More Advanced Topics

Stephen Boyd Steven Diamond
Junzi Zhang Akshay Agrawal

EE & CS Departments

Stanford University

- Nonconvex Optimization Methods
 - Difference of convex and multi-convex programming
 - Quasiconvex programming
- Formulating convex problems (wisely)
 - Convex formulation from modeling
 - Convexifying nonconvex problems
- Miscellaneous topics on algorithms and solvers

Nonconvex Optimization Methods

Difference of convex and multi-convex programming Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- ▶ for general nonconvex problems, we have to give up one
 - local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
 - global optimization methods find global solution (and certify it), but are not always fast (indeed, are often slow)
- ▶ in this lecture: local optimization methods that are based on solving a sequence of convex problems

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Difference of convex programming

express problem as

minimize
$$f_0(x) - g_0(x)$$

subject to $f_i(x) - g_i(x) \le 0$, $i = 1, ..., m$

where f_i and g_i are convex

- $f_i g_i$ are called difference of convex functions
- problem is sometimes called difference of convex programming

Convex-concave procedure

- iterative method for difference of convex programming
- ▶ obvious convexification at $x^{(k)}$: replace f(x) g(x) with

$$\hat{f}(x) = f(x) - g(x^{(k)}) - \nabla g(x^{(k)})^{\mathsf{T}}(x - x^{(k)})$$

- true objective at \tilde{x} is better than convexified objective
- ▶ true feasible set contains feasible set for convexified problem
- ▶ solve the convexified problem to get $x^{(k+1)}$ and repeat

▶ unconstrained optimization on R

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Multi-convex programming

- ▶ given nonconvex problem with variable $(x_1, ..., x_n) \in \mathbb{R}^n$
- ▶ $\mathcal{I}_1, \dots, \mathcal{I}_k \subset \{1, \dots, n\}$ are index subsets with $\bigcup_j \mathcal{I}_j = \{1, \dots, n\}$
- ▶ suppose problem is convex in subset of variables x_i , $i \in \mathcal{I}_j$, when x_i , $i \notin \mathcal{I}_j$ are fixed
- ▶ alternating convex optimization method: cycle through j, in each step optimizing over variables x_i , $i \in \mathcal{I}_i$
- special case: bi-convex problem
 - ightharpoonup x = (u, v); problem is convex in u(v) with v(u) fixed
 - ightharpoonup alternate optimizing over u and v

Nonnegative matrix factorization

NMF problem:

minimize
$$||A - XY||_F$$
 subject to $X_{ij}, Y_{ij} \ge 0$

variables $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$, data $A \in \mathbb{R}^{m \times n}$

- ▶ difficult problem, except for a few special cases (e.g., k = 1)
- alternating convex optimation: solve QPs to optimize over X, then Y, then X . . .

▶ convergence for example with m = n = 50, k = 5 (five starting points)

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Quasiconvex functions $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if **dom** f is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all α

- f is quasiconcave if -f is quasiconvex
- *f* is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\blacktriangleright \sqrt{|x|}$ is quasiconvex on **R**
- ▶ $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- ▶ $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2},$$
 dom $f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$

is quasiconvex

Internal rate of return

- ▶ cash flow $x = (x_0, ..., x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$$

▶ internal rate of return is smallest interest rate for which PV(x, r) = 0:

$$IRR(x) = \inf\{r \ge 0 \mid PV(x, r) = 0\}$$

Internal rate of return

▶ internal rate of return is smallest interest rate for which PV(x, r) = 0:

$$IRR(x) = \inf\{r \ge 0 \mid PV(x, r) = 0\}$$

 IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$\operatorname{IRR}(x) \ge R \quad \Longleftrightarrow \quad \sum_{i=0}^{n} (1+r)^{-i} x_i > 0 \text{ for } 0 \le r < R$$

Properties modified Jensen inequality: for quasiconvex *f*

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^{\mathsf{T}} (y - x) \le 0$$

sums of quasiconvex functions are not necessarily quasiconvex Nonconvex Optimization Methods

Problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex can have locally optimal points that are not (globally) optimal

Convex representation of sublevel sets of f_0 if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $ightharpoonup \phi_t(x)$ is convex in x for fixed t
- ▶ *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on **dom** f_0

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- ▶ $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex OPT via convex feasibility problems

$$\phi_t(x) \leq 0, \quad f_i(x) \leq 0, \quad i = 1, ..., m, \quad Ax = b \quad (1)$$

- for fixed t, a convex feasibility problem in x
- ▶ if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

Bisection method for quasiconvex optimization given $l \le p^*$, $u \ge p^*$, tolerance $\epsilon > 0$. repeat

- 1. t := (I + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. **if** (1) is feasible, u := t; **else** l := t. **until** $u l \le \epsilon$.

Quasiconvex OPT via convex feasibility problems

Bisection method for quasiconvex optimization given $l \le p^*$, $u \ge p^*$, tolerance $\epsilon > 0$. repeat

- 1. t := (I + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. **if** (1) is feasible, u := t; **else** l := t. **until** $u l < \epsilon$.

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values).

▶ Choose u and l: if infeasible for t = u, then l = u, u = 2u. If feasible for t = l, then u = l, l = l/2. Otherwise, start use current u and l.

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - ▶ but often works *very well* in practice
- CVXPY plugins are in the works
 - ► DCCP: difference of convex programming, solved via convex-concave procedure

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - ▶ but often works *very well* in practice
- CVXPY plugins are in the works
 - ► DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice
- CVXPY plugins are in the works
 - ► DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent
 - QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice
- CVXPY plugins are in the works
 - ► DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent
 - QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve
 - NCVX: mostly convex apart from decision variables from a non-convex set, solved via NC-ADMM or relax-round-polish
- main idea: automatically recognize the specific nonconvexity pattern and apply appropriate heuristics

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Nonconvex Optimization Methods

Difference of convex and multi-convex programming Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Nonconvex Optimization Methods

Difference of convex and multi-convex programming Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbb{R}^n$ denote a bandlimited signal (t = 1, ..., n):

$$y_t = \sum_{j=1}^B a_j \cos\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right) + b_j \sin\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right).$$

Given: f_{\min} the lowest frequency in the band, B the bandwidth, and the signs of y, i.e., $s = \operatorname{sign}(y)$, with $s_t = 1$ if $y_t \ge 0$ and $s_t = -1$ otherwise.

Unknowns: the coefficients $a, b \in \mathbb{R}^B$ and the signal $y \in \mathbb{R}^n$.

Goal: find y and a, b that minimizes $||y||_2$, and are consistent with the bandlimited assumption above, the signs and a normalization constraint $||y||_1 = n$ (as positive scaling does not change signs).

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbb{R}^n$ denote a bandlimited signal (t = 1, ..., n):

$$y_t = \sum_{j=1}^B a_j \cos\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right) + b_j \sin\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right).$$

Given: f_{\min} the lowest frequency in the band, B the bandwidth, and the signs of y, *i.e.*, $s = \operatorname{sign}(y)$, with $s_t = 1$ if $y_t \ge 0$ and $s_t = -1$ otherwise.

Solution:

- bandlimited assumption: $\hat{y} = Ax$, A = [C S], x = (a, b). $C_{tj} = \cos(2\pi(f_{\min} + j 1)t/n)$, $S_{tj} = \sin(2\pi(f_{\min} + j 1)t/n)$.
- ▶ sign consistency: $s_t a_t^T x \ge 0$.
- ▶ normalization: $\|\hat{y}\|_1 = s^T Ax = n$.

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbb{R}^n$ denote a bandlimited signal (t = 1, ..., n):

$$y_t = \sum_{j=1}^B a_j \cos\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right) + b_j \sin\left(\frac{2\pi}{n}(f_{\min} + j - 1)t\right).$$

Given: f_{\min} the lowest frequency in the band, B the bandwidth, and the signs of y, i.e., $s = \operatorname{sign}(y)$, with $s_t = 1$ if $y_t \ge 0$ and $s_t = -1$ otherwise.

Solution:

► We finally arrive at:

minimize
$$\|Ax\|_2$$

subject to $s_t a_t^T x \ge 0$, $t = 1, ..., n$
 $s^T A x = n$.

Matrix equilibration

We say that a matrix is ℓ_p equilibrated if each of its rows has the same ℓ_p norm, and each of its columns has the same ℓ_p norm.

Goal: given matrix $A \in \mathbf{R}^{m \times n}$, find diagonal invertible matrices $D \in \mathbf{R}^{m \times m}$ and $E \in \mathbf{R}^{n \times n}$ such that DAE is ℓ_p equilibrated.

Naive feasibility problem: find D, E, and two real numbers ν and ω , s.t.

$$\mathbf{1}D^{p}BE^{p} = -\nu\mathbf{1}^{T}, \quad D^{p}BE^{p}\mathbf{1} = -\omega\mathbf{1}.$$

Here $B_{ij} = |A_{ij}|^p$. Nonconvex!

Matrix equilibration

Naive feasibility problem: find D, E, and two real numbers ν and ω , s.t.

$$\mathbf{1}D^{p}BE^{p} = -\nu\mathbf{1}^{T}, \quad D^{p}BE^{p}\mathbf{1} = -\omega\mathbf{1}.$$

Here $B_{ij} = |A_{ij}|^p$.

► **Solution**: find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} B_{ij} e^{u_i + v_j}$$
subject to $\mathbf{1}^T u = 0$, $\mathbf{1}^T v = 0$.

▶ Then $D = \operatorname{diag}(e^{u/p})$, $E = \operatorname{diag}(e^{v/p})$.

Matrix equilibration

► **Solution**: find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} B_{ij} e^{u_i + v_j}$$
subject to $\mathbf{1}^T u = 0$, $\mathbf{1}^T v = 0$.

- ▶ Then $D = \operatorname{diag}(e^{u/p})$, $E = \operatorname{diag}(e^{v/p})$.
- ▶ Optimality conditions (ν , ω are multipliers of the constraints $\mathbf{1}^T u = 0$ and $\mathbf{1}^T v = 0$, resp.):

$$\sum_{j=1}^{n} B_{ij} e^{u_i + v_j} + \nu = 0, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^m B_{ij}e^{u_i+v_j}+\omega=0, \quad j=1,\ldots,n.$$

Outline

Nonconvex Optimization Methods

Difference of convex and multi-convex programming Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 dom $f_0(x) = \{x \mid e^T x + f > 0\}$

 a quasiconvex optimization problem; can be solved by bisection

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 dom $f_0(x) = \{x \mid e^T x + f > 0\}$

 \triangleright also equivalent to the LP (variables y, z)

minimize
$$c^T y + dz$$

subject to $Gy \leq hz$
 $Ay = bz$
 $e^T y + fz = 1$
 $z > 0$

Linear-fractional program

Proof sketch of equivalence

minimize
$$f_0(x) = \frac{c^T x + d}{e^T x + f}$$

subject to $Gx \leq h$, $Ax = b$

minimize
$$c^T y + dz$$

subject to $Gy \leq hz$, $Ay = bz$, $e^T y + fz = 1$, $z \geq 0$

- $y = x/(e^Tx + f), z = 1/(e^Tx + f).$
- ▶ x = y/z if $z \neq 0$. Otherwise, consider $x = x_0 + ty$, then $f_0(x) \rightarrow c^T y + dz$.

Covariance estimation for Gaussian random variables

Let
$$y \in \mathcal{N}(0, \Sigma)$$
 $(y \in \mathbf{R}^n)$, *i.e.*, $\mathbf{E}[yy^T] = \Sigma$. Then the density is
$$p_{\Sigma}(y) = (2\pi)^{-n/2} \det(R)^{-1/2} \exp(-y^T \Sigma y/2).$$

For samples y_1, \ldots, y_m , the negative log-likelihood function is

$$I(\Sigma) = (mn/2)\log(2\pi) + (m/2)\log\det\Sigma + (m/2)\operatorname{tr}(\Sigma^{-1}Y),$$

where $Y = \frac{1}{m} \sum_{k=1}^{m} y_k y_k^T$. Nonconvex!

Covariance estimation for Gaussian random variables

For samples y_1, \ldots, y_m , the negative log-likelihood function is

$$I(\Sigma) = (mn/2)\log(2\pi) + (m/2)\log\det\Sigma + (m/2)\operatorname{tr}(\Sigma^{-1}Y),$$

where $Y = \frac{1}{m} \sum_{k=1}^{m} y_k y_k^T$. Nonconvex!

Solution: change of variable to $S = \Sigma^{-1}$.

$$\widetilde{I}(S) = (mn/2)\log(2\pi) - (m/2)\log\det S + (m/2)\operatorname{tr}(SY).$$

Now convex!

Consider the following problem:

where μ is the mean return, $\Sigma \succ 0$ is the return covariance, and L^{max} is the leverage limit. Assume that $\exists x$, s.t. $\mu^T x > 0$.

► This is quasi-convex – but can we do better?

Consider the following problem:

where μ is the mean return, $\Sigma \succ 0$ is the return covariance, and L^{max} is the leverage limit. Assume that $\exists x$, s.t. $\mu^T x > 0$.

- ► This is quasi-convex but can we do better?
- \blacktriangleright Yes via homogeneity in x of the objective function.

Consider the following problem:

maximize
$$\mu^T x / \|\Sigma^{1/2} x\|_2$$
 subject to $\mathbf{1}^T x = 1$, $\|x\|_1 \leq L^{\max}$,

► First step: rewrite leverage constraint as $||x||_1 \le L^{\max} 1^T x$, and add redundant constraint $\mu^T x > 0$ – homogeneous.

First step: rewrite leverage constraint as $||x||_1 \le L^{\max} \mathbf{1}^T x$, and add redundant constraint $\mu^T x > 0$ – homogeneous.

$$\label{eq:local_problem} \begin{array}{ll} \text{maximize} & \mu^T x / \| \Sigma^{1/2} x \|_2 \\ \text{subject to} & \mathbf{1}^T x = 1, \quad \| x \|_1 \leq L^{\max} \mathbf{1}^T x, \quad \mu^T x > 0. \end{array}$$

Second step: change of variables

$$z = x/\mu^T x \Rightarrow \mu^T z = 1 \Rightarrow x = z/\mathbf{1}^T z.$$

maximize
$$1/\|\Sigma^{1/2}z\|_2$$

subject to $\mu^Tz = 1$, $\|z\|_1 \le L^{\max}\mathbf{1}^Tz$.

Consider the following problem:

$$\begin{array}{ll} \text{maximize} & \mu^T x / \| \Sigma^{1/2} x \|_2 \\ \text{subject to} & \mathbf{1}^T x = 1, \quad \| x \|_1 \leq L^{\max}, \end{array}$$

► Finally convex!

minimize
$$\|\Sigma^{1/2}z\|_2$$

subject to $\mu^Tz = 1$, $\|z\|_1 \leq L^{\max}\mathbf{1}^Tz$.

General convexification procedures

- transformation (change of variables)
- convex relaxation
- convex restriction

Outline

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods

Difference of convex and multi-convex programming

Formulating convex problems (wisely)

Convex formulation from modeling

Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Algorithm design

- ► sub-differential/sub-gradient and proximal operators
- monotone operators
- first-order methods, quasi-Newton methods, Newton methods/interior point methods
- primal-dual methods, distributed optimization
- stochastic and online algorithms

Modeling language and solver choices

- Clarification: CVXPY is not a solver, but a modeling language
- ► How to choose solver: choose the most specialized solver whenever possible automatically done in CVXPY 1.0, and keep improving

Questions?

Q&A time now!