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Methods for nonconvex optimization problems

I convex optimization methods are (roughly) always
global, always fast

I for general nonconvex problems, we have to give up one
I local optimization methods are fast, but need not find

global solution (and even when they do, cannot certify it)
I global optimization methods find global solution (and

certify it), but are not always fast (indeed, are often slow)

I in this lecture: local optimization methods that are based
on solving a sequence of convex problems
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Difference of convex programming

I express problem as

minimize f0(x)− g0(x)
subject to fi (x)− gi (x) ≤ 0, i = 1, . . . ,m

where fi and gi are convex

I fi − gi are called difference of convex functions

I problem is sometimes called difference of convex
programming
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Convex-concave procedure

I iterative method for difference of convex programming

I obvious convexification at x (k): replace f (x)− g(x) with

f̂ (x) = f (x)− g(x (k))−∇g(x (k))T (x − x (k))

I true objective at x̃ is better than convexified objective
I true feasible set contains feasible set for convexified problem

I solve the convexified problem to get x (k+1) and repeat
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Example

I unconstrained optimization on R
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Multi-convex programming

I given nonconvex problem with variable (x1, . . . , xn) ∈ Rn

I I1, . . . , Ik ⊂ {1, . . . , n} are index subsets with⋃
j Ij = {1, . . . , n}

I suppose problem is convex in subset of variables xi , i ∈ Ij ,
when xi , i 6∈ Ij are fixed

I alternating convex optimization method: cycle through j , in
each step optimizing over variables xi , i ∈ Ij

I special case: bi-convex problem
I x = (u, v); problem is convex in u (v) with v (u) fixed
I alternate optimizing over u and v
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Nonnegative matrix factorization

I NMF problem:

minimize ‖A− XY ‖F
subject to Xij , Yij ≥ 0

variables X ∈ Rm×k , Y ∈ Rk×n, data A ∈ Rm×n

I difficult problem, except for a few special cases (e.g., k = 1)

I alternating convex optimation: solve QPs to optimize over
X , then Y , then X . . .
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Example

I convergence for example with m = n = 50, k = 5
(five starting points)
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Quasiconvex programming

Quasiconvex functions f : Rn → R is quasiconvex if dom f is
convex and the sublevel sets

Sα = {x ∈ dom f | f (x) ≤ α}

are convex for all α

x1 x2x3

b

a

I f is quasiconcave if −f is quasiconvex
I f is quasilinear if it is quasiconvex and quasiconcave
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Quasiconvex programming

Examples

I
√
|x | is quasiconvex on R

I ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear
I log x is quasilinear on R++

I f (x1, x2) = x1x2 is quasiconcave on R2
++

I linear-fractional function

f (x) =
aT x + b

cT x + d
, dom f = {x | cT x + d > 0}

is quasilinear
I distance ratio

f (x) =
‖x − a‖2

‖x − b‖2
, dom f = {x | ‖x − a‖2 ≤ ‖x − b‖2}

is quasiconvex
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Quasiconvex programming

Internal rate of return

I cash flow x = (x0, . . . , xn); xi is payment in period i (to us
if xi > 0)

I we assume x0 < 0 and x0 + x1 + · · ·+ xn > 0
I present value of cash flow x , for interest rate r :

PV(x , r) =
n∑

i=0

(1 + r)−ixi

I internal rate of return is smallest interest rate for which
PV(x , r) = 0:

IRR(x) = inf{r ≥ 0 | PV(x , r) = 0}
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Quasiconvex programming

Internal rate of return

I internal rate of return is smallest interest rate for which
PV(x , r) = 0:

IRR(x) = inf{r ≥ 0 | PV(x , r) = 0}

IRR is quasiconcave: superlevel set is intersection of open
halfspaces

IRR(x) ≥ R ⇐⇒
n∑

i=0

(1 + r)−ixi > 0 for 0 ≤ r < R
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Quasiconvex programming

Properties modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f (θx + (1− θ)y) ≤ max{f (x), f (y)}

first-order condition: differentiable f with cvx domain is
quasiconvex iff

f (y) ≤ f (x) =⇒ ∇f (x)T (y − x) ≤ 0

x

g

sums of quasiconvex functions are not necessarily quasiconvex
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Quasiconvex programming

Problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

x
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Quasiconvex programming

Convex representation of sublevel sets of f0 if f0 is
quasiconvex, there exists a family of functions φt such that:

I φt(x) is convex in x for fixed t
I t-sublevel set of f0 is 0-sublevel set of φt , i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x)− tq(x):
I for t ≥ 0, φt convex in x
I p(x)/q(x) ≤ t if and only if φt(x) ≤ 0
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Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

φt(x) ≤ 0, fi (x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

I for fixed t, a convex feasibility problem in x
I if feasible, we can conclude that t ≥ p?; if infeasible, t ≤ p?

Bisection method for quasiconvex optimization

given l ≤ p?, u ≥ p?, tolerance ε > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ε.
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Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

Bisection method for quasiconvex optimization

given l ≤ p?, u ≥ p?, tolerance ε > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ε.

requires exactly dlog2((u − l)/ε)e iterations (where u, l are
initial values).

I Choose u and l : if infeasible for t = u, then l = u, u = 2u.
If feasible for t = l , then u = l , l = l/2. Otherwise, start
use current u and l .
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Summary

I nonconvex problems are generally intractable
I these are heuristics with no optimality guarantee

I but often works very well in practice

I CVXPY plugins are in the works
I DCCP: difference of convex programming, solved via

convex-concave procedure

I DMCP: multi-convex optimization, solved via block
coordinate descent

I QCQP: nonconvex QCQP (quadratically constrained
quadratic programming) via suggest and improve

I NCVX: mostly convex apart from decision variables from a
non-convex set, solved via NC-ADMM or relax-round-polish

I main idea: automatically recognize the specific
nonconvexity pattern and apply appropriate heuristics
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Bandlimited signal recovery from zero-crossings

Let y ∈ Rn denote a bandlimited signal (t = 1, . . . , n):

yt =
B∑
j=1

aj cos

(
2π

n
(fmin + j − 1)t

)
+bj sin

(
2π

n
(fmin + j − 1)t

)
.

Given: fmin the lowest frequency in the band, B the bandwidth,
and the signs of y , i.e., s = sign(y), with st = 1 if yt ≥ 0 and
st = −1 otherwise.

Unknowns: the coefficients a, b ∈ RB and the signal y ∈ Rn.

Goal: find y and a, b that minimizes ‖y‖2, and are consistent
with the bandlimited assumption above, the signs and a
normalization constraint ‖y‖1 = n (as positive scaling does not
change signs).
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Bandlimited signal recovery from zero-crossings

Let y ∈ Rn denote a bandlimited signal (t = 1, . . . , n):

yt =
B∑
j=1

aj cos

(
2π

n
(fmin + j − 1)t

)
+bj sin

(
2π

n
(fmin + j − 1)t

)
.

Given: fmin the lowest frequency in the band, B the bandwidth,
and the signs of y , i.e., s = sign(y), with st = 1 if yt ≥ 0 and
st = −1 otherwise.

Solution:

I bandlimited assumption: ŷ = Ax , A = [C S ], x = (a, b).
Ctj = cos(2π(fmin + j − 1)t/n),
Stj = sin(2π(fmin + j − 1)t/n).

I sign consistency: sta
T
t x ≥ 0.

I normalization: ‖ŷ‖1 = sTAx = n.
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Bandlimited signal recovery from zero-crossings

Let y ∈ Rn denote a bandlimited signal (t = 1, . . . , n):

yt =
B∑
j=1

aj cos

(
2π

n
(fmin + j − 1)t

)
+bj sin

(
2π

n
(fmin + j − 1)t

)
.

Given: fmin the lowest frequency in the band, B the bandwidth,
and the signs of y , i.e., s = sign(y), with st = 1 if yt ≥ 0 and
st = −1 otherwise.

Solution:

I We finally arrive at:

minimize ‖Ax‖2

subject to sta
T
t x ≥ 0, t = 1, . . . , n

sTAx = n.
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Matrix equilibration

We say that a matrix is `p equilibrated if each of its rows has the
same `p norm, and each of its columns has the same `p norm.

Goal: given matrix A ∈ Rm×n, find diagonal invertible matrices
D ∈ Rm×m and E ∈ Rn×n such that DAE is `p equilibrated.

Naive feasibility problem: find D, E , and two real numbers ν
and ω, s.t.

1DpBEp = −ν1T , DpBEp1 = −ω1.

Here Bij = |Aij |p. Nonconvex!
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Matrix equilibration

Naive feasibility problem: find D, E , and two real numbers ν
and ω, s.t.

1DpBEp = −ν1T , DpBEp1 = −ω1.

Here Bij = |Aij |p.

I Solution: find an convex optimization problem with the
feasibility problem as its KKT/optimality conditions.

minimize
∑m

i=1

∑n
j=1 Bije

ui+vj

subject to 1Tu = 0, 1T v = 0.

I Then D = diag(eu/p), E = diag(ev/p).
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Matrix equilibration

I Solution: find an convex optimization problem with the
feasibility problem as its KKT/optimality conditions.

minimize
∑m

i=1

∑n
j=1 Bije

ui+vj

subject to 1Tu = 0, 1T v = 0.

I Then D = diag(eu/p), E = diag(ev/p).
I Optimality conditions (ν, ω are multipliers of the

constraints 1Tu = 0 and 1T v = 0, resp.):

n∑
j=1

Bije
ui+vj + ν = 0, i = 1, . . . ,m,

m∑
i=1

Bije
ui+vj + ω = 0, j = 1, . . . , n.
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Linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cT x + d

eT x + f
, dom f0(x) = {x | eT x + f > 0}

I a quasiconvex optimization problem; can be solved by
bisection
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Linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cT x + d

eT x + f
, dom f0(x) = {x | eT x + f > 0}

I also equivalent to the LP (variables y , z)

minimize cT y + dz
subject to Gy � hz

Ay = bz
eT y + fz = 1
z ≥ 0
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Linear-fractional program

Proof sketch of equivalence

minimize f0(x) = cT x+d
eT x+f

subject to Gx � h, Ax = b

minimize cT y + dz
subject to Gy � hz , Ay = bz ,

eT y + fz = 1, z ≥ 0

I y = x/(eT x + f ), z = 1/(eT x + f ).

I x = y/z if z 6= 0. Otherwise, consider x = x0 + ty , then
f0(x)→ cT y + dz .
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Covariance estimation for Gaussian random variables

Let y ∈ N (0,Σ) (y ∈ Rn), i.e., E[yyT ] = Σ. Then the density is

pΣ(y) = (2π)−n/2 det(R)−1/2 exp(−yTΣy/2).

For samples y1, . . . , ym, the negative log-likelihood function is

l(Σ) = (mn/2) log(2π) + (m/2) log det Σ + (m/2)tr(Σ−1Y ),

where Y = 1
m

∑m
k=1 yky

T
k . Nonconvex!
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Covariance estimation for Gaussian random variables

For samples y1, . . . , ym, the negative log-likelihood function is

l(Σ) = (mn/2) log(2π) + (m/2) log det Σ + (m/2)tr(Σ−1Y ),

where Y = 1
m

∑m
k=1 yky

T
k . Nonconvex!

Solution: change of variable to S = Σ−1.

l̃(S) = (mn/2) log(2π)− (m/2) log det S + (m/2)tr(SY ).

Now convex!
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Maximum Sharpe ratio portfolio

Consider the following problem:

minimize µT x/‖Σ1/2x‖2

subject to 1T x = 1, ‖x‖1 ≤ Lmax,

where µ is the mean return, Σ � 0 is the return covariance, and
Lmax is the leverage limit. Assume that ∃x , s.t. µT x > 0.

I This is quasi-convex – but can we do better?

I Yes – via homogeneity in x of the objective function.
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Maximum Sharpe ratio portfolio

Consider the following problem:

maximize µT x/‖Σ1/2x‖2

subject to 1T x = 1, ‖x‖1 ≤ Lmax,

I First step: rewrite leverage constraint as ‖x‖1 ≤ Lmax1T x ,
and add redundant constraint µT x > 0 – homogeneous.

maximize µT x/‖Σ1/2x‖2

subject to 1T x = 1, ‖x‖1 ≤ Lmax1T x , µT x > 0.
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Maximum Sharpe ratio portfolio

I First step: rewrite leverage constraint as ‖x‖1 ≤ Lmax1T x ,
and add redundant constraint µT x > 0 – homogeneous.

maximize µT x/‖Σ1/2x‖2

subject to 1T x = 1, ‖x‖1 ≤ Lmax1T x , µT x > 0.

I Second step: change of variables
z = x/µT x ⇒ µT z = 1⇒ x = z/1T z .

maximize 1/‖Σ1/2z‖2

subject to µT z = 1, ‖z‖1 ≤ Lmax1T z .
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Maximum Sharpe ratio portfolio

Consider the following problem:

maximize µT x/‖Σ1/2x‖2

subject to 1T x = 1, ‖x‖1 ≤ Lmax,

I Finally convex!

minimize ‖Σ1/2z‖2

subject to µT z = 1, ‖z‖1 ≤ Lmax1T z .
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General convexification procedures

I transformation (change of variables)

I convex relaxation

I convex restriction
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Algorithm design

I sub-differential/sub-gradient and proximal operators

I monotone operators

I first-order methods, quasi-Newton methods, Newton
methods/interior point methods

I primal-dual methods, distributed optimization

I stochastic and online algorithms
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Modeling language and solver choices

I Clarification: CVXPY is not a solver, but a modeling
language

I How to choose solver: choose the most specialized solver
whenever possible – automatically done in CVXPY 1.0, and
keep improving

Miscellaneous topics on algorithms and solvers 44



Questions?

Q&A time now!

Miscellaneous topics on algorithms and solvers 45
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