More Advanced Topics

Stephen Boyd Steven Diamond
Junzi Zhang Akshay Agrawal

EE & CS Departments
Stanford University
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Outline

Nonconvex Optimization Methods

- Difference of convex and multi-convex programming
- Quasiconvex programming

Formulating convex problems (wisely)
- Convex formulation from modeling
- Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Methods for nonconvex optimization problems

- **convex optimization methods** are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
 - **local optimization methods** are fast, but need not find global solution (and even when they do, cannot certify it)
 - **global optimization methods** find global solution (and certify it), but are not always fast (indeed, are often slow)
- **in this lecture**: local optimization methods that are based on solving a sequence of convex problems
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Difference of convex programming

express problem as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) - g_0(x) \\
\text{subject to} & \quad f_i(x) - g_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(f_i \) and \(g_i \) are convex

\(f_i - g_i \) are called difference of convex functions

problem is sometimes called difference of convex programming
Convex-concave procedure

- iterative method for difference of convex programming
- obvious convexification at $x^{(k)}$: replace $f(x) - g(x)$ with

$$
\hat{f}(x) = f(x) - g(x^{(k)}) - \nabla g(x^{(k)})^T (x - x^{(k)})
$$

- true objective at \tilde{x} is better than convexified objective
- true feasible set contains feasible set for convexified problem
- solve the convexified problem to get $x^{(k+1)}$ and repeat
Example

- unconstrained optimization on \mathbb{R}
Example

\[(x_0, f(x_0) - g(x_0))\]

\[(x_1, \hat{f}(x_1))\]
Example

\[(x_1, f(x_1) - g(x_1))\]
Example

\[(x_0, f(x_0) - g(x_0))\]

\[(x_1, \hat{f}(x_1))\]
Example

\[(x_1, f(x_1) - g(x_1))\]
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Multi-convex programming

- given nonconvex problem with variable \((x_1, \ldots, x_n) \in \mathbb{R}^n\)
- \(\mathcal{I}_1, \ldots, \mathcal{I}_k \subset \{1, \ldots, n\}\) are index subsets with \(\bigcup_j \mathcal{I}_j = \{1, \ldots, n\}\)
- suppose problem is convex in subset of variables \(x_i, i \in \mathcal{I}_j\), when \(x_i, i \notin \mathcal{I}_j\) are fixed
- alternating convex optimization method: cycle through \(j\), in each step optimizing over variables \(x_i, i \in \mathcal{I}_j\)
- special case: bi-convex problem
 - \(x = (u, v)\); problem is convex in \(u\) (\(v\)) with \(v\) (\(u\)) fixed
 - alternate optimizing over \(u\) and \(v\)
Nonnegative matrix factorization

- NMF problem:

 \[
 \begin{align*}
 & \text{minimize} \quad \| A - XY \|_F \\
 & \text{subject to} \quad X_{ij}, \ Y_{ij} \geq 0
 \end{align*}
 \]

 variables $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$, data $A \in \mathbb{R}^{m \times n}$

- difficult problem, except for a few special cases (e.g., $k = 1$)

- alternating convex optimization: solve QPs to optimize over X, then Y, then $X \ldots$
Example

- convergence for example with $m = n = 50$, $k = 5$
 (five starting points)
Outline

Nonconvex Optimization Methods
 - Difference of convex and multi-convex programming
 - Quasiconvex programming

Formulating convex problems (wisely)
 - Convex formulation from modeling
 - Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Quasiconvex programming

Quasiconvex functions $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{x \in \text{dom } f \mid f(x) \leq \alpha\}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Quasiconvex programming

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^{2}_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

is quasilinear

- distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\}$$

is quasiconvex
Quasiconvex programming

Internal rate of return

- cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x, r) = \sum_{i=0}^{n} (1 + r)^{-i} x_i$$

- internal rate of return is smallest interest rate for which $PV(x, r) = 0$:

$$\text{IRR}(x) = \inf \{ r \geq 0 \mid PV(x, r) = 0 \}$$
Quasiconvex programming

Internal rate of return

- internal rate of return is smallest interest rate for which $PV(x, r) = 0$:

$$\text{IRR}(x) = \inf \{ r \geq 0 \mid PV(x, r) = 0 \}$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$\text{IRR}(x) \geq R \iff \sum_{i=0}^{n} (1 + r)^{-i} x_i > 0 \text{ for } 0 \leq r < R$$
Quasiconvex programming

Properties modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{ f(x), f(y) \}$$

First-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0$$

Sums of quasiconvex functions are not necessarily quasiconvex
Quasiconvex programming

Problem

\[
\begin{aligned}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{aligned}
\]

with \(f_0 : \mathbb{R}^n \to \mathbb{R} \) quasiconvex, \(f_1, \ldots, f_m \) convex

can have locally optimal points that are not (globally) optimal
Quasiconvex programming

Convex representation of sublevel sets of f_0 if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- t-sublevel set of f_0 is 0-sublevel set of ϕ_t, i.e.,

$$f_0(x) \leq t \iff \phi_t(x) \leq 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \geq 0$, $q(x) > 0$ on $\text{dom } f_0$

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \geq 0$, ϕ_t convex in x
- $p(x)/q(x) \leq t$ if and only if $\phi_t(x) \leq 0$
Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

\[\phi_t(x) \leq 0, \quad f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b \quad (1) \]

▶ for fixed \(t \), a convex feasibility problem in \(x \)
▶ if feasible, we can conclude that \(t \geq p^* \); if infeasible, \(t \leq p^* \)

Bisection method for quasiconvex optimization

given \(l \leq p^*, \ u \geq p^* \), tolerance \(\epsilon > 0 \).

repeat

1. \(t := (l + u)/2 \).
2. Solve the convex feasibility problem \((1)\).
3. if \((1)\) is feasible, \(u := t \); else \(l := t \).

until \(u - l \leq \epsilon \).
Quasiconvex programming

Quasiconvex OPT via convex feasibility problems

Bisection method for quasiconvex optimization

given \(l \leq p^*, u \geq p^* \), tolerance \(\epsilon > 0 \).

repeat

1. \(t := (l + u)/2 \).
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, \(u := t \); else \(l := t \).

until \(u - l \leq \epsilon \).

requires exactly \(\lceil \log_2((u - l)/\epsilon) \rceil \) iterations (where \(u, l \) are initial values).

- Choose \(u \) and \(l \): if infeasible for \(t = u \), then \(l = u, u = 2u \).
 If feasible for \(t = l \), then \(u = l, l = l/2 \). Otherwise, start use current \(u \) and \(l \).
Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice

- CVXPY plugins are in the works
 - DCCP: difference of convex programming, solved via convex-concave procedure

Nonconvex Optimization Methods
Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice
- CVXPY plugins are in the works
 - DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent
Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice
- CVXPY plugins are in the works
 - DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent
 - QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve
Summary

- nonconvex problems are generally intractable
- these are heuristics with no optimality guarantee
 - but often works very well in practice
- CVXPY plugins are in the works
 - DCCP: difference of convex programming, solved via convex-concave procedure
 - DMCP: multi-convex optimization, solved via block coordinate descent
 - QCQP: nonconvex QCQP (quadratically constrained quadratic programming) via suggest and improve
 - NCVX: mostly convex apart from decision variables from a non-convex set, solved via NC-ADMM or relax-round-polish
- main idea: automatically recognize the specific nonconvexity pattern and apply appropriate heuristics
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Outline

Nonconvex Optimization Methods
- Difference of convex and multi-convex programming
- Quasiconvex programming

Formulating convex problems (wisely)
- Convex formulation from modeling
- Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Bandlimited signal recovery from zero-crossings

Let \(y \in \mathbb{R}^n \) denote a bandlimited signal \((t = 1, \ldots, n)\):

\[
y_t = \sum_{j=1}^{B} a_j \cos \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1) t \right) + b_j \sin \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1) t \right).
\]

Given: \(f_{\text{min}} \) the lowest frequency in the band, \(B \) the bandwidth, and the signs of \(y \), i.e., \(s = \text{sign}(y) \), with \(s_t = 1 \) if \(y_t \geq 0 \) and \(s_t = -1 \) otherwise.

Unknowns: the coefficients \(a, b \in \mathbb{R}^B \) and the signal \(y \in \mathbb{R}^n \).

Goal: find \(y \) and \(a, b \) that minimizes \(\|y\|_2 \), and are consistent with the bandlimited assumption above, the signs and a normalization constraint \(\|y\|_1 = n \) (as positive scaling does not change signs).

Formulating convex problems (wisely)
Bandlimited signal recovery from zero-crossings

Let \(y \in \mathbb{R}^n \) denote a bandlimited signal \((t = 1, \ldots, n)\):

\[
y_t = \sum_{j=1}^{B} a_j \cos \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1)t \right) + b_j \sin \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1)t \right).
\]

Given: \(f_{\text{min}} \) the lowest frequency in the band, \(B \) the bandwidth, and the signs of \(y \), i.e., \(s = \text{sign}(y) \), with \(s_t = 1 \) if \(y_t \geq 0 \) and \(s_t = -1 \) otherwise.

Solution:

- bandlimited assumption: \(\hat{y} = Ax \), \(A = [C \ S] \), \(x = (a, b) \).
 \[
 C_{tj} = \cos(2\pi(f_{\text{min}} + j - 1)t/n),
 \]
 \[
 S_{tj} = \sin(2\pi(f_{\text{min}} + j - 1)t/n).
 \]
- sign consistency: \(s_t a_t^T x \geq 0 \).
- normalization: \(\|\hat{y}\|_1 = s^T A x = n \).
Bandlimited signal recovery from zero-crossings

Let \(y \in \mathbb{R}^n \) denote a bandlimited signal \((t = 1, \ldots, n)\):

\[
y_t = \sum_{j=1}^{B} a_j \cos \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1) t \right) + b_j \sin \left(\frac{2\pi}{n} (f_{\text{min}} + j - 1) t \right).
\]

Given: \(f_{\text{min}} \) the lowest frequency in the band, \(B \) the bandwidth, and the signs of \(y \), i.e., \(s = \text{sign}(y) \), with \(s_t = 1 \) if \(y_t \geq 0 \) and \(s_t = -1 \) otherwise.

Solution:

- We finally arrive at:

\[
\begin{align*}
\text{minimize} & \quad \|Ax\|_2 \\
\text{subject to} & \quad s_t a_t^T x \geq 0, \quad t = 1, \ldots, n \\
& \quad s^T Ax = n.
\end{align*}
\]

Formulating convex problems (wisely)
Matrix equilibration

We say that a matrix is ℓ_p equilibrated if each of its rows has the same ℓ_p norm, and each of its columns has the same ℓ_p norm.

Goal: given matrix $A \in \mathbb{R}^{m \times n}$, find diagonal invertible matrices $D \in \mathbb{R}^{m \times m}$ and $E \in \mathbb{R}^{n \times n}$ such that DAE is ℓ_p equilibrated.

Naive feasibility problem: find D, E, and two real numbers ν and ω, s.t.

$$1D^pBE^p = -\nu 1^T, \quad D^pBE^p1 = -\omega 1.$$

Here $B_{ij} = |A_{ij}|^p$. Nonconvex!
Matrix equilibration

Naive feasibility problem: find D, E, and two real numbers ν and ω, s.t.

$$1D^pBE^p = -\nu 1^T, \quad D^pBE^p 1 = -\omega 1.$$

Here $B_{ij} = |A_{ij}|^p$.

- **Solution:** find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

 $$\text{minimize} \quad \sum_{i=1}^m \sum_{j=1}^n B_{ij} e^{u_i + v_j}$$

 subject to $1^T u = 0, \quad 1^T v = 0$.

- Then $D = \text{diag}(e^{u/p}), \quad E = \text{diag}(e^{v/p})$.
Matrix equilibration

Solution: find an convex optimization problem with the feasibility problem as its KKT/optimality conditions.

$$\text{minimize} \quad \sum_{i=1}^{m} \sum_{j=1}^{n} B_{ij} e^{u_i+v_j}$$

subject to \(\mathbf{1}^T u = 0, \quad \mathbf{1}^T v = 0. \)

Then \(D = \text{diag}(e^{u/p}), \ E = \text{diag}(e^{v/p}). \)

Optimality conditions (\(\nu, \omega \) are multipliers of the constraints \(\mathbf{1}^T u = 0 \) and \(\mathbf{1}^T v = 0 \), resp.):

$$\sum_{j=1}^{n} B_{ij} e^{u_i+v_j} + \nu = 0, \quad i = 1, \ldots, m,$$

$$\sum_{i=1}^{m} B_{ij} e^{u_i+v_j} + \omega = 0, \quad j = 1, \ldots, n.$$
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Linear-fractional program

minimize \quad f_0(x)

subject to \quad Gx \preceq h
\quad Ax = b

linear-fractional program

\[f_0(x) = \frac{c^T x + d}{e^T x + f} \quad \text{dom} \ f_0(x) = \{x \mid e^T x + f > 0\} \]

- a quasiconvex optimization problem; can be solved by bisection
Linear-fractional program

\[
\text{minimize}\quad f_0(x) \\
\text{subject to}\quad Gx \preceq h \\
\quad Ax = b
\]

Linear-fractional program

\[
f_0(x) = \frac{c^T x + d}{e^T x + f}, \quad \text{dom} f_0(x) = \{x \mid e^T x + f > 0\}
\]

- also equivalent to the LP (variables \(y, z\))

\[
\begin{align*}
\text{minimize} & \quad c^T y + dz \\
\text{subject to} & \quad G y \preceq h z \\
& \quad A y = b z \\
& \quad e^T y + f z = 1 \\
& \quad z \geq 0
\end{align*}
\]
Linear-fractional program

Proof sketch of equivalence

\[
\begin{align*}
\text{minimize} & \quad f_0(x) = \frac{c^T x + d}{e^T x + f} \\
\text{subject to} & \quad Gx \preceq h, \quad Ax = b
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad c^T y + dz \\
\text{subject to} & \quad Gy \preceq h z, \quad Ay = b z, \\
& \quad e^T y + fz = 1, \quad z \geq 0
\end{align*}
\]

- \(y = x/(e^T x + f), \quad z = 1/(e^T x + f). \)
- \(x = y/z \) if \(z \neq 0. \) Otherwise, consider \(x = x_0 + ty, \) then \(f_0(x) \rightarrow c^T y + dz. \)
Covariance estimation for Gaussian random variables

Let $y \in \mathcal{N}(0, \Sigma)$ (i.e., $y \in \mathbb{R}^n$), i.e., $\mathbb{E}[yy^T] = \Sigma$. Then the density is

$$p_{\Sigma}(y) = (2\pi)^{-n/2} \text{det}(R)^{-1/2} \exp(-y^T \Sigma y/2).$$

For samples y_1, \ldots, y_m, the negative log-likelihood function is

$$l(\Sigma) = (mn/2) \log(2\pi) + (m/2) \log \det \Sigma + (m/2) \text{tr}(\Sigma^{-1} Y),$$

where $Y = \frac{1}{m} \sum_{k=1}^{m} y_k y_k^T$. Nonconvex!
Covariance estimation for Gaussian random variables

For samples y_1, \ldots, y_m, the negative log-likelihood function is

$$l(\Sigma) = \frac{mn}{2} \log(2\pi) + \frac{m}{2} \log \det \Sigma + \frac{m}{2} \text{tr}(\Sigma^{-1} Y),$$

where $Y = \frac{1}{m} \sum_{k=1}^{m} y_k y_k^T$. Nonconvex!

Solution: change of variable to $S = \Sigma^{-1}$.

$$\tilde{l}(S) = \frac{mn}{2} \log(2\pi) - \frac{m}{2} \log \det S + \frac{m}{2} \text{tr}(SY).$$

Now convex!
Maximum Sharpe ratio portfolio

Consider the following problem:

\[
\begin{align*}
\text{minimize} & \quad \mu^T x / \| \Sigma^{1/2} x \|_2 \\
\text{subject to} & \quad 1^T x = 1, \quad \| x \|_1 \leq L_{\text{max}},
\end{align*}
\]

where \(\mu \) is the mean return, \(\Sigma \succ 0 \) is the return covariance, and \(L_{\text{max}} \) is the leverage limit. Assume that \(\exists x, \text{ s.t. } \mu^T x > 0. \)

- This is quasi-convex – but can we do better?
Consider the following problem:

\[
\begin{align*}
\text{minimize} & \quad \mu^T x / \| \Sigma^{1/2} x \|_2 \\
\text{subject to} & \quad 1^T x = 1, \quad \| x \|_1 \leq L^{\text{max}},
\end{align*}
\]

where \(\mu \) is the mean return, \(\Sigma \succ 0 \) is the return covariance, and \(L^{\text{max}} \) is the leverage limit. Assume that \(\exists x, \text{s.t. } \mu^T x > 0. \)

- This is **quasi-convex** – but can we do better?
- Yes – via homogeneity in \(x \) of the objective function.
Maximum Sharpe ratio portfolio

Consider the following problem:

\[
\begin{align*}
\text{maximize} & \quad \mu^T x / \|\Sigma^{1/2} x\|_2 \\
\text{subject to} & \quad 1^T x = 1, \quad \|x\|_1 \leq L^{\max},
\end{align*}
\]

- First step: rewrite leverage constraint as \(\|x\|_1 \leq L^{\max} 1^T x \), and add redundant constraint \(\mu^T x > 0 \) — homogeneous.

\[
\begin{align*}
\text{maximize} & \quad \mu^T x / \|\Sigma^{1/2} x\|_2 \\
\text{subject to} & \quad 1^T x = 1, \quad \|x\|_1 \leq L^{\max} 1^T x, \quad \mu^T x > 0.
\end{align*}
\]
Maximum Sharpe ratio portfolio

First step: rewrite leverage constraint as $\|x\|_1 \leq L^{\text{max}} 1^T x$, and add redundant constraint $\mu^T x > 0$ – homogeneous.

maximize $\mu^T x / \|\Sigma^{1/2} x\|_2$
subject to $1^T x = 1, \|x\|_1 \leq L^{\text{max}} 1^T x, \mu^T x > 0$.

Second step: change of variables
$z = x / \mu^T x \Rightarrow \mu^T z = 1 \Rightarrow x = z / 1^T z$.

maximize $1 / \|\Sigma^{1/2} z\|_2$
subject to $\mu^T z = 1, \|z\|_1 \leq L^{\text{max}} 1^T z$.

Formulating convex problems (wisely)
Consider the following problem:

\[
\begin{align*}
\text{maximize} & \quad \mu^T x / \| \Sigma^{1/2} x \|_2 \\
\text{subject to} & \quad 1^T x = 1, \quad \| x \|_1 \leq L_{\text{max}},
\end{align*}
\]

- Finally \textbf{convex}!

\[
\begin{align*}
\text{minimize} & \quad \| \Sigma^{1/2} z \|_2 \\
\text{subject to} & \quad \mu^T z = 1, \quad \| z \|_1 \leq L_{\text{max}} 1^T z.
\end{align*}
\]
General convexification procedures

- transformation (change of variables)
- convex relaxation
- convex restriction
Outline

Nonconvex Optimization Methods
- Difference of convex and multi-convex programming
- Quasiconvex programming

Formulating convex problems (wisely)
- Convex formulation from modeling
- Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Outline

Nonconvex Optimization Methods
 Difference of convex and multi-convex programming
 Quasiconvex programming

Formulating convex problems (wisely)
 Convex formulation from modeling
 Convexifying nonconvex problems

Miscellaneous topics on algorithms and solvers
Algorithm design

- sub-differential/sub-gradient and proximal operators
- monotone operators
- first-order methods, quasi-Newton methods, Newton methods/interior point methods
- primal-dual methods, distributed optimization
- stochastic and online algorithms
Modeling language and solver choices

- Clarification: CVXPY is not a solver, but a modeling language
- How to choose solver: choose the most specialized solver whenever possible – automatically done in CVXPY 1.0, and keep improving
Questions?

Q&A time now!