More Advanced Topics

Stephen Boyd Steven Diamond
Junzi Zhang Akshay Agrawal
EE \& CS Departments
Stanford University

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
- local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
- global optimization methods find global solution (and certify it), but are not always fast (indeed, are often slow)
- in this lecture: local optimization methods that are based on solving a sequence of convex problems

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Difference of convex programming

- express problem as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-g_{0}(x) \\
\text { subject to } & f_{i}(x)-g_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where f_{i} and g_{i} are convex

- $f_{i}-g_{i}$ are called difference of convex functions
- problem is sometimes called difference of convex programming

Convex-concave procedure

- iterative method for difference of convex programming
- obvious convexification at $x^{(k)}$: replace $f(x)-g(x)$ with

$$
\hat{f}(x)=f(x)-g\left(x^{(k)}\right)-\nabla g\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right)
$$

- true objective at \tilde{x} is better than convexified objective
- true feasible set contains feasible set for convexified problem
- solve the convexified problem to get $x^{(k+1)}$ and repeat

Example

- unconstrained optimization on \mathbf{R}

Example

Example

Example

Example

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming

Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Multi-convex programming

- given nonconvex problem with variable $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$
- $\mathcal{I}_{1}, \ldots, \mathcal{I}_{k} \subset\{1, \ldots, n\}$ are index subsets with $\bigcup_{j} \mathcal{I}_{j}=\{1, \ldots, n\}$
- suppose problem is convex in subset of variables $x_{i}, i \in \mathcal{I}_{j}$, when $x_{i}, i \notin \mathcal{I}_{j}$ are fixed
- alternating convex optimization method: cycle through j, in each step optimizing over variables $x_{i}, i \in \mathcal{I}_{j}$
- special case: bi-convex problem
- $x=(u, v)$; problem is convex in $u(v)$ with $v(u)$ fixed
- alternate optimizing over u and v

Nonnegative matrix factorization

- NMF problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|A-X Y\|_{F} \\
\text { subject to } & X_{i j}, Y_{i j} \geq 0
\end{array}
$$

variables $X \in \mathbf{R}^{m \times k}, Y \in \mathbf{R}^{k \times n}$, data $A \in \mathbf{R}^{m \times n}$

- difficult problem, except for a few special cases (e.g., $k=1$)
- alternating convex optimation: solve QPs to optimize over X, then Y, then $X \ldots$

Example

- convergence for example with $m=n=50, k=5$ (five starting points)

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Quasiconvex programming

Quasiconvex functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Quasiconvex programming

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

Quasiconvex programming

Internal rate of return

- cash flow $x=\left(x_{0}, \ldots, x_{n}\right) ; x_{i}$ is payment in period i (to us if $x_{i}>0$)
- we assume $x_{0}<0$ and $x_{0}+x_{1}+\cdots+x_{n}>0$
- present value of cash flow x, for interest rate r :

$$
\mathrm{PV}(x, r)=\sum_{i=0}^{n}(1+r)^{-i} x_{i}
$$

- internal rate of return is smallest interest rate for which $\mathrm{PV}(x, r)=0$:

$$
\operatorname{IRR}(x)=\inf \{r \geq 0 \mid \operatorname{PV}(x, r)=0\}
$$

Quasiconvex programming

Internal rate of return

- internal rate of return is smallest interest rate for which

$$
\operatorname{PV}(x, r)=0
$$

$$
\operatorname{IRR}(x)=\inf \{r \geq 0 \mid \operatorname{PV}(x, r)=0\}
$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$
\operatorname{IRR}(x) \geq R \quad \Longleftrightarrow \quad \sum_{i=0}^{n}(1+r)^{-i} x_{i}>0 \text { for } 0 \leq r<R
$$

Quasiconvex programming

Properties modified Jensen inequality: for quasiconvex f

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$
f(y) \leq f(x) \quad \Longrightarrow \quad \nabla f(x)^{T}(y-x) \leq 0
$$

sums of quasiconvex functions are not necessarily quasiconvex

Quasiconvex programming

Problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ quasiconvex, f_{1}, \ldots, f_{m} convex
can have locally optimal points that are not (globally) optimal

Quasiconvex programming

Convex representation of sublevel sets of f_{0} if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(x)$ is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
f_{0}(x) \leq t \quad \Longleftrightarrow \quad \phi_{t}(x) \leq 0
$$

example

$$
f_{0}(x)=\frac{p(x)}{q(x)}
$$

with p convex, q concave, and $p(x) \geq 0, q(x)>0$ on dom f_{0}
can take $\phi_{t}(x)=p(x)-t q(x)$:

- for $t \geq 0, \phi_{t}$ convex in x
- $p(x) / q(x) \leq t$ if and only if $\phi_{t}(x) \leq 0$

Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

$$
\begin{equation*}
\phi_{t}(x) \leq 0, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method for quasiconvex optimization given $I \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$.
repeat

1. $t:=(I+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $l:=t$.
until $u-I \leq \epsilon$.

Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

Bisection method for quasiconvex optimization given $I \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$. repeat

1. $t:=(I+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $I:=t$. until $u-I \leq \epsilon$.
requires exactly $\left\lceil\log _{2}((u-I) / \epsilon)\right\rceil$ iterations (where u, I are initial values).

- Choose u and $I:$ if infeasible for $t=u$, then $I=u, u=2 u$. If feasible for $t=I$, then $u=I, I=I / 2$. Otherwise, start use current u and I.

Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
- but often works very well in practice
- CVXPY plugins are in the works
- DCCP: difference of convex programming, solved via convex-concave procedure

Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
- but often works very well in practice
- CVXPY plugins are in the works
- DCCP: difference of convex programming, solved via convex-concave procedure
- DMCP: multi-convex optimization, solved via block coordinate descent

Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
- but often works very well in practice
- CVXPY plugins are in the works
- DCCP: difference of convex programming, solved via convex-concave procedure
- DMCP: multi-convex optimization, solved via block coordinate descent
- QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve

Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
- but often works very well in practice
- CVXPY plugins are in the works
- DCCP: difference of convex programming, solved via convex-concave procedure
- DMCP: multi-convex optimization, solved via block coordinate descent
- QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve
- NCVX: mostly convex apart from decision variables from a non-convex set, solved via NC-ADMM or relax-round-polish
- main idea: automatically recognize the specific nonconvexity pattern and apply appropriate heuristics

Outline

> Nonconvex Optimization Methods
> Difference of convex and multi-convex programming
> Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods

Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbf{R}^{n}$ denote a bandlimited signal $(t=1, \ldots, n)$:
$y_{t}=\sum_{j=1}^{B} a_{j} \cos \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right)+b_{j} \sin \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right)$.
Given: $f_{\min }$ the lowest frequency in the band, B the bandwidth, and the signs of y, i.e., $s=\operatorname{sign}(y)$, with $s_{t}=1$ if $y_{t} \geq 0$ and $s_{t}=-1$ otherwise.
Unknowns: the coefficients $a, b \in \mathbf{R}^{B}$ and the signal $y \in \mathbf{R}^{n}$.
Goal: find y and a, b that minimizes $\|y\|_{2}$, and are consistent with the bandlimited assumption above, the signs and a normalization constraint $\|y\|_{1}=n$ (as positive scaling does not change signs).

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbf{R}^{n}$ denote a bandlimited signal $(t=1, \ldots, n)$:

$$
y_{t}=\sum_{j=1}^{B} a_{j} \cos \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right)+b_{j} \sin \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right) .
$$

Given: $f_{\min }$ the lowest frequency in the band, B the bandwidth, and the signs of y, i.e., $s=\operatorname{sign}(y)$, with $s_{t}=1$ if $y_{t} \geq 0$ and $s_{t}=-1$ otherwise.

Solution:

- bandlimited assumption: $\hat{y}=A x, A=[C S], x=(a, b)$.

$$
\begin{aligned}
& C_{t j}=\cos \left(2 \pi\left(f_{\min }+j-1\right) t / n\right), \\
& S_{t j}=\sin \left(2 \pi\left(f_{\min }+j-1\right) t / n\right) .
\end{aligned}
$$

- sign consistency: $s_{t} a_{t}^{T} x \geq 0$.
- normalization: $\|\hat{y}\|_{1}=s^{T} A x=n$.

Bandlimited signal recovery from zero-crossings

Let $y \in \mathbf{R}^{n}$ denote a bandlimited signal $(t=1, \ldots, n)$:
$y_{t}=\sum_{j=1}^{B} a_{j} \cos \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right)+b_{j} \sin \left(\frac{2 \pi}{n}\left(f_{\min }+j-1\right) t\right)$.
Given: $f_{\min }$ the lowest frequency in the band, B the bandwidth, and the signs of y, i.e., $s=\operatorname{sign}(y)$, with $s_{t}=1$ if $y_{t} \geq 0$ and $s_{t}=-1$ otherwise.

Solution:

- We finally arrive at:

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x\|_{2} \\
\text { subject to } & s_{t} a_{t}^{T} x \geq 0, \quad t=1, \ldots, n \\
& s^{T} A x=n .
\end{array}
$$

Matrix equilibration

We say that a matrix is ℓ_{p} equilibrated if each of its rows has the same ℓ_{p} norm, and each of its columns has the same ℓ_{p} norm.
Goal: given matrix $A \in \mathbf{R}^{m \times n}$, find diagonal invertible matrices $D \in \mathbf{R}^{m \times m}$ and $E \in \mathbf{R}^{n \times n}$ such that $D A E$ is ℓ_{p} equilibrated.
Naive feasibility problem: find D, E, and two real numbers ν and ω, s.t.

$$
\mathbf{1} D^{p} B E^{p}=-\nu \mathbf{1}^{T}, \quad D^{p} B E^{p} \mathbf{1}=-\omega \mathbf{1}
$$

Here $B_{i j}=\left|A_{i j}\right|^{p}$. Nonconvex!

Matrix equilibration

Naive feasibility problem: find D, E, and two real numbers ν and ω, s.t.

$$
\mathbf{1} D^{p} B E^{p}=-\nu \mathbf{1}^{T}, \quad D^{p} B E^{p} \mathbf{1}=-\omega \mathbf{1}
$$

Here $B_{i j}=\left|A_{i j}\right|^{p}$.

- Solution: find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} e^{u_{i}+v_{j}} \\
\text { subject to } & \mathbf{1}^{T} u=0, \quad \mathbf{1}^{T} v=0
\end{array}
$$

- Then $D=\boldsymbol{\operatorname { d i a g }}\left(e^{u / p}\right), E=\boldsymbol{\operatorname { d i a g }}\left(e^{v / p}\right)$.

Matrix equilibration

- Solution: find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} e^{u_{i}+v_{j}} \\
\text { subject to } & \mathbf{1}^{T} u=0, \quad \mathbf{1}^{T} v=0 .
\end{array}
$$

- Then $D=\boldsymbol{\operatorname { d i a g }}\left(e^{u / p}\right), E=\boldsymbol{\operatorname { d i a g }}\left(e^{v / p}\right)$.
- Optimality conditions (ν, ω are multipliers of the constraints $\mathbf{1}^{T} u=0$ and $\mathbf{1}^{T} v=0$, resp.):

$$
\begin{aligned}
& \sum_{j=1}^{n} B_{i j} e^{u_{i}+v_{j}}+\nu=0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} B_{i j} e^{u_{i}+v_{j}}+\omega=0, \quad j=1, \ldots, n
\end{aligned}
$$

Outline

Nonconvex Optimization Methods
Difference of convex and multi-convex programming
Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

linear-fractional program

$$
f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{T} x+f>0\right\}
$$

- a quasiconvex optimization problem; can be solved by bisection

Linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

linear-fractional program

$$
f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{T} x+f>0\right\}
$$

- also equivalent to the LP (variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \preceq h z \\
& A y=b z \\
& e^{T} y+f z=1 \\
& z \geq 0
\end{array}
$$

Linear-fractional program

Proof sketch of equivalence

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f} \\
\text { subject to } & G x \preceq h, \quad A x=b
\end{array}
$$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \preceq h z, \quad A y=b z \\
& e^{T} y+f z=1, \quad z \geq 0
\end{array}
$$

- $y=x /\left(e^{T} x+f\right), z=1 /\left(e^{T} x+f\right)$.
- $x=y / z$ if $z \neq 0$. Otherwise, consider $x=x_{0}+t y$, then $f_{0}(x) \rightarrow c^{\top} y+d z$.

Covariance estimation for Gaussian random variables

Let $y \in \mathcal{N}(0, \Sigma)\left(y \in \mathbf{R}^{n}\right)$, i.e., $\mathbf{E}\left[y y^{T}\right]=\Sigma$. Then the density is

$$
p_{\Sigma}(y)=(2 \pi)^{-n / 2} \operatorname{det}(R)^{-1 / 2} \exp \left(-y^{\top} \Sigma y / 2\right) .
$$

For samples y_{1}, \ldots, y_{m}, the negative log-likelihood function is

$$
I(\Sigma)=(m n / 2) \log (2 \pi)+(m / 2) \log \operatorname{det} \Sigma+(m / 2) \operatorname{tr}\left(\Sigma^{-1} Y\right)
$$

where $Y=\frac{1}{m} \sum_{k=1}^{m} y_{k} y_{k}^{T}$. Nonconvex!

Covariance estimation for Gaussian random variables

For samples y_{1}, \ldots, y_{m}, the negative log-likelihood function is

$$
I(\Sigma)=(m n / 2) \log (2 \pi)+(m / 2) \log \operatorname{det} \Sigma+(m / 2) \operatorname{tr}\left(\Sigma^{-1} Y\right)
$$

where $Y=\frac{1}{m} \sum_{k=1}^{m} y_{k} y_{k}^{T}$. Nonconvex!
Solution: change of variable to $S=\Sigma^{-1}$.

$$
\tilde{I}(S)=(m n / 2) \log (2 \pi)-(m / 2) \log \operatorname{det} S+(m / 2) \operatorname{tr}(S Y)
$$

Now convex!

Maximum Sharpe ratio portfolio

Consider the following problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max }
\end{array}
$$

where μ is the mean return, $\Sigma \succ 0$ is the return covariance, and $L^{\text {max }}$ is the leverage limit. Assume that $\exists x$, s.t. $\mu^{T} x>0$.

- This is quasi-convex - but can we do better?

Maximum Sharpe ratio portfolio

Consider the following problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max }
\end{array}
$$

where μ is the mean return, $\Sigma \succ 0$ is the return covariance, and $L^{\max }$ is the leverage limit. Assume that $\exists x$, s.t. $\mu^{T} x>0$.

- This is quasi-convex - but can we do better?
- Yes - via homogeneity in x of the objective function.

Maximum Sharpe ratio portfolio

Consider the following problem:

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max }
\end{array}
$$

- First step: rewrite leverage constraint as $\|x\|_{1} \leq L^{\max } 1^{T} x$, and add redundant constraint $\mu^{T} x>0$ - homogeneous.

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max } 1^{T} x, \quad \mu^{T} x>0 .
\end{array}
$$

Maximum Sharpe ratio portfolio

- First step: rewrite leverage constraint as $\|x\|_{1} \leq L^{\max } \mathbf{1}^{T} x$, and add redundant constraint $\mu^{T} x>0$ - homogeneous.

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max } 1^{T} x, \quad \mu^{T} x>0 .
\end{array}
$$

- Second step: change of variables

$$
z=x / \mu^{T} x \Rightarrow \mu^{T} z=1 \Rightarrow x=z / \mathbf{1}^{T} z
$$

maximize $1 /\left\|\Sigma^{1 / 2} z\right\|_{2}$
subject to $\mu^{T} z=1, \quad\|z\|_{1} \leq L^{\max } \mathbf{1}^{T} z$.

Maximum Sharpe ratio portfolio

Consider the following problem:

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x /\left\|\Sigma^{1 / 2} x\right\|_{2} \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad\|x\|_{1} \leq L^{\max }
\end{array}
$$

- Finally convex!

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|\Sigma^{1 / 2} z\right\|_{2} \\
\text { subject to } & \mu^{T} z=1, \quad\|z\|_{1} \leq L^{\max } \mathbf{1}^{T} z
\end{array}
$$

General convexification procedures

- transformation (change of variables)
- convex relaxation
- convex restriction

Outline

> Nonconvex Optimization Methods
> Difference of convex and multi-convex programming
> Quasiconvex programming

> Formulating convex problems (wisely)
> Convex formulation from modeling
> Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Miscellaneous topics on algorithms and solvers

Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
Convex formulation from modeling
Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers

Algorithm design

- sub-differential/sub-gradient and proximal operators
- monotone operators
- first-order methods, quasi-Newton methods, Newton methods/interior point methods
- primal-dual methods, distributed optimization
- stochastic and online algorithms

Modeling language and solver choices

- Clarification: CVXPY is not a solver, but a modeling language
- How to choose solver: choose the most specialized solver whenever possible - automatically done in CVXPY 1.0, and keep improving

Questions?

Q\&A time now!

