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Abstract

Recent research on multimodal prosody has begun to identify
associations between discrete body movements and categori-
cal acoustic prosodic events such as pitch accents and bound-
aries. We propose to generalize this work to understand more
about continuous prosodic phenomena distributed over a phrase
- like those indicative of speaker engagement - and how they
covary with bodily movements. We introduce movement am-
plitude, a new vision-based metric for estimating continuous
body movements over time from video by quantifying frame-
to-frame visual changes. Application of this automatic metric
to a collection of video monologues demonstrates that speak-
ers move more during phrases in which their pitch and intensity
are higher and more variable. These findings offer further evi-
dence for the relationship between acoustic and visual prosody,
and suggest a previously unreported quantitative connection be-
tween raw bodily movement and speaker engagement.
Index Terms: acoustic prosody, visual prosody, movement,
gesture, speech-gesture interface, automatic methods

1. Introduction

Gesture and movement are fundamental and ubiquitous parts of
the human communicative system, but are traditionally under-
studied phenomena in linguistics. In recent years, interest in the
study of multi-modal communication and the connection be-
tween speech prosody and “visual prosody” has increased, and
empirical evidence has begun to convincingly demonstrate the
co-articulatory nature of “gestures and language [as] one sys-
tem” (McNeill 1992).

For instance, Jannedy and Mendoza-Denton (2006) inves-
tigate gesture’s role in structuring spoken discourse, show-
ing evidence for the co-occurrence of pitch accents and ges-
tural apices. Krahmer and Swerts (2007) show that even in-
dependent of pitch accents, the production of “visual beats”
has an effect on the prosodic realization and prominence of
the co-occurring speech. Gibbon (2011) demonstrates rhyth-
mic matching between the acoustic and physical beat rhythms
in drum-accompanied storytelling in the Ega language. Loehr
(2012) confirms findings of temporal synchrony, showing that
gestural phrases align with intermediate phrases.

Beyond overt gestures, substantial evidence supports the
connection between other kinds of “visual prosody” and speech.
Guaı̈tella et al. (2009) track rapid eyebrow movements in di-
alogue, and demonstrate their connection with turn-taking in
interaction. Cvejic et al. (2010) use facial optical markers
in motion capture recordings; in their data, speakers exhibit
greater movement during prosodically focused words, even for
non-articulatory features such as eyebrow and head movement.
Walker (2012) explores “trail-off” conjunctions, showing that
speakers and listeners in interaction use visible features such as
dropped gaze to signal “disengagement.”

Studies in speech perception further demonstrate the im-
portant communicative functions of gesture and movement.
Munhall et al. (2004) record and recreate 3D models of head
movement in talk, finding that subjects are able to correctly
identify more syllables when the speech is accompanied by 3D
models of natural head movements as compared with distorted
or absent models. Scarborough et al. (2009) obtain forced-
choice judgments of lexical and phrasal stress from subjects
shown video data with the audio track removed; they show that
phrasal stress is more easily perceived by subjects than lexical
stress. Rilliard et al. (2009) give results for French and Japanese
suggesting visual information helps listeners disambiguate “so-
cial affects” that are less clear in the audio signal alone.

In spite of this progress, major methodological impedi-
ments remain. A principled analysis of gesture in experimen-
tal settings requires complex and time-consuming human anno-
tation, commonly based on one of several existing annotation
schemes. These include interval annotation of “gesture units”
and “gesture phrases” based on written transcripts (Kendon
2004); expressivity annotations on parameters such as “fluid-
ity,” “spatial expansion,” and “repetitivity” (Chafai et al. 2006);
and keyframe-based manual posing of animated 3D characters
(Kipp et al. 2007). Though their descriptive power is high, these
schemes share the property that they require huge amounts of
time and effort from highly-trained human annotators. As a re-
sult, existing linguistic studies of gestural prosody necessarily
operate on extremely small data sets: for example, Jannedy and
Mendoza-Denton (2006) perform their analyses on 130 seconds
of videorecorded speech data; Loehr (2012) on speech events
from four separate speakers totalling 164 seconds of data.

Analyses of movement pose their own unique difficulties:
mainly, raw movement is difficult or impossible to annotate by
hand; tools for facial or motion tracking must be used, and this
equipment is likely to be expensive or invasive. We therefore
know little about the theoretically important relation between
affective measures of speaker engagement and the embodied
expression that takes form in movement.

This work is aimed at addressing these problems. We in-
troduce a new method for automatically measuring movement
magnitude and variance from video data, and apply it to a cor-
pus of single-speaker YouTube videos, extracting acoustic and
movement measurements for each phrase in the data. We then
investigate the relationship between our proposed movement
measure and several prosodic features indicative of engagement
including pitch, pitch variance, intensity, and intensity vari-
ance (Liscombe, Venditti, and Hirschberg 2003; Mairesse et al.
2007; Gravano et al. 2011; McFarland et al. 2013).

We hypothesize that increased movement amplitude will be
predictive of higher values in these acoustic categories. That
is, during phrases in which speakers are engaged, excited, and
moving more, they will use a correspondingly higher pitch and
intensity as well as greater variance in their pitch and intensity.



2. Methods

In this work, we propose a pipeline of fully automatic, replica-
ble annotation for the analysis of visual and acoustic prosody
on single-speaker videorecorded data.

2.1. Data

Web-based video streaming services are an increasingly cultur-
ally significant tool for communication. YouTube alone reports
more than 100 hours of video uploaded per minute1, of which
a significant portion is certainly linguistic in nature - conversa-
tions, vlogs, lectures, and so on. Existing work has begun to use
YouTube to investigate multi-modal sentiment (Wöllmer et al.
2013) and sociolinguistic aspects of identity construction (Chun
2013), but this data source remains vastly underutilized.

As we describe in Section 2.4, our new proposed “move-
ment amplitude” measure operates on raw video data, without
the need for additional equipment at recording time. This makes
it useful for the analysis of movement in YouTube data, which
has the significant benefit of replicability: since users who post
videos explicitly open them to the public, researchers can ap-
ply new methods and test new hypotheses on existing datasets
without confronting issues of subject confidentiality.

In this study, we focus on the connection between acous-
tic and visual prosody in a single, narrowly-defined genre of
YouTube videos: the “First Day of School” vlog. In such videos
students speak into their cameras to describe their experiences
in their first day starting or returning to school. This is a pro-
ductive genre, with a search for “first day of school vlog” on
YouTube returning nearly 1.3 million results.

We collect 14 such videos from different speakers, result-
ing in a total of 95 minutes of footage. The speakers all fit the
most commonly represented demographic in such videos: fe-
male high-school-aged students from the United States. We use
pafy2 to download 360p-quality mp4-encoded versions of each
video. Each video consists of a single speaker seated against a
static background. We cut each video to a section of continuous
speech, removing introductory and closing title cards.

A first application of our methodology to this dataset is in-
teresting and appropriate for several reasons. The videos were
found “in the wild,” naturally uploaded by the speaker outside
of an experimental context. They are linguistically and gestu-
rally interesting; the speakers are in general very animated and
performative, communicating directly to their peer group in dis-
cussing social expectations, classes, relationships, and so on.

2.2. Automatic Identification of PBUs

We need to extract prosodic units for our analysis; we use pause-
bounded units (PBUs), automatically identified with a simple
heuristic algorithm using the silence detection function in Praat
(Boersma and Weenink 2013).3

We write a Praat script that runs an intensity analysis on
the audio track of a given videorecording, then identifies silent
and sounding intervals with a minimum duration of one-tenth
of a second. We begin with a silence threshold of -30.0 dB and
calculate the average length of the phrases thus identified. If

1http://www.youtube.com/yt/press/statistics.html
2https://pypi.python.org/pypi/pafy
3While PBUs provide a meaningful and computationally tractable

approximate prosodic unit for this analysis, it remains an interesting
task for future work to determine how they might correlate with or be
related to a more theoretically principled unit such as the intonational
phrase (Pierrehumbert 1980).

the phrases have an average length of greater than two seconds,
we increase our silence threshold by +3.0 dB and re-extract,
continuing to do so until they average below two seconds in
length. Our two-second length threshold is derived from an av-
erage length calculation on hand-annotated PBUs from a sepa-
rate set of interactional data.

2.3. Acoustic Features

Following prior work on prosodic engagement, we extract fun-
damental frequency (henceforth “pitch”) and intensity features
for each automatically-identified pause-bounded unit in our
dataset. We use a Praat script to calculate eight acoustic vari-
ables for each PBU: a maximum, mean, minimum, and standard
deviation for both pitch and intensity.

2.4. Movement Amplitude

Here we propose a new measure for the analysis of movement in
videorecorded data. The intuition behind this measure is simple.
Video data consists of a series of frames, which are fundamen-
tally images, played back at a high speed to simulate movement.
In circumstances where the video camera is stationary and the
background of the recorded images is relatively static, speaker
movement can be quantified by measuring the difference be-
tween successive frames.

In practice, we propose a measure obtained by finding the
average difference in RGB values between a given pixel and the
corresponding pixel in the preceding frame, summing these val-
ues across all pixels in the image, and taking the natural log of
the total. We extract video frames as uncompressed png images
using the ffmpeg software package4 and compute frame differ-
ences using the ImageChops python module from the Python
Imaging Library.5 Formally, we define the movement ampli-
tude (MA) measured at time t in (1), with the current frame
number n, an image size of width x and height y, and a function
pix

x,y

(i) that returns the red, green, and blue values of a given
pixel at an arbitrary frame number i:

MA(t) = ln
X

x,y

avg(|pix
x,y

(n)� pix

x,y

(n� 1)|) (1)

Graphical observation of density and quartile plots of our data
confirm the intuition that movement amplitude must be com-
puted in log space. Large movements and gestures are relatively
sparse compared with the continuous, generalized movements
of speech, and the large variance in the number of pixels they
comprise necessitates log space calculation.

Such a measure has many attractive properties. First, it
is fully automatic, allowing replicable quantification of visual
prosody without painstaking hand-annotation. This means it
can be scaled up to provide annotation for datasets of arbitrary
size with little additional effort or expense.

Secondly, like measures of acoustic prosody, it is function-
ally continuous, albeit at a much coarser granularity than most
audio recordings. Standard audio sampling rates are 44,100 and
48,000 Hz, while standard video frame rates include 24 and 30
frames per second (FPS). We can calculate one measurement
per frame, so these frame rates would allow us to extract move-
ment amplitude samples at 24 and 30 Hz, respectively. In the
30 FPS case this provides one measurement each 33ms. In this
study we show that samples extracted at this frequency are suf-
ficient and offer meaningful data on visual prosody; however,

4http://ffmpeg.org
5http://www.pythonware.com/products/pil/



Figure 1: Visualization of four seconds (120 frames at 30 FPS)
of movement.

the sampling rate of the movement amplitude measure could
be arbitrarily scaled in proportion to the quality of the camera
available to the experimenter.

Figure 1 demonstrates this continuity, showing movement
amplitudes extracted from a four-second clip in our data. The
peak near frame 9090, representing an MA measurement one
standard deviation above the mean, encodes the combination of
a speaker opening her eyes, turning her head towards the cam-
era, and opening her mouth to say “Oh!” in recognition after
a moment of thought. The significantly higher peak near frame
9155, three standard deviations above the mean, is primarily the
result of a large one-handed swiping gesture.

This plot makes clear another important property of the
movement amplitude measure in its current form: it encodes
any and all movement, including that of the eyes, mouth, head,
body, and so on. Standing up from a seated position, for ex-
ample, would be recorded as a dramatic peak in MA. It also
necessarily compresses 3D movement to a 2D representation in
the camera’s visual plane. In these ways it is substantially more
coarse than any of the measures used in prior studies; however,
MA quantifies overall movement in a reasonable way, as the
movement of larger objects is given more weight than that of
small ones. With computer vision tools such as accurate face
detection, in future work this measure could also be applied to
submovements to separate out, for example, facial movement as
compared to body movement.

Our measure is limited by several required conditions that
a recording must meet. The background of the video must be
static: the functional result of this is that the contribution to the
MA measurement for all pixels that show only background is
negligible or absent. Additionally, all speakers in a video must
be visually separable. The present study is concerned only with
single-speaker video data, but in continuing work we have ap-
plied this measure to multi-speaker interactions by defining a
rectangular pixel bounding region for each speaker and calcu-
lating MA for each speaker only within their region.

These conditions are limiting insofar as other techniques
such as hand annotation of gesture could be applied to video
footage with variable camera angles and non-static back-
grounds. As discussed in Section 2.1, however, data meeting
these conditions is reasonable to collect experimentally.

In processing our data we also convert MA measurements
to z-scores per speaker to allow for comparable measurements
in spite of differences across recording conditions such as
speaker distance from the camera, color of the background and
speaker clothing, and so on. As with our acoustic variables, for
each video we extract an MA maximum, mean, minimum, and
standard deviation for each PBU.

Figure 2: Five-frame composite visualization of the speaker’s
head and facial movements as captured by movement amplitude
across the first peak shown in Figure 1.

2.5. Statistical Analysis

Automatic extraction of PBUs from our 14 videos results in
2172 observed pause-bounded units, and for each we extract
prosodic features for speech and movement as described above.

To model the behavior of this data we use linear mixed-
effects models as implemented in the lme4 package in R (Bates
et al. 2013). We model speakers as random effects in a se-
ries of regressions predicting acoustic variables from our new
movement amplitude measure, including log PBU duration in
the model as a control variable. The four MA measurements
(max, mean, min, and std) are highly collinear, so we use prin-
cipal component analysis (PCA) for dimensionality reduction.
Statistical significance is based on p-values calculated using the
lmerTest package in R (Kuznetsova et al. 2013) with degrees of
freedom estimated using Satterthwate’s approximations.

3. Results

Dimensionality reduction with PCA on our MA measurements
reveals two orthogonal components that together explain 96%
of the variance in the MA data. The loadings for these two
factors are seen in Table 1. Factor 1 is interpretable as overall
movement, and factor 2 as variance in movement.

OVERALL MOVEMENT MOVEMENT VARIANCE

MA MEASURE Factor 1 Factor 2
max 42.1 76.4
min 73.9 -54.3

mean 52.2 19.1
std -6.9 29.0

variance explained 64.8% 31.2%

Table 1: Loadings of orthogonal components for movement
amplitude calculated from principal components analysis.



Figure 3: Visualization of prosodic features including movement across 51 consecutive phrases from one speaker. Each vertical line of
boxes represents one spoken phrase, where more deeply-shaded boxes represent higher feature values. Notice light and dark vertical
banding; phrases with higher movement amplitude also have higher values for measures of acoustic prosody (and vice versa).

The results in Table 2 show that high movement ampli-
tude (Factor 1) has a statistically significant positive relation-
ship with all of our acoustic variables except for intensity min-
imum and pitch minimum. That is, during phrases in which
speakers are moving more, we can predict an increase in pitch
maximum, mean, and standard deviation as well as intensity
maximum, mean, and standard deviation. High movement vari-
ance (Factor 2) was not predictive of any of the acoustic features
we measured. Though we ran a series of models, the results are
highly significant and would survive a Bonferroni correction or
any related control for multiple comparisons.

OVERALL MOVEMENT MOVEMENT VARIANCE

PITCH Effect Size (Hz)
pmax 4.889 ⇤⇤⇤ —
pmin — —

pmean 2.797 ⇤⇤⇤ —
psd 0.875 ⇤⇤ —

INTENSITY Effect Size (dB)
imax 0.280 ⇤⇤⇤ —
imin — —

imean 0.152 ⇤⇤ —
isd 0.082 ⇤⇤⇤ —

Table 2: Effect sizes for acoustic features predicted at a sta-
tistically significant level by movement amplitude in a series of
mixed-effects regressions.
⇤ indicates p < 0.05, ⇤⇤ is p < 0.01, and ⇤ ⇤ ⇤ is p < 0.001.
— indicates no significant relationship.

To confirm these results, we also run mixed-effects regres-
sions using speaker-scaled pitch max and min, where pitch mea-
surements are converted to a 0-1 scale based on a speaker’s
overall max and min. We also calculate pitch range features per
PBU, which are similarly a value between 0 and 1 calculated
by subtracting the scaled pitch max from min. These models
show a similar statistically significant trend: an increase of one
standard deviation in our overall movement factor predicts use
of 1% more of a speaker’s pitch range within a given phrase.

4. Discussion

Our results build upon prior work to provide further empirical
evidence for a strong connection between speech prosody and
the “visual prosody” of movement and gesture. In our dataset,
phrases with more overall movement were likely to have higher
and more variable pitch as well as louder and more variable in-
tensity, confirming our initial hypotheses. This finding is novel
in that it adds a dimension of quantity: whereas the previous lit-
erature has found primarily temporal synchrony (i.e., the timing

of pitch accents aligns with gestural apices), our results demon-
strate that more movement is indicative of increased excitement
in these prosodic categories.

On the other hand, movement variance - the extent to which
a particular phrase had both large movements and periods of lit-
tle to no movement - was not predictive of any of our acoustic
features. This finding is particularly interesting in that a high
movement variance would encode some well-defined fully se-
mantic gestures. Consider, for example, a definitive pointing
gesture with a pause at its apex. According to the movement
amplitude measure, such a gesture would have a high MA value
during the stroke and a very low value at the apex, resulting
in high MA variation in the PBU during which it occurred.
While the movement amplitude measure is not sufficiently fine-
grained to make definitive claims in this regard, our findings are
suggestive that the synchrony of gestural apices and pitch ac-
cents is predominantly temporal and local: that is, a speaker’s
most “extreme” gestural apices may accurately predict the tim-
ing of the immediately adjacent pitch accent, but not necessarily
its magnitude with respect to that speaker’s global pitch range.
This hypothesis remains to be tested in detail in future work.

Additionally, this study makes several valuable method-
ological contributions to the multi-modal analysis of speech
prosody. The newly proposed movement amplitude measure
provides a replicable estimation of overall movement from raw
video footage, without the need for expensive or invasive equip-
ment at the time of filming or time-consuming annotation effort
after the fact. These properties make this measure particularly
attractive for the analysis of videos collected “in the wild,” such
as from internet video sharing sites like YouTube.

The fact that this measure, when combined with automatic
extraction of approximate pause-bounded phrases as presented
in this paper, is completely automatic for single speakers makes
it tractable for empirically-driven sociolinguistic analyses of
video data in a way that is simply infeasible by means of hand
annotation alone. This paper presented statistically significant
results on a narrowly-defined dataset of “First Day of School”
vlog posts in order to most directly control for prosodic differ-
ences across sociolinguistic groups, but we aim to continue and
expand this research. Future work will consider the possible in-
fluence of genre effects, social meaning and contextual factors
such as performativity, differences in interactional or conversa-
tional speech as compared with monologues, and the influence
of sociolinguistic variables such as age, gender, and dialect.
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