k}^*(s, a)$ of an MDP with dynamics $P_{L_k}(s'|s, a)$ and reward distributions $R_{L_k}(s, a)$.
4: Solve $\pi_k \in \Pi$ with $\pi_k(s) = \text{argmax-e} (Q_k^*(s, \cdot))$.
5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k, and obtain L_{k+1} from $G(s, \pi_k, L_k)$.
6: **end for**
Instability of \texttt{argmax-e}:

Magnify the Approximation Errors

\begin{itemize}
\item $x = (1, 1)$, then $\texttt{argmax-e}(x) = (1/2, 1/2)$.
\item $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, $\texttt{argmax-e}(y) = (1, 0)$.
\item $\|\texttt{argmax-e}(x) - \texttt{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ – non-Lipschitz.
\end{itemize}
Instability of argmax-e:

Magnify the Approximation Errors

- $x = (1, 1)$, then $\text{argmax-e}(x) = (1/2, 1/2)$.
- $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, $\text{argmax-e}(y) = (1, 0)$.
- $\|\text{argmax-e}(x) - \text{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ - non-Lipschitz.
Instability of argmax-e:

Magnify the Approximation Errors

- $x = (1, 1)$, then $\text{argmax-e}(x) = (1/2, 1/2)$.
- $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, $\text{argmax-e}(y) = (1, 0)$.
- $\|\text{argmax-e}(x) - \text{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ – non-Lipschitz.
Algorithm 2 Q-learning for GMFGs (GMF-Q)

1: **Input**: Initial L_0, tolerance $\epsilon > 0$.
2: **for** $k = 0, 1, \cdots$ **do**
3: Perform Q-learning for T_k iterations to find the approximate Q-function $\hat{Q}_k^* (s, a) = \hat{Q}^*_{L_k} (s, a)$ of an MDP with dynamics $P_{L_k} (s' | s, a)$ and reward distributions $R_{L_k} (s, a)$.
4: Compute $\pi_k \in \Pi$ with $\pi_k (s) = \text{softmax}_c (\hat{Q}_k^* (s, \cdot))$.
5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k, and obtain \tilde{L}_{k+1} from $G(s, \pi_k, L_k)$.
6: Find $L_{k+1} = \text{Proj}_{S_\epsilon} (\tilde{L}_{k+1})$
7: **end for**

Remark. Here S_ϵ is a ϵ-net of L, and $\text{softmax}_c (x)_i = \frac{\exp(c x_i)}{\sum_{j=1}^{n} \exp(c x_j)}$.
Outline

Mathematical Framework
 Motivating Problem
 General N-player game and GMFG
 RL for $N = 1$

GMFG with RL
 Existence and Uniqueness of GMFG solution
 Convergence and Complexity of RL
 Numerical Performance
Theorem 2 (Guo, Hu, Xu, & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for any specified tolerances $\epsilon, \delta > 0$, with appropriate choices of T_k, c and S_ϵ, \(\limsup_{k \to \infty} W_1(L_k, L^*) = O(\epsilon) \) with probability at least $1 - 2\delta$.

Here W_1 is the ℓ_1 Wasserstein distance, a.k.a. earth mover distance.
Complexity of MF-AQ

Theorem 3 (Guo, Hu, Xu. & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for any specified tolerances ϵ, $\delta > 0$, set T_k, c and S_ϵ appropriately. Then with probability at least $1 - 2\delta$, $W_1(L_{K_\epsilon}, L^*) = O(\epsilon)$, and the total number of iterations $T = \sum_{k=0}^{K_\epsilon-1} T_k$ is bounded by

$$T = O \left(K_\epsilon^{19/3} (\log(K_\epsilon/\delta))^{41/3} \right).$$

Here $K_\epsilon := \left\lceil 2 \max \left\{ (\eta\epsilon)^{-1/\eta}, \log_d(\epsilon / \max\{\text{diam}(S)\text{diam}(A), 1\}) + 1 \right\} \right\rceil$ is the number of outer iterations.
Outline

Mathematical Framework
 Motivating Problem
 General N-player game and GMFG
 RL for $N = 1$

GMFG with RL
 Existence and Uniqueness of GMFG solution
 Convergence and Complexity of RL
 Numerical Performance
Repeated Auction Example Revisited

At each round t:

- randomly select $M - 1$ players (from N, possibly infinite players) to compete with the representative advertiser
- a_{t}^{M}: second best price among the bids from M players
- reward $r_{t} = \mathbf{1}_{w_{t}^{M}=1} \left[(v_{t} - a_{t}^{M}) - (1 + \rho) \mathbf{1}_{s_{t}<a_{t}^{M}}(a_{t}^{M} - s_{t}) \right]$

 - v_{t}: conversion
 - w_{t}: indicator of winning (bid the highest price)
 - s_{t}: current budget
 - ρ: penalty of overbidding
- dynamic of the budget:

 $$s_{t+1} = \begin{cases}
 s_{t}, & w_{t} \neq 1, \\
 s_{t} - a_{t}^{M}, & w_{t} = 1 \text{ and } a_{t}^{M} \leq s_{t}, \\
 0, & w_{t} = 1 \text{ and } a_{t}^{M} > s_{t}.
 \end{cases}$$

- Budget fulfillment: modify the dynamics of s_{t+1} with a non-negative random budget fulfillment $\Delta(s_{t+1})$ after the auction clearing, such that $\hat{s}_{t+1} = s_{t+1} + \Delta(s_{t+1})$.
Performance against full-information

When transition P and reward r are known, replace Q-learning with value iteration (VI) – GMF-V.

$$Q_{L}^{k+1}(s,a) \leftarrow \mathbb{E}r(s,a,L) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a'} Q_{L}^{k}(s',a'),$$

<table>
<thead>
<tr>
<th>$T_{k}^{\text{GMF-Q}}$</th>
<th>1000</th>
<th>3000</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔQ</td>
<td>0.21263</td>
<td>0.1294</td>
<td>0.10258</td>
<td>0.0989</td>
</tr>
</tbody>
</table>

Table: Q-table with $T_{k}^{\text{GMF-V}} = 5000$.

Here $\Delta Q := \frac{\|Q_{\text{GMF-V}} - Q_{\text{GMF-Q}}\|_{2}^{2}}{\|Q_{\text{GMF-V}}\|_{2}^{2}}$ is the relative L_{2} distance between the Q-tables.
Performance against full-information

(a) GMF-Q.
(b) GMF-V.

Figure: Q-tables: GMF-Q vs. GMF-V. 20 outer iterations.

Conclusion: our algorithm (requiring no specific information on P and R) can learn almost as well as algorithms with full information.
Performance against S.O.T.A.

Performance metric:

\[
C(\pi) = \frac{1}{N|S|^N} \sum_{i=1}^{N} \sum_{s \in S^N} \frac{\max_{\pi_i} V_i(s, (\pi^{-i}, \pi^i)) - V_i(s, \pi)}{|\max_{\pi_i} V_i(s, (\pi^{-i}, \pi^i))| + \epsilon_0}.
\]

Here \(\epsilon_0 > 0\) is a safeguard, and is taken as 0.1 in the experiments. If \(\pi^*\) is an NE, by definition, \(C(\pi^*) = 0\) and it is easy to check that \(C(\pi) \geq 0\).
Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 10$, $N = 20$. 90% confidence interval, 20 sample paths.
Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on $C(\pi)$. $|S| = |A| = 20, N = 20$. 90% confidence interval, 20 sample paths.
Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (\(N\)-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on \(C(\pi)\). \(|S| = |A| = 10, N = 40\). 90\% confidence interval, 20 sample paths.
Conclusions

In this work, we

- build a generalized mean-field games framework with learning in a MFG;
- establish the unique existence for the GMFG solution for the discrete time version;
- propose a Q-learning algorithm with convergence and complexity analysis;
- numerical experiments demonstrate superior performance compared to existing RL algorithms.
Thank you!

Reference:
