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CHAPTER

C Statistical Constituency Pars-
ing

The characters in Damon Runyon’s short stories are willing to bet “on any propo-
sition whatever”, as Runyon says about Sky Masterson in The Idyll of Miss Sarah
Brown, from getting aces back-to-back to a man being able to throw a peanut from
second base to home plate. There is a moral here for language processing: with
enough knowledge we can estimate the probability of just about anything. The last
two chapters have introduced models of syntactic constituency structure and its pars-
ing. Here, we show that it is possible to build probabilistic models of syntactic
knowledge and efficient probabilistic parsers.

One use of probabilistic parsing is to solve the problem of disambiguation. Re-
call from Chapter 13 that sentences on average tend to be syntactically ambiguous
because of phenomena like coordination ambiguity and attachment ambiguity.
The CKY parsing algorithm can represent these ambiguities in an efficient way but
is not equipped to resolve them. There we introduced a neural algorithm for disam-
biguation. Here we introduce probabilistic parsers, which offer an alternative solu-
tion to the problem: compute the probability of each interpretation and choose the
most probable interpretation. The most commonly used probabilistic constituency
grammar formalism is the probabilistic context-free grammar (PCFG), a prob-
abilistic augmentation of context-free grammars in which each rule is associated
with a probability. We introduce PCFGs in the next section, showing how they can
be trained on Treebank grammars and how they can be parsed with a probabilistic
version of the CKY algorithm of Chapter 13.

We then show a number of ways that we can improve on this basic probabil-
ity model (PCFGs trained on Treebank grammars), such as by modifying the set of
non-terminals (making them either more specific or more general), or adding more
sophisticated conditioning factors like subcategorization or dependencies. Heav-
ily lexicalized grammar formalisms such as Lexical-Functional Grammar (LFG)
(Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag,
1994), Tree-Adjoining Grammar (TAG) (Joshi, 1985), and Combinatory Categorial
Grammar (CCG) pose additional problems for probabilistic parsers. Section ?? in-
troduces the task of supertagging and the use of heuristic search methods based on
the A* algorithm in the context of CCG parsing.

C.1 Probabilistic Context-Free Grammars

The simplest augmentation of the context-free grammar is the Probabilistic Context-
Free Grammar (PCFG), also known as the Stochastic Context-Free GrammarPCFG

(SCFG), first proposed by Booth (1969). Recall that a context-free grammar G isSCFG

defined by four parameters (N, Σ, R, S); a probabilistic context-free grammar is also
defined by four parameters, with a slight augmentation to each of the rules in R:
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N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β [p],

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗,
and p is a number between 0 and 1 expressing P(β |A)

S a designated start symbol

That is, a PCFG differs from a standard CFG by augmenting each rule in R with
a conditional probability:

A→ β [p] (C.1)

Here p expresses the probability that the given non-terminal A will be expanded
to the sequence β . That is, p is the conditional probability of a given expansion β

given the left-hand-side (LHS) non-terminal A. We can represent this probability as

P(A→ β )

or as
P(A→ β |A)

or as
P(RHS|LHS)

Thus, if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1: ∑

β

P(A→ β ) = 1

Figure C.1 shows a PCFG: a probabilistic augmentation of the L1 miniature En-
glish CFG grammar and lexicon. Note that the probabilities of all of the expansions
of each non-terminal sum to 1. Also note that these probabilities were made up
for pedagogical purposes. A real grammar has a great many more rules for each
non-terminal; hence, the probabilities of any particular rule would tend to be much
smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentencesconsistent

in the language equals 1. Certain kinds of recursive rules cause a grammar to be
inconsistent by causing infinitely looping derivations for some sentences. For ex-
ample, a rule S→ S with probability 1 would lead to lost probability mass due to
derivations that never terminate. See Booth and Thompson (1973) for more details
on consistent and inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful
probabilities concerning a sentence and its parse tree(s), including the probability of
a particular parse tree (useful in disambiguation) and the probability of a sentence
or a piece of a sentence (useful in language modeling). Let’s see how this works.

C.1.1 PCFGs for Disambiguation
A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sen-
tence S. This attribute is useful in disambiguation. For example, consider the two
parses of the sentence “Book the dinner flight” shown in Fig. C.2. The sensible parse
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | trip [.30]
S → VP [.05] | meal [.05] | money [.05]
NP → Pronoun [.35] | flight [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | NWA [.40]
VP → Verb [.35] Aux → does [.60] | can [.40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure C.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

on the left means “Book a flight that serves dinner”. The nonsensical parse on the
right, however, would have to mean something like “Book a flight on behalf of ‘the
dinner”’ just as a structurally similar sentence like “Can you book John a flight?”
means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi→ RHSi:

P(T,S) =
n∏

i=1

P(RHSi|LHSi) (C.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T ). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T )P(S|T ) (C.3)

But since a parse tree includes all the words of the sentence, P(S|T ) is 1. Thus,

P(T,S) = P(T )P(S|T ) = P(T ) (C.4)

We can compute the probability of each of the trees in Fig. C.2 by multiplying the
probabilities of each of the rules used in the derivation. For example, the probability
of the left tree in Fig. C.2a (call it Tle f t ) and the right tree (Fig. C.2b or Tright ) can be
computed as follows:

P(Tle f t) = .05∗ .20∗ .20∗ .20∗ .75∗ .30∗ .60∗ .10∗ .40 = 2.2×10−6

P(Tright) = .05∗ .10∗ .20∗ .15∗ .75∗ .75∗ .30∗ .60∗ .10∗ .40 = 6.1×10−7
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Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flight .40 Noun → flight .40

Figure C.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. C.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T |S) (C.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S)
P(S)

(C.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a
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constant for each tree, so we can eliminate it:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S) (C.7)

Furthermore, since we showed above that P(T,S) = P(T ), the final equation for
choosing the most likely parse neatly simplifies to choosing the parse with the high-
est probability:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (C.8)

C.1.2 PCFGs for Language Modeling
A second attribute of a PCFG is that it assigns a probability to the string of words
constituting a sentence. This is important in language modeling, whether for use
in speech recognition, machine translation, spelling correction, augmentative com-
munication, or other applications. The probability of an unambiguous sentence is
P(T,S) = P(T ) or just the probability of the single parse tree for that sentence. The
probability of an ambiguous sentence is the sum of the probabilities of all the parse
trees for the sentence:

P(S) =
∑

T s.t.S=yield(T )
P(T,S) (C.9)

=
∑

T s.t.S=yield(T )
P(T ) (C.10)

An additional feature of PCFGs that is useful for language modeling is their ability
to assign a probability to substrings of a sentence. For example, suppose we want
to know the probability of the next word wi in a sentence given all the words we’ve
seen so far w1, ...,wi−1. The general formula for this is

P(wi|w1,w2, ...,wi−1) =
P(w1,w2, ...,wi−1,wi)

P(w1,w2, ...,wi−1)
(C.11)

We saw in Chapter 3 a simple approximation of this probability using N-grams,
conditioning on only the last word or two instead of the entire context; thus, the
bigram approximation would give us

P(wi|w1,w2, ...,wi−1)≈
P(wi−1,wi)

P(wi−1)
(C.12)

But the fact that the N-gram model can only make use of a couple words of context
means it is ignoring potentially useful prediction cues. Consider predicting the word
after in the following sentence from Chelba and Jelinek (2000):

(C.13) the contract ended with a loss of 7 cents after trading as low as 9 cents

A trigram grammar must predict after from the words 7 cents, while it seems clear
that the verb ended and the subject contract would be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns out that PCFGs allow us to
condition on the entire previous context w1,w2, ...,wi−1 shown in Eq. C.11.

In summary, this section and the previous one have shown that PCFGs can be
applied both to disambiguation in syntactic parsing and to word prediction in lan-
guage modeling. Both of these applications require that we be able to compute the
probability of parse tree T for a given sentence S. The next few sections introduce
some algorithms for computing this probability.
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C.2 Probabilistic CKY Parsing of PCFGs

The parsing problem for PCFGs is to produce the most-likely parse T̂ for a given
sentence S, that is,

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (C.14)

The algorithms for computing the most likely parse are simple extensions of the
standard algorithms for parsing; most modern probabilistic parsers are based on the
probabilistic CKY algorithm, first described by Ney (1991). The probabilistic CKYprobabilistic

CKY
algorithm assumes the PCFG is in Chomsky normal form. Recall from page ?? that
in CNF, the right-hand side of each rule must expand to either two non-terminals or
to a single terminal, i.e., rules have the form A → B C, or A → w.

For the CKY algorithm, we represented each sentence as having indices between
the words. Thus, an example sentence like

(C.15) Book the flight through Houston.

would assume the following indices between each word:

(C.16) 0© Book 1© the 2© flight 3© through 4© Houston 5©
Using these indices, each constituent in the CKY parse tree is encoded in a

two-dimensional matrix. Specifically, for a sentence of length n and a grammar
that contains V non-terminals, we use the upper-triangular portion of an (n+ 1)×
(n+ 1) matrix. For CKY, each cell table[i, j] contained a list of constituents that
could span the sequence of words from i to j. For probabilistic CKY, it’s slightly
simpler to think of the constituents in each cell as constituting a third dimension of
maximum length V . This third dimension corresponds to each non-terminal that can
be placed in this cell, and the value of the cell is then a probability for that non-
terminal/constituent rather than a list of constituents. In summary, each cell [i, j,A]
in this (n+1)× (n+1)×V matrix is the probability of a constituent of type A that
spans positions i through j of the input.

Figure C.3 gives the probabilistic CKY algorithm.

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j← from 1 to LENGTH(words) do
for all { A | A → words[ j] ∈ grammar}

table[ j−1, j,A]←P(A→ words[ j])
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
for all { A | A → BC ∈ grammar,

and table[i,k,B] > 0 and table[k, j,C] > 0 }
if (table[i,j,A] < P(A → BC) × table[i,k,B] × table[k,j,C]) then

table[i,j,A]←P(A → BC) × table[i,k,B] × table[k,j,C]
back[i,j,A]←{k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure C.3 The probabilistic CKY algorithm for finding the maximum probability parse
of a string of num words words given a PCFG grammar with num rules rules in Chomsky
normal form. back is an array of backpointers used to recover the best parse. The build tree
function is left as an exercise to the reader.
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Like the basic CKY algorithm in Fig. ??, the probabilistic CKY algorithm re-
quires a grammar in Chomsky normal form. Converting a probabilistic grammar to
CNF requires that we also modify the probabilities so that the probability of each
parse remains the same under the new CNF grammar. Exercise C.2 asks you to mod-
ify the algorithm for conversion to CNF in Chapter 13 so that it correctly handles
rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly
is typically used. Recall that Exercise 13.3 asked you to make this change in CKY;
Exercise C.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar, which is already in CNF:

S → NP VP .80 Det → the .40
NP → Det N .30 Det → a .40
V P → V NP .20 N → meal .01

V → includes .05 N → f light .02

Given this grammar, Fig. C.4 shows the first steps in the probabilistic CKY parse
of the sentence “The flight includes a meal”.

The flight

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

Det: .40

includes a meal

[3,4]

[4,5]

N: .02

V: .05

NP: .30 *.40 *.02
= .0024

[0,4]

[1,4]

[2,4]

[3,5]

[2,5]

[1,5]

[0,5]

Det: .40

N: .01

Figure C.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the chart
is left as Exercise C.4 for the reader.
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C.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn prob-
abilities for the rules of a grammar. The simplest way is to use a treebank, a cor-
pus of already parsed sentences. Recall that we introduced in Chapter 12 the idea
of treebanks and the commonly used Penn Treebank, a collection of parse trees
in English, Chinese, and other languages that is distributed by the Linguistic Data
Consortium. Given a treebank, we can compute the probability of each expansion
of a non-terminal by counting the number of times that expansion occurs and then
normalizing.

P(α → β |α) =
Count(α → β )∑
γ

Count(α → γ)
=

Count(α → β )

Count(α)
(C.17)

If we don’t have a treebank but we do have a (non-probabilistic) parser, we can
generate the counts we need for computing PCFG rule probabilities by first parsing
a corpus of sentences with the parser. If sentences were unambiguous, it would be
as simple as this: parse the corpus, increment a counter for every rule in the parse,
and then normalize to get probabilities.

But wait! Since most sentences are ambiguous, that is, have multiple parses, we
don’t know which parse to count the rules in. Instead, we need to keep a separate
count for each parse of a sentence and weight each of these partial counts by the
probability of the parse it appears in. But to get these parse probabilities to weight
the rules, we need to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally im-
prove our estimates by beginning with a parser with equal rule probabilities, then
parse the sentence, compute a probability for each parse, use these probabilities to
weight the counts, re-estimate the rule probabilities, and so on, until our proba-
bilities converge. The standard algorithm for computing this solution is called the
inside-outside algorithm; it was proposed by Baker (1979) as a generalization of theinside-outside

forward-backward algorithm for HMMs. Like forward-backward, inside-outside is
a special case of the Expectation Maximization (EM) algorithm, and hence has two
steps: the expectation step, and the maximization step. See Lari and Young (1990)
or Manning and Schütze (1999) for more on the algorithm.

C.4 Problems with PCFGs

While probabilistic context-free grammars are a natural extension to context-free
grammars, they have two main problems as probability estimators:

Poor independence assumptions: CFG rules impose an independence assumption
on probabilities that leads to poor modeling of structural dependencies across
the parse tree.

Lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition
attachment, and coordinate structure ambiguities.

Because of these problems, probabilistic constituent parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
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In the next few sections after discussing the problems in more detail we introduce
some of these augmentations.

C.4.1 Independence Assumptions Miss Rule Dependencies
Let’s look at these problems in more detail. Recall that in a CFG the expansion
of a non-terminal is independent of the context, that is, of the other nearby non-
terminals in the parse tree. Similarly, in a PCFG, the probability of a particular
rule like NP→ Det N is also independent of the rest of the tree. By definition, the
probability of a group of independent events is the product of their probabilities.
These two facts explain why in a PCFG we compute the probability of a tree by just
multiplying the probabilities of each non-terminal expansion.

Unfortunately, this CFG independence assumption results in poor probability
estimates. This is because in English the choice of how a node expands can after all
depend on the location of the node in the parse tree. For example, in English it turns
out that NPs that are syntactic subjects are far more likely to be pronouns, and NPs
that are syntactic objects are far more likely to be non-pronominal (e.g., a proper
noun or a determiner noun sequence), as shown by these statistics for NPs in the
Switchboard corpus (Francis et al., 1999):1

Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

Unfortunately, there is no way to represent this contextual difference in the prob-
abilities of a PCFG. Consider two expansions of the non-terminal NP as a pronoun
or as a determiner+noun. How shall we set the probabilities of these two rules? If
we set their probabilities to their overall probability in the Switchboard corpus, the
two rules have about equal probability.

NP → DT NN .28
NP → PRP .25

Because PCFGs don’t allow a rule probability to be conditioned on surrounding
context, this equal probability is all we get; there is no way to capture the fact that in
subject position, the probability for NP→ PRP should go up to .91, while in object
position, the probability for NP→ DT NN should go up to .66.

These dependencies could be captured if the probability of expanding an NP as
a pronoun (e.g., NP→ PRP) versus a lexical NP (e.g., NP→ DT NN) were con-
ditioned on whether the NP was a subject or an object. Section C.5 introduces the
technique of parent annotation for adding this kind of conditioning.

C.4.2 Lack of Sensitivity to Lexical Dependencies
A second class of problems with PCFGs is their lack of sensitivity to the words in
the parse tree. Words do play a role in PCFGs since the parse probability includes
the probability of a word given a part-of-speech (e.g., from rules like V→ sleep,
NN→ book, etc.).

1 Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sen-
tences. This tendency is caused by the use of subject position to realize the topic or old information
in a sentence (Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal
(“lexical”) noun-phrases are often used to introduce new referents (Chapter 22).
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But it turns out that lexical information is useful in other places in the grammar,
such as in resolving prepositional phrase (PP) attachment ambiguities. Since prepo-
sitional phrases in English can modify a noun phrase or a verb phrase, when a parser
finds a prepositional phrase, it must decide where to attach it in the tree. Consider
the following example:

(C.18) Workers dumped sacks into a bin.

Figure C.5 shows two possible parse trees for this sentence; the one on the left is
the correct parse; Fig. C.6 shows another perspective on the preposition attachment
problem, demonstrating that resolving the ambiguity in Fig. C.5 is equivalent to
deciding whether to attach the prepositional phrase into the rest of the tree at the
NP or VP nodes; we say that the correct parse requires VP attachment, and theVP attachment

incorrect parse implies NP attachment.NP attachment

S

VP

PP
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NN

bin

DT

a

P

into

NP

NNS
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VBD
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NP

NNS

workers

S

VP

NP

PP

NP

NN
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DT

a

P
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NP

NNS
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VBD

dumped
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NNS
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Figure C.5 Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is the
sensible one, in which “into a bin” describes the resulting location of the sacks. In the right incorrect parse, the
sacks to be dumped are the ones which are already “into a bin”, whatever that might mean.

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that
the two parse trees in Fig. C.5 have almost exactly the same rules; they differ only
in that the left-hand parse has this rule:

V P → V BD NP PP

while the right-hand parse has these:

V P → V BD NP
NP → NP PP

Depending on how these probabilities are set, a PCFG will always either prefer
NP attachment or VP attachment. As it happens, NP attachment is slightly more
common in English, so if we trained these rule probabilities on a corpus, we might
always prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sen-
tence. Now we would misparse the following, which requires NP attachment:
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Figure C.6 Another view of the preposition attachment problem. Should the PP on the right attach to the VP
or NP nodes of the partial parse tree on the left?

(C.19) fishermen caught tons of herring

What information in the input sentence lets us know that (C.19) requires NP
attachment while (C.18) requires VP attachment? These preferences come from
the identities of the verbs, nouns, and prepositions. The affinity between the verb
dumped and the preposition into is greater than the affinity between the noun sacks
and the preposition into, thus leading to VP attachment. On the other hand, in (C.19)
the affinity between tons and of is greater than that between caught and of, leading to
NP attachment. Thus, to get the correct parse for these kinds of examples, we need
a model that somehow augments the PCFG probabilities to deal with these lexical
dependency statistics for different verbs and prepositions.lexical

dependency
Coordination ambiguities are another case in which lexical dependencies are

the key to choosing the proper parse. Figure C.7 shows an example from Collins
(1999) with two parses for the phrase dogs in houses and cats. Because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and
should be dispreferred. The two parses in Fig. C.7, however, have exactly the same
PCFG rules, and thus a PCFG will assign them the same probability.

In summary, we have shown in this section and the previous one that probabilistic
context-free grammars are incapable of modeling important structural and lexical
dependencies. In the next two sections we sketch current methods for augmenting
PCFGs to deal with both these issues.

C.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their
inability to model structural dependencies, like the fact that NPs in subject position
tend to be pronouns, whereas NPs in object position tend to have full lexical (non-
pronominal) form. How could we augment a PCFG to correctly model this fact?
One idea would be to split the NP non-terminal into two versions: one for sub-split

jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
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Figure C.7 An instance of coordination ambiguity. Although the left structure is intuitively
the correct one, a PCFG will assign them identical probabilities since both structures use
exactly the same set of rules. After Collins (1999).

different probabilities for the rule NPsubject → PRP and the rule NPobject → PRP.
One way to implement this intuition of splits is to do parent annotation (John-parent

annotation
son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure C.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure C.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for),
and prepositions (of, in, from). Some of these differences can be captured by parent
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annotation (subordinating conjunctions occur under S, prepositions under PP), while
others require splitting the pre-terminal nodes. Figure C.9 shows an example from
Klein and Manning (2003b) in which even a parent-annotated grammar incorrectly
parses works as a noun in to see if advertising works. Splitting pre-terminals to allow
if to prefer a sentential complement results in the correct verbal parse.

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed handwritten rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models
automatically search for the optimal splits. The split and merge algorithm of Petrovsplit and merge

et al. (2006), for example, starts with a simple X-bar grammar, alternately splits the
non-terminals, and merges non-terminals, finding the set of annotated nodes that
maximizes the likelihood of the training set treebank.

C.6 Probabilistic Lexicalized CFGs

The previous section showed that a simple probabilistic CKY algorithm for pars-
ing raw PCFGs can achieve extremely high parsing accuracy if the grammar rule
symbols are redesigned by automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of
modifying the grammar rules, we modify the probabilistic model of the parser to
allow for lexicalized rules. The resulting family of lexicalized parsers includes the
Collins parser (Collins, 1999) and the Charniak parser (Charniak, 1997).

We saw in Section ?? that syntactic constituents could be associated with a lexi-
cal head, and we defined a lexicalized grammar in which each non-terminal in thelexicalized

grammar
tree is annotated with its lexical head, where a rule like V P→ V BD NP PP would
be extended as

VP(dumped) → VBD(dumped) NP(sacks) PP(into) (C.20)

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN

advertising

IN

if

VB

see

TO

to

VPˆS

VPˆVP

SBARˆVP

SˆSBAR

VPˆS

VBZˆVP

works

NPˆS

NNˆNP

advertising

INˆSBAR

if

VBˆVP

see

TOˆVP

to

Figure C.9 An incorrect parse even with a parent-annotated parse (left). The correct parse (right), was pro-
duced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to
capture the fact that if prefers sentential complements. Adapted from Klein and Manning (2003b).
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In the standard type of lexicalized grammar, we actually make a further exten-
sion, which is to associate the head tag, the part-of-speech tags of the headwords,head tag

with the non-terminal symbols as well. Each rule is thus lexicalized by both the
headword and the head tag of each constituent resulting in a format for lexicalized
rules like

VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) (C.21)

We show a lexicalized parse tree with head tags in Fig. C.10, extended from Fig. ??.

TOP

S(dumped,VBD)

VP(dumped,VBD)

PP(into,P)

NP(bin,NN)

NN(bin,NN)

bin

DT(a,DT)

a

P(into,P)

into

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

VBD(dumped,VBD)

dumped

NP(workers,NNS)

NNS(workers,NNS)

workers

Internal Rules Lexical Rules
TOP → S(dumped,VBD) NNS(workers,NNS) → workers
S(dumped,VBD) → NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) → dumped
NP(workers,NNS) → NNS(workers,NNS) NNS(sacks,NNS) → sacks
VP(dumped,VBD) → VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) P(into,P) → into
PP(into,P) → P(into,P) NP(bin,NN) DT(a,DT) → a
NP(bin,NN) → DT(a,DT) NN(bin,NN) NN(bin,NN) → bin

Figure C.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below
we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.

To generate such a lexicalized tree, each PCFG rule must be augmented to iden-
tify one right-hand constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter, and the head tag to the part-of-speech
tag of the headword. Recall that we gave in Fig. ?? a set of handwritten rules for
identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is as a parent annotation, that
is, as a simple context-free grammar with many copies of each rule, one copy for
each possible headword/head tag for each constituent. Thinking of a probabilistic
lexicalized CFG in this way would lead to the set of simple PCFG rules shown below
the tree in Fig. C.10.

Note that Fig. C.10 shows two kinds of rules: lexical rules, which express thelexical rules

expansion of a pre-terminal to a word, and internal rules, which express the otherinternal rules

rule expansions. We need to distinguish these kinds of rules in a lexicalized grammar
because they are associated with very different kinds of probabilities. The lexical
rules are deterministic, that is, they have probability 1.0 since a lexicalized pre-
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terminal like NN(bin,NN) can only expand to the word bin. But for the internal
rules, we need to estimate probabilities.

Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG
that just happened to have lots of very complex non-terminals and estimate the
probabilities for each rule from maximum likelihood estimates. Thus, according
to Eq. C.17, the MLE estimate for the probability for the rule P(VP(dumped,VBD)
→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P)) would be

Count(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

Count(VP(dumped,VBD))
(C.22)

But there’s no way we can get good estimates of counts like those in (C.22) because
they are so specific: we’re unlikely to see many (or even any) instances of a sentence
with a verb phrase headed by dumped that has one NP argument headed by sacks
and a PP argument headed by into. In other words, counts of fully lexicalized PCFG
rules like this will be far too sparse, and most rule probabilities will come out 0.

The idea of lexicalized parsing is to make some further independence assump-
tions to break down each rule so that we would estimate the probability

P(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

as the product of smaller independent probability estimates for which we could ac-
quire reasonable counts. The next section summarizes one such method, the Collins
parsing method.

C.6.1 The Collins Parser
Statistical parsers differ in exactly which independence assumptions they make.
Let’s look at the assumptions in a simplified version of the Collins parser. The first
intuition of the Collins parser is to think of the right-hand side of every (internal)
CFG rule as consisting of a head non-terminal, together with the non-terminals to
the left of the head and the non-terminals to the right of the head. In the abstract, we
think about these rules as follows:

LHS→ Ln Ln−1 ...L1 H R1 ...Rn−1 Rn (C.23)

Since this is a lexicalized grammar, each of the symbols like L1 or R3 or H or LHS
is actually a complex symbol representing the category and its head and head tag,
like VP(dumped,VP) or NP(sacks,NNS).

Now, instead of computing a single MLE probability for this rule, we are going
to break down this rule via a neat generative story, a slight simplification of what is
called Collins Model 1. This new generative story is that given the left-hand side,
we first generate the head of the rule and then generate the dependents of the head,
one by one, from the inside out. Each of these steps will have its own probability.

We also add a special STOP non-terminal at the left and right edges of the rule;
this non-terminal allows the model to know when to stop generating dependents on a
given side. We generate dependents on the left side of the head until we’ve generated
STOP on the left side of the head, at which point we move to the right side of the
head and start generating dependents there until we generate STOP. So it’s as if we
are generating a rule augmented as follows:

P(VP(dumped,VBD)→ (C.24)

STOP VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) STOP)



16 APPENDIX C • STATISTICAL CONSTITUENCY PARSING

Let’s see the generative story for this augmented rule. We make use of three kinds
of probabilities: PH for generating heads, PL for generating dependents on the left,
and PR for generating dependents on the right.

1. Generate the head VBD(dumped,VBD) with probability
PH (H | LHS) = PH (VBD(dumped,VBD) | VP(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)

2. Generate the left dependent (which is STOP, since there isn’t
one) with probability
PL(STOP | VP(dumped,VBD) VBD(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)STOP

3. Generate right dependent NP(sacks,NNS) with probability
PR(NP(sacks,NNS) | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

NP(sacks,NNS)VBD(dumped,VBD)STOP

4. Generate the right dependent PP(into,P) with probability
PR(PP(into,P) | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

PP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

5) Generate the right dependent STOP with probability
PR(STOP | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOPPP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

In summary, the probability of this rule

P(VP(dumped,VBD)→ (C.25)

VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

is estimated (simplifying the notation a bit from the steps above):

PH (VBD|VP, dumped) × PL(STOP|VP,VBD,dumped) (C.26)

× PR(NP(sacks,NNS)|VP,VBD,dumped)

× PR(PP(into,P)|VP,VBD,dumped)

× PR(STOP|VP,VBD,dumped)

Each of these probabilities can be estimated from much smaller amounts of data
than the full probability in (C.25). For example, the maximum likelihood estimate
for the component probability PR(NP(sacks,NNS)|VP,VBD,dumped) is

Count(VP(dumped,VBD) with NNS(sacks) as a daughter somewhere on the right)

Count( VP(dumped,VBD) )
(C.27)

These counts are much less subject to sparsity problems than are complex counts
like those in (C.25).
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More generally, if H is a head with head word hw and head tag ht, lw/lt and
rw/rt are the word/tag on the left and right respectively, and P is the parent, then the
probability of an entire rule can be expressed as follows:

1. Generate the head of the phrase H(hw,ht) with probability:

PH(H(hw,ht)|P,hw,ht)

2. Generate modifiers to the left of the head with total probability

n+1∏
i=1

PL(Li(lwi, lti)|P,H,hw,ht)

such that Ln+1(lwn+1, ltn+1) = STOP, and we stop generating once we’ve gen-
erated a STOP token.

3. Generate modifiers to the right of the head with total probability:

n+1∏
i=1

PR(Ri(rwi,rti)|P,H,hw,ht)

such that Rn+1(rwn+1,rtn+1) = STOP, and we stop generating once we’ve gen-
erated a STOP token.

The parsing algorithm for the Collins model is an extension of probabilistic
CKY. Extending the CKY algorithm to handle basic lexicalized probabilities is left
as Exercises 14.5 and 14.6 for the reader.

C.7 Summary

This chapter has sketched the basics of probabilistic parsing, concentrating on
probabilistic context-free grammars.

• Probabilistic grammars assign a probability to a sentence or string of words
while attempting to capture sophisticated grammatical information.

• A probabilistic context-free grammar (PCFG) is a context-free
grammar in which every rule is annotated with the probability of that rule
being chosen. Each PCFG rule is treated as if it were conditionally inde-
pendent; thus, the probability of a sentence is computed by multiplying the
probabilities of each rule in the parse of the sentence.

• The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic
version of the CKY parsing algorithm.

• PCFG probabilities can be learned by counting in a parsed corpus or by pars-
ing a corpus. The inside-outside algorithm is a way of dealing with the fact
that the sentences being parsed are ambiguous.

• Raw PCFGs suffer from poor independence assumptions among rules and lack
of sensitivity to lexical dependencies.

• One way to deal with this problem is to split and merge non-terminals (auto-
matically or by hand).
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• Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented with a lexical head for each rule. The
probability of a rule can then be conditioned on the lexical head or nearby
heads.

• Parsers for lexicalized PCFGs (like the Collins parser) are based on extensions
to probabilistic CKY parsing.

Bibliographical and Historical Notes
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entropy (Ratnaparkhi et al., 1994), memory-based learning (Zavrel and Daelemans,
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probabilistic TAG grammar (Resnik 1992, Schabes 1992), based on the TAG gram-
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Exercises
C.1 Implement the CKY algorithm.
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C.2 Modify the algorithm for conversion to CNF from Chapter 13 to correctly
handle rule probabilities. Make sure that the resulting CNF assigns the same
total probability to each parse tree.

C.3 Recall that Exercise 13.3 asked you to update the CKY algorithm to han-
dle unit productions directly rather than converting them to CNF. Extend this
change to probabilistic CKY.

C.4 Fill out the rest of the probabilistic CKY chart in Fig. C.4.

C.5 Sketch how the CKY algorithm would have to be augmented to handle lexi-
calized probabilities.

C.6 Implement your lexicalized extension of the CKY algorithm.
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Schabes, Y., A. Abeillé, and A. K. Joshi. 1988. Parsing
strategies with ‘lexicalized’ grammars: Applications to
Tree Adjoining Grammars. COLING.

Stetina, J. and M. Nagao. 1997. Corpus based PP attachment
ambiguity resolution with a semantic dictionary. Pro-
ceedings of the Fifth Workshop on Very Large Corpora.

Stolcke, A. 1995. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Computational Linguistics, 21(2):165–202.

https://www.aclweb.org/anthology/N03-1016
https://www.aclweb.org/anthology/N03-1016
http://www.aclweb.org/anthology/P/P06/P06-1055
http://www.aclweb.org/anthology/P/P06/P06-1055


Exercises 21

Zavrel, J. and W. Daelemans. 1997. Memory-based learning:
Using similarity for smoothing. ACL.


	Appendix
	Statistical Constituency Parsing
	Probabilistic Context-Free Grammars
	PCFGs for Disambiguation
	PCFGs for Language Modeling

	Probabilistic CKY Parsing of PCFGs
	Ways to Learn PCFG Rule Probabilities
	Problems with PCFGs
	Independence Assumptions Miss Rule Dependencies
	Lack of Sensitivity to Lexical Dependencies

	Improving PCFGs by Splitting Non-Terminals
	Probabilistic Lexicalized CFGs
	The Collins Parser

	Summary
	Bibliographical and Historical Notes
	Exercises



