Summary of Contents

1 Introduction ................................................................. 9
2 Regular Expressions, Text Normalization, Edit Distance ........... 10
3 Finite State Transducers ............................................... 34
4 Language Modeling with N-grams .................................. 35
5 Spelling Correction and the Noisy Channel ....................... 61
6 Naïve Bayes and Sentiment Classification ......................... 74
7 Logistic Regression ....................................................... 92
8 Neural Networks and Neural Language Models .................... 102
9 Hidden Markov Models .................................................. 122
10 Part-of-Speech Tagging ............................................... 142
11 Formal Grammars of English ....................................... 168
12 Syntactic Parsing ....................................................... 197
13 Statistical Parsing ..................................................... 212
14 Dependency Parsing .................................................. 245
15 Vector Semantics ....................................................... 270
16 Semantics with Dense Vectors ..................................... 286
17 Computing with Word Senses ....................................... 300
18 Lexicons for Sentiment and Affect Extraction ..................... 326
19 The Representation of Sentence Meaning ......................... 346
20 Computational Semantics ............................................ 347
21 Information Extraction ............................................... 348
22 Semantic Role Labeling .............................................. 377
23 Coreference Resolution and Entity Linking ....................... 396
24 Discourse Coherence ................................................. 397
25 Machine Translation and Seq2Seq Models ......................... 398
26 Summarization .......................................................... 399
27 Question Answering ..................................................... 400
28 Dialog Systems and Chatbots ...................................... 418
29 Advanced Dialog Systems .......................................... 441
30 Speech Recognition .................................................... 459
31 Speech Synthesis ....................................................... 460
Bibliography ................................................................. 461
Author Index ............................................................... 485
Subject Index .............................................................. 493
## Contents

1 Introduction ................................................. 9

2 Regular Expressions, Text Normalization, Edit Distance .......... 10
   2.1 Regular Expressions ........................................... 11
   2.2 Words and Corpora ................................................ 19
   2.3 Text Normalization .............................................. 20
   2.4 Minimum Edit Distance ......................................... 26
   2.5 Summary .......................................................... 31
   Bibliographical and Historical Notes .............................. 31
   Exercises ............................................................ 32

3 Finite State Transducers ........................................ 34

4 Language Modeling with N-grams .................................... 35
   4.1 N-Grams ............................................................. 36
   4.2 Evaluating Language Models ..................................... 41
   4.3 Generalization and Zeros ....................................... 43
   4.4 Smoothing .......................................................... 46
   4.5 Kneser-Ney Smoothing .......................................... 51
   4.6 The Web and Stupid Backoff .................................... 53
   4.7 Advanced: Perplexity’s Relation to Entropy .................... 54
   4.8 Summary .......................................................... 58
   Bibliographical and Historical Notes .............................. 58
   Exercises ............................................................ 59

5 Spelling Correction and the Noisy Channel .......................... 61
   5.1 The Noisy Channel Model ....................................... 62
   5.2 Real-word spelling errors ....................................... 67
   5.3 Noisy Channel Model: The State of the Art ..................... 69
   Bibliographical and Historical Notes .............................. 72
   Exercises ............................................................ 73

6 Naive Bayes and Sentiment Classification ............................. 74
   6.1 Naive Bayes Classifiers ......................................... 76
   6.2 Training the Naive Bayes Classifier ............................... 78
   6.3 Worked example .................................................. 79
   6.4 Optimizing for Sentiment Analysis ............................... 81
   6.5 Naive Bayes as a Language Model ............................... 82
   6.6 Evaluation: Precision, Recall, F-measure ....................... 83
   6.7 More than two classes ............................................ 85
   6.8 Test sets and Cross-validation .................................. 86
   6.9 Statistical Significance Testing ................................ 87
   6.10 Summary .......................................................... 88
   Bibliographical and Historical Notes .............................. 89
   Exercises ............................................................ 90

7 Logistic Regression ................................................. 92
   7.1 Features in Multinomial Logistic Regression .................... 93
   7.2 Classification in Multinomial Logistic Regression ............... 95
7.3 Learning Logistic Regression ........................................... 96
7.4 Regularization ......................................................... 97
7.5 Feature Selection .................................................... 99
7.6 Choosing a classifier and features ............................... 100
7.7 Summary .............................................................. 101
Bibliographical and Historical Notes .................................. 101
Exercises ................................................................. 101

8 Neural Networks and Neural Language Models .................. 102
8.1 Units .................................................................................. 103
8.2 The XOR problem .......................................................... 105
8.3 Feed-Forward Neural Networks ...................................... 108
8.4 Training Neural Nets ...................................................... 111
8.5 Neural Language Models ............................................... 115
8.6 Summary ................................................................. 119
Bibliographical and Historical Notes .................................. 120

9 Hidden Markov Models .................................................. 122
9.1 Markov Chains ............................................................ 123
9.2 The Hidden Markov Model ............................................. 124
9.3 Likelihood Computation: The Forward Algorithm .......... 127
9.4 Decoding: The Viterbi Algorithm ................................... 131
9.5 HMM Training: The Forward-Backward Algorithm ......... 134
9.6 Summary ................................................................. 140
Bibliographical and Historical Notes .................................. 140
Exercises ................................................................. 141

10 Part-of-Speech Tagging ................................................ 142
10.1 (Mostly) English Word Classes ................................. 143
10.2 The Penn Treebank Part-of-Speech Tagset ................. 145
10.3 Part-of-Speech Tagging ............................................... 147
10.4 HMM Part-of-Speech Tagging ...................................... 149
10.5 Maximum Entropy Markov Models ......................... 157
10.6 Bidirectionality .......................................................... 162
10.7 Part-of-Speech Tagging for Other Languages ............ 162
10.8 Summary .............................................................. 163
Bibliographical and Historical Notes .................................. 164
Exercises ................................................................. 166

11 Formal Grammars of English ..................................... 168
11.1 Constituency ............................................................. 168
11.2 Context-Free Grammars ............................................. 169
11.3 Some Grammar Rules for English ......................... 174
11.4 Treebanks ............................................................... 181
11.5 Grammar Equivalence and Normal Form ................. 187
11.6 Lexicalized Grammars .............................................. 188
11.7 Summary .............................................................. 193
Bibliographical and Historical Notes .................................. 194
Exercises ................................................................. 195

12 Syntactic Parsing ....................................................... 197
12.1 Ambiguity .............................................................. 197
CONTENTS

12.2 CKY Parsing: A Dynamic Programming Approach .......... 199
12.3 Partial Parsing ........................................... 205
12.4 Summary ..................................................... 209
Bibliographical and Historical Notes ............................. 210
Exercises ........................................................ 211

13 Statistical Parsing ............................................. 212
13.1 Probabilistic Context-Free Grammars ....................... 213
13.2 Probabilistic CKY Parsing of PCFGs ......................... 217
13.3 Ways to Learn PCFG Rule Probabilities .................... 218
13.4 Problems with PCFGs ...................................... 220
13.5 Improving PCFGs by Splitting Non-Terminals ............... 223
13.6 Probabilistic Lexicalized CFGs ............................. 225
13.7 Probabilistic CCG Parsing ................................ 230
13.8 Evaluating Parsers ......................................... 238
13.9 Human Parsing .............................................. 239
13.10 Summary .................................................... 242
Bibliographical and Historical Notes ............................. 242
Exercises ........................................................ 244

14 Dependency Parsing ............................................ 245
14.1 Dependency Relations ....................................... 246
14.2 Dependency Formalisms .................................... 248
14.3 Dependency Treebanks ..................................... 249
14.4 Transition-Based Dependency Parsing ....................... 250
14.5 Graph-Based Dependency Parsing ........................... 261
14.6 Evaluation ................................................... 266
14.7 Summary ...................................................... 267
Bibliographical and Historical Notes ............................. 268
Exercises ........................................................ 269

15 Vector Semantics ................................................ 270
15.1 Words and Vectors .......................................... 271
15.2 Weighing terms: Pointwise Mutual Information (PMI) .... 275
15.3 Measuring similarity: the cosine ........................... 279
15.4 Using syntax to define a word’s context .................... 282
15.5 Evaluating Vector Models ................................ 283
15.6 Summary ...................................................... 284
Bibliographical and Historical Notes ............................. 284
Exercises ........................................................ 285

16 Semantics with Dense Vectors ................................ 286
16.1 Dense Vectors via SVD ..................................... 286
16.2 Embeddings from prediction: Skip-gram and CBOW ....... 290
16.3 Properties of embeddings .................................. 295
16.4 Brown Clustering .......................................... 295
16.5 Summary ...................................................... 297
Bibliographical and Historical Notes ............................. 298
Exercises ........................................................ 299

17 Computing with Word Senses ................................ 300
17.1 Word Senses .................................................. 300
## CONTENTS

17.2 Relations Between Senses ........................................ 303  
17.3 WordNet: A Database of Lexical Relations ................. 305  
17.4 Word Sense Disambiguation: Overview ...................... 306  
17.5 Supervised Word Sense Disambiguation .................... 308  
17.6 WSD: Dictionary and Thesaurus Methods .................. 311  
17.7 Semi-Supervised WSD: Bootstrapping ...................... 314  
17.8 Unsupervised Word Sense Induction ....................... 316  
17.9 Word Similarity: Thesaurus Methods ...................... 317  
17.10 Summary ...................................................... 323  
Bibliographical and Historical Notes .......................... 323  
Exercises ........................................................... 325  

18 Lexicons for Sentiment and Affect Extraction ................. 326  
18.1 Available Sentiment Lexicons ................................. 327  
18.2 Semi-supervised induction of sentiment lexicons ......... 328  
18.3 Supervised learning of word sentiment .................... 333  
18.4 Using Lexicons for Sentiment Recognition ............... 337  
18.5 Emotion and other classes .................................... 338  
18.6 Other tasks: Personality ...................................... 341  
18.7 Affect Recognition ............................................. 342  
18.8 Summary ...................................................... 344  
Bibliographical and Historical Notes .......................... 344  

19 The Representation of Sentence Meaning ........................ 346  

20 Computational Semantics ........................................ 347  

21 Information Extraction ........................................ 348  
21.1 Named Entity Recognition .................................... 349  
21.2 Relation Extraction ........................................... 354  
21.3 Extracting Times .............................................. 365  
21.4 Extracting Events and their Times ......................... 368  
21.5 Template Filling .............................................. 371  
21.6 Summary ...................................................... 373  
Bibliographical and Historical Notes .......................... 374  
Exercises ........................................................... 375  

22 Semantic Role Labeling ......................................... 377  
22.1 Semantic Roles ................................................ 377  
22.2 Diathesis Alternations ....................................... 379  
22.3 Semantic Roles: Problems with Thematic Roles ........... 380  
22.4 The Proposition Bank ....................................... 381  
22.5 FrameNet .................................................... 382  
22.6 Semantic Role Labeling .................................... 384  
22.7 Selectional Restrictions ...................................... 387  
22.8 Primitive Decomposition of Predicates .................... 392  
22.9 AMR .......................................................... 393  
22.10 Summary ..................................................... 393  
Bibliographical and Historical Notes .......................... 394  
Exercises ........................................................... 395  

23 Coreference Resolution and Entity Linking ................... 396
24 Discourse Coherence
25 Machine Translation and Seq2Seq Models
26 Summarization
27 Question Answering
   27.1 IR-based Factoid Question Answering
   27.2 Knowledge-based Question Answering
   27.3 Using multiple information sources: IBM’s Watson
   27.4 Evaluation of Factoid Answers
   Bibliographical and Historical Notes
   Exercises
28 Dialog Systems and Chatbots
   28.1 Chatbots
   28.2 Frame Based Dialog Agents
   28.3 VoiceXML
   28.4 Evaluating Dialogue Systems
   28.5 Dialogue System Design
   28.6 Summary
   Bibliographical and Historical Notes
   Exercises
29 Advanced Dialog Systems
   29.1 Dialog Acts
   29.2 Dialog State: Interpreting Dialogue Acts
   29.3 Dialogue Policy
   29.4 A simple policy based on local context
   29.5 Natural language generation in the dialog-state model
   29.6 Advanced: Markov Decision Processes
   29.7 Summary
   Bibliographical and Historical Notes
30 Speech Recognition
31 Speech Synthesis
Bibliography
Author Index
Subject Index
CHAPTER 1

Introduction

Placeholder
The dialogue above is from ELIZA, an early natural language processing system that could carry on a limited conversation with a user by imitating the responses of a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple program that uses pattern matching to recognize phrases like “You are X” and translate them into suitable outputs like “What makes you think I am X?”. This simple technique succeeds in this domain because ELIZA doesn’t actually need to know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one of the few dialogue genres where listeners can act as if they know nothing of the world. Eliza’s mimicry of human conversation was remarkably successful: many people who interacted with ELIZA came to believe that it really understood them and their problems, many continued to believe in ELIZA’s abilities even after the program’s operation was explained to them (Weizenbaum, 1976), and even today such chatbots are a fun diversion.

Of course modern conversational agents are much more than a diversion; they can answer questions, book flights, or find restaurants, functions for which they rely on a much more sophisticated understanding of the user’s intent, as we will see in Chapter 29. Nonetheless, the simple pattern-based methods that powered ELIZA and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular expression. Regular expressions can be used to specify strings we might want to extract from a document, from transforming “You are X” in Eliza above, to defining strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in which regular expressions play an important part. Normalizing text means converting it to a more convenient, standard form. For example, most of what we are going to do with language relies on first separating out or tokenizing words from running text, the task of tokenization. English words are often separated from each other by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll are sometimes treated as large words despite the fact that they contain spaces, while sometimes we’ll need to separate I’m into the two words I and am. For processing tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc. Some languages, like Chinese, don’t have spaces between words, so word tokenization becomes more difficult.
Another part of text normalization is lemmatization, the task of determining that two words have the same root, despite their surface differences. For example, the words sang, sung, and sings are forms of the verb sing. The word sing is the common lemma of these words, and a lemmatizer maps from all of these to sing. Lemmatization is essential for processing morphologically complex languages like Arabic. Stemming refers to a simpler version of lemmatization in which we mainly just strip suffixes from the end of the word. Text normalization also includes sentence segmentation: breaking up a text into individual sentences, using cues like periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric called edit distance that measures how similar two strings are based on the number of edits (insertions, deletions, substitutions) it takes to change one string into the other. Edit distance is an algorithm with applications throughout language processing, from spelling correction to speech recognition to coreference resolution.

### 2.1 Regular Expressions

_SIR ANDREW:_  *Her C’s, her U’s and her T’s: why that?*_  
_Shakespeare, Twelfth Night_

One of the unsung successes in standardization in computer science has been the regular expression (RE), a language for specifying text search strings. This practical language is used in every computer language, word processor, and text processing tools like the Unix tools grep or Emacs. Formally, a regular expression is an algebraic notation for characterizing a set of strings. They are particularly useful for searching in texts, when we have a pattern to search for and a corpus of texts to search through. A regular expression search function will search through the corpus, returning all texts that match the pattern. The corpus can be a single document or a collection. For example, the Unix command-line tool grep takes a regular expression and returns every line of the input document that matches the expression.

A search can be designed to return every match on a line, if there are more than one, or just the first match. In the following examples we underline the exact part of the pattern that matches the regular expression and show only the first match. We’ll show regular expressions delimited by slashes but note that slashes are not part of the regular expressions.

#### 2.1.1 Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters. To search for _woodchuck_, we type `/woodchuck/`. The expression `/Buttercup/` matches any string containing the substring _Buttercup_; _grep_ with that expression would return the line _I’m called little Buttercup_. The search string can consist of a single character (like `/!/`) or a sequence of characters (like `/urg1/`).

<table>
<thead>
<tr>
<th>RE</th>
<th>Example Patterns Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/woodchucks/</code></td>
<td>“interesting links to woodchucks and lemurs”</td>
</tr>
<tr>
<td><code>/a/</code></td>
<td>“Mary Ann stopped by Mona’s”</td>
</tr>
<tr>
<td><code>/1/</code></td>
<td>“You’ve left the burglar behind again!”</td>
</tr>
</tbody>
</table>

_Figure 2.1_ Some simple regex searches.
Regular expressions are **case sensitive**: lower case /s/ is distinct from upper case /S/ (\(/s/ matches a lower case s but not an upper case S/). This means that the pattern `/woodchucks/` will not match the string `Woodchucks`. We can solve this problem with the use of the square braces [ and ]. The string of characters inside the braces specifies a **disjunction** of characters to match. For example, Fig. 2.2 shows that the pattern `/\[wW\]/` matches patterns containing either w or W.

<table>
<thead>
<tr>
<th>RE</th>
<th>Match</th>
<th>Example Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/\[wW\]oodchuck/</code></td>
<td>Woodchuck or woodchuck</td>
<td>“Woodchuck”</td>
</tr>
<tr>
<td><code>/\[ab\]c/</code></td>
<td>‘a’, ‘b’, or ‘c’</td>
<td>“In uomini, in soldati”</td>
</tr>
<tr>
<td><code>/\[1234567890\]/</code></td>
<td>any digit</td>
<td>“plenty of 7 to 5”</td>
</tr>
</tbody>
</table>

**Figure 2.2** The use of the brackets [ ] to specify a disjunction of characters.

The regular expression `/\[1234567890\]/` specified any single digit. While such classes of characters as digits or letters are important building blocks in expressions, they can get awkward (e.g., it’s inconvenient to specify

```
/\[A-Za-z\]/
```

to mean “any capital letter”). In cases where there is a well-defined sequence associated with a set of characters, the brackets can be used with the dash (-) to specify any one character in a **range**. The pattern `/\[2-5\]/` specifies any one of the characters 2, 3, 4, or 5. The pattern `/\[b-g\]/` specifies one of the characters b, c, d, e, f, or g. Some other examples are shown in Fig. 2.3.

<table>
<thead>
<tr>
<th>RE</th>
<th>Match</th>
<th>Example Patterns Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/\[A-Z\]/</code></td>
<td>an upper case letter</td>
<td>“we should call it ‘Drenched Blossoms’”</td>
</tr>
<tr>
<td><code>/\[a-z\]/</code></td>
<td>a lower case letter</td>
<td>“my beans were impatient to be hoed!”</td>
</tr>
<tr>
<td><code>/\[0-9\]/</code></td>
<td>a single digit</td>
<td>“Chapter 1: Down the Rabbit Hole”</td>
</tr>
</tbody>
</table>

**Figure 2.3** The use of the brackets [ ] plus the dash – to specify a range.

The square braces can also be used to specify what a single character **cannot** be, by use of the caret `\^`. If the caret `\^` is the first symbol after the open square brace [, the resulting pattern is negated. For example, the pattern `/\[^a\]/` matches any single character (including special characters) except a. This is only true when the caret is the first symbol after the open square brace. If it occurs anywhere else, it usually stands for a caret; Fig. 2.4 shows some examples.

<table>
<thead>
<tr>
<th>RE</th>
<th>Match (single characters)</th>
<th>Example Patterns Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/\[^A-Z\]/</code></td>
<td>not an upper case letter</td>
<td>“Oyfn priyetchik”</td>
</tr>
<tr>
<td><code>/\[^Ss\]/</code></td>
<td>neither ‘S’ nor ‘s’</td>
<td>“I have no exquisite reason for’t”</td>
</tr>
<tr>
<td><code>/\[^\.:\]/</code></td>
<td>not a period</td>
<td>“our resident Djinn”</td>
</tr>
<tr>
<td><code>/\[^e\]\]/</code></td>
<td>either ‘e’ or ‘’</td>
<td>“look up _ now”</td>
</tr>
<tr>
<td><code>/\[^a\]b\]/</code></td>
<td>the pattern ‘a’ ‘b’</td>
<td>“look up a’b now”</td>
</tr>
</tbody>
</table>

**Figure 2.4** Uses of the caret `\^` for negation or just to mean `\^`. We discuss below the need to escape the period by a backslash.

How can we talk about optional elements, like an optional s in `woodchuck` and `woodchucks`? We can’t use the square brackets, because while they allow us to say “s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark `/?/`, which means “the preceding character or nothing”, as shown in Fig. 2.5.

We can think of the question mark as meaning “zero or one instances of the previous character”. That is, it’s a way of specifying how many of something that
2.1 • Regular Expressions

we want, something that is very important in regular expressions. For example, consider the language of certain sheep, which consists of strings that look like the following:

baa!
baaa!
baaaa!

This language consists of strings with a $b$, followed by at least two $a$'s, followed by an exclamation point. The set of operators that allows us to say things like "some number of $a$'s" are based on the asterisk or $\ast$, commonly called the Kleene $\ast$ (generally pronounced "cleany star"). The Kleene star means "zero or more occurrences of the immediately previous character or regular expression". So $/a\ast/$ means "any string of zero or more $a$'s". This will match $a$ or $aaaaaa$, but it will also match Off Minor since the string Off Minor has zero $a$'s. So the regular expression for matching one or more $a$ is $/aa\ast/$, meaning one $a$ followed by zero or more $a$'s. More complex patterns can also be repeated. So $/\{ab\}\ast/$ means "zero or more $a$'s or $b$'s" (not "zero or more right square braces"). This will match strings like $aaaa$ or $ababab$ or $bbbb$.

For specifying multiple digits (useful for finding prices) we can extend $/\{0-9\}/$, the regular expression for a single digit. An integer (a string of digits) is thus $/\{0-9\}\{0-9\}\ast/$. (Why isn’t it just $/\{0-9\}\ast/$?)

Sometimes it’s annoying to have to write the regular expression for digits twice, so there is a shorter way to specify "at least one" of some character. This is the Kleene +, which means "one or more of the previous character". Thus, the expression $/\{0-9\}\ast/+/$ is the normal way to specify "a sequence of digits". There are thus two ways to specify the sheep language: $/baaa\ast/+/$ or $/baa+/$.

One very important special character is the period ($/./$), a wildcard expression that matches any single character (except a carriage return), as shown in Fig. 2.6.

---

<table>
<thead>
<tr>
<th>RE</th>
<th>Match</th>
<th>Example Patterns Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>woodchucks?</code></td>
<td>woodchuck or woodchucks</td>
<td>&quot;woodchuck&quot;</td>
</tr>
<tr>
<td><code>colou?r</code></td>
<td>color or colour</td>
<td>&quot;colour&quot;</td>
</tr>
</tbody>
</table>

Figure 2.5 The question mark $?$ marks optionality of the previous expression.

---

The wildcard is often used together with the Kleene star to mean "any string of characters". For example, suppose we want to find any line in which a particular word, for example, aardvark, appears twice. We can specify this with the regular expression $/aardvark.*aardvark/$.

Anchors are special characters that anchor regular expressions to particular places in a string. The most common anchors are the caret $\hat{}$ and the dollar sign $. The caret $\hat{}$ matches the start of a line. The pattern $/\text{The}/$ matches the word The only at the start of a line. Thus, the caret $\hat{}$ has three uses: to match the start of a line, to indicate a negation inside of square brackets, and just to mean a caret. (What are the contexts that allow grep or Python to know which function a given caret is supposed to have?) The dollar sign $\$ matches the end of a line. So the pattern $\.\$ is a useful
pattern for matching a space at the end of a line, and \"The dog\$. matches a line that contains only the phrase The dog. (We have to use the backslash here since we want the . to mean "period" and not the wildcard.)

There are also two other anchors: \b matches a word boundary, and \B matches a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other. More technically, a “word” for the purposes of a regular expression is defined as any sequence of digits, underscores, or letters; this is based on the definition of “words” in programming languages. For example, /\b99\b/ will match the string 99 in There are 99 bottles of beer on the wall (because 99 follows a space) but not in There are 299 bottles of beer on the wall (since 99 follows a number). But it will match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore, or letter).

### 2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly interested in cats and dogs. In such a case, we might want to search for either the string cat or the string dog. Since we can’t use the square brackets to search for “cat or dog” (why can’t we say /\[cat\|dog\]/?), we need a new operator, the disjunction operator, also called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger sequence. For example, suppose I want to search for information about pet fish for my cousin David. How can I specify both guppy and guppies? We cannot simply say /guppy|ies/, because that would match only the strings guppy and ies. This is because sequences like guppy take precedence over the disjunction operator |. To make the disjunction operator apply only to a specific pattern, we need to use the parenthesis operators ( and ). Enclosing a pattern in parentheses makes it act like a single character for the purposes of neighboring operators like the pipe | and the Kleene*. So the pattern /guppy|ies/ would specify that we meant the disjunction only to apply to the suffixes y and ies.

The parenthesis operator ( is also useful when we are using counters like the Kleene*. Unlike the | operator, the Kleene* operator applies by default only to a single character, not to a whole sequence. Suppose we want to match repeated instances of a string. Perhaps we have a line that has column labels of the form Column 1 Column 2 Column 3. The expression /Column\.$+/ will not match any number of columns; instead, it will match a single column followed by any number of spaces! The star here applies only to the space \. that precedes it, not to the whole sequence. With the parentheses, we could write the expression /(Column\.$+\.)*/ to match the word Column, followed by a number and optional spaces, the whole pattern repeated any number of times.

This idea that one operator may take precedence over another, requiring us to sometimes use parentheses to specify what we mean, is formalized by the operator precedence hierarchy for regular expressions. The following table gives the order of RE operator precedence, from highest precedence to lowest precedence.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parenthesis</td>
<td>()</td>
</tr>
<tr>
<td>Counters</td>
<td>* + ? {}</td>
</tr>
<tr>
<td>Sequences and anchors</td>
<td>the ^my end$</td>
</tr>
<tr>
<td>Disjunction</td>
<td></td>
</tr>
</tbody>
</table>

Thus, because counters have a higher precedence than sequences,
2.1 • Regular Expressions

/\the*/ matches theeee but not thethe. Because sequences have a higher precedence than disjunction, /\the|any/ matches the or any but not thany.

Patterns can be ambiguous in another way. Consider the expression /\[a-z]*/ when matching against the text once upon a time. Since /\[a-z]*/ matches zero or more letters, this expression could match nothing, or just the first letter o, on, onc, or once. In these cases regular expressions always match the largest string they can; we say that patterns are greedy, expanding to cover as much of a string as they can.

There are, however, ways to enforce non-greedy matching, using another meaning of the ? qualifier. The operator *? is a Kleene star that matches as little text as possible. The operator +? is a Kleene plus that matches as little text as possible.

2.1.3 A Simple Example

Suppose we wanted to write a RE to find cases of the English article the. A simple (but incorrect) pattern might be:

/\the/

One problem is that this pattern will miss the word when it begins a sentence and hence is capitalized (i.e., The). This might lead us to the following pattern:

/\[tT]\he/

But we will still incorrectly return texts with the embedded in other words (e.g., other or theology). So we need to specify that we want instances with a word boundary on both sides:

/\b[tT]\he\b/

Suppose we wanted to do this without the use of \b/. We might want this since \b/ won’t treat underscores and numbers as word boundaries; but we might want to find the in some context where it might also have underlines or numbers nearby (the_ or the25). We need to specify that we want instances in which there are no alphabetic letters on either side of the the:

/\[^a-zA-Z]\[tT]\he[^a-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the when it begins a line. This is because the regular expression \[^a-zA-Z\]/, which we used to avoid embedded instances of the, implies that there must be some single (although non-alphabetic) character before the the. We can avoid this by specifying that before the the we require either the beginning-of-line or a non-alphabetic character, and the same at the end of the line:

/\(^[^a-zA-Z]*\)[tT]\he([^a-zA-Z]*)$/

The process we just went through was based on fixing two kinds of errors: false positives, strings that we incorrectly matched like other or there, and false negatives, strings that we incorrectly missed, like The. Addressing these two kinds of errors comes up again and again in implementing speech and language processing systems. Reducing the overall error rate for an application thus involves two antagonistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)
2.1.4 A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we want to build an application to help a user buy a computer on the Web. The user might want “any machine with more than 6 GHz and 500 GB of disk space for less than $1000”.

To do this kind of retrieval, we first need to be able to look for expressions like 6 GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expression for a dollar sign followed by a string of digits:

/$[0-9]$/

Note that the $ character has a different function here than the end-of-line function we discussed earlier. Regular expression parsers are in fact smart enough to realize that $ here doesn’t mean end-of-line. (As a thought experiment, think about how regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents optional and to make sure we’re at a word boundary:

/\b$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed? Here’s a pattern for that:

/\b[0-9]+␣*(GHz|Gigahertz)\b/

Note that we use /␣*/ to mean “zero or more spaces” since there might always be extra spaces lying around. We also need to allow for optional fractions again (5.5 GB); note the use of ? for making the final s optional:

/\b[0-9]+(\.[0-9]+)?␣*(GB|Gigabytes?)\b/

2.1.5 More Operators

Figure 2.7 shows some aliases for common sets of characters, which can be used mainly to save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as counters, by enclosing them in curly brackets. The regular expression /{3}/ means “exactly 3 occurrences of the previous character or expression”. So /a\{24\}z/ will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots followed by a z).

<table>
<thead>
<tr>
<th>RE</th>
<th>Expansion</th>
<th>Match</th>
<th>First Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>\d</td>
<td>[0-9]</td>
<td>any digit</td>
<td>Party, of, 5</td>
</tr>
<tr>
<td>\D</td>
<td>[0-9]</td>
<td>any non-digit</td>
<td>Blue, moon</td>
</tr>
<tr>
<td>\w</td>
<td>[a-zA-Z0-9_]</td>
<td>any alphanumeric/underscore</td>
<td>Daiyu</td>
</tr>
<tr>
<td>\W</td>
<td>[^\w]</td>
<td>a non-alphanumeric</td>
<td>!!!</td>
</tr>
<tr>
<td>\s</td>
<td>[\r\t\n\f]</td>
<td>whitespace (space, tab)</td>
<td></td>
</tr>
<tr>
<td>\S</td>
<td>[^\s]</td>
<td>Non-whitespace</td>
<td>in, Concord</td>
</tr>
</tbody>
</table>

Figure 2.7: Aliases for common sets of characters.
A range of numbers can also be specified. So /{n,m}/ specifies from \(n\) to \(m\) occurrences of the previous char or expression, and /{n,}/ means at least \(n\) occurrences of the previous expression. REs for counting are summarized in Fig. 2.8.

<table>
<thead>
<tr>
<th>RE</th>
<th>Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>zero or more occurrences of the previous char or expression</td>
</tr>
<tr>
<td>+</td>
<td>one or more occurrences of the previous char or expression</td>
</tr>
<tr>
<td>?</td>
<td>exactly zero or one occurrence of the previous char or expression</td>
</tr>
<tr>
<td>{n}</td>
<td>(n) occurrences of the previous char or expression</td>
</tr>
<tr>
<td>{n,m}</td>
<td>from (n) to (m) occurrences of the previous char or expression</td>
</tr>
<tr>
<td>{n,}</td>
<td>at least (n) occurrences of the previous char or expression</td>
</tr>
</tbody>
</table>

**Figure 2.8** Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the backslash (\) (see Fig. 2.9). The most common of these are the newline character \n and the tab character \t. To refer to characters that are special themselves (like ., *, [ and \), precede them with a backslash, i.e., /\./, /\*/. /\[/ and /\\/).

<table>
<thead>
<tr>
<th>RE</th>
<th>Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>an asterisk &quot;*&quot;</td>
</tr>
<tr>
<td>.</td>
<td>a period &quot;.&quot;</td>
</tr>
<tr>
<td>?</td>
<td>a question mark</td>
</tr>
<tr>
<td>\n</td>
<td>a newline</td>
</tr>
<tr>
<td>\t</td>
<td>a tab</td>
</tr>
</tbody>
</table>

**Figure 2.9** Some characters that need to be backslashed.

### 2.1.6 Regular Expression Substitution, Capture Groups, and ELIZA

An important use of regular expressions is in substitutions. For example, the substitution operator `s/regexp1/pattern/` used in Python and in Unix commands like `vim` or `sed` allows a string characterized by a regular expression to be replaced by another string:

`s/colour/color/`

It is often useful to be able to refer to a particular subpart of the string matching the first pattern. For example, suppose we wanted to put angle brackets around all integers in a text, for example, changing the 35 boxes to the \(<35\>\) boxes. We’d like a way to refer to the integer we’ve found so that we can easily add the brackets. To do this, we put parentheses ( and ) around the first pattern and use the number operator \1\ in the second pattern to refer back. Here’s how it looks:

`s/([0-9]+)/<\1>/`  

The parenthesis and number operators can also specify that a certain string or expression must occur twice in the text. For example, suppose we are looking for the pattern “the Xer they were, the Xer they will be”, where we want to constrain the two X’s to be the same string. We do this by surrounding the first X with the parenthesis operator, and replacing the second X with the number operator \1, as follows:

`/the (.*er) they were, the \1er they will be/`
Here the \1 will be replaced by whatever string matched the first item in parentheses. So this will match *The bigger they were, the bigger they will be* but not *The bigger they were, the faster they will be*.

This use of parentheses to store a pattern in memory is called a **capture group**. Every time a capture group is used (i.e., parentheses surround a pattern), the resulting match is stored in a numbered **register**. If you match two different sets of parentheses, \2 means whatever matched the second capture group. Thus

\[
\text{/the (.*)er they (.*), the \1er we \2/}
\]

will match *The faster they ran, the faster we ran* but not *The faster they ran, the faster we ate*. Similarly, the third capture group is stored in \3, the fourth is \4, and so on.

Parentheses thus have a double function in regular expressions; they are used to group terms for specifying the order in which operators should apply, and they are used to capture something in a register. Occasionally we might want to use parentheses for grouping, but don’t want to capture the resulting pattern in a register. In that case we use a **non-capturing group**, which is specified by putting the commands \?: after the open paren, in the form \( (?: \text{pattern} ) \).

\[
\text{/(?:\text{some|a few}) \text{(people|cats)} \text{ like some } \1/}
\]

will match *some cats like some people* but not *some people like some a few*.

Substitutions and capture groups are very useful in implementing simple chatbots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian psychologist by carrying on conversations like the following:

| User1 | Men are all alike. |
| ELIZA1 | IN WHAT WAY |
| User2 | They’re always bugging us about something or other. |
| ELIZA2 | CAN YOU THINK OF A SPECIFIC EXAMPLE |
| User3 | Well, my boyfriend made me come here. |
| ELIZA3 | YOUR BOYFRIEND MADE YOU COME HERE |
| User4 | He says I’m depressed much of the time. |
| ELIZA4 | I AM SORRY TO HEAR YOU ARE DEPRESSED |

ELIZA works by having a series or cascade of regular expression substitutions each of which matches and changes some part of the input lines. The first substitutions change all instances of *my* to *YOUR*, and *I’m* to *YOU ARE*, and so on. The next set of substitutions matches and replaces other patterns in the input. Here are some examples:

\[
\begin{align*}
\text{s/.*/ I’M (depressed|sad) .*/ I AM SORRY TO HEAR YOU ARE } \1/ \\
\text{s/.*/ I AM (depressed|sad) .*/ WHY DO YOU THINK YOU ARE } \1/ \\
\text{s/.*/ all .*/ IN WHAT WAY/} \\
\text{s/.*/ always .*/ CAN YOU THINK OF A SPECIFIC EXAMPLE/}
\end{align*}
\]

Since multiple substitutions can apply to a given input, substitutions are assigned a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we return to the details of the ELIZA architecture in Chapter 29.

### 2.1.7 Lookahead assertions

Finally, there will be times when we need to predict the future: look ahead in the text to see if some pattern matches, but not advance the match cursor, so that we can then deal with the pattern if it occurs.
2.2 Words and Corpora

Before we talk about processing words, we need to decide what counts as a word. Let’s start by looking at a corpus (plural corpora), a computer-readable collection of text or speech. For example the Brown corpus is a million-word collection of samples from 500 written texts from different genres (newspaper, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64 (Kučera and Francis, 1967). How many words are in the following Brown sentence?

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15 if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as words depends on the task. Punctuation is critical for finding boundaries of things (commas, periods, colons) and for identifying some aspects of meaning (question marks, exclamation marks, quotation marks). For some tasks, like part-of-speech tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if they were separate words.

The Switchboard corpus of telephone conversations between strangers was collected in the early 1990s; it contains 2430 conversations averaging 6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such corpora of spoken language don’t have punctuation but do introduce other complications with regard to defining words. Let’s look at one utterance from Switchboard; an utterance is the spoken correlate of a sentence:

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- is called a fragment. Words like uh and um are called fillers or filled pauses. Should we consider these to be words? Again, it depends on the application. If we are building a speech transcription system, we might want to eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um are actually helpful in speech recognition in predicting the upcoming word, because they may signal that the speaker is restarting the clause or idea, and so for speech recognition they are treated as regular words. Because people use different disfluencies they can also be a cue to speaker identification. In fact Clark and Fox Tree (2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same word? These are lumped together in some tasks (speech recognition), while for part-of-speech or named-entity tagging, capitalization is a useful feature and is retained.
How about inflected forms like *cats* versus *cat*? These two words have the same 
*lemma* *cat* but are different *wordforms*. A *lemma* is a set of lexical forms having 
the same stem, the same major part-of-speech, and the same word sense. The *wordform* 
is the full inflected or derived form of the word. For morphologically complex 
languages like Arabic, we often need to deal with lemmatization. For many tasks in 
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to 
distinguish two ways of talking about words. *Types* are the number of distinct words 
in a corpus; if the set of words in the vocabulary is *V*, the number of types is the 
*vocabulary size* |*V*|. *Tokens* are the total number *N* of running words. If we ignore 
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally 
referring to word types.

| Corpus                        | Tokens = *N* | Types = | |V| |
|-------------------------------|--------------|---------|------|
| Shakespeare                   | 884 thousand | 31 thousand | |
| Brown corpus                  | 1 million    | 38 thousand | |
| Switchboard telephone 
conversations               | 2.4 million  | 20 thousand | |
| COCA                          | 440 million  | 2 million | |
| Google N-grams               | 1 trillion   | 13 million | |

*Figure 2.10* Rough numbers of types and tokens for some corpora. The largest, the Google 
N-grams corpus, contains 13 million types, but this count only includes types appearing 40 or 
mores times, so the true number would be much larger.

Fig. 2.10 shows the rough numbers of types and tokens computed from some 
popular English corpora. The larger the corpora we look at, the more word types 
we find, and in fact this relationship between the number of types |*V*| and number 
of tokens *N* is called *Herdan’s Law* (Herdan, 1960) or *Heaps’ Law* (Heaps, 1978) 
after its discoverers (in linguistics and information retrieval respectively). It is shown 
in Eq. 2.1, where *k* and *β* are positive constants, and 0 < *β* < 1.

|*V*| = *kN*^

(2.1)

The value of *β* depends on the corpus size and the genre, but at least for the 
large corpora in Fig. 2.10, *β* ranges from .67 to .75. Roughly then we can say that 
the vocabulary size for a text goes up significantly faster than the square root of its 
length in words.

Another measure of the number of words in the language is the number of lem-
mas instead of wordform types. Dictionaries can help in giving lemma counts; dic-
tionary entries or boldface forms are a very rough upper bound on the number of 
lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the 
Oxford English Dictionary had 615,000 entries.

## 2.3 Text Normalization

Before almost any natural language processing of a text, the text has to be normal-
ized. At least three tasks are commonly applied as part of any normalization process:

1. Segmenting/tokenizing words from running text
2. Normalizing word formats
3. Segmenting sentences in running text.

In the next sections we walk through each of these tasks.

2.3.1 Unix tools for crude tokenization and normalization

Let’s begin with an easy, if somewhat naive version of word tokenization and normalization (and frequency computation) that can be accomplished solely in a single UNIX command-line, inspired by Church (1994). We’ll make use of some Unix commands: tr, used to systematically change particular characters in the input; sort, which sorts input lines in alphabetical order; and uniq, which collapses and counts adjacent identical lines.

For example let’s begin with the complete words of Shakespeare in one textfile, sh.txt. We can use tr to tokenize the words by changing every sequence of non-alphabetic characters to a newline ('A-Za-z' means alphabetic, the -c option complements to non-alphabet, and the -s option squeezes all sequences into a single character):

```bash
tr -sc 'A-Za-z' '
' < sh.txt
```

The output of this command will be:

```
THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
...
```

Now that there is one word per line, we can sort the lines, and pass them to uniq -c which will collapse and count them:

```bash
tr -sc 'A-Za-z' '
' < sh.txt | sort | uniq -c
```

with the following output:

```
1945 A
72 AARON
19 ABBESS
25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbey
...
```

Alternatively, we can collapse all the upper case to lower case:

```bash
tr -sc 'A-Za-z' '
' < sh.txt | tr A-Z a-z | sort | uniq -c
```

whose output is
14725 a
  97 aaron
  1 abaissiez
  10 abandon
  2 abandoned
  2 abase
  1 abash
  14 abate
  3 abated
  3 abatement
  ...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

```
tr -sc 'A-Za-z' '\n' < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r
```

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:

```
27378 the
26084 and
22538 i
19771 to
17481 of
14725 a
13826 you
12489 my
11318 that
11112 in
...
```

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus.

### 2.3.2 Word Tokenization and Normalization

The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for **tokenization**, the task of seg-
menting running text into words, and **normalization**, the task of putting words/tokens
in a standard format.

While the Unix command sequence just removed all the numbers and punctu-
ation, for most NLP applications we’ll need to keep these in our tokenization. We
often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like *m.p.h.*, *Ph.D.*, *AT&T, cap’ n*. Special characters and numbers will need to be kept in prices
($45.55) and dates (01/02/06); we don’t want to segment that price into separate to-
kens of “45” and “55”. And there are URLs ([http://www.stanford.edu](http://www.stanford.edu)), Twitter
hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
maally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by contrast, use a comma to mark the decimal point, and spaces (or sometimes periods) where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked by apostrophes, for example, converting what’re to the two tokens what are, and we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only occur when it is attached to another word. Some such contractions occur in other alphabetic languages, including articles and pronouns in French (j’aï, l’homme).

Depending on the application, tokenization algorithms may also tokenize multiword expressions like New York or rock ’n’ roll as a single token, which requires a multiword expression dictionary of some sort. Tokenization is thus intimately tied up with named entity detection, the task of detecting names, dates, and organizations (Chapter 20).

One commonly used tokenization standard is known as the Penn Treebank tokenization standard, used for the parsed corpora (treebanks) released by the Linguistic Data Consortium (LDC), the source of many useful datasets. This standard separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words together, and separates out all punctuation:

**Input:** “The San Francisco-based restaurant,” they said, “doesn’t charge $10”.

**Output:** “The San Francisco-based restaurant” they said, “doesn’t charge $10”.

Tokens can also be normalized, in which a single normalized form is chosen for words with multiple forms like USA and US or uh-huh and uhhuh. This standardization may be valuable, despite the spelling information that is lost in the normalization process. For information retrieval, we might want a query for US to match a document that has USA, for information extraction we might want to extract coherent information that is consistent across differently-spelled instances.

**Case folding** is another kind of normalization. For tasks like speech recognition and information retrieval, everything is mapped to lower case. For sentiment analysis and other text classification tasks, information extraction, and machine translation, by contrast, case is quite helpful and case folding is generally not done (losing the difference, for example, between US the country and us the pronoun can outweigh the advantage in generality that case folding provides).

In practice, since tokenization needs to be run before any other language processing, it is important for it to be very fast. The standard method for tokenization/normalization is therefore to use deterministic algorithms based on regular expressions compiled into very efficient finite state automata. Carefully designed deterministic algorithms can deal with the ambiguities that arise, such as the fact that the apostrophe needs to be tokenized differently when used as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she said, or in clitics like they’re. We’ll discuss this use of automata in Chapter 3.

### 2.3.3 Word Segmentation in Chinese: the MaxMatch algorithm

Some languages, including Chinese, Japanese, and Thai, do not use spaces to mark potential word-boundaries, and so require alternative segmentation methods. In Chinese, for example, words are composed of characters known as hanzi. Each character generally represents a single morpheme and is pronounceable as a single syllable. Words are about 2.4 characters long on average. A simple algorithm that does re-
Maximum matching is a version of greedy search called **maximum matching** or sometimes **MaxMatch**. The algorithm requires a dictionary (wordlist) of the language.

The maximum matching algorithm starts by pointing at the beginning of a string. It chooses the longest word in the dictionary that matches the input at the current position. The pointer is then advanced to the end of that word in the string. If no word matches, the pointer is instead advanced one character (creating a one-character word). The algorithm is then iteratively applied again starting from the new pointer position. Fig. 2.11 shows a version of the algorithm.

```python
function MAXMATCH(sentence, dictionary D) returns word sequence W
  if sentence is empty
    return empty list
  for i ← length(sentence) downto 1
    firstword = first i chars of sentence
    remainder = rest of sentence
    if InDictionary(firstword, D)
      return list(firstword, MAXMATCH(remainder, dictionary) )
    # no word was found, so make a one-character word
    firstword = first char of sentence
    remainder = rest of sentence
    return list(firstword, MAXMATCH(remainder, dictionary D) )
```

**Figure 2.11** The MaxMatch algorithm for word segmentation.

MaxMatch works very well on Chinese; the following example shows an application to a simple Chinese sentence using a simple Chinese lexicon available from the Linguistic Data Consortium:

**Input:** 他特别喜欢北京烤鸭
**Output:** He especially likes Peking duck

MaxMatch doesn’t work as well on English. To make the intuition clear, we’ll create an example by removing the spaces from the beginning of Turing’s famous quote “We can only see a short distance ahead”, producing “wecanonlyseeashortdistanceahead”. The MaxMatch results are shown below.

**Input:** wecanonlyseeashortdistanceahead
**Output:** we can only see short distance ahead

On English the algorithm incorrectly chose canon instead of stopping at can, which left the algorithm confused and having to create single-character words l and y and use the very rare word ort.

The algorithm works better in Chinese than English, because Chinese has much shorter words than English. We can quantify how well a segmenter works using a metric called **word error rate**. We compare our output segmentation with a perfect hand-segmented (‘gold’) sentence, seeing how many words differ. The word error rate is then the normalized minimum edit distance in words between our output and the gold: the number of word insertions, deletions, and substitutions divided by the length of the gold sentence in words; we’ll see in Section 2.4 how to compute edit distance. Even in Chinese, however, MaxMatch has problems, for example dealing
with **unknown words** (words not in the dictionary) or genres that differ a lot from the assumptions made by the dictionary builder.

The most accurate Chinese segmentation algorithms generally use statistical **sequence models** trained via supervised machine learning on hand-segmented training sets; we’ll introduce sequence models in Chapter 10.

### 2.3.4 Lemmatization and Stemming

**Lemmatization** is the task of determining that two words have the same root, despite their surface differences. The words *am, are, and is* have the shared lemma *be*; the words *dinner* and *dinners* both have the lemma *dinner*. Representing a word by its lemma is important for web search, since we want to find pages mentioning woodchucks if we search for woodchuck. This is especially important in morphologically complex languages like Russian, where for example the word *Moscow* has different endings in the phrases *Moscow, of Moscow, from Moscow,* and so on. Lemmatizing each of these forms to the same lemma will let us find all mentions of Moscow. The lemmatized form of a sentence like *He is reading detective stories* would thus be *He be read detective story*.

How is lemmatization done? The most sophisticated methods for lemmatization involve complete **morphological parsing** of the word. **Morphology** is the study of the way words are built up from smaller meaning-bearing units called **morphemes**. Two broad classes of morphemes can be distinguished: **stems**—the central morpheme of the word, supplying the main meaning—and **affixes**—adding “additional” meanings of various kinds. So, for example, the word *fox* consists of one morpheme (the morpheme *fox*) and the word *cats* consists of two: the morpheme *cat* and the morpheme *-s*. A morphological parser takes a word like *cats* and parses it into the two morphemes *cat* and *-s*, or a Spanish word like *amaren* (*if in the future they would love*) into the morphemes *amar* *‘to love’, 3PL, and future subjunctive*. We’ll introduce morphological parsing in Chapter 3.

**The Porter Stemmer**

While using finite-state transducers to build a full morphological parser is the most general way to deal with morphological variation in word forms, we sometimes make use of simpler but cruder chopping off of affixes. This naive version of morphological analysis is called **stemming**, and one of the most widely used stemming algorithms is the simple and efficient Porter (1980) algorithm. The Porter stemmer applied to the following paragraph:

```
This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things—names and heights
and soundings—with the single exception of the red crosses
and the written notes.
```

produces the following stemmed output:

```
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note
```

The algorithm is based on series of rewrite rules run in series, as a **cascade**, in which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

\[
\begin{align*}
\text{ATIONAL} & \rightarrow \text{ATE} \quad \text{(e.g., relational \rightarrow relate)} \\
\text{ING} & \rightarrow \epsilon \quad \text{if stem contains vowel (e.g., motoring \rightarrow motor)} \\
\text{SSES} & \rightarrow \text{SS} \quad \text{(e.g., grasses \rightarrow grass)}
\end{align*}
\]

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.) can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across different variants of the same lemma. Nonetheless, they do tend to commit errors of both over- and under-generalizing, as shown in the table below (Krovetz, 1993):

<table>
<thead>
<tr>
<th>Errors of Commission</th>
<th>Errors of Omission</th>
</tr>
</thead>
<tbody>
<tr>
<td>organization</td>
<td>European</td>
</tr>
<tr>
<td>organ</td>
<td>Europe</td>
</tr>
<tr>
<td>doing</td>
<td>doe</td>
</tr>
<tr>
<td>analysis</td>
<td>noisy</td>
</tr>
<tr>
<td>numerical</td>
<td>numerous</td>
</tr>
<tr>
<td>noise</td>
<td>noisy</td>
</tr>
<tr>
<td>policy</td>
<td>police</td>
</tr>
<tr>
<td>sparse</td>
<td>sparsity</td>
</tr>
</tbody>
</table>

### 2.3.5 Sentence Segmentation

Sentence segmentation is another important step in text processing. The most useful cues for segmenting a text into sentences are punctuation, like periods, question marks, and exclamation points. Question marks and exclamation points are relatively unambiguous markers of sentence boundaries. Periods, on the other hand, are more ambiguous. The period character “.” is ambiguous between a sentence boundary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that you just read showed an even more complex case of this ambiguity, in which the final period of Inc. marked both an abbreviation and the sentence boundary marker. For this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by building a binary classifier (based on a sequence of rules or on machine learning) that decides if a period is part of the word or is a sentence-boundary marker. In making this decision, it helps to know if the period is attached to a commonly used abbreviation; thus, an abbreviation dictionary is useful.

State-of-the-art methods for sentence tokenization are based on machine learning and are introduced in later chapters.

### 2.4 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two strings are. For example in spelling correction, the user typed some erroneous string—let’s say graffe—and we want to know what the user meant. The user probably intended a word that is similar to giraffe. Among candidate similar words, the word giraffe, which differs by only one letter from graffe, seems intuitively to be more similar than, say grail or graf, which differ in more letters. Another example comes from coreference, the task of deciding whether two strings such as the following refer to the same entity:

Stanford President John Hennessy
Stanford University President John Hennessy
Again, the fact that these two strings are very similar (differing by only one word) seems like useful evidence for deciding that they might be coreferent.

ُEdit distance gives us a way to quantify both of these intuitions about string similarity. More formally, the minimum edit distance between two strings is defined as the minimum number of editing operations (operations like insertion, deletion, substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an \( \text{i} \), substitute \( \text{e} \) for \( \text{n} \), substitute \( \text{x} \) for \( \text{t} \), insert \( \text{c} \), substitute \( \text{u} \) for \( \text{n} \)). It’s much easier to see this by looking at the most important visualization for string distances, an alignment between the two strings, shown in Fig. 2.12. Given two sequences, an alignment is a correspondence between substrings of the two sequences. Thus, we say I aligns with the empty string, N with E, and so on. Beneath the aligned strings is another representation; a series of symbols expressing an operation list for converting the top string into the bottom string: d for deletion, s for substitution, i for insertion.

![Figure 2.12](image)

We can also assign a particular cost or weight to each of these operations. The Levenshtein distance between two sequences is the simplest weighting factor in which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume that the substitution of a letter for itself, for example, \( \text{t} \) for \( \text{t} \), has zero cost. The Levenshtein distance between intention and execution is 5. Levenshtein also proposed an alternative version of his metric in which each insertion or deletion has a cost of 1 and substitutions are not allowed. (This is equivalent to allowing substitution, but giving each substitution a cost of 2 since any substitution can be represented by one insertion and one deletion). Using this version, the Levenshtein distance between intention and execution is 8.

### 2.4.1 The Minimum Edit Distance Algorithm

How do we find the minimum edit distance? We can think of this as a search task, in which we are searching for the shortest path—a sequence of edits—from one string to another.

![Figure 2.13](image)

The space of all possible edits is enormous, so we can’t search naively. However, lots of distinct edit paths will end up in the same state (string), so rather than recomputing all those paths, we could just remember the shortest path to a state each time.
we saw it. We can do this by using dynamic programming. Dynamic programming is the name for a class of algorithms, first introduced by Bellman (1957), that apply a table-driven method to solve problems by combining solutions to sub-problems. Some of the most commonly used algorithms in natural language processing make use of dynamic programming, such as the Viterbi and forward algorithms (Chapter 9) and the CKY algorithm for parsing (Chapter 12).

The intuition of a dynamic programming problem is that a large problem can be solved by properly combining the solutions to various sub-problems. Consider the shortest path of transformed words that represents the minimum edit distance between the strings intention and execution shown in Fig. 2.14.

![Figure 2.14](image)

Imagine some string (perhaps it is exention) that is in this optimal path (whatever it is). The intuition of dynamic programming is that if exention is in the optimal operation list, then the optimal sequence must also include the optimal path from intention to exention. Why? If there were a shorter path from intention to exention, then we could use it instead, resulting in a shorter overall path, and the optimal sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer (1974) but independently discovered by many people (summarized later, in the Historical Notes section of Chapter 9).

Let’s first define the minimum edit distance between two strings. Given two strings, the source string X of length n, and target string Y of length m, we’ll define $D(i, j)$ as the edit distance between $X[1..i]$ and $Y[1..j]$, i.e., the first i characters of X and the first j characters of Y. The edit distance between X and Y is thus $D(n, m)$.

We’ll use dynamic programming to compute $D(n, m)$ bottom up, combining solutions to subproblems. In the base case, with a source substring of length i but an empty target string, going from i characters to 0 requires i deletes. With a target substring of length j but an empty source going from 0 characters to j characters requires j inserts. Having computed $D(i, j)$ for small i, j we then compute larger $D(i, j)$ based on previously computed smaller values. The value of $D(i, j)$ is computed by taking the minimum of the three possible paths through the matrix which arrive there:

$$D[i, j] = \min \begin{cases} D[i - 1, j] + \text{del-cost}(source[i]) \\ D[i, j - 1] + \text{ins-cost}(target[j]) \\ D[i - 1, j - 1] + \text{sub-cost}(source[i], target[j]) \end{cases}$$

If we assume the version of Levenshtein distance in which the insertions and deletions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have
a cost of 2 (except substitution of identical letters have zero cost), the computation for $D(i, j)$ becomes:

$$D[i, j] = \min \begin{cases} 
D[i-1, j] + 1 \\
D[i, j-1] + 1 \\
D[i-1, j-1] + \begin{cases} 
2; & \text{if source}[i] \neq \text{target}[j] \\
0; & \text{if source}[i] = \text{target}[j]
\end{cases}
\end{cases} \quad (2.2)$$

The algorithm is summarized in Fig. 2.15; Fig. 2.16 shows the results of applying the algorithm to the distance between intention and execution with the version of Levenshtein in Eq. 2.2.

---

**function MIN-EDIT-DISTANCE(source, target) returns min-distance**

\[ n \leftarrow \text{LENGTH}(\text{source}) \]
\[ m \leftarrow \text{LENGTH}(\text{target}) \]

Create a distance matrix $\text{distance}[n+1,m+1]$

# Initialization: the zeroth row and column is the distance from the empty string
\[ D[0,0] = 0 \]
for each row $i$ from 1 to $n$
\[ D[i,0] \leftarrow D[i-1,0] + \text{del-cost}(\text{source}[i]) \]
for each column $j$ from 1 to $m$
\[ D[0,j] \leftarrow D[0,j-1] + \text{ins-cost}(\text{target}[j]) \]

# Recurrence relation:
for each row $i$ from 1 to $n$
for each column $j$ from 1 to $m$
\[ D[i,j] \leftarrow \text{MIN}(D[i-1,j] + \text{del-cost}(\text{source}[i]), D[i,j-1] + \text{sub-cost}(\text{source}[i], \text{target}[j]), D[i-1,j-1] + \text{ins-cost}(\text{target}[j])) \]

# Termination
return $D[n,m]$

---

Figure 2.15 The minimum edit distance algorithm, an example of the class of dynamic programming algorithms. The various costs can either be fixed (e.g., $\forall x, \text{ins-cost}(x) = 1$) or can be specific to the letter (to model the fact that some letters are more likely to be inserted than others). We assume that there is no cost for substituting a letter for itself (i.e., $\text{sub-cost}(x,x) = 0$).

Knowing the minimum edit distance is useful for algorithms like finding potential spelling error corrections. But the edit distance algorithm is important in another way; with a small change, it can also provide the minimum cost alignment between two strings. Aligning two strings is useful throughout speech and language processing. In speech recognition, minimum edit distance alignment is used to compute the word error rate (Chapter 31). Alignment plays a role in machine translation, in which sentences in a parallel corpus (a corpus with a text in two languages) need to be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by visualizing an alignment as a path through the edit distance matrix. Figure 2.17 shows this path with the boldfaced cell. Each boldfaced cell represents an alignment of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells in the same column indicate a deletion.

Figure 2.17 also shows the intuition of how to compute this alignment path. The computation proceeds in two steps. In the first step, we augment the minimum edit distance algorithm to store backpointers in each cell. The backpointer from a cell points to the previous cell (or cells) that we came from in entering the current cell. We’ve shown a schematic of these backpointers in Fig. 2.17, after a similar diagram in Gusfield (1997). Some cells have multiple backpointers because the minimum extension could have come from multiple previous cells. In the second step, we perform a backtrace. In a backtrace, we start from the last cell (at the final row and column), and follow the pointers back through the dynamic programming matrix. Each complete path between the final cell and the initial cell is a minimum distance alignment. Exercise 2.7 asks you to modify the minimum edit distance algorithm to store the pointers and compute the backtrace to output an alignment.

When entering a value in each cell, we mark which of the three neighboring cells we came from with up to three arrows. After the table is full we compute an alignment (minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and following the arrows back. The sequence of bold cells represents one possible minimum cost alignment between the two strings.

While we worked our example with simple Levenshtein distance, the algorithm in Fig. 2.15 allows arbitrary weights on the operations. For spelling correction, for example, substitutions are more likely to happen between letters that are next to each other on the keyboard. We’ll discuss how these weights can be estimated in
Ch. 5. The Viterbi algorithm, for example, is an extension of minimum edit distance that uses probabilistic definitions of the operations. Instead of computing the “minimum edit distance” between two strings, Viterbi computes the “maximum probability alignment” of one string with another. We’ll discuss this more in Chapter 9.

2.5 Summary

This chapter introduced a fundamental tool in language processing, the regular expression, and showed how to perform basic text normalization tasks including word segmentation and normalization, sentence segmentation, and stemming. We also introduce the important minimum edit distance algorithm for comparing strings. Here’s a summary of the main points we covered about these ideas:

- The regular expression language is a powerful tool for pattern-matching.
- Basic operations in regular expressions include concatenation of symbols, disjunction of symbols (\[], |, and .), counters (\*, +, and \{n,m\}), anchors (\^, $) and precedence operators (\(), \).\)
- Word tokenization and normalization are generally done by cascades of simple regular expressions substitutions or finite automata.
- The Porter algorithm is a simple and efficient way to do stemming, stripping off affixes. It does not have high accuracy but may be useful for some tasks.
- The minimum edit distance between two strings is the minimum number of operations it takes to edit one into the other. Minimum edit distance can be computed by dynamic programming, which also results in an alignment of the two strings.

Bibliographical and Historical Notes

Kleene (1951) and (1956) first defined regular expressions and the finite automaton, based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build regular expressions compilers into editors for text searching (Thompson, 1968). His editor ed included a command “g/regular expression/p”, or Global Regular Expression Print, which later became the Unix grep utility.

Text normalization algorithms has been applied since the beginning of the field. One of the earliest widely-used stemmers was Lovins (1968). Stemming was also applied early to the digital humanities, by Packard (1973), who built an affix-stripping morphological parser for Ancient Greek. Currently a wide variety of code for tokenization and normalization is available, such as the Stanford Tokenizer (http://nlp.stanford.edu/software/tokenizer.shtml) or specialized tokenizers for Twitter (O’Connor et al., 2010), or for sentiment (http://sentiment.christopherpotts.net/tokenizing.html). See Palmer (2012) for a survey of text preprocessing.

While the max-match algorithm we describe is commonly used as a segmentation baseline in languages like Chinese, higher accuracy algorithms like the Stanford CRF segmenter, are based on sequence models; see Tseng et al. (2005a) and Chang et al. (2008). NLTK is an essential tool that offers both useful Python libraries (http://www.nltk.org) and textbook descriptions (Bird et al., 2009) of many algorithms including text normalization and corpus interfaces.
For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps (1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relationship with other measures of linguistic complexity. For more on edit distance, see the excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’ to ‘execution’ was adapted from Kruskal (1983). There are various publicly available packages to compute edit distance, including Unix diff and the NIST sclite program (NIST, 2005).

In his autobiography Bellman (1984) explains how he originally came up with the term *dynamic programming*:

“...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research... I decided therefore to use the word, “programming”. I wanted to get across the idea that this was dynamic, this was multi-stage... I thought, let’s ... take a word that has an absolutely precise meaning, namely dynamic... it’s impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to.”

Exercises

2.1 Write regular expressions for the following languages.
   1. the set of all alphabetic strings;
   2. the set of all lower case alphabetic strings ending in a $b$;
   3. the set of all strings from the alphabet $a,b$ such that each $a$ is immediately preceded by and immediately followed by a $b$;

2.2 Write regular expressions for the following languages. By “word”, we mean an alphabetic string separated from other words by whitespace, any relevant punctuation, line breaks, and so forth.
   1. the set of all strings with two consecutive repeated words (e.g., “Humbert Humbert” and “the the” but not “the bug” or “the big bug”);
   2. all strings that start at the beginning of the line with an integer and that end at the end of the line with a word;
   3. all strings that have both the word *grotto* and the word *raven* in them (but not, e.g., words like *grottos* that merely contain the word *grotto*);
   4. write a pattern that places the first word of an English sentence in a register. Deal with punctuation.

2.3 Implement an ELIZA-like program, using substitutions such as those described on page 18. You may choose a different domain than a Rogerian psychologist, if you wish, although keep in mind that you would need a domain in which your program can legitimately engage in a lot of simple repetition.

2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution cost 1) of “leda” to “deal”. Show your work (using the edit distance grid).

2.5 Figure out whether *drive* is closer to *brief* or to *divers* and what the edit distance is to each. You may use any version of *distance* that you like.
2.6 Now implement a minimum edit distance algorithm and use your hand-computed results to check your code.

2.7 Augment the minimum edit distance algorithm to output an alignment; you will need to store pointers and add a stage to compute the backtrace.

2.8 Implement the MaxMatch algorithm.

2.9 To test how well your MaxMatch algorithm works, create a test set by removing spaces from a set of sentences. Implement the Word Error Rate metric (the number of word insertions + deletions + substitutions, divided by the length in words of the correct string) and compute the WER for your test set.
“You are uniformly charming!” cried he, with a smile of associating and now and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Being able to predict the future is not always a good thing. Cassandra of Troy had the gift of foreseeing but was cursed by Apollo that her predictions would never be believed. Her warnings of the destruction of Troy were ignored and to simplify, let’s just say that things just didn’t go well for her later.

In this chapter we take up the somewhat less fraught topic of predicting words. What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over, but probably not refrigerator or the. In the following sections we will formalize this intuition by introducing models that assign a probability to each possible next word. The same models will also serve to assign a probability to an entire sentence. Such a model, for example, could predict that the following sequence has a much higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would you want to predict upcoming words, or assign probabilities to sentences? Probabilities are essential in any task in which we have to identify words in noisy, ambiguous input, like speech recognition or handwriting recognition. In the movie Take the Money and Run, Woody Allen tries to rob a bank with a sloppily written hold-up note that the teller incorrectly reads as “I have a gub”. As Russell and Norvig (2002) point out, a language processing system could avoid making this mistake by using the knowledge that the sequence “I have a gun” is far more probable than the non-word “I have a gub” or even “I have a gull”.

In spelling correction, we need to find and correct spelling errors like Their are two midterms in this class, in which There was mistyped as Their. A sentence starting with the phrase There are will be much more probable than one starting with Their are, allowing a spellchecker to both detect and correct these errors.

Assigning probabilities to sequences of words is also essential in machine translation. Suppose we are translating a Chinese source sentence:

他 向 记者 介绍了 主要 内容

He to reporters introduced main content
As part of the process we might have built the following set of potential rough English translations:

- he introduced reporters to the main contents of the statement
- he briefed to reporters the main contents of the statement
- **he briefed reporters on the main contents of the statement**

A probabilistic model of word sequences could suggest that *briefed reporters on* is a more probable English phrase than *briefed to reporters* (which has an awkward *to* after *briefed*) or *introduced reporters to* (which uses a verb that is less fluent English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for augmentative communication (Newell et al., 1998) systems. People like the physicist Stephen Hawking who are unable to physically talk or sign can instead use simple movements to select words from a menu to be spoken by the system. Word prediction can be used to suggest likely words for the menu.

Models that assign probabilities to sequences of words are called language models or LMs. In this chapter we introduce the simplest model that assigns probabilities to sentences and sequences of words, the N-gram. An N-gram is a sequence of $N$ words: a 2-gram (or bigram) is a two-word sequence of words like “please turn”, “turn your”, or “your homework”, and a 3-gram (or trigram) is a three-word sequence of words like “please turn your”, or “turn your homework”. We’ll see how to use N-gram models to estimate the probability of the last word of an N-gram given the previous words, and also to assign probabilities to entire sequences. In a bit of terminological ambiguity, we usually drop the word “model”, and thus the term N-gram is used to mean either the word sequence itself or the predictive model that assigns it a probability.

Whether estimating probabilities of next words or of whole sequences, the N-gram model is one of the most important tools in speech and language processing.

### 4.1 N-Grams

Let’s begin with the task of computing $P(w|h)$, the probability of a word $w$ given some history $h$. Suppose the history $h$ is “its water is so transparent that” and we want to know the probability that the next word is *the*:

$$P(\text{the}|\text{its water is so transparent that}).$$ (4.1)

One way to estimate this probability is from relative frequency counts: take a very large corpus, count the number of times we see *its water is so transparent that*, and count the number of times this is followed by *the*. This would be answering the question “Out of the times we saw the history $h$, how many times was it followed by the word $w$”, as follows:

$$P(\text{the}|\text{its water is so transparent that}) = \frac{C(\text{its water is so transparent that the})}{C(\text{its water is so transparent that})}$$ (4.2)

With a large enough corpus, such as the web, we can compute these counts and estimate the probability from Eq. 4.2. You should pause now, go to the web, and compute this estimate for yourself.
While this method of estimating probabilities directly from counts works fine in many cases, it turns out that even the web isn’t big enough to give us good estimates in most cases. This is because language is creative; new sentences are created all the time, and we won’t always be able to count entire sentences. Even simple extensions of the example sentence may have counts of zero on the web (such as “Walden Pond’s water is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of words like its water is so transparent, we could do it by asking “out of all possible sequences of five words, how many of them are its water is so transparent?” We would have to get the count of its water is so transparent and divide by the sum of the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the probability of a word \( w \) given a history \( h \), or the probability of an entire word sequence \( W \).

Let’s start with a little formalizing of notation. To represent the probability of a particular random variable \( X \) taking on the value “the”, or \( P(X_i = \text{“the”}) \), we will use \( P(\text{the}) \). We’ll represent a sequence of \( N \) words either as \( w_1 \ldots w_n \) or \( w_n \ldots w_1 \). For the joint probability of each word in a sequence having a particular value \( P(X = w_1, Y = w_2, Z = w_3, \ldots, W = w_n) \) we’ll use \( P(w_1, w_2, \ldots, w_n) \).

Now how can we compute probabilities of entire sequences like \( P(w_1, w_2, \ldots, w_n) \)? One thing we can do is decompose this probability using the chain rule of probability:

\[
P(X_1 \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2^2) \ldots P(X_n|X_{n-1}^{n-1})
\]

\[
= \prod_{k=1}^{n} P(X_k|X_{k-1}^{k-1}) \quad (4.3)
\]

Applying the chain rule to words, we get

\[
P(w_n^0) = P(w_1)P(w_2|w_1)P(w_3|w_2^2) \ldots P(w_n|w_{n-1}^{n-1})
\]

\[
= \prod_{k=1}^{n} P(w_k|w_{k-1}^{k-1}) \quad (4.4)
\]

The chain rule shows the link between computing the joint probability of a sequence and computing the conditional probability of a word given previous words. Equation 4.4 suggests that we could estimate the joint probability of an entire sequence of words by multiplying together a number of conditional probabilities. But using the chain rule doesn’t really seem to help us! We don’t know any way to compute the exact probability of a word given a long sequence of preceding words, \( P(w_n|w_{n-1}^{n-1}) \). As we said above, we can’t just estimate by counting the number of times every word occurs following every long string, because language is creative and any particular context might have never occurred before!

The intuition of the N-gram model is that instead of computing the probability of a word given its entire history, we can approximate the history by just the last few words.

The bigram model, for example, approximates the probability of a word given all the previous words \( P(w_n|w_{n-1}^{n-1}) \) by using only the conditional probability of the preceding word \( P(w_n|w_{n-1}) \). In other words, instead of computing the probability

\[
P(\text{the}|\text{Walden Pond’s water is so transparent that}) \quad (4.5)
\]
we approximate it with the probability

\[ P(\text{the}|\text{that}) \] (4.6)

When we use a bigram model to predict the conditional probability of the next word, we are thus making the following approximation:

\[ P(w_n|w_{n-1}) \approx P(w_n|w_{n-1}) \] (4.7)

The assumption that the probability of a word depends only on the previous word is called a Markov assumption. Markov models are the class of probabilistic models that assume we can predict the probability of some future unit without looking too far into the past. We can generalize the bigram (which looks one word into the past) to the trigram (which looks two words into the past) and thus to the N-gram (which looks \(N-1\) words into the past).

Thus, the general equation for this N-gram approximation to the conditional probability of the next word in a sequence is

\[ P(w_n|w_{n-1}) \approx P(w_n|w_{n-N+1}) \] (4.8)

Given the bigram assumption for the probability of an individual word, we can compute the probability of a complete word sequence by substituting Eq. 4.7 into Eq. 4.4:

\[ P(w_1^n) \approx \prod_{k=1}^{n} P(w_k|w_{k-1}) \] (4.9)

How do we estimate these bigram or N-gram probabilities? An intuitive way to estimate probabilities is called maximum likelihood estimation or MLE. We get the MLE estimate for the parameters of an N-gram model by getting counts from a corpus, and normalizing the counts so that they lie between 0 and 1.

For example, to compute a particular bigram probability of a word \(y\) given a previous word \(x\), we’ll compute the count of the bigram \(C(xy)\) and normalize by the sum of all the bigrams that share the same first word:

\[ P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum w C(w_{n-1}w)} \] (4.10)

We can simplify this equation, since the sum of all bigram counts that start with a given word \(w_{n-1}\) must be equal to the unigram count for that word \(w_{n-1}\) (the reader should take a moment to be convinced of this):

\[ P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \] (4.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll first need to augment each sentence with a special symbol \(<s>\) at the beginning of the sentence, to give us the bigram context of the first word. We’ll also need a special end-symbol. \(<s>\)

\(^1\) For probabilistic models, normalizing means dividing by some total count so that the resulting probabilities fall legally between 0 and 1.

\(^2\) We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model would define an infinite set of probability distributions, with one distribution per sentence length. See Exercise 4.5.
Here are the calculations for some of the bigram probabilities from this corpus:

\[
P(I|<s>) = \frac{3}{5} = 0.6 \quad P(\text{Sam}|<s>) = \frac{1}{3} = 0.33 \quad P(\text{am}|I) = \frac{1}{3} = 0.33
\]

\[
P(\text{am}|\text{Sam}) = \frac{1}{2} = 0.5 \quad P(\text{Sam}|\text{am}) = \frac{1}{3} = 0.33 \quad P(\text{do}|I) = \frac{1}{3} = 0.33
\]

For the general case of MLE N-gram parameter estimation:

\[
P(w_n|w_{n-N+1}) = \frac{C(w_{n-N+1}w_n)}{C(w_{n-N+1})} \quad (4.12)
\]

Equation 4.12 (like Eq. 4.11) estimates the N-gram probability by dividing the observed frequency of a particular sequence by the observed frequency of a prefix. This ratio is called a relative frequency. We said above that this use of relative frequencies as a way to estimate probabilities is an example of maximum likelihood estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of the training set \( T \) given the model \( M \) (i.e., \( P(T|M) \)). For example, suppose the word \text{Chinese} occurs 400 times in a corpus of a million words like the Brown corpus. What is the probability that a random word selected from some other text of, say, a million words will be the word \text{Chinese}? The MLE of its probability is \( \frac{400}{1,000,000} \) or 0.0004. Now 0.0004 is not the best possible estimate of the probability of \text{Chinese} occurring in all situations; it might turn out that in some other corpus or context \text{Chinese} is a very unlikely word. But it is the probability that makes it most likely that \text{Chinese} will occur 400 times in a million-word corpus. We present ways to modify the MLE estimates slightly to get better probability estimates in Section 4.4.

Let’s move on to some examples from a slightly larger corpus than our 14-word example above. We’ll use data from the now-defunct Berkeley Restaurant Project, a dialogue system from the last century that answered questions about a database of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-normalized sample user queries (a sample of 9332 sentences is on the website):

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i’m looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i’m looking for a good place to eat breakfast
- when is caffe venezia open during the day

Figure 4.1 shows the bigram counts from a piece of a bigram grammar from the Berkeley Restaurant Project. Note that the majority of the values are zero. In fact, we have chosen the sample words to cohere with each other; a matrix selected from a random set of seven words would be even more sparse.

Figure 4.2 shows the bigram probabilities after normalization (dividing each cell in Fig. 4.1 by the appropriate unigram for its row, taken from the following set of unigram probabilities):

<table>
<thead>
<tr>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2533</td>
<td>927</td>
<td>2417</td>
<td>746</td>
<td>158</td>
<td>1093</td>
<td>341</td>
<td>278</td>
</tr>
</tbody>
</table>

Here are a few other useful probabilities:
CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 4.1** Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

<table>
<thead>
<tr>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0.00079</td>
</tr>
<tr>
<td>want</td>
<td>0.0022</td>
<td>0</td>
<td>0.66</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0054</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0</td>
<td>0.0017</td>
<td>0.28</td>
<td>0.0083</td>
<td>0</td>
<td>0.0025</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0</td>
<td>0.021</td>
<td>0.0027</td>
<td>0.056</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0063</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.52</td>
<td>0.0063</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.0037</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 4.2** Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray.

\[
P(i|<s>) = 0.25 \quad \quad P(\text{english}|\text{want}) = 0.0011
\]
\[
P(\text{food}|\text{english}) = 0.5 \quad \quad P(<s>|\text{food}) = 0.68
\]

Now we can compute the probability of sentences like *I want English food* or *I want Chinese food* by simply multiplying the appropriate bigram probabilities together, as follows:

\[
P(<s> \ i \ \text{want} \ \text{english} \ \text{food} \ <s>)
\]
\[
= P(i|<s>)P(\text{want}|i)P(\text{english}|\text{want})
\]
\[
P(\text{food}|\text{english})P(<s>|\text{food})
\]
\[
=.25 \times .33 \times .0011 \times 0.5 \times 0.68
\]
\[
= .000031
\]

We leave it as Exercise 4.2 to compute the probability of *i want chinese food*.

What kinds of linguistic phenomena are captured in these bigram statistics? Some of the bigram probabilities above encode some facts that we think of as strictly **syntactic** in nature, like the fact that what comes after *eat* is usually a noun or an adjective, or that what comes after *to* is usually a verb. Others might be a fact about the personal assistant task, like the high probability of sentences beginning with the words *I*. And some might even be cultural rather than linguistic, like the higher probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described bigram models, in practice it’s more common to use **trigram** models, which condition on the previous two words rather than the previous word, or **4-gram** or even **5-gram** models, when there is sufficient training data. Note that for these larger N-grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning of
the sentence, we can use two pseudo-words for the first trigram (i.e., \( P(1|<s><s>) \)). We always represent and compute language model probabilities in log format as log probabilities. Since probabilities are (by definition) less than or equal to 1, the more probabilities we multiply together, the smaller the product becomes. Multiplying enough N-grams together would result in numerical underflow. By using log probabilities instead of raw probabilities, we get numbers that are not as small. Adding in log space is equivalent to multiplying in linear space, so we combine log probabilities by adding them. The result of doing all computation and storage in log space is that we only need to convert back into probabilities if we need to report them at the end; then we can just take the exp of the logprob:

\[
p_1 \times p_2 \times p_3 \times p_4 = \exp(\log p_1 + \log p_2 + \log p_3 + \log p_4)
\]

(4.13)

4.2 Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in an application and measure how much the application improves. Such end-to-end evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way to know if a particular improvement in a component is really going to help the task at hand. Thus, for speech recognition, we can compare the performance of two language models by running the speech recognizer twice, once with each language model, and seeing which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. Instead, it would be nice to have a metric that can be used to quickly evaluate potential improvements in a language model. An intrinsic evaluation metric is one that measures the quality of a model independent of any application.

For an intrinsic evaluation of a language model we need a test set. As with many of the statistical models in our field, the probabilities of an N-gram model come from the corpus it is trained on, the training set or training corpus. We can then measure the quality of an N-gram model by its performance on some unseen data called the test set or test corpus. We will also sometimes call test sets and other datasets that are not in our training sets held out corpora because we hold them out from the training data.

So if we are given a corpus of text and want to compare two different N-gram models, we divide the data into training and test sets, train the parameters of both models on the training set, and then compare how well the two trained models fit the test set.

But what does it mean to “fit the test set”? The answer is simple: whichever model assigns a higher probability to the test set—meaning it more accurately predicts the test set—is a better model. Given two probabilistic models, the better model is the one that has a tighter fit to the test data or that better predicts the details of the test data, and hence will assign a higher probability to the test data. Since our evaluation metric is based on test set probability, it’s important not to let the test sentences into the training set. Suppose we are trying to compute the probability of a particular “test” sentence. If our test sentence is part of the training corpus, we will mistakenly assign it an artificially high probability when it occurs in the test set. We call this situation training on the test set. Training on the test set introduces a bias that makes the probabilities all look too high, and causes huge
inaccuracies in \textit{perplexity}, the probability-based metric we introduce below.

Sometimes we use a particular test set so often that we implicitly tune to its characteristics. We then need a fresh test set that is truly unseen. In such cases, we call the initial test set the development test set or, \textit{devset}. How do we divide our data into training, development, and test sets? We want our test set to be as large as possible, since a small test set may be accidentally unrepresentative, but we also want as much training data as possible. At the minimum, we would want to pick the smallest test set that gives us enough statistical power to measure a statistically significant difference between two potential models. In practice, we often just divide our data into 80\% training, 10\% development, and 10\% test. Given a large corpus that we want to divide into training and test, test data can either be taken from some continuous sequence of text inside the corpus, or we can remove smaller “stripes” of text from randomly selected parts of our corpus and combine them into a test set.

\subsection{4.2.1 Perplexity}

In practice we don’t use raw probability as our metric for evaluating language models, but a variant called \textit{perplexity}. The \textit{perplexity} (sometimes called \textit{PP} for short) of a language model on a test set is the inverse probability of the test set, normalized by the number of words. For a test set \( W = w_1 w_2 \ldots w_N \):

\[
\text{PP}(W) = P(w_1 w_2 \ldots w_N)^{-\frac{1}{N}} \tag{4.14}
\]

We can use the chain rule to expand the probability of \( W \):

\[
\text{PP}(W) = N \prod_{i=1}^{N} \frac{1}{P(w_i|w_1 \ldots w_{i-1})} \tag{4.15}
\]

Thus, if we are computing the perplexity of \( W \) with a bigram language model, we get:

\[
\text{PP}(W) = N \prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})} \tag{4.16}
\]

Note that because of the inverse in Eq. 4.15, the higher the conditional probability of the word sequence, the lower the perplexity. Thus, minimizing perplexity is equivalent to maximizing the test set probability according to the language model. What we generally use for word sequence in Eq. 4.15 or Eq. 4.16 is the entire sequence of words in some test set. Since this sequence will cross many sentence boundaries, we need to include the begin- and end-sentence markers \(<s>\) and \(<</s>\) in the probability computation. We also need to include the end-of-sentence marker \(<</s>\) (but not the beginning-of-sentence marker \(<s>\)) in the total count of word tokens \( N \).

There is another way to think about perplexity: as the \textit{weighted average branching factor} of a language. The branching factor of a language is the number of possible next words that can follow any word. Consider the task of recognizing the digits
in English (zero, one, two,..., nine), given that each of the 10 digits occurs with equal probability \( P = \frac{1}{10} \). The perplexity of this mini-language is in fact 10. To see that, imagine a string of digits of length \( N \). By Eq. 4.15, the perplexity will be

\[
PP(W) = P(w_1w_2\ldots w_N)^{-\frac{1}{N}}
\]

\[
= \left(\frac{1}{10}\right)^{-\frac{1}{N}}
\]

\[
= \frac{1}{10}^{-1}
\]

\[
= 10
\]  

(4.17)

But suppose that the number zero is really frequent and occurs 10 times more often than other numbers. Now we should expect the perplexity to be lower since most of the time the next number will be zero. Thus, although the branching factor is still 10, the perplexity or weighted branching factor is smaller. We leave this calculation as an exercise to the reader.

We see in Section 4.7 that perplexity is also closely related to the information-theoretic notion of entropy.

Finally, let’s look at an example of how perplexity can be used to compare different N-gram models. We trained unigram, bigram, and trigram grammars on 38 million words (including start-of-sentence tokens) from the Wall Street Journal, using a 19,979 word vocabulary. We then computed the perplexity of each of these models on a test set of 1.5 million words with Eq. 4.16. The table below shows the perplexity of a 1.5 million word WSJ test set according to each of these grammars.

<table>
<thead>
<tr>
<th></th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perplexity</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>

As we see above, the more information the N-gram gives us about the word sequence, the lower the perplexity (since as Eq. 4.15 showed, perplexity is related inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities, the N-gram model \( P \) must be constructed without any knowledge of the test set or any prior knowledge of the vocabulary of the test set. Any kind of knowledge of the test set can cause the perplexity to be artificially low. The perplexity of two language models is only comparable if they use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) improvement in the performance of a language processing task like speech recognition or machine translation. Nonetheless, because perplexity often correlates with such improvements, it is commonly used as a quick check on an algorithm. But a model’s improvement in perplexity should always be confirmed by an end-to-end evaluation of a real task before concluding the evaluation of the model.

### 4.3 Generalization and Zeros

The N-gram model, like many statistical models, is dependent on the training corpus. One implication of this is that the probabilities often encode specific facts about a given training corpus. Another implication is that N-grams do a better and better job of modeling the training corpus as we increase the value of \( N \).
We can visualize both of these facts by borrowing the technique of Shannon (1951) and Miller and Selfridge (1950) of generating random sentences from different N-gram models. It’s simplest to visualize how this works for the unigram case. Imagine all the words of the English language covering the probability space between 0 and 1, each word covering an interval proportional to its frequency. We choose a random value between 0 and 1 and print the word whose interval includes this chosen value. We continue choosing random numbers and generating words until we randomly generate the sentence-final token \(<s>\). We can use the same technique to generate bigrams by first generating a random bigram that starts with \(<s>\) (according to its bigram probability). Let’s say the second word of that bigram is \(w\). We next chose a random bigram starting with \(w\) (again, drawn according to its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3 shows random sentences generated from unigram, bigram, trigram, and 4-gram models trained on Shakespeare’s works.

| 1 gram | –To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Hill he late speaks; or! a more to leg less first you enter |
| 2 gram | –Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. What means, sir. I confess she? then all sorts, he is trim, captain. |
| 3 gram | –Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, ’tis done. This shall forbid it should be branded, if renown made it empty. |
| 4 gram | –King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in; It cannot be but so. |

Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sentences. In the unigram sentences, there is no coherent relation between words or any sentence-final punctuation. The bigram sentences have some local word-to-word coherence (especially if we consider that punctuation counts as a word). The trigram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a careful investigation of the 4-gram sentences shows that they look a little too much like Shakespeare. The words \(\text{It cannot be but so}\) are directly from \(\text{King John}\). This is because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora go \((N = 884,647, V = 29,066)\), and our N-gram probability matrices are ridiculously sparse. There are \(V^2 = 844,000,000\) possible bigrams alone, and the number of possible 4-grams is \(V^4 = 7 \times 10^{17}\). Thus, once the generator has chosen the first 4-gram \((\text{It cannot be but})\), there are only five possible continuations \((\text{that}, \text{I}, \text{he}, \text{thou}, \text{and} \text{so})\); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an N-gram grammar trained on a completely different corpus: the \(\text{Wall Street Journal}\) (WSJ) newspaper. Shakespeare and the \(\text{Wall Street Journal}\) are both English, so we might expect some overlap between our N-grams for the two genres. Fig. 4.4
4.3 • Generalization and Zeros

shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

<table>
<thead>
<tr>
<th>Gram</th>
<th>Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Months the my and issue of year foreign new exchange’s september were recession exchange new endorsed a acquire to six executives</td>
</tr>
<tr>
<td>2</td>
<td>Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her</td>
</tr>
<tr>
<td>3</td>
<td>They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions</td>
</tr>
</tbody>
</table>

Figure 4.4 Three sentences randomly generated from three N-gram models computed from 40 million words of the Wall Street Journal, lower-casing all characters and treating punctuation as words. Output was then hand-corrected for capitalization to improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superficially they both seem to model “English-like sentences”, there is obviously no overlap whatsoever in possible sentences, and little if any overlap even in small phrases. This stark difference tells us that statistical models are likely to be pretty useless as predictors if the training sets and the test sets are as different as Shakespeare and WSJ.

How should we deal with this problem when we build N-gram models? One way is to be sure to use a training corpus that has a similar genre to whatever task we are trying to accomplish. To build a language model for translating legal documents, we need a training corpus of legal documents. To build a language model for a question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the problem of sparsity. For any N-gram that occurred a sufficient number of times, we might have a good estimate of its probability. But because any corpus is limited, some perfectly acceptable English word sequences are bound to be missing from it. That is, we'll have many cases of putative “zero probability N-grams” that should really have some non-zero probability. Consider the words that follow the bigram denied the in the WSJ Treebank3 corpus, together with their counts:

- denied the allegations: 5
- denied the speculation: 2
- denied the rumors: 1
- denied the report: 1

But suppose our test set has phrases like:

- denied the offer
- denied the loan

Our model will incorrectly estimate that the $P(\text{offer}|\text{denied the})$ is 0!

These zeros—things that don’t ever occur in the training set but do occur in the test set—are a problem for two reasons. First, their presence means we are underestimating the probability of all sorts of words that might occur, which will hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability of the test set is 0. By definition, perplexity is based on the inverse probability of the
test set. Thus if some words have zero probability, we can’t compute perplexity at all, since we can’t divide by 0!

### 4.3.1 Unknown Words

The previous section discussed the problem of words whose bigram probability is zero. But what about words we simply have never seen before?

Sometimes we have a language task in which this can’t happen because we know all the words that can occur. In such a **closed vocabulary** system the test set can only contain words from this lexicon, and there will be no unknown words. This is a reasonable assumption in some domains, such as speech recognition or machine translation, where we have a pronunciation dictionary or a phrase table that are fixed in advance, and so the language model can only use the words in that dictionary or phrase table.

In other cases we have to deal with words we haven’t seen before, which we’ll call **unknown** words, or **out of vocabulary** (**OOV**) words. The percentage of OOV words that appear in the test set is called the **OOV rate**. An **open vocabulary** system is one in which we model these potential unknown words in the test set by adding a pseudo-word called `<UNK>`.

There are two common ways to train the probabilities of the unknown word model `<UNK>`. The first one is to turn the problem back into a closed vocabulary one by choosing a fixed vocabulary in advance:

1. **Choose a vocabulary** (word list) that is fixed in advance.
2. **Convert** in the training set any word that is not in this set (any OOV word) to the unknown word token `<UNK>` in a text normalization step.
3. **Estimate** the probabilities for `<UNK>` from its counts just like any other regular word in the training set.

The second alternative, in situations where we don’t have a prior vocabulary in advance, is to create such a vocabulary implicitly, replacing words in the training data by `<UNK>` based on their frequency. For example we can replace by `<UNK>` all words that occur fewer than \( n \) times in the training set, where \( n \) is some small number, or equivalently select a vocabulary size \( V \) in advance (say 50,000) and choose the top \( V \) words by frequency and replace the rest by UNK. In either case we then proceed to train the language model as before, treating `<UNK>` like a regular word.

The exact choice of `<UNK>` model does have an effect on metrics like perplexity. A language model can achieve low perplexity by choosing a small vocabulary and assigning the unknown word a high probability. For this reason, perplexities should only be compared across language models with the same vocabularies (Buck et al., 2014).

### 4.4 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words) but appear in a test set in an unseen context (for example they appear after a word they never appeared after in training)? To keep a language model from assigning zero probability to these unseen events, we’ll have to shave off a bit of probability mass from some more frequent events and give it to the events we’ve never seen. This modification is called **smoothing** or **discounting**. In this section and the fol-
4.4 • Smoothing

Following ones we’ll introduce a variety of ways to do smoothing: add-1 smoothing, add-k smoothing, Stupid backoff, and Kneser-Ney smoothing.

4.4.1 Laplace Smoothing

The simplest way to do smoothing is to add one to all the bigram counts, before we normalize them into probabilities. All the counts that used to be zero will now have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called Laplace smoothing. Laplace smoothing does not perform well enough to be used in modern N-gram models, but it usefully introduces many of the concepts that we see in other smoothing algorithms, gives a useful baseline, and is also a practical smoothing algorithm for other tasks like text classification (Chapter 6).

Let’s start with the application of Laplace smoothing to unigram probabilities. Recall that the unsmoothed maximum likelihood estimate of the unigram probability of the word \( w_i \) is its count \( c_i \) normalized by the total number of word tokens \( N \):

\[
P(w_i) = \frac{c_i}{N}
\]

Laplace smoothing merely adds one to each count (hence its alternate name add-one smoothing). Since there are \( V \) words in the vocabulary and each one was incremented, we also need to adjust the denominator to take into account the extra \( V \) observations. (What happens to our \( P \) values if we don’t increase the denominator?)

\[
P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}
\]

(4.18)

Instead of changing both the numerator and denominator, it is convenient to describe how a smoothing algorithm affects the numerator, by defining an adjusted count \( c^* \). This adjusted count is easier to compare directly with the MLE counts and can be turned into a probability like an MLE count by normalizing by \( N \). To define this count, since we are only changing the numerator in addition to adding 1 we’ll also need to multiply by a normalization factor \( \frac{N}{N+V} \):

\[
c^*_i = (c_i + 1) \frac{N}{N + V}
\]

(4.19)

We can now turn \( c^*_i \) into a probability \( P^*_i \) by normalizing by \( N \).

A related way to view smoothing is as discounting (lowering) some non-zero counts in order to get the probability mass that will be assigned to the zero counts. Thus, instead of referring to the discounted counts \( c^* \), we might describe a smoothing algorithm in terms of a relative discount \( d_c \), the ratio of the discounted counts to the original counts:

\[
d_c = \frac{c^*}{c}
\]

Now that we have the intuition for the unigram case, let’s smooth our Berkeley Restaurant Project bigrams. Figure 4.5 shows the add-one smoothed counts for the bigrams in Fig. 4.1.
Figure 4.5  Add-one smoothed bigram counts for eight of the words (out of $V = 1446$) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 4.6 shows the add-one smoothed probabilities for the bigrams in Fig. 4.2. Recall that normal bigram probabilities are computed by normalizing each row of counts by the unigram count:

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

(4.20)

For add-one smoothed bigram counts, we need to augment the unigram count by the number of total word types in the vocabulary $V$:

$$P_{\text{Laplace}}^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

(4.21)

Thus, each of the unigram counts given in the previous section will need to be augmented by $V = 1446$. The result is the smoothed bigram probabilities in Fig. 4.6.

Figure 4.6  Add-one smoothed bigram probabilities for eight of the words (out of $V = 1446$) in the BeRP corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a smoothing algorithm has changed the original counts. These adjusted counts can be computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

(4.22)

Note that add-one smoothing has made a very big change to the counts. $C(\text{want to})$ changed from 608 to 238! We can see this in probability space as well: $P(\text{to}|\text{want})$ decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the discount $d$ (the ratio between new and old counts) shows us how strikingly the counts for each prefix word have been reduced; the discount for the bigram want to is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probability mass is moved to all the zeros.
4.4 • Smoothing

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass from the seen to the unseen events. Instead of adding 1 to each count, we add a fractional count \( k \) (e.g., .5?, .05?, .01?). This algorithm is therefore called **add-k smoothing**.

\[
P^*_{\text{Add-k}}(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + k}{C(w_{n-1}) + kV}
\]  

(4.23)

Add-k smoothing requires that we have a method for choosing \( k \); this can be done, for example, by optimizing on a devset. Although add-k is useful for some tasks (including text classification), it turns out that it still doesn’t work well for language modeling, generating counts with poor variances and often inappropriate discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero frequency N-grams. But there is an additional source of knowledge we can draw on. If we are trying to compute \( P(w_n|w_{n-2}w_{n-1}) \) but we have no examples of a particular trigram \( w_{n-2}w_{n-1}w_n \), we can instead estimate its probability by using the bigram probability \( P(w_n|w_{n-1}) \). Similarly, if we don’t have counts to compute \( P(w_n|w_{n-1}) \), we can look to the unigram \( P(w_n) \).

In other words, sometimes using less context is a good thing, helping to generalize more for contexts that the model hasn’t learned much about. There are two ways to use this N-gram “hierarchy”. In **backoff**, we use the trigram if the evidence is sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we only “back off” to a lower-order N-gram if we have zero evidence for a higher-order N-gram. By contrast, in **interpolation**, we always mix the probability estimates from all the N-gram estimators, weighing and combining the trigram, bigram, and unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly interpolating all the models. Thus, we estimate the trigram probability \( P(w_n|w_{n-2}w_{n-1}) \) by mixing together the unigram, bigram, and trigram probabilities, each weighted by a \( \lambda \):

\[
P(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)
\]  

(4.24)
such that the $\lambda$s sum to 1:

$$\sum_i \lambda_i = 1 \quad (4.25)$$

In a slightly more sophisticated version of linear interpolation, each $\lambda$ weight is computed by conditioning on the context. This way, if we have particularly accurate counts for a particular bigram, we assume that the counts of the trigrams based on this bigram will be more trustworthy, so we can make the $\lambda$s for those trigrams higher and thus give that trigram more weight in the interpolation. Equation 4.26 shows the equation for interpolation with context-conditioned weights:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 (w_{n-2}^{n-1}) P(w_n|w_{n-2}w_{n-1})$$

$$+ \lambda_2 (w_{n-1}^{n-1}) P(w_n|w_{n-1})$$

$$+ \lambda_3 (w_{n-1}^{n-1}) P(w_n) \quad (4.26)$$

How are these $\lambda$ values set? Both the simple interpolation and conditional interpolation $\lambda$s are learned from a held-out corpus. A held-out corpus is an additional training corpus that we use to set hyperparameters like these $\lambda$ values, by choosing the $\lambda$ values that maximize the likelihood of the held-out corpus. That is, we fix the N-gram probabilities and then search for the $\lambda$ values that—when plugged into Eq. 4.24—give us the highest probability of the held-out set. There are various ways to find this optimal set of $\lambda$s. One way is to use the EM algorithm defined in Chapter 9, which is an iterative learning algorithm that converges on locally optimal $\lambda$s (Jelinek and Mercer, 1980).

In a backoff N-gram model, if the N-gram we need has zero counts, we approximate it by backing off to the (N-1)-gram. We continue backing off until we reach a history that has some counts.

In order for a backoff model to give a correct probability distribution, we have to discount the higher-order N-grams to save some probability mass for the lower order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t discounted and we just used the undiscounted MLE probability, then as soon as we replaced an N-gram which has zero probability with a lower-order N-gram, we would be adding probability mass, and the total probability assigned to all possible strings by the language model would be greater than 1! In addition to this explicit discount factor, we’ll need a function $\alpha$ to distribute this probability mass to the lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz backoff we rely on a discounted probability $P^*$ if we’ve seen this N-gram before (i.e., if we have non-zero counts). Otherwise, we recursively back off to the Katz probability for the shorter-history (N-1)-gram. The probability for a backoff N-gram $P_{BO}$ is thus computed as follows:

$$P_{BO}(w_n|w_{n-N+1}) = \begin{cases} 
P^*(w_n|w_{n-N+1}), & \text{if } C(w_{n-N+1}) > 0 \\
\alpha(w_{n-N+1}) P_{BO}(w_n|w_{n-N+2}), & \text{otherwise}.
\end{cases} \quad (4.27)$$

Katz backoff is often combined with a smoothing method called Good-Turing. The combined Good-Turing backoff algorithm involves quite detailed computation for estimating the Good-Turing smoothing and the $P^*$ and $\alpha$ values.
4.5 Kneser-Ney Smoothing

One of the most commonly used and best performing N-gram smoothing methods is the interpolated Kneser-Ney algorithm (Kneser and Ney 1995, Chen and Goodman 1998).

Kneser-Ney has its roots in a method called absolute discounting. Recall that discounting of the counts for frequent N-grams is necessary to save some probability mass for the smoothing algorithm to distribute to the unseen N-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider an N-gram that has count 4. We need to discount this count by some amount. But how much should we discount it? Church and Gale’s clever idea was to look at a held-out corpus and just see what the count is for all those bigrams that had count 4 in the training set. They computed a bigram grammar from 22 million words of AP newswire and then checked the counts of each of these bigrams in another 22 million words. On average, a bigram that occurred 4 times in the first 22 million words occurred 3.23 times in the next 22 million words. The following table from Church and Gale (1991) shows these counts for bigrams with count from 0 to 9:

<table>
<thead>
<tr>
<th>Bigram count in training set</th>
<th>Bigram count in heldout set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000270</td>
</tr>
<tr>
<td>1</td>
<td>0.448</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
</tr>
<tr>
<td>5</td>
<td>4.21</td>
</tr>
<tr>
<td>6</td>
<td>5.23</td>
</tr>
<tr>
<td>7</td>
<td>6.21</td>
</tr>
<tr>
<td>8</td>
<td>7.21</td>
</tr>
<tr>
<td>9</td>
<td>8.26</td>
</tr>
</tbody>
</table>

The astute reader may have noticed that except for the held-out counts for 0 and 1, all the other bigram counts in the held-out set could be estimated pretty well by just subtracting 0.75 from the count in the training set! Absolute discounting formalizes this intuition by subtracting a fixed (absolute) discount $d$ from each count. The intuition is that since we have good estimates already for the very high counts, a small discount $d$ won’t affect them much. It will mainly modify the smaller counts, for which we don’t necessarily trust the estimate anyway, and Fig. 4.8 suggests that in practice this discount is actually a good one for bigrams with counts 2 through 9.

The equation for interpolated absolute discounting applied to bigrams:

$$p_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) - d}{\sum_v C(w_{i-1}v)} + \lambda P(w_i)$$

(4.28)

The first term is the discounted bigram, and the second term the unigram with an interpolation weight $\lambda$. We could just set all the $d$ values to .75, or we could keep a separate discount value of 0.5 for the bigrams with counts of 1.
Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discounting with a more sophisticated way to handle the lower-order unigram distribution. Consider the job of predicting the next word in this sentence, assuming we are interpolating a bigram and a unigram model.

I can’t see without my reading glasses.

The word glasses seems much more likely to follow here than, say, the word Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is more common, since Hong Kong is a very frequent word. A standard unigram model will assign Kong a higher probability than glasses. We would like to capture the intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of $P(w)$, which answers the question “How likely is $w$?”, we’d like to create a unigram model that we might call $P_{\text{CONTINUATION}}$, which answers the question “How likely is $w$ to appear as a novel continuation?”.

How can we estimate this probability of seeing the word $w$ as a novel continuation, in a new unseen context? The Kneser-Ney intuition is to base our estimate of $P_{\text{CONTINUATION}}$ on the number of different contexts word $w$ has appeared in, that is, the number of bigram types it completes. Every bigram type was a novel continuation the first time it was seen. We hypothesize that words that have appeared in more contexts in the past are more likely to appear in some new context as well. The number of times a word $w$ appears as a novel continuation can be expressed as:

$$P_{\text{CONTINUATION}}(w) \propto |\{v : C(vw) > 0\}|$$

(4.29)

To turn this count into a probability, we normalize by the total number of word bigram types. In summary:

$$P_{\text{CONTINUATION}}(w) = \frac{|\{v : C(vw) > 0\}|}{|\{(u',w') : C(u'w') > 0\}|}$$

(4.30)

An alternative metaphor for an equivalent formulation is to use the number of word types seen to precede $w$ (Eq. 4.29 repeated):

$$P_{\text{CONTINUATION}}(w) \propto |\{v : C(vw) > 0\}|$$

(4.31)

normalized by the number of words preceding all words, as follows:

$$P_{\text{CONTINUATION}}(w) = \frac{|\{v : C(vw) > 0\}|}{\sum_{w'}|\{v : C(vw') > 0\}|}$$

(4.32)

A frequent word (Kong) occurring in only one context (Hong) will have a low continuation probability.

The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:

$$P_{\text{KN}}(w_i|w_{i-1}) = \max(C(w_{i-1}w_i) - d, 0) \frac{C(w_{i-1})}{\sum_{w}C(w_{i-1}w)} + \lambda(w_{i-1})P_{\text{CONTINUATION}}(w_i)$$

(4.33)

The $\lambda$ is a normalizing constant that is used to distribute the probability mass we’ve discounted:

$$\lambda(w_{i-1}) = \frac{d}{\sum_{w}C(w_{i-1}w)}|\{w : C(w_{i-1}w) > 0\}|$$

(4.34)
4.6 • The Web and Stupid Backoff

The first term \( \frac{d}{\sum \nu C(w_i) \nu} \) is the normalized discount. The second term \( |\{w : C(w_{i-1}w) > 0\}| \) is the number of word types that can follow \( w_{i-1} \) or, equivalently, the number of word types that we discounted; in other words, the number of times we applied the normalized discount.

The general recursive formulation is as follows:

\[
P_{KN}(w_i|w_{i-n+1}) = \max \left( \frac{c_{KN}(w_{i-n+1}) - d, 0}{\sum_v c_{KN}(w_{i-n+1}v)} \right) + \lambda(w_{i-n+1})P_{KN}(w_{i-n+2})
\]

(4.35)

where the definition of the count \( c_{KN} \) depends on whether we are counting the highest-order N-gram being interpolated (for example trigram if we are interpolating trigram, bigram, and unigram) or one of the lower-order N-grams (bigram or unigram if we are interpolating trigram, bigram, and unigram):

\[
c_{KN}(\cdot) = \begin{cases} 
\text{count}(\cdot) & \text{for the highest order} \\
\text{continuation count}(\cdot) & \text{for lower orders}
\end{cases}
\]

(4.36)

The continuation count is the number of unique single word contexts for \( \cdot \).

At the termination of the recursion, unigrams are interpolated with the uniform distribution, where the parameter \( \epsilon \) is the empty string:

\[
P_{KN}(w) = \max \left( \frac{c_{KN}(w) - d, 0}{\sum_{w'} c_{KN}(w')} \right) + \lambda(\epsilon) \frac{1}{V}
\]

(4.37)

If we want to include an unknown word <UNK>, it’s just included as a regular vocabulary entry with count zero, and hence its probability will be a lambda-weighted uniform distribution \( \frac{\lambda(\epsilon)}{V} \).

The best-performing version of Kneser-Ney smoothing is called **modified Kneser-Ney** smoothing, and is due to Chen and Goodman (1998). Rather than use a single fixed discount \( d \), modified Kneser-Ney uses three different discounts \( d_1, d_2, \) and \( d_3+ \) for N-grams with counts of 1, 2 and three or more, respectively. See Chen and Goodman (1998, p. 19) or Heafield et al. (2013) for the details.

4.6 The Web and Stupid Backoff

By using text from the web, it is possible to build extremely large language models. In 2006 Google released a very large set of N-gram counts, including N-grams (1-grams through 5-grams) from all the five-word sequences that appear at least 40 times from 1,024,908,267,229 words of running text on the web; this includes 1,176,470,663 five-word sequences using over 13 million unique words types (Franz and Brants, 2006). Some examples:
Efficiency considerations are important when building language models that use such large sets of N-grams. Rather than store each word as a string, it is generally represented in memory as a 64-bit hash number, with the words themselves stored on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte floats), and N-grams are stored in reverse tries.

N-grams can also be shrunk by pruning, for example only storing N-grams with counts greater than some threshold (such as the count threshold of 40 used for the Google N-gram release) or using entropy to prune less-important N-grams (Stolcke, 1998). Another option is to build approximate language models using techniques like Bloom filters (Talbot and Osborne 2007, Church et al. 2007). Finally, efficient language model toolkits like KenLM (Heafield 2011, Heafield et al. 2013) use sorted arrays, efficiently combine probabilities and backoffs in a single value, and use merge sorts to efficiently build the probability tables in a minimal number of passes through a large corpus.

Although with these toolkits it is possible to build web-scale language models using full Kneser-Ney smoothing, Brants et al. (2007) show that with very large language models a much simpler algorithm may be sufficient. The algorithm is called stupid backoff. Stupid backoff gives up the idea of trying to make the language model a true probability distribution. There is no discounting of the higher-order probabilities. If a higher-order N-gram has a zero count, we simply backoff to a lower order N-gram, weighed by a fixed (context-independent) weight. This algorithm does not produce a probability distribution, so we’ll follow Brants et al. (2007) in referring to it as $S$:

$$S(w_i|w_{i-1}^{i-k+1}) = \begin{cases} \frac{\text{count}(w_{i-k+1}^{i-1})}{\text{count}(w_{i-k+1}^{i-1})} & \text{if count}(w_{i-k+1}^{i-1}) > 0 \\ \lambda S(w_i|w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

4.7 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 4.2.1 as a way to evaluate N-gram models on a test set. A better N-gram model is one that assigns a higher probability to the test data, and perplexity is a normalized version of the probability of the test set. The perplexity measure actually arises from the information-theoretic concept of cross-entropy, which explains otherwise mysterious properties of perplexity (why
the inverse probability, for example?) and its relationship to entropy. Entropy is a measure of information. Given a random variable $X$ ranging over whatever we are predicting (words, letters, parts of speech, the set of which we’ll call $\chi$) and with a particular probability function, call it $p(x)$, the entropy of the random variable $X$ is:

$$H(X) = -\sum_{x \in \chi} p(x) \log_2 p(x)$$

(4.39)

The log can, in principle, be computed in any base. If we use log base 2, the resulting value of entropy will be measured in \textit{bits}.

One intuitive way to think about entropy is as a lower bound on the number of bits it would take to encode a certain decision or piece of information in the optimal coding scheme.

Consider an example from the standard information theory textbook \textit{Cover and Thomas} (1991). Imagine that we want to place a bet on a horse race but it is too far to go all the way to Yonkers Racetrack, so we’d like to send a short message to the bookie to tell him which of the eight horses to bet on. One way to encode this message is just to use the binary representation of the horse’s number as the code; thus, horse 1 would be $001$, horse 2 $010$, horse 3 $011$, and so on, with horse 8 coded as $000$. If we spend the whole day betting and each horse is coded with 3 bits, on average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets placed and that we represent it as the prior probability of each horse as follows:

<table>
<thead>
<tr>
<th>Horse</th>
<th>1/8</th>
<th>Horse 5</th>
<th>1/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse 2</td>
<td>1/8</td>
<td>Horse 6</td>
<td>1/64</td>
</tr>
<tr>
<td>Horse 3</td>
<td>1/8</td>
<td>Horse 7</td>
<td>1/64</td>
</tr>
<tr>
<td>Horse 4</td>
<td>1/16</td>
<td>Horse 8</td>
<td>1/64</td>
</tr>
</tbody>
</table>

The entropy of the random variable $X$ that ranges over horses gives us a lower bound on the number of bits and is

$$H(X) = -\sum_{i=1}^{i=8} \frac{1}{8} \log_2 \frac{1}{8} = -\left(\frac{1}{8} \log_2 \frac{1}{8} + \frac{1}{8} \log_2 \frac{1}{8} + \frac{1}{8} \log_2 \frac{1}{8} + 4 \left(\frac{1}{8} \log_2 \frac{1}{8}\right)\right) = 2 \text{ bits}$$

(4.40)

A code that averages 2 bits per race can be built with short encodings for more probable horses, and longer encodings for less probable horses. For example, we could encode the most likely horse with the code $0$, and the remaining horses as $10$, then $110$, $1110$, $111100$, $111101$, $111110$, and $111111$.

What if the horses are equally likely? We saw above that if we used an equal-length binary code for the horse numbers, each horse took 3 bits to code, so the average was 3. Is the entropy the same? In this case each horse would have a probability of $\frac{1}{8}$. The entropy of the choice of horses is then

$$H(X) = -\sum_{i=1}^{i=8} \frac{1}{8} \log_2 \frac{1}{8} = -\log_2 \frac{1}{8} = 3 \text{ bits}$$

(4.41)

Until now we have been computing the entropy of a single variable. But most of what we will use entropy for involves \textit{sequences}. For a grammar, for example, we...
will be computing the entropy of some sequence of words \( W = \{ w_0, w_1, w_2, \ldots, w_n \} \). One way to do this is to have a variable that ranges over sequences of words. For example we can compute the entropy of a random variable that ranges over all finite sequences of words of length \( n \) in some language \( L \) as follows:

\[
H(w_1, w_2, \ldots, w_n) = - \sum_{W^n \in L} p(W^n) \log p(W^n) \tag{4.42}
\]

We could define the **entropy rate** (we could also think of this as the **per-word entropy**) as the entropy of this sequence divided by the number of words:

\[
\frac{1}{n} H(w_1, w_2, \ldots, w_n) = - \frac{1}{n} \sum_{W^n \in L} p(W^n) \log p(W^n) \tag{4.43}
\]

But to measure the true entropy of a language, we need to consider sequences of infinite length. If we think of a language as a stochastic process \( L \) that produces a sequence of words, and allow \( W \) to represent the sequence of words \( w_1, \ldots, w_n \), then \( L \)'s entropy rate \( H(L) \) is defined as

\[
H(L) = - \lim_{n \to \infty} \frac{1}{n} H(w_1, w_2, \ldots, w_n)
\]

\[
= - \lim_{n \to \infty} \frac{1}{n} \sum_{W \in L} p(w_1, \ldots, w_n) \log p(w_1, \ldots, w_n) \tag{4.44}
\]

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and Thomas 1991) states that if the language is regular in certain ways (to be exact, if it is both stationary and ergodic),

\[
H(L) = \lim_{n \to \infty} - \frac{1}{n} \log p(w_1 w_2 \ldots w_n) \tag{4.45}
\]

That is, we can take a single sequence that is long enough instead of summing over all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem is that a long-enough sequence of words will contain in it many other shorter sequences and that each of these shorter sequences will reoccur in the longer sequence according to their probabilities.

A stochastic process is said to be **stationary** if the probabilities it assigns to a sequence are invariant with respect to shifts in the time index. In other words, the probability distribution for words at time \( t \) is the same as the probability distribution at time \( t + 1 \). Markov models, and hence N-grams, are stationary. For example, in a bigram, \( P_i \) is dependent only on \( P_{i-1} \). So if we shift our time index by \( x \), \( P_{i+x} \) is still dependent on \( P_{i+x-1} \). But natural language is not stationary, since as we show in Chapter 11, the probability of upcoming words can be dependent on events that were arbitrarily distant and time dependent. Thus, our statistical models only give an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assumptions, we can compute the entropy of some stochastic process by taking a very long sample of the output and computing its average log probability.

Now we are ready to introduce **cross-entropy**. The cross-entropy is useful when we don’t know the actual probability distribution \( p \) that generated some data. It
allows us to use some \( m \), which is a model of \( p \) (i.e., an approximation to \( p \)). The cross-entropy of \( m \) on \( p \) is defined by

\[
H(p, m) = \lim_{n \to \infty} -\frac{1}{n} \sum_{w \in L} p(w_1, \ldots, w_n) \log m(w_1, \ldots, w_n)
\]  

(4.46)

That is, we draw sequences according to the probability distribution \( p \), but sum the log of their probabilities according to \( m \).

Again, following the Shannon-McMillan-Breiman theorem, for a stationary ergodic process:

\[
H(p, m) = \lim_{n \to \infty} -\frac{1}{n} \log m(w_1 w_2 \ldots w_n)
\]  

(4.47)

This means that, as for entropy, we can estimate the cross-entropy of a model \( m \) on some distribution \( p \) by taking a single sequence that is long enough instead of summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy \( H(p, m) \) is an upper bound on the entropy \( H(p) \). For any model \( m \):

\[
H(p) \leq H(p, m)
\]  

(4.48)

This means that we can use some simplified model \( m \) to help estimate the true entropy of a sequence of symbols drawn according to probability \( p \). The more accurate \( m \) is, the closer the cross-entropy \( H(p, m) \) will be to the true entropy \( H(p) \). Thus, the difference between \( H(p, m) \) and \( H(p) \) is a measure of how accurate a model is. Between two models \( m_1 \) and \( m_2 \), the more accurate model will be the one with the lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy as we saw it in Eq. 4.47. Cross-entropy is defined in the limit, as the length of the observed word sequence goes to infinity. We will need an approximation to cross-entropy, relying on a (sufficiently long) sequence of fixed length. This approximation to the cross-entropy of a model \( M = P(w_i|w_{i-N+1}\ldots w_{i-1}) \) on a sequence of words \( W \) is

\[
H(W) = -\frac{1}{N} \log P(w_1 w_2 \ldots w_N)
\]  

(4.49)

The perplexity of a model \( P \) on a sequence of words \( W \) is now formally defined as the exp of this cross-entropy:

\[
\text{Perplexity}(W) = 2^{H(W)}
\]

\[
= P(w_1 w_2 \ldots w_N)^{-\frac{1}{N}}
\]

\[
= \sqrt[N]{\frac{1}{P(w_1 w_2 \ldots w_N)}}
\]

\[
= \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1 \ldots w_{i-1})}}
\]  

(4.50)
4.8 Summary

This chapter introduced language modeling and the N-gram, one of the most widely used tools in language processing.

- Language models offer a way to assign a probability to a sentence or other sequence of words, and to predict a word from preceding words.
- N-grams are Markov models that estimate words from a fixed window of previous words. N-gram probabilities can be estimated by counting in a corpus and normalizing (the maximum likelihood estimate).
- N-gram language models are evaluated extrinsically in some task, or intrinsically using perplexity.
- The perplexity of a test set according to a language model is the geometric mean of the inverse test set probability computed by the model.
- Smoothing algorithms provide a more sophisticated way to estimate the probability of N-grams. Commonly used smoothing algorithms for N-grams rely on lower-order N-gram counts through backoff or interpolation.
- Both backoff and interpolation require discounting to create a probability distribution.
- Kneser-Ney smoothing makes use of the probability of a word being a novel continuation. The interpolated Kneser-Ney smoothing algorithm mixes a discounted probability with a lower-order continuation probability.

Bibliographical and Historical Notes

The underlying mathematics of the N-gram was first proposed by Markov (1913), who used what are now called Markov chains (bigrams and trigrams) to predict whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a consonant. Markov classified 20,000 letters as V or C and computed the bigram and trigram probability that a given letter would be a vowel given the previous one or two letters. Shannon (1948) applied N-grams to compute approximations to English word sequences. Based on Shannon’s work, Markov models were commonly used in engineering, linguistic, and psychological work on modeling word sequences by the 1950s. In a series of extremely influential papers starting with Chomsky (1956) and including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that “finite-state Markov processes”, while a possibly useful engineering heuristic, were incapable of being a complete cognitive model of human grammatical knowledge. These arguments led many linguists and computational linguists to ignore work in statistical modeling for decades.

The resurgence of N-gram models came from Jelinek, Mercer, Bahl, and colleagues at the IBM Thomas J. Watson Research Center, who were influenced by Shannon, and Baker at CMU, who was influenced by the work of Baum and colleagues. Independently these two labs successfully used N-grams in their speech recognition systems (Baker 1990, Jelinek 1976, Baker 1975, Bahl et al. 1983, Jelinek 1990). A trigram model was used in the IBM TANGORA speech recognition system in the 1970s, but the idea was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession and was first applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were proposed in the 80s and 90s, including Good-Turing discounting—first applied to the N-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)—Witten-Bell discounting (Witten and Bell, 1991), and varieties of class-based N-gram models that used information about word classes.

Starting in the late 1990s, Chen and Goodman produced a highly influential series of papers with a comparison of different language models (Chen and Goodman 1996, Chen and Goodman 1998, Chen and Goodman 1999, Goodman 2006). They performed a number of carefully controlled experiments comparing different discounting algorithms, cache models, class-based models, and other language model parameters. They showed the advantages of Modified Interpolated Kneser-Ney, which has since become the standard baseline for language modeling, especially because they showed that caches and class-based models provided only minor additional improvement. These papers are recommended for any reader with further interest in language modeling.

Two commonly used toolkits for building language models are SRILM (Stolcke, 2002) and KenLM (Heafield 2011, Heafield et al. 2013). Both are publicly available. SRILM offers a wider range of options and types of discounting, while KenLM is optimized for speed and memory size, making it possible to build web-scale language models.

The highest accuracy language models at the time of this writing make use of neural nets. The problem with standard language models is that the number of parameters increases exponentially as the N-gram order increases, and N-grams have no way to generalize from training to test set. Neural networks instead project words into a continuous space in which words with similar contexts have similar representations. Both feedforward nets Bengio et al. 2006, Schwenk 2007 and recurrent nets (Mikolov, 2012) are used.

Other important classes of language models are maximum entropy language models (Rosenfeld, 1996), based on logistic regression classifiers that use lots of features to help predict upcoming words. These classifiers can use the standard features presented in this chapter (i.e., the previous words) but also lots of other useful predictors, as can other kinds of discriminative language models (Roark et al., 2007). We’ll introduce logistic regression language modeling when we introduce classification in Chapter 6.

Another important technique is language model adaptation, where we want to combine data from multiple domains (for example we might have less in-domain training data but more general data that we then need to adapt) (Bulyko et al. 2003, Bacchiani et al. 2004, Bellegarda 2004, Bacchiani et al. 2006, Hsu 2007, Liu et al. 2013).

**Exercises**

4.1 Write out the equation for trigram probability estimation (modifying Eq. 4.11). Now write out all the non-zero trigram probabilities for the I am Sam corpus on page 39.

4.2 Calculate the probability of the sentence i want chinese food. Give two probabilities, one using Fig. 4.2, and another using the add-1 smoothed table in Fig. 4.6.
4.3 Which of the two probabilities you computed in the previous exercise is higher, unsmoothed or smoothed? Explain why.

4.4 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I do not like green eggs and Sam </s>

Using a bigram language model with add-one smoothing, what is \( P(\text{Sam} | \text{am}) \)? Include \(<s>\) and \(<</s>\) in your counts just like any other token.

4.5 Suppose we didn’t use the end-symbol \(<</s>\). Train an unsmoothed bigram grammar on the following training corpus without using the end-symbol \(<</s>\):

<s> a b </s>
<s> b b </s>
<s> b a </s>
<s> a a </s>

Demonstrate that your bigram model does not assign a single probability distribution across all sentence lengths by showing that the sum of the probability of the four possible 2 word sentences over the alphabet \{a,b\} is 1.0, and the sum of the probability of all possible 3 word sentences over the alphabet \{a,b\} is also 1.0.

4.6 Suppose we train a trigram language model with add-one smoothing on a given corpus. The corpus contains \( V \) word types. Express a formula for estimating \( P(\text{w3} | \text{w1},\text{w2}) \), where \( \text{w3} \) is a word which follows the bigram \( (\text{w1},\text{w2}) \), in terms of various N-gram counts and \( V \). Use the notation \( c(\text{w1},\text{w2},\text{w3}) \) to denote the number of times that trigram \( (\text{w1},\text{w2},\text{w3}) \) occurs in the corpus, and so on for bigrams and unigrams.

4.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bigram model and a maximum-likelihood unigram model with \( \lambda_1 = \frac{1}{2} \) and \( \lambda_2 = \frac{1}{2} \), what is \( P(\text{Sam} | \text{am}) \)? Include \(<s>\) and \(<</s>\)\verb|\verb| in your counts just like any other token.

4.8 Write a program to compute unsmoothed unigrams and bigrams.

4.9 Run your \( N \)-gram program on two different small corpora of your choice (you might use email text or newsgroups). Now compare the statistics of the two corpora. What are the differences in the most common unigrams between the two? How about interesting differences in bigrams?

4.10 Add an option to your program to generate random sentences.

4.11 Add an option to your program to compute the perplexity of a test set.
Spelling Correction and the Noisy Channel

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling during the last turn of the century. Gilbert and Sullivan provide many examples. The Gondoliers’ Giuseppe, for example, worries that his private secretary is “shaky in his spelling”, while Iolanthe’s Phyllis can “spell every word that she uses”. Thorstein Veblen’s explanation (in his 1899 classic The Theory of the Leisure Class) was that a main purpose of the “archaic, cumbrous, and ineffective” English spelling system was to be difficult enough to provide a test of membership in the leisure class.

Whatever the social role of spelling, we can certainly agree that many more of us are like Cecily than like Phyllis. Estimates for the frequency of spelling errors in human-typed text vary from 1-2% for carefully retyping already printed text to 10-15% for web queries.

In this chapter we introduce the problem of detecting and correcting spelling errors. Fixing spelling errors is an integral part of writing in the modern world, whether this writing is part of texting on a phone, sending email, writing longer documents, or finding information on the web. Modern spell correctors aren’t perfect (indeed, autocorrect-gone-wrong is a popular source of amusement on the web) but they are ubiquitous in pretty much any software that relies on keyboard input.

Spelling correction is often considered from two perspectives. Non-word spelling correction is the detection and correction of spelling errors that result in non-words (like graffe for giraffe). By contrast, real word spelling correction is the task of detecting and correcting spelling errors even if they accidentally result in an actual word of English (real-word errors). This can happen from typographical errors (insertion, deletion, transposition) that accidentally produce a real word (e.g., there for three), or cognitive errors where the writer substituted the wrong spelling of a homophone or near-homophone (e.g., dessert for desert, or piece for peace).

Non-word errors are detected by looking for any word not found in a dictionary. For example, the misspelling graffe above would not occur in a dictionary. The larger the dictionary the better; modern systems often use enormous dictio-
naries derived from the web. To correct non-word spelling errors we first generate candidates: real words that have a similar letter sequence to the error. Candidate corrections from the spelling error *graffe* might include *giraffe*, *graf*, *gaff*, *grail*, or *craft*. We then rank the candidates using a distance metric between the source and the surface error. We’d like a metric that shares our intuition that *giraffe* is a more likely source than *grail* for *graffe* because *giraffe* is closer in spelling to *graffe* than *grail* is to *graffe*. The minimum edit distance algorithm from Chapter 2 will play a role here. But we’d also like to prefer corrections that are more frequent words, or more likely to occur in the context of the error. The noisy channel model introduced in the next section offers a way to formalize this intuition.

**Real word spelling error** detection is a much more difficult task, since any word in the input text could be an error. Still, it is possible to use the noisy channel to find candidates for each word *w* typed by the user, and rank the correction that is most likely to have been the users original intention.

### 5.1 The Noisy Channel Model

In this section we introduce the noisy channel model and show how to apply it to the task of detecting and correcting spelling errors. The noisy channel model was applied to the spelling correction task at about the same time by researchers at AT&T Bell Laboratories (Kernighan et al. 1990, Church and Gale 1991) and IBM Watson Research (Mays et al., 1991).

![Figure 5.1](image)

In the noisy channel model, we imagine that the surface form we see is actually a “distorted” form of an original word passed through a noisy channel. The decoder passes each hypothesis through a model of this channel and picks the word that best matches the surface noisy word.

The intuition of the **noisy channel** model (see Fig. 5.1) is to treat the misspelled word as if a correctly spelled word had been “distorted” by being passed through a noisy communication channel.

This channel introduces “noise” in the form of substitutions or other changes to the letters, making it hard to recognize the “true” word. Our goal, then, is to build a model of the channel. Given this model, we then find the true word by passing every word of the language through our model of the noisy channel and seeing which one comes the closest to the misspelled word.
This noisy channel model is a kind of Bayesian inference. We see an observation \( x \) (a misspelled word) and our job is to find the word \( w \) that generated this misspelled word. Out of all possible words in the vocabulary \( V \) we want to find the word \( w \) such that \( P(w|x) \) is highest. We use the hat notation \( \hat{w} \) to mean “our estimate of the correct word”.

\[
\hat{w} = \arg \max_{w \in V} P(w|x) \quad (5.1)
\]

The function \( \arg \max \) means “the \( x \) such that \( f(x) \) is maximized”. Equation 5.1 thus means, that out of all words in the vocabulary, we want the particular word that maximizes the right-hand side \( P(w|x) \).

The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 5.1 into a set of other probabilities. Bayes’ rule is presented in Eq. 5.2; it gives us a way to break down any conditional probability \( P(a|b) \) into three other probabilities:

\[
P(a|b) = \frac{P(b|a)P(a)}{P(b)} \quad (5.2)
\]

We can then substitute Eq. 5.2 into Eq. 5.1 to get Eq. 5.3:

\[
\hat{w} = \arg \max_{w \in V} \frac{P(x|w)P(w)}{P(x)} \quad (5.3)
\]

We can conveniently simplify Eq. 5.3 by dropping the denominator \( P(x) \). Why is that? Since we are choosing a potential correction word out of all words, we will be computing \( \frac{P(x|w)P(w)}{P(x)} \) for each word. But \( P(x) \) doesn’t change for each word; we are always asking about the most likely word for the same observed error \( x \), which must have the same probability \( P(x) \). Thus, we can choose the word that maximizes this simpler formula:

\[
\hat{w} = \arg \max_{w \in V} P(x|w)P(w) \quad (5.4)
\]

To summarize, the noisy channel model says that we have some true underlying word \( w \), and we have a noisy channel that modifies the word into some possible misspelled observed surface form. The likelihood or channel model of the noisy channel producing any particular observation sequence \( x \) is modeled by \( P(x|w) \). The prior probability of a hidden word is modeled by \( P(w) \). We can compute the most probable word \( \hat{w} \) given that we’ve seen some observed misspelling \( x \) by multiplying the prior \( P(w) \) and the likelihood \( P(x|w) \) and choosing the word for which this product is greatest.

We apply the noisy channel approach to correcting non-word spelling errors by taking any word not in our spell dictionary, generating a list of candidate words, ranking them according to Eq. 5.4, and picking the highest-ranked one. We can modify Eq. 5.4 to refer to this list of candidate words instead of the full vocabulary \( V \) as follows:

\[
\hat{w} = \arg \max_{w \in C} \frac{P(x|w)}{P(w)} \quad (5.5)
\]

The noisy channel algorithm is shown in Fig. 5.2.

To see the details of the computation of the likelihood and the prior (language model), let’s walk through an example, applying the algorithm to the example misspelling \( \text{acress} \). The first stage of the algorithm proposes candidate corrections by
function Noisy Channel Spelling(word x, dict D, lm, editprob) returns correction

if x \not\in D
    candidates, edits ← All strings at edit distance 1 from x that are \in D, and their edit
    for each c, e in candidates, edits
        channel ← editprob(e)
        prior ← lm(x)
        score[c] = log channel + log prior
    return argmax_c, score[c]

Figure 5.2 Noisy channel model for spelling correction for unknown words.

Finding words that have a similar spelling to the input word. Analysis of spelling error data has shown that the majority of spelling errors consist of a single-letter change and so we often make the simplifying assumption that these candidates have an edit distance of 1 from the error word. To find this list of candidates we’ll use the minimum edit distance algorithm introduced in Chapter 2, but extended so that in addition to insertions, deletions, and substitutions, we’ll add a fourth type of edit, transpositions, in which two letters are swapped. The version of edit distance with transposition is called Damerau-Levenshtein edit distance. Applying all such single transformations to across yields the list of candidate words in Fig. 5.3.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Correct Letter</th>
<th>Error Letter</th>
<th>Position (Letter #)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>across</td>
<td>actress</td>
<td>t</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>across</td>
<td>cress</td>
<td>—</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>across</td>
<td>caress</td>
<td>ca</td>
<td>ac</td>
<td>0</td>
</tr>
<tr>
<td>across</td>
<td>access</td>
<td>c</td>
<td>r</td>
<td>2</td>
</tr>
<tr>
<td>across</td>
<td>across</td>
<td>o</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>across</td>
<td>acres</td>
<td>—</td>
<td>s</td>
<td>5</td>
</tr>
<tr>
<td>across</td>
<td>acres</td>
<td>—</td>
<td>s</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 5.3 Candidate corrections for the misspelling across and the transformations that would have produced the error (after Kernighan et al. (1990)). “—” represents a null letter.

Once we have a set of candidates, to score each one using Eq. 5.5 requires that we compute the prior and the channel model.

The prior probability of each correction \( P(w) \) is the language model probability of the word \( w \) in context, which can be computed using any language model, from unigram to trigram or 4-gram. For this example let’s start in the following table by assuming a unigram language model. We computed the language model from the 404,253,213 words in the Corpus of Contemporary English (COCA).

<table>
<thead>
<tr>
<th>w</th>
<th>count(w)</th>
<th>p(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actress</td>
<td>9,321</td>
<td>0.000231</td>
</tr>
<tr>
<td>cress</td>
<td>220</td>
<td>0.000000544</td>
</tr>
<tr>
<td>caress</td>
<td>686</td>
<td>0.0000170</td>
</tr>
<tr>
<td>access</td>
<td>37,038</td>
<td>0.0000916</td>
</tr>
<tr>
<td>across</td>
<td>120,844</td>
<td>0.000299</td>
</tr>
<tr>
<td>acres</td>
<td>12,874</td>
<td>0.000318</td>
</tr>
</tbody>
</table>

How can we estimate the likelihood \( P(x|w) \), also called the channel model or
error model? A perfect model of the probability that a word will be mistyped would condition on all sorts of factors: who the typist was, whether the typist was left-handed or right-handed, and so on. Luckily, we can get a pretty reasonable estimate of $P(x|w)$ just by looking at local context: the identity of the correct letter itself, the misspelling, and the surrounding letters. For example, the letters $m$ and $n$ are often substituted for each other; this is partly a fact about their identity (these two letters are pronounced similarly and they are next to each other on the keyboard) and partly a fact about context (because they are pronounced similarly and they occur in similar contexts).

A simple model might estimate, for example, $p(\text{acress}|\text{across})$ just using the number of times that the letter $e$ was substituted for the letter $o$ in some large corpus of errors. To compute the probability for each edit in this way we’ll need a confusion matrix that contains counts of errors. In general, a confusion matrix lists the number of times one thing was confused with another. Thus for example a substitution matrix will be a square matrix of size $26 \times 26$ (or more generally $|A| \times |A|$, for an alphabet $A$) that represents the number of times one letter was incorrectly used instead of another. Following Kernighan et al. (1990) we’ll use four confusion matrices.

\[
\begin{align*}
\text{del}[x,y]: & \text{ count}(xy \text{ typed as } x) \\
\text{ins}[x,y]: & \text{ count}(x \text{ typed as } xy) \\
\text{sub}[x,y]: & \text{ count}(x \text{ typed as } y) \\
\text{trans}[x,y]: & \text{ count}(xy \text{ typed as } yx)
\end{align*}
\]

Note that we’ve conditioned the insertion and deletion probabilities on the previous character; we could instead have chosen to condition on the following character.

Where do we get these confusion matrices? One way is to extract them from lists of misspellings like the following:

\begin{itemize}
  \item \textbf{additional}: addional, additonal
  \item \textbf{environments}: enviorments, enviroments, envoirments
  \item \textbf{preceded}: preceeded
\end{itemize}

... 

There are lists available on Wikipedia and from Roger Mitton (http://www.dcs.bbk.ac.uk/~ROGER/corpora.html) and Peter Norvig (http://norvig.com/ncrams/). Norvig also gives the counts for each single-character edit that can be used to directly create the error model probabilities.

An alternative approach used by Kernighan et al. (1990) is to compute the matrices by iteratively using this very spelling error correction algorithm itself. The iterative algorithm first initializes the matrices with equal values; thus, any character is equally likely to be deleted, equally likely to be substituted for any other character, etc. Next, the spelling error correction algorithm is run on a set of spelling errors. Given the set of typos paired with their predicted corrections, the confusion matrices can now be recomputed, the spelling algorithm run again, and so on. This iterative algorithm is an instance of the important EM algorithm (Dempster et al., 1977), which we discuss in Chapter 9.

Once we have the confusion matrices, we can estimate $P(x|w)$ as follows (where
is the $i$th character of the correct word $w$) and $x_i$ is the $i$th character of the typo $x$:

$$P(x|w) = \begin{cases} \frac{\text{del}[x_{i-1}, w_i]}{\text{count}[x_{i-1}, w]}, & \text{if deletion} \\ \frac{\text{ins}[x_{i-1}, w_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\text{sub}[x_i, w_i]}{\text{count}[w_i]}, & \text{if substitution} \\ \frac{\text{trans}[w_i, w_{i+1}]}{\text{count}[w_i, w_{i+1}]}, & \text{if transposition} \end{cases} \quad (5.6)$$

Using the counts from Kernighan et al. (1990) results in the error model probabilities for across shown in Fig. 5.4.

![Figure 5.4](image_url)

Figure 5.4 Channel model for across; the probabilities are taken from the del[], ins[], sub[], and trans[] confusion matrices as shown in Kernighan et al. (1990).

Figure 5.5 shows the final probabilities for each of the potential corrections; the unigram prior is multiplied by the likelihood (computed with Eq. 5.6 and the confusion matrices). The final column shows the product, multiplied by $10^9$ just for readability.

![Figure 5.5](image_url)

Figure 5.5 Computation of the ranking for each candidate correction, using the language model shown earlier and the error model from Fig. 5.4. The final score is multiplied by $10^9$ for readability.

The computations in Fig. 5.5 show that our implementation of the noisy channel model chooses across as the best correction, and actress as the second most likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes clear from the context: “. . . was called a “stellar and versatile across whose combination of sass and glamour has defined her. . .”.” The surrounding words make it clear that actress and not across was the intended word.
For this reason, it is important to use larger language models than unigrams. For example, if we use the Corpus of Contemporary American English to compute bigram probabilities for the words *actress* and *across* in their context using add-one smoothing, we get the following probabilities:

\[
\begin{align*}
P(\text{actress} | \text{versatile}) &= .000021 \\
P(\text{across} | \text{versatile}) &= .000021 \\
P(\text{whose} | \text{actress}) &= .0010 \\
P(\text{whose} | \text{across}) &= .000006
\end{align*}
\]

Multiplying these out gives us the language model estimate for the two candidates in context:

\[
\begin{align*}
P(\text{"versatile actress whose"}) &= .000021 \times .0010 = 210 \times 10^{-10} \\
P(\text{"versatile across whose"}) &= .000021 \times .000006 = 1 \times 10^{-10}
\end{align*}
\]

Combining the language model with the error model in Fig. 5.5, the bigram noisy channel model now chooses the correct word *actress*.

Evaluating spell correction algorithms is generally done by holding out a training, development and test set from lists of errors like those on the Norvig and Mitton sites mentioned above.

### 5.2 Real-word spelling errors

The noisy channel approach can also be applied to detect and correct **real-word spelling errors**, errors that result in an actual word of English. This can happen from typographical errors (insertion, deletion, transposition) that accidentally produce a real word (e.g., *there* for *three*) or because the writer substituted the wrong spelling of a homophone or near-homophone (e.g., *dessert* for *desert*, or *piece* for *peace*). A number of studies suggest that between 25% and 40% of spelling errors are valid English words as in the following examples (Kukich, 1992):

This used to belong to *thew* queen. They are leaving in about fifteen *minuets* to go to her house.

The design *an* construction of the system will take more than a year.

Can they *lave* him my messages?

The study was conducted mainly *be* John Black.

The noisy channel can deal with real-word errors as well. Let’s begin with a version of the noisy channel model first proposed by Mays et al. (1991) to deal with these real-word spelling errors. Their algorithm takes the input sentence \( X = \{x_1, x_2, \ldots, x_k, \ldots, x_n\} \), generates a large set of candidate correction sentences \( C(X) \), then picks the sentence with the highest language model probability.

To generate the candidate correction sentences, we start by generating a set of candidate words for each input word \( x_i \). The candidates, \( C(x_i) \), include every English word with a small edit distance from \( x_i \). With edit distance 1, a common choice (Mays et al., 1991), the candidate set for the real word error *thew* (a rare word meaning ‘muscular strength’) might be \( C(\text{thew}) = \{\text{the}, \text{thaw}, \text{threw}, \text{them}, \text{thwe}\} \).

We then make the simplifying assumption that every sentence has only one error. Thus the set of candidate sentences \( C(X) \) for a sentence \( X = \text{Only two of thew apples} \) would be:
only two of thew apples
only too of thew apples
only to of thew apples
only tao of the apples
only two on thew apples
only two off thew apples
only two of the apples
only two of threw apples
only two of thew applies
...

Each sentence is scored by the noisy channel:

\[
\hat{W} = \arg\max_{W \in C(X)} P(X|W) P(W)
\] (5.7)

For \( P(W) \), we can use the trigram probability of the sentence.

What about the channel model? Since these are real words, we need to consider the possibility that the input word is not an error. Let’s say that the channel probability of writing a word correctly, \( P(w|w) \), is \( \alpha \); we can make different assumptions about exactly what the value of \( \alpha \) is in different tasks; perhaps \( \alpha \) is .95, assuming people write 1 word wrong out of 20, for some tasks, or maybe .99 for others. Mays et al. (1991) proposed a simple model: given a typed word \( x \), let the channel model \( P(x|w) \) be \( \alpha \) when \( x = w \), and then just distribute \( 1 - \alpha \) evenly over all other candidate corrections \( C(x) \):

\[
p(x|w) = \begin{cases} 
\alpha & \text{if } x = w \\
\frac{1 - \alpha}{|C(x)|} & \text{if } x \in C(x) \\
0 & \text{otherwise}
\end{cases}
\] (5.8)

Now we can replace the equal distribution of \( 1 - \alpha \) over all corrections in Eq. 5.8; we’ll make the distribution proportional to the edit probability from the more sophisticated channel model from Eq. 5.6 that used the confusion matrices.

Let’s see an example of this integrated noisy channel model applied to a real word. Suppose we see the string two of thew. The author might have intended to type the real word thew (‘muscular strength’). But thew here could also be a typo for the or some other word. For the purposes of this example let’s consider edit distance 1, and only the following five candidates the, thaw, threw, and thwe (a rare name) and the string as typed, thew. We took the edit probabilities from Norvig’s (2009) analysis of this example. For the language model probabilities, we used a Stupid Backoff model (Section 4.6) trained on the Google N-grams:

\[
\begin{align*}
P(\text{the}|\text{two of}) &= 0.476012 \\
P(\text{thew}|\text{two of}) &= 9.95051 \times 10^{-8} \\
P(\text{thaw}|\text{two of}) &= 2.09267 \times 10^{-7} \\
P(\text{throw}|\text{two of}) &= 8.9064 \times 10^{-7} \\
P(\text{them}|\text{two of}) &= 0.00144488 \\
P(\text{thwe}|\text{two of}) &= 5.18681 \times 10^{-9}
\end{align*}
\]

Here we’ve just computed probabilities for the single phrase two of thew, but the model applies to entire sentences; so if the example in context was two of thew...
people, we’d need to also multiply in probabilities for \( P(\text{people}|\text{of the}) \), \( P(\text{people}|\text{of threw}) \), and so on.

Following Norvig (2009), we assume that the probability of a word being a typo in this task is .05, meaning that \( \alpha = P(w|w) \) is .95. Fig. 5.6 shows the computation.

For the error phrase two of thew, the model correctly picks the as the correction. But note that a lower error rate might change things; in a task where the probability of an error is low enough (\( \alpha \) is very high), the model might instead decide that the word thew was what the writer intended.

5.3 Noisy Channel Model: The State of the Art

State of the art implementations of noisy channel spelling correction make a number of extensions to the simple models we presented above.

First, rather than make the assumption that the input sentence has only a single error, modern systems go through the input one word at a time, using the noisy channel to make a decision for that word. But if we just run the basic noisy channel system described above on each word, it is prone to overcorrecting, replacing correct but rare words (for example names) with more frequent words (Whitelaw et al. 2009, Wilcox-O’Hearn 2014). Modern algorithms therefore need to augment the noisy channel with methods for detecting whether or not a real word should actually be corrected. For example state of the art systems like Google’s (Whitelaw et al., 2009) use a blacklist, forbidding certain tokens (like numbers, punctuation, and single letter words) from being changed. Such systems are also more cautious in deciding whether to trust a candidate correction. Instead of just choosing a candidate correction if it has a higher probability \( P(w|x) \) than the word itself, these more careful systems choose to suggest a correction \( w \) over keeping the non-correction \( x \) only if the difference in probabilities is sufficiently great. The best correction \( w \) is chosen only if:

\[
\log P(w|x) - \log P(x|x) > \theta
\]

Depending on the specific application, spell-checkers may decide to autocorrect (automatically change a spelling to a hypothesized correction) or merely to flag the error and offer suggestions. This decision is often made by another classifier which decides whether the best candidate is good enough, using features such as the difference in log probabilities between the candidates (we’ll introduce algorithms for classification in the next chapter).

Modern systems also use much larger dictionaries than early systems. Ahmad and Kondrak (2005) found that a 100,000 word UNIX dictionary only contained...
73% of the word types in their corpus of web queries, missing words like *pics, multiplayer, google, xbox, clipart*, and *mallorca*. For this reason modern systems often use much larger dictionaries automatically derived from very large lists of unigrams like the Google N-gram corpus. Whitelaw et al. (2009), for example, used the most frequently occurring ten million word types in a large sample of web pages. Because this list will include lots of misspellings, their system requires a more sophisticated error model. The fact that words are generally more frequent than their misspellings can be used in candidate suggestion, by building a set of words and spelling variations that have similar contexts, sorting by frequency, treating the most frequent variant as the source, and learning an error model from the difference, whether from web text (Whitelaw et al., 2009) or from query logs (Cucerzan and Brill, 2004). Words can also be automatically added to the dictionary when a user rejects a correction, and systems running on phones can automatically add words from the user’s address book or calendar.

We can also improve the performance of the noisy channel model by changing how the prior and the likelihood are combined. In the standard model they are just multiplied together. But often these probabilities are not commensurate: the language model or the channel model might have very different ranges. Alternatively for some task or dataset we might have reason to trust one of the two models more. Therefore we use a weighted combination, by raising one of the factors to a power $\lambda$:

$$\hat{w} = \arg\max_{w \in V} P(x|w) P(w)^\lambda$$  \hspace{1cm} (5.9)

or in log space:

$$\hat{w} = \arg\max_{w \in V} \log P(x|w) + \lambda \log P(w)$$  \hspace{1cm} (5.10)

We then tune the parameter $\lambda$ on a development test set.

Finally, if our goal is to do real-word spelling correction only for specific confusion sets like *peace/piece, affect/effect, weather/whether*, or even grammar correction examples like *among/between*, we can train supervised classifiers to draw on many features of the context and make a choice between the two candidates. Such classifiers can achieve very high accuracy for these specific sets, especially when drawing on large-scale features from web statistics (Golding and Roth 1999, Lapata and Keller 2004, Bergsma et al. 2009, Bergsma et al. 2010).

### 5.3.1 Improved Edit Models: Partitions and Pronunciation

Other recent research has focused on improving the channel model $P(t|c)$. One important extension is the ability to compute probabilities for multiple-letter transformations. For example Brill and Moore (2000) propose a channel model that (informally) models an error as being generated by a typist first choosing a word, then choosing a partition of the letters of that word, and then typing each partition, possibly erroneously. For example, imagine a person chooses the word *physical*, then chooses the partition *ph y s i c al* She would then generate each partition, possibly with errors. For example the probability that she would generate the string *fisikle* with partition *f i s i k le* would be $p(f|ph) * p(i|y) * p(s|s) * p(i|i) * p(k|k) * p(le|al)$. Unlike the Damerau-Levenshtein edit distance, the Brill-Moore channel model can thus model edit probabilities like $P(f|ph)$ or $P(le|al)$, or the high likelihood of $P(ent|ant)$. Furthermore, each edit is conditioned on where
it is in the word (beginning, middle, end) so instead of $P(\phi|\psi)$ the model actually estimates $P(\phi|\psi, \text{beginning})$.

More formally, let R be a partition of the typo string $x$ into adjacent (possibly empty) substrings, and T be a partition of the candidate string. Brill and Moore (2000) then approximates the total likelihood $P(x|w)$ (e.g., $P(\text{fisikle}|\text{physical})$) by the probability of the single best partition:

$$P(x|w) \approx \max_{R,T; |T|=|R|} \sum_{i=1}^{[R]} P(T_i|R_i, \text{position})$$  \hspace{1cm} (5.11)

The probability of each transform $P(T_i|R_i)$ can be learned from a training set of triples of an error, the correct string, and the number of times it occurs. For example, given a training pair akgsual/actual, standard minimum edit distance is used to produce an alignment:

```
  a c t u a l
/  /  /  /  /  /  /
  a k g s u a l
```

This alignment corresponds to the sequence of edit operations:

$$a \rightarrow a, \ c \rightarrow k, \ \epsilon \rightarrow g \ t \rightarrow s, \ u \rightarrow u, \ a \rightarrow a, \ l \rightarrow l$$

Each nonmatch substitution is then expanded to incorporate up to N additional edits; For N=2, we would expand $c \rightarrow k$ to:

- $ac \rightarrow ak$
- $c \rightarrow cg$
- $ac \rightarrow akg$
- $ct \rightarrow kgs$

Each of these multiple edits then gets a fractional count, and the probability for each edit $\alpha \rightarrow \beta$ is then estimated from counts in the training corpus of triples as $\frac{\text{count}(\alpha \rightarrow \beta)}{\text{count}(\alpha)}$.

Another research direction in channel models is the use of pronunciation in addition to spelling. Pronunciation is an important feature in some non-noisy-channel algorithms for spell correction like the GNU aspell algorithm (Atkinson, 2011), which makes use of the metaphone pronunciation of a word (Philips, 1990). Metaphone is a series of rules that map a word to a normalized representation of its pronunciation. Some example rules:

- “Drop duplicate adjacent letters, except for C.”
- “If the word begins with `KN`, `GN`, `PN`, `AE`, `WR`, drop the first letter.”
- “Drop ‘B’ if after ‘M’ and if it is at the end of the word”

Aspell works similarly to the channel component of the noisy channel model, finding all words in the dictionary whose pronunciation string is a short edit distance (1 or 2 pronunciation letters) from the typo, and then scoring this list of candidates by a metric that combines two edit distances: the pronunciation edit distance and the weighted letter edit distance.

Pronunciation can also be incorporated directly the noisy channel model. For example the Toutanova and Moore (2002) model, like aspell, interpolates two channel models, one based on spelling and one based on pronunciation. The pronunciation
function 
\text{\textsc{soundex}}(\text{\textit{name}}) \ \textbf{returns} \ \textit{soundex form}

1. Keep the first letter of \textit{name}
2. Drop all occurrences of non-initial a, e, h, i, o, u, w, y.
3. Replace the remaining letters with the following numbers:
   \begin{align*}
   &b, f, p, v \rightarrow 1 \\
   &c, g, j, k, q, s, x, z \rightarrow 2 \\
   &d, t \rightarrow 3 \\
   &l \rightarrow 4 \\
   &m, n \rightarrow 5 \\
   &r \rightarrow 6
   \end{align*}
4. Replace any sequences of identical numbers, only if they derive from two or more letters that were adjacent in the original name, with a single number (e.g., 666 → 6).
5. Convert to the form Letter Digit Digit Digit by dropping digits past the third (if necessary) or padding with trailing zeros (if necessary).

Figure 5.7: The Soundex Algorithm

Bibliographical and Historical Notes

Algorithms for spelling error detection and correction have existed since at least Blair (1960). Most early algorithms were based on similarity keys like the Soundex algorithm (Odell and Russell 1922, Knuth 1973). Damerau (1964) gave a dictionary-based algorithm for error detection; most error-detection algorithms since then have been based on dictionaries. Early research (Peterson, 1986) had suggested that spelling dictionaries might need to be kept small because large dictionaries contain very rare words (wont, veery) that resemble misspellings of other words, but Damerau and Mays (1989) found that in practice larger dictionaries proved more helpful. Damerau (1964) also gave a correction algorithm that worked for single errors.

The idea of modeling language transmission as a Markov source passed through a noisy channel model was developed very early on by Claude Shannon (1948).
The idea of combining a prior and a likelihood to deal with the noisy channel was developed at IBM Research by Raviv (1967), for the similar task of optical character recognition (OCR). While earlier spell-checkers like Kashyap and Oommen (1983) had used likelihood-based models of edit distance, the idea of combining a prior and a likelihood seems not to have been applied to the spelling correction task until researchers at AT&T Bell Laboratories (Kernighan et al. 1990, Church and Gale 1991) and IBM Watson Research (Mays et al., 1991) roughly simultaneously proposed noisy channel spelling correction. Much later, the Mays et al. (1991) algorithm was reimplemented and tested on standard datasets by Wilcox-O’Hearn et al. (2008), who showed its high performance.

Most algorithms since Wagner and Fischer (1974) have relied on dynamic programming.

Recent focus has been on using the web both for language models and for training the error model, and on incorporating additional features in spelling, like the pronunciation models described earlier, or other information like parses or semantic relatedness (Jones and Martin 1997, Hirst and Budanitsky 2005).


Exercises

5.1 Suppose we want to apply add-one smoothing to the likelihood term (channel model) \( P(x|w) \) of a noisy channel model of spelling. For simplicity, pretend that the only possible operation is deletion. The MLE estimate for deletion is given in Eq. 5.6, which is \( P(x|w) = \frac{\text{del}[^{i'}_{w'}]}{\text{count}(^{i'}_{w'})} \). What is the estimate for \( P(x|w) \) if we use add-one smoothing on the deletion edit model? Assume the only characters we use are lower case a–z, that there are \( V \) word types in our corpus, and \( N \) total characters, not counting spaces.
Naive Bayes and Sentiment Classification

Classification lies at the heart of both human and machine intelligence. Deciding what letter, word, or image has been presented to our senses, recognizing faces or voices, sorting mail, assigning grades to homeworks, these are all examples of assigning a class or category to an input. The potential challenges of this task are highlighted by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included in this classification, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel’s hair brush, (l) others, (m) those that have just broken a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks are tasks of classification, although luckily our classes are much easier to define than those of Borges. In this chapter we present the naive Bayes algorithms classification, demonstrated on an important classification problem: text categorization, the task of classifying an entire text by assigning it a label drawn from some set of labels.

We focus on one common text categorization task, sentiment analysis, the extraction of sentiment, the positive or negative orientation that a writer expresses toward some object. A review of a movie, book, or product on the web expresses the author’s sentiment toward the product, while an editorial or political text expresses sentiment toward a candidate or political action. Automatically extracting consumer sentiment is important for marketing of any sort of product, while measuring public sentiment is important for politics and also for market prediction. The simplest version of sentiment analysis is a binary classification task, and the words of the review provide excellent cues. Consider, for example, the following phrases extracted from positive and negative reviews of movies and restaurants. Words like great, richly, awesome, and pathetic, and awful and ridiculously are very informative cues:

+ ...zany characters and richly applied satire, and some great plot twists
− It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
− ...awful pizza and ridiculously overpriced...

Spam detection is another important commercial application, the binary classification task of assigning an email to one of the two classes spam or not-spam. Many lexical and other features can be used to perform this classification. For example you might quite reasonably be suspicious of an email containing phrases like “online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”.

Another thing we might want to know about a text is its author. Determining a text’s author, authorship attribution, and author characteristics like gender, age, and native language are text classification tasks that are relevant to the digital humanities, social sciences, and forensics as well as natural language processing.
Finally, one of the oldest tasks in text classification is assigning a library subject category or topic label to a text. Deciding whether a research paper concerns epidemiology or instead, perhaps, embryology, is an important component of information retrieval. Various sets of subject categories exist, such as the MeSH (Medical Subject Headings) thesaurus. In fact, as we will see, subject category classification is the task for which the naive Bayes algorithm was invented in 1961.

Classification is important far beyond the task of text classification. We’ve already seen other classification tasks: period disambiguation (deciding if a period is the end of a sentence or part of a word), word tokenization (deciding if a character should be a word boundary). Even language modeling can be viewed as classification: each word can be thought of as a class, and so predicting the next word is classifying the context-so-far into a class for each next word. In future chapters we will see that a part-of-speech tagger classifies each occurrence of a word in a sentence as, e.g., a noun or a verb, and a named-entity tagging system classifies whether a sequence of words refers to people, organizations, dates, or something else.

The goal of classification is to take a single observation, extract some useful features, and thereby classify the observation into one of a set of discrete classes. One method for classifying text is to use hand-written rules. There are many areas of language processing where hand-written rule-based classifiers constitute a state-of-the-art system, or at least part of it.

Rules can be fragile, however, as situations or data change over time, and for some tasks humans aren’t necessarily good at coming up with the rules. Most cases of classification in language processing are therefore done via supervised machine learning, and this will be the subject of the remainder of this chapter.

Formally, the task of classification is to take an input $x$ and a fixed set of output classes $Y = y_1, y_2, ..., y_M$ and return a predicted class $y \in Y$. For text classification, we’ll sometimes talk about $c$ (for “class”) instead of $y$ as our output variable, and $d$ (for “document”) instead of $x$ as our input variable. In the supervised situation we have a training set of $N$ documents that have each been hand-labeled with a class: $(d_1, c_1), ..., (d_N, c_N)$. Our goal is to learn a classifier that is capable of mapping from a new document $d$ to its correct class $c \in C$. A probabilistic classifier additionally will tell us the probability of the observation being in the class. This full distribution over the classes can be useful information for downstream decisions; avoiding making discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. We will discuss one in depth in this chapter: multinomial naive Bayes, and one in the next chapter: multinomial logistic regression, also known as the maximum entropy or MaxEnt classifier. These exemplify two ways of doing classification. Generative classifiers like naive Bayes build a model of each class. Given an observation, they return the class most likely to have generated the observation. Discriminative classifiers like logistic regression instead learn what features from the input are most useful to discriminate between the different possible classes. While discriminative systems are often more accurate and hence more commonly used, generative classifiers still have a role.

Other classifiers commonly used in language processing include support-vector machines (SVMs), random forests, perceptrons, and neural networks; see the end of the chapter for pointers.
6.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called because it is a Bayesian classifier that makes a simplifying (naive) assumption about how the features interact.

The intuition of the classifier is shown in Fig. 6.1. We represent a text document as if it were a bag-of-words, that is, an unordered set of words with their position ignored, keeping only their frequency in the document. In the example in the figure, instead of representing the word order in all the phrases like “I love this movie” and “I would recommend it”, we simply note that the word I occurred 5 times in the entire excerpt, the word it 6 times, the words love, recommend, and movie once, and so on.

Naive Bayes is a probabilistic classifier, meaning that for a document \( d \), out of all classes \( c \in C \) the classifier returns the class \( \hat{c} \) which has the maximum posterior probability given the document. In Eq. 6.1 we use the hat notation \( \hat{\cdot} \) to mean “our estimate of the correct class”.

\[
\hat{c} = \arg\max_{c \in C} P(c|d)
\]  

(6.1)

This idea of Bayesian inference has been known since the work of Bayes (1763), and was first applied to text classification by Mosteller and Wallace (1964). The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 6.1 into other probabilities that have some useful properties. Bayes’ rule is presented in Eq. 6.2; it gives us a way to break down any conditional probability \( P(x|y) \) into three other
probabilities:

\[ P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]  

(6.2)

We can then substitute Eq. 6.2 into Eq. 6.1 to get Eq. 6.3:

\[ \hat{c} = \arg\max_{c \in C} P(c|d) = \arg\max_{c \in C} \frac{P(d|c)P(c)}{P(d)} \]  

(6.3)

We can conveniently simplify Eq. 6.3 by dropping the denominator \( P(d) \). This is possible because we will be computing \( \frac{P(d|c)P(c)}{P(d)} \) for each possible class. But \( P(d) \) doesn’t change for each class; we are always asking about the most likely class for the same document \( d \), which must have the same probability \( P(d) \). Thus, we can choose the class that maximizes this simpler formula:

\[ \hat{c} = \arg\max_{c \in C} P(c|d) = \arg\max_{c \in C} P(d|c)P(c) \]  

(6.4)

We thus compute the most probable class \( \hat{c} \) given some document \( d \) by choosing the class which has the highest product of two probabilities: the prior probability of the class \( P(c) \) and the likelihood of the document \( P(d|c) \):

\[ \hat{c} = \arg\max_{c \in C} P(d|c)P(c) \]  

(6.5)

Without loss of generalization, we can represent a document \( d \) as a set of features \( f_1, f_2, \ldots, f_n \):

\[ \hat{c} = \arg\max_{c \in C} P\left(f_1, f_2, \ldots, f_n|c\right)P(c) \]  

(6.6)

Unfortunately, Eq. 6.6 is still too hard to compute directly: without some simplifying assumptions, estimating the probability of every possible combination of features (for example, every possible set of words and positions) would require huge numbers of parameters and impossibly large training sets. Naive Bayes classifiers therefore make two simplifying assumptions.

The first is the bag of words assumption discussed intuitively above: we assume position doesn’t matter, and that the word “love” has the same effect on classification whether it occurs as the 1st, 20th, or last word in the document. Thus we assume that the features \( f_1, f_2, \ldots, f_n \) only encode word identity and not position.

The second is commonly called the naive Bayes assumption: this is the conditional independence assumption that the probabilities \( P(f_i|c) \) are independent given the class \( c \) and hence can be ‘naively’ multiplied as follows:

\[ P(f_1, f_2, \ldots, f_n|c) = P(f_1|c) \cdot P(f_2|c) \cdot \ldots \cdot P(f_n|c) \]  

(6.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

\[ c_{NB} = \arg\max_{c \in C} P(c) \prod_{f \in F} P(f|c) \]  

(6.8)

To apply the naive Bayes classifier to text, we need to consider word positions, by simply walking an index through every word position in the document:
positions ← all word positions in test document

\[
c_{NB} = \arg \max_{c \in C} P(c) \prod_{i \in \text{positions}} P(w_i | c) \quad (6.9)
\]

Naive Bayes calculations, like calculations for language modeling, are done in log space, to avoid underflow and increase speed. Thus Eq. 6.9 is generally instead expressed as

\[
c_{NB} = \arg \max_{c \in C} \log P(c) + \sum_{i \in \text{positions}} \log P(w_i | c) \quad (6.10)
\]

By considering features in log space Eq. 6.10 computes the predicted class as a linear function of input features. Classifiers that use a linear combination of the inputs to make a classification decision —like naive Bayes and also logistic regression— are called linear classifiers.

### 6.2 Training the Naive Bayes Classifier

How can we learn the probabilities \( P(c) \) and \( P(f_i | c) \)? Let’s first consider the maximum likelihood estimate. We’ll simply use the frequencies in the data. For the document prior \( P(c) \) we ask what percentage of the documents in our training set are in each class \( c \). Let \( N_c \) be the number of documents in our training data with class \( c \) and \( N_{\text{doc}} \) be the total number of documents. Then:

\[
\hat{P}(c) = \frac{N_c}{N_{\text{doc}}} \quad (6.11)
\]

To learn the probability \( P(f_i | c) \), we’ll assume a feature is just the existence of a word in the document’s bag of words, and so we’ll want \( P(w_i | c) \), which we compute as the fraction of times the word \( w_i \) appears among all words in all documents of topic \( c \). We first concatenate all documents with category \( c \) into one big “category \( c \)” text. Then we use the frequency of \( w_i \) in this concatenated document to give a maximum likelihood estimate of the probability:

\[
\hat{P}(w_i | c) = \frac{\text{count}(w_i, c)}{\sum_{w \in V} \text{count}(w, c)} \quad (6.12)
\]

Here the vocabulary \( V \) consists of the union of all the word types in all classes, not just the words in one class \( c \).

There is a problem, however, with maximum likelihood training. Imagine we are trying to estimate the likelihood of the word “fantastic” given class positive, but suppose there are no training documents that both contain the word “fantastic” and are classified as positive. Perhaps the word “fantastic” happens to occur (sarcastically?) in the class negative. In such a case the probability for this feature will be zero:
\[ P(\text{“fantastic”}|\text{positive}) = \frac{\text{count}(\text{“fantastic”}, \text{positive})}{\sum_{w \in V} \text{count}(w, \text{positive})} = 0 \quad (6.13) \]

But since naive Bayes naively multiplies all the feature likelihoods together, zero probabilities in the likelihood term for any class will cause the probability of the class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chapter 4. While Laplace smoothing is usually replaced by more sophisticated smoothing algorithms in language modeling, it is commonly used in naive Bayes text categorization:

\[ P(w_i|c) = \frac{\text{count}(w_i, c) + 1}{\sum_{w \in V} (\text{count}(w, c) + 1)} = \frac{\text{count}(w_i, c) + 1}{(\sum_{w \in V} \text{count}(w, c)) + |V|} \quad (6.14) \]

Note once again that it is crucial that the vocabulary \( V \) consists of the union of all the word types in all classes, not just the words in one class \( c \) (try to convince yourself why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocabulary at all because they did not occur in any training document in any class? The standard solution for such unknown words is to ignore such words—remove them from the test document and not include any probability for them at all.

Finally, some systems choose to completely ignore another class of words: stop words, very frequent words like the and a. This can be done by sorting the vocabulary by frequency in the training set, and defining the top 10–100 vocabulary entries as stop words, or alternatively by using one of the many pre-defined stop word list available online. Then every instance of these stop words are simply removed from both training and test documents as if they had never occurred. In most text classification applications, however, using a stop word list doesn’t improve performance, and so it is more common to make use of the entire vocabulary and not use a stop word list.

Fig. 6.2 shows the final algorithm.

### 6.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one smoothing. We’ll use a sentiment analysis domain with the two classes positive (+) and negative (-), and take the following miniature training and test documents simplified from actual movie reviews.

<table>
<thead>
<tr>
<th>Cat</th>
<th>Documents</th>
</tr>
</thead>
</table>
| Training | - just plain boring  
|          | - entirely predictable and lacks energy  
|          | - no surprises and very few laughs  
|          | + very powerful  
|          | + the most fun film of the summer           |
| Test   | ? predictable with no fun                    |

The prior \( P(c) \) for the two classes is computed via Eq. 6.11 as \( \frac{N_c}{N_{\text{doc}}} \).
function Train Naive Bayes(D, C) returns log $P(c)$ and log $P(w|c)$

for each class $c \in C$  # Calculate $P(c)$ terms
    $N_{doc} = $ number of documents in $D$
    $N_c = $ number of documents from $D$ in class $c$
    $logprior[c] \leftarrow \log \frac{N_c}{N_{doc}}$
    $V \leftarrow $ vocabulary of $D$
    bigdoc[c] $\leftarrow$ append(d) for $d \in D$ with class $c$
    for each word $w$ in $V$  # Calculate $P(w|c)$ terms
        count(w,c) $\leftarrow$ # of occurrences of $w$ in $bigdoc[c]$
        loglikelihood[w,c] $\leftarrow \log \frac{\text{count}(w,c)+1}{\sum_{w' \in V} (\text{count}(w',c)+1)}$
    return logprior, loglikelihood, $V$

function Test Naive Bayes(testdoc, logprior, loglikelihood, C, V) returns best $c$

for each class $c \in C$
    sum[c] $\leftarrow$ logprior[c]
    for each position $i$ in testdoc
        word $\leftarrow$ testdoc[i]
        if word $\in V$
            sum[c] $\leftarrow$ sum[c] $+$ loglikelihood[word,c]
    return argmax$_c$ sum[c]

Figure 6.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing instead, change the $+1$ to $+\alpha$ for loglikelihood counts in training.

$$P(-) = \frac{3}{5}, \quad P(+) = \frac{2}{5}$$

The word *with* doesn’t occur in the test set, so we drop it completely (as mentioned above, we don’t use unknown word models for naive Bayes). The likelihoods from the training set for the remaining three words “predictable”, “no”, and “fun”, are as follows, from Eq. 6.14 (computing the probabilities for the remainder of the words in the training set is left as Exercise 6.?? (TBD)).

$$P(\text{"predictable"}|-) = \frac{1+1}{14+20} \quad P(\text{"predictable"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"no"}|-) = \frac{1+1}{14+20} \quad P(\text{"no"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"fun"}|-) = \frac{0+1}{14+20} \quad P(\text{"fun"}|+) = \frac{1+1}{9+20}$$

For the test sentence $S =$ “predictable with no fun”, after removing the word ‘with’, the chosen class, via Eq. 6.9, is therefore computed as follows:

$$P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{343} = 6.1 \times 10^{-5}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{293} = 3.2 \times 10^{-5}$$
The model thus predicts the class *negative* for the test sentence.

### 6.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis, some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks, whether a word occurs or not seems to matter more than its frequency. Thus it often improves performance to clip the word counts in each document at 1. This variant is called *binary multinominal naive Bayes* or *binary NB*. The variant uses the same Eq. 6.10 except that for each document we remove all duplicate words before concatenating them into the single big document. Fig. 6.3 shows an example in which a set of four documents (shortened and text-normalized for this example) are remapped to binary, with the modified counts shown in the table on the right. The example is worked without add-1 smoothing to make the differences clearer. Note that the results counts need not be 1; the word *great* has a count of 2 even for Binary NB, because it appears in multiple documents.

<table>
<thead>
<tr>
<th></th>
<th>NB Counts</th>
<th>Binary Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td><strong>Counts</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>boxing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>film</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>great</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>no</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>or</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>part</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pathetic</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>plot</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>satire</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>scenes</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>twists</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>worst</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Figure 6.3** An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for sentiment is to deal with negation. Consider the difference between *I really like this movie* (positive) and *I didn’t like this movie* (negative). The negation expressed by *didn’t* completely alters the inferences we draw from the predicate *like*. Similarly, negation can modify a negative word to produce a positive review (*don’t dismiss this film, doesn’t let us get bored*).

A very simple baseline that is commonly used in sentiment to deal with negation is during text normalization to prepend the prefix *NOT* to every word after a token of logical negation (*n’t, not, no, never*) until the next punctuation mark. Thus the phrase

*didn’t like this movie, but I*

becomes
didn’t NOT_like NOT_this NOT_movie, but I

Newly formed ‘words’ like NOT_like, NOT_recommend will thus occur more often in negative document and act as cues for negative sentiment, while words like NOT_bored, NOT_dismiss will acquire positive associations. We will return in Chapter 20 to the use of parsing to deal more accurately with the scope relationship between these negation words and the predicates they modify, but this simple baseline works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to train accurate naive Bayes classifiers using all words in the training set to estimate positive and negative sentiment. In such cases we can instead derive the positive and negative word features from sentiment lexicons, lists of words that are pre-annotated with positive or negative sentiment. Four popular lexicons are the General Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexicon of Hu and Liu (2004a) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and 4912 negative, each marked for whether it is strongly or weakly biased. Some samples of positive and negative words from the MPQA lexicon include:

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Chapter 18 will discuss how these lexicons can be learned automatically.

A common way to use lexicons in the classifier is to use as one feature the total count of occurrences of any words in the positive lexicon, and as a second feature the total count of occurrences of words in the negative lexicon. Using just two features results in classifiers that are much less sparse to small amounts of training data, and may generalize better.

6.5 Naive Bayes as a Language Model

Naive Bayes classifiers can use any sort of feature: dictionaries, URLs, email addresses, network features, phrases, parse trees, and so on. But if, as in the previous section, we use only individual word features, and we use all of the words in the text (not a subset), then naive Bayes has an important similarity to language modeling. Specifically, a naive Bayes model can be viewed as a set of class-specific unigram language models, in which the model for each class instantiates a unigram language model.

Since the likelihood features from the naive Bayes model assign a probability to each word \( P(\text{word}|c) \), the model also assigns a probability to each sentence:

\[
P(s|c) = \prod_{i \in \text{positions}} P(w_i|c) \tag{6.15}
\]

Thus consider a naive Bayes model with the classes positive (+) and negative (−) and the following model parameters:
6.6 Evaluation: Precision, Recall, F-measure

| w   | P(w|+) | P(w|-) |
|-----|-------|--------|
| I   | 0.1   | 0.2    |
| love| 0.1   | 0.001  |
| this| 0.01  | 0.01   |
| fun | 0.05  | 0.005  |
| film| 0.1   | 0.1    |

Each of the two columns above instantiates a language model that can assign a probability to the sentence “I love this fun film”:

\[
P("I love this fun film")^+ = 0.1 \times 0.1 \times 0.01 \times 0.05 \times 0.1 = 0.0000005
\]

\[
P("I love this fun film")^- = 0.2 \times 0.001 \times 0.01 \times 0.005 \times 0.1 = 0.000000010
\]

As it happens, the positive model assigns a higher probability to the sentence: \( P(s|pos) > P(s|neg) \). Note that this is just the likelihood part of the naive Bayes model; once we multiply in the prior a full naive Bayes model might well make a different classification decision.

To introduce the methods for evaluating text classification, let’s first consider some simple binary detection tasks. For example, in spam detection, our goal is to label every text as being in the spam category (“positive”) or not in the spam category (“negative”). For each item (email document) we therefore need to know whether our system called it spam or not. We also need to know whether the email is actually spam or not, i.e. the human-defined labels for each document that we are trying to match. We will refer to these human labels as the gold labels.

Or imagine you’re the CEO of the Delicious Pie Company and you need to know what people are saying about your pies on social media, so you build a system that detects tweets concerning Delicious Pie. Here the positive class is tweets about Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or pie-tweet-detector) is doing. To evaluate any system for detecting things, we start by building a contingency table like the one shown in Fig. 6.4. Each cell labels a set of possible outcomes. In the spam detection case, for example, true positives are documents that are indeed spam (indicated by human-created gold labels) and our system said they were spam. False negatives are documents that are indeed spam but our system labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what percentage of all the observations (for the spam or pie examples that means all emails or tweets) our system labeled correctly. Although accuracy might seem a natural metric, we generally don’t use it. That’s because accuracy doesn’t work well when the classes are unbalanced (as indeed they are with spam, which is a large majority of email, or with tweets, which are mainly not about pie).

To make this more explicit, imagine that we looked at a million tweets, and let’s say that only 100 of them are discussing their love (or hatred) for our pie, while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier would have 999,900 true positives and only 100 false negatives for an accuracy of 999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should be happy with this classifier? But of course this fabulous ‘no pie’ classifier would be completely useless, since it wouldn’t find a single one of the customer comments we are looking for. In other words, accuracy is not a good metric when the goal is to discover something that is rare, or at least not completely balanced in frequency, which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics: precision and recall. Precision measures the percentage of the items that the system detected (i.e., the system labeled as positive) that are in fact positive (i.e., are positive according to the human gold labels). Precision is defined as

\[
\text{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}
\]

Recall measures the percentage of items actually present in the input that were correctly identified by the system. Recall is defined as

\[
\text{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}
\]

Precision and recall will help solve the problem with the useless “nothing is pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has a terrible recall of 0 (since there are no true positives, and 100 false negatives, the recall is 0/100). You should convince yourself that the precision at finding relevant tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize true positives: finding the things that we are supposed to be looking for.

In practice, we generally combine precision and recall into a single metric called the F-measure (van Rijsbergen, 1975), defined as

\[
F_\beta = \frac{(\beta^2 + 1)PR}{\beta^2P + R}
\]

The \( \beta \) parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application. Values of \( \beta > 1 \) favor recall, while values of \( \beta < 1 \) favor precision. When \( \beta = 1 \), precision and recall are equally balanced; this is the most frequently used metric, and is called \( F_{\beta=1} \) or just \( F_1 \):
\[ F_1 = \frac{2PR}{P + R} \] (6.16)

\(F\)-measure comes from a weighted harmonic mean of precision and recall. The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of reciprocals:

\[
\text{HarmonicMean}(a_1, a_2, a_3, \ldots, a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \ldots + \frac{1}{a_n}}
\] (6.17)

and hence \(F\)-measure is

\[
F = \frac{1}{\alpha \frac{P}{F} + (1 - \alpha) \frac{R}{F}} \quad \text{or} \quad \left( \text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \] (6.18)

Harmonic mean is used because it is a conservative metric; the harmonic mean of two values is closer to the minimum of the two values than the arithmetic mean is. Thus it weighs the lower of the two numbers more heavily.

### 6.7 More than two classes

Up to now we have been assuming text classification tasks with only two classes. But lots of classification tasks in language processing have more than two classes. For sentiment analysis we generally have 3 classes (positive, negative, neutral) and even more classes are common for tasks like part-of-speech tagging, word sense disambiguation, semantic role labeling, emotion detection, and so on.

There are two kinds of multi-class classification tasks. In **any-of classification**, each document or item can be assigned more than one label. We can solve any-of classification by building separate binary classifiers for each class \(c\), trained on positive examples labeled \(c\) and negative examples not labeled \(c\). Given a test document or item \(d\), then each classifier makes their decision independently, and we may assign multiple labels to \(d\).

More common in language processing is **one-of multinomial classification**, in which the classes are mutually exclusive and each document or item appears in exactly one class. Here we again build a separate binary classifier trained on positive examples from \(c\) and negative examples from all other classes. Now given a test document or item \(d\), we run all the classifiers and choose the label from the classifier with the highest score. Consider the sample confusion matrix for a hypothetical 3-way one-of email categorization decision (urgent, normal, spam) shown in Fig. 6.5.

The matrix shows, for example, that the system mistakenly labeled 1 spam document as urgent, and we have shown how to compute a distinct precision and recall value for each class. In order to derive a single metric that tells us how well the system is doing, we can combine these values in two ways. In **macroaveraging**, we compute the performance for each class, and then average over classes. In **microaveraging**, we collect the decisions for all classes into a single contingency table, and then compute precision and recall from that table. Fig. 6.6 shows the contingency table for each class separately, and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in this case spam), since the counts are pooled. The macroaverage better reflects the
### Chapter 6 • Naive Bayes and Sentiment Classification

#### Figure 6.5
Confusion matrix for a three-class categorization task, showing for each pair of classes \((c_1, c_2)\), how many documents from \(c_1\) were (in)correctly assigned to \(c_2\).

<table>
<thead>
<tr>
<th></th>
<th>Urgent</th>
<th>Normal</th>
<th>Spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>8</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Output</td>
<td>5</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>200</td>
</tr>
</tbody>
</table>

- **Recall**
  - Urgent: \(\frac{8}{8+5+3}\) = 0.65
  - Normal: \(\frac{60}{60+10+1}\) = 0.83
  - Spam: \(\frac{200}{200+30+200}\) = 0.66

- **Precision**
  - Urgent: \(\frac{8}{8+10+1}\) = 0.86
  - Normal: \(\frac{5}{5+60+50}\) = 0.05
  - Spam: \(\frac{200}{200+50+200}\) = 0.68

- **Microaverage Precision**
  \(\frac{0.86 + 0.05 + 0.68}{3} \approx 0.60\)

- **Macroaverage Precision**
  \(\frac{0.65 + 0.83 + 0.66}{3} \approx 0.73\)

#### Figure 6.6
Separate contingency tables for the 3 classes from the previous figure, showing the pooled contingency table and the microaveraged and macroaveraged precision.

<table>
<thead>
<tr>
<th>Class 1: Urgent</th>
<th></th>
<th>Class 2: Normal</th>
<th></th>
<th>Class 3: Spam</th>
<th></th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>system</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>system</td>
</tr>
<tr>
<td>urgent</td>
<td>8</td>
<td>60</td>
<td>200</td>
<td>268</td>
<td>yes</td>
<td>99</td>
</tr>
<tr>
<td>not</td>
<td>11</td>
<td>55</td>
<td>33</td>
<td>99</td>
<td>no</td>
<td>635</td>
</tr>
<tr>
<td>system</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>system</td>
</tr>
<tr>
<td>urgent</td>
<td>8</td>
<td>40</td>
<td>51</td>
<td>268</td>
<td>yes</td>
<td>99</td>
</tr>
<tr>
<td>not</td>
<td>340</td>
<td>212</td>
<td>83</td>
<td>635</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

- **Precision**
  - Class 1: \(\frac{8}{8+11} = 0.42\)
  - Class 2: \(\frac{60}{60+55} = 0.52\)
  - Class 3: \(\frac{200}{200+30+200} = 0.66\)
  - Pooled: \(\frac{0.42 + 0.52 + 0.66}{3} = 0.60\)

- **Microaveraged Precision**
  \(\frac{0.42 + 0.52 + 0.66}{3} = 0.60\)

- **Macroaveraged Precision**
  \(\frac{0.42 + 0.52 + 0.66}{3} = 0.73\)

statistics of the smaller classes, and so is more appropriate when performance on all the classes is equally important.

#### 6.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with language modeling (Section 4.2): we use the training set to train the model, then use the development test set (also called a devset) to perhaps tune some parameters, and in general decide what the best model is. Once we come up with what we think is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed training set, devset, and test set creates another problem: in order to save lots of data for training, the test set (or devset) might not be large enough to be representative. It would be better if we could somehow use all our data both for training and test. We do this by **cross-validation**: we randomly choose a training and test set division of our data, train our classifier, and then compute the error rate on the test set. Then we repeat with a different randomly selected training set and test set. We do this sampling process 10 times and average these 10 runs to get an average error rate. This is called **10-fold cross-validation**.
The only problem with cross-validation is that because all the data is used for testing, we need the whole corpus to be blind; we can’t examine any of the data to suggest possible features and in general see what’s going on. But looking at the corpus is often important for designing the system. For this reason, it is common to create a fixed training set and test set, then do 10-fold cross-validation inside the training set, but compute error rate the normal way in the test set, as shown in Fig. 6.7.

**Figure 6.7** 10-fold crossvalidation

### 6.9 Statistical Significance Testing

In building systems we are constantly comparing the performance of systems. Often we have added some new bells and whistles to our algorithm and want to compare the new version of the system to the unaugmented version. Or we want to compare our algorithm to a previously published one to know which is better.

We might imagine that to compare the performance of two classifiers A and B all we have to do is look at A and B’s score on the same test set—for example we might choose to compare macro-averaged F1—and see whether it’s A or B that has the higher score. But just looking at this one difference isn’t good enough, because A might have a better performance than B on a particular test set just by chance.

Let’s say we have a test set \( x \) of \( n \) observations \( x_1, x_2, \ldots, x_n \) on which A’s performance is better than B by \( \delta(x) \). How can we know if A is really better than B?

To do so we’d need to reject the null hypothesis that A isn’t really better than B and this difference \( \delta(x) \) occurred purely by chance. If the null hypothesis was correct, we would expect that if we had many test sets of size \( n \) and we measured A and B’s performance on all of them, that on average A might accidentally still be better than B by this amount \( \delta(x) \) just by chance.

More formally, if we had a random variable \( X \) ranging over test sets, the null hypothesis \( H_0 \) expects \( P(\delta(X) > \delta(x)|H_0) \), the probability that we’ll see similarly big differences just by chance, to be high.

If we had all these test sets we could just measure all the \( \delta(x') \) for all the \( x' \). If we found that those deltas didn’t seem to be bigger than \( \delta(x) \), that is, that p-value(\( x \)) was sufficiently small, less than the standard thresholds of 0.05 or 0.01, then we might
reject the null hypothesis and agree that $\delta(x)$ was a sufficiently surprising difference and A is really a better algorithm than B. Following Berg-Kirkpatrick et al. (2012) we’ll refer to $P(\delta(X) > \delta(x)|H_0)$ as p-value($x$).

In language processing we don’t generally use traditional statistical approaches like paired t-tests to compare system outputs because most metrics are not normally distributed, violating the assumptions of the tests. The standard approach to computing p-value($x$) in natural language processing is to use non-parametric tests like the bootstrap test (Efron and Tibshirani, 1993)— which we will describe below—or a similar test, approximate randomization (Noreen, 1989). The advantage of these tests is that they can apply to any metric; from precision, recall, or F1 to the BLEU metric used in machine translation.

The intuition of the bootstrap is that we can actually create many pseudo test sets from one sample test set by treating the sample as the population and doing Monte-Carlo resampling from the sample. The method only makes the assumption that the sample is representative of the population. Consider a tiny text classification example with a test set $x$ of 10 documents. The first row of Fig. 6.8 shows the results of two classifiers (A and B) on this test set, with each document labeled by one of the four possibilities: (A and B both right, both wrong, A right and B wrong, A wrong and B right); a slash through a letter (B) means that that classifier got the answer wrong. On the first document both A and B get the correct class (AB), while on the second document A got it right but B got it wrong (A/B). If we assume for simplicity that our metric is accuracy, A has an accuracy of .70 and B of .50, so $\delta(x)$ is .20.

To create each pseudo test set of size $N = 10$, we repeatedly (10 times) select a cell from row $x$ with replacement. Fig. 6.8 shows a few examples.

<table>
<thead>
<tr>
<th>$x$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A%</th>
<th>B%</th>
<th>$\delta(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^{i(1)}$</td>
<td>AB</td>
<td>.70</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>$x^{i(2)}$</td>
<td>AB</td>
<td>.60</td>
<td>.60</td>
<td>.00</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$x^{i(b)}$</td>
<td>AB</td>
<td>.60</td>
<td>.70</td>
<td>-.10</td>
</tr>
</tbody>
</table>

Figure 6.8 The bootstrap: Examples of $b$ pseudo test sets being created from an initial true test set $x$. Each pseudo test set is created by sampling $n = 10$ times with replacement; thus an individual sample is a single cell, a document with its gold label and the correct or incorrect performance of classifiers A and B.

Now that we have a sampling distribution, we can do statistics. We’d like to know how often A beats B by more than $\delta(x)$ on each $x^{i(l)}$. But since the $x^{i(l)}$ were drawn from $x$, the expected value of $\delta(x^{i(l)})$ will lie very close to $\delta(x)$. To find out if A beats B by more than $\delta(x)$ on each pseudo test set, we’ll need to shift the means of these samples by $\delta(x)$. Thus we’ll be comparing for each $x^{i(l)}$ whether $\delta(x^{i(l)}) > 2\delta(x)$. The full algorithm for the bootstrap is shown in Fig. 6.9.

6.10 Summary

This chapter introduced the naive Bayes model for classification and applied it to the text categorization task of sentiment analysis.
Many language processing tasks can be viewed as tasks of classification. learn to model the class given the observation.

Text categorization, in which an entire text is assigned a class from a finite set, comprises such tasks as sentiment analysis, spam detection, email classification, and authorship attribution.

Sentiment analysis classifies a text as reflecting the positive or negative orientation (sentiment) that a writer expresses toward some object.

Naive Bayes is a generative model that make the bag of words assumption (position doesn’t matter) and the conditional independence assumption (words are conditionally independent of each other given the class)

Naive Bayes with binarized features seems to work better for many text classification tasks.

Bibliographical and Historical Notes

Multinomial naive Bayes text classification was proposed by Maron (1961) at the RAND Corporation for the task of assigning subject categories to journal abstracts. His model introduced most of the features of the modern form presented here, approximating the classification task with one-of categorization, and implementing add-δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayesian analysis of text seem to have been arisen multiple times. The same year as Maron’s paper, Minsky (1961) proposed a naive Bayes classifier for vision and other artificial intelligence problems, and Bayesian techniques were also applied to the text classification task of authorship attribution by Mosteller and Wallace (1963). It had long been known that Alexander Hamilton, John Jay, and James Madison wrote the anonymously-published Federalist papers. in 1787–1788 to persuade New York to ratify the United States Constitution. Yet although some of the 85 essays were clearly attributable to one author or another, the authorship of 12 were in dispute between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian probabilistic model of the writing of Hamilton and another model on the writings of Madison, then computed the maximum-likelihood author for each of the disputed essays. Naïve Bayes was first applied to spam detection in Heckerman et al. (1998).

Metis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show that using boolean attributes with multinomial naive Bayes works better than full
counts. Binary multinomial naive Bayes is sometimes confused with another variant of naive Bayes that also use a binary representation of whether a term occurs in a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead estimates $P(w|c)$ as the fraction of documents that contain a term, and includes a probability for whether a term is not in a document McCallum and Nigam (1998) and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive Bayes doesn’t work as well as the multinomial algorithm for sentiment or other text tasks.

There are a variety of sources covering the many kinds of text classification tasks. There are a number of good overviews of sentiment analysis, including Pang and Lee (2008), and Liu and Zhang (2012). Stamatatos (2009) surveys authorship attribute algorithms. The task of newswire indexing was often used as a test case for text classification algorithms, based on the Reuters-21578 collection of newswire articles.

There are a number of good surveys of text classification (Manning et al. 2008, Aggarwal and Zhai 2012).

More on classification can be found in machine learning textbooks (Hastie et al. 2001, Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were first introduced into natural language processing in the MUC competition (Chinchor et al., 1993). Our description of the bootstrap draws on the description in Berg-Kirkpatrick et al. (2012).

**Exercises**

6.1 Assume the following likelihoods for each word being part of a positive or negative movie review, and equal prior probabilities for each class.

<table>
<thead>
<tr>
<th></th>
<th>pos</th>
<th>neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>always</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>like</td>
<td>0.29</td>
<td>0.06</td>
</tr>
<tr>
<td>foreign</td>
<td>0.04</td>
<td>0.15</td>
</tr>
<tr>
<td>films</td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>

What class will Naive bayes assign to the sentence “I always like foreign films.”?

6.2 Given the following short movie reviews, each labeled with a genre, either comedy or action:

1. fun, couple, love, love   **comedy**
2. fast, furious, shoot   **action**
3. couple, fly, fast, fun, fun   **comedy**
4. furious, shoot, shoot, fun   **action**
5. fly, fast, shoot, love   **action**

and a new document D:

fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use add-1 smoothing for the likelihoods.
6.3 Train two models, multinominal naive Bayes and binarized naive Bayes, both with add-1 smoothing, on the following document counts for key sentiment words, with positive or negative class assigned as noted.

```
doc “good” “poor” “great” (class)
d1. 3 0 3 pos
d2. 0 1 2 pos
d3. 1 3 0 neg
d4. 1 5 2 neg
d5. 0 2 0 neg
```

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Do the two models agree or disagree?
CHAPTER 7 • LOGISTIC REGRESSION

Logistic Regression

Numquam ponenda est pluralitas sine necessitate
‘Plurality should never be proposed unless needed’
William of Occam

We turn now to a second algorithm for classification called multinomial logistic regression, sometimes referred to within language processing as maximum entropy modeling, MaxEnt for short. Logistic regression belongs to the family of MaxEnt classifiers known as the exponential or log-linear classifiers. Like naive Bayes, it works by extracting some set of weighted features from the input, taking logs, and combining them linearly (meaning that each feature is multiplied by a weight and then added up). Technically, logistic regression refers to a classifier that classifies an observation into one of two classes, and multinomial logistic regression is used when classifying into more than two classes, although informally and in this chapter we sometimes use the shorthand logistic regression even when we are talking about multiple classes.

The most important difference between naive Bayes and logistic regression is that logistic regression is a discriminative classifier while naive Bayes is a generative classifier. To see what this means, recall that the job of a probabilistic classifier is to choose which output label $y$ to assign an input $x$, choosing the $y$ that maximizes $P(y|x)$. In the naive Bayes classifier, we used Bayes rule to estimate this best $y$ indirectly from the likelihood $P(x|y)$ (and the prior $P(y)$):

$$\hat{y} = \arg\max_y P(y|x) = \arg\max_y P(x|y)P(y) \quad (7.1)$$

Because of this indirection, naive Bayes is a generative model: a model that is trained to generate the data $x$ from the class $y$. The likelihood term $P(x|y)$ expresses that we are given the class $y$ and are trying to predict which features we expect to see in the input $x$. Then we use Bayes rule to compute the probability we really want: $P(y|x)$.

But why not instead just directly compute $P(y|x)$? A discriminative model takes this direct approach, computing $P(y|x)$ by discriminating among the different possible values of the class $y$ rather than first computing a likelihood:

$$\hat{y} = \arg\max_y P(y|x) \quad (7.2)$$

While logistic regression thus differs in the way it estimates probabilities, it is still like naive Bayes in being a linear classifier. Logistic regression estimates $P(y|x)$ by extracting some set of features from the input, combining them linearly (multiplying each feature by a weight and adding them up), and then applying a function to this combination.

We can’t, however, just compute $P(y|x)$ directly from features and weights as follows:
7.1 Features in Multinomial Logistic Regression

\[
P(y|x) = \sum_{i=1}^{N} w_i f_i \quad \text{(7.3)}
\]
\[
? = w \cdot f \quad \text{(7.4)}
\]

Stop for a moment to figure out why this doesn’t produce a legal probability. The problem is that the expression \(\sum_{i=1}^{N} w_i f_i\) produces values from \(-\infty\) to \(\infty\); nothing in the equation above forces the output to be a legal probability, that is, to lie between 0 and 1. In fact, since weights are real-valued, the output might even be negative!

We’ll solve this in two ways. First, we’ll wrap the \(\exp\) function around the weight-feature dot-product \(w \cdot f\), which will make the values positive, and we’ll create the proper denominator to make everything a legal probability and sum to 1. While we’re at it, let’s assume now that the target \(y\) is a variable that ranges over different classes; we want to know the probability that it takes on the particular value of the class \(c\):

\[
p(y = c | x) = p(c | x) = \frac{1}{Z} \exp \sum_{i} w_i f_i \quad \text{(7.5)}
\]

So far we’ve been assuming that the features \(f_i\) are real-valued, but it is more common in language processing to use binary-valued features. A feature that takes on only the values 0 and 1 is called an indicator function. Furthermore, the features are not just a property of the observation \(x\), but are instead a property of both the observation \(x\) and the candidate output class \(c\). Thus, in MaxEnt, instead of the notation \(f_i\) or \(f_i(x)\), we use the notation \(f_i(c,x)\), meaning feature \(i\) for a particular class \(c\) for a given observation \(x\):

\[
p(c | x) = \frac{1}{Z} \exp \left( \sum_{i} w_i f_i(c, x) \right) \quad \text{(7.6)}
\]

Fleshing out the normalization factor \(Z\), and specifying the number of features as \(N\) gives us the final equation for computing the probability of \(y\) being of class \(c\) given \(x\) in MaxEnt:

\[
p(c | x) = \frac{\exp \left( \sum_{i=1}^{N} w_i f_i(c, x) \right)}{\sum_{c' \in C} \exp \left( \sum_{i=1}^{N} w_i f_i(c', x) \right)} \quad \text{(7.7)}
\]

7.1 Features in Multinomial Logistic Regression

Let’s look at some sample features for a few NLP tasks to help understand this perhaps unintuitive use of features that are functions of both the observation \(x\) and the class \(c\).

Suppose we are doing text classification, and we would like to know whether to assign the sentiment class \(+, -, 0\) (neutral) to a document. Here are five potential features, representing that the document \(x\) contains the word \(great\) and the class is
+ \((f_1)\), contains the word \textit{second-rate} and the class is \(-\ (f_2)\), and contains the word \textit{no} and the class is \(-\ (f_3)\).

\[
\begin{align*}
f_1(c, x) &= \begin{cases} 1 & \text{if } "great" \in x & c = + \\ 0 & \text{otherwise} \end{cases} \\
f_2(c, x) &= \begin{cases} 1 & \text{if } "second-rate" \in x & c = - \\ 0 & \text{otherwise} \end{cases} \\
f_3(c, x) &= \begin{cases} 1 & \text{if } "no" \in x & c = - \\ 0 & \text{otherwise} \end{cases} \\
f_4(c, x) &= \begin{cases} 1 & \text{if } "enjoy" \in x & c = - \\ 0 & \text{otherwise} \end{cases}
\end{align*}
\]

Each of these features has a corresponding weight, which can be positive or negative. Weight \(w_1(x)\) indicates the strength of \textit{great} as a cue for class \(+\) and \(w_2(x)\) the strength of \textit{second-rate} and \textit{no} for the class \(-\). These weights would likely be positive—logically negative words like \textit{no} or \textit{nothing} turn out to be more likely to occur in documents with negative sentiment (Potts, 2011). Weight \(w_4(x)\), the strength of \textit{enjoy} for \(-\), would likely have a negative weight. We’ll discuss in the following section how these weights are learned.

Since each feature is dependent on both a property of the observation and the class being labeled, we would have additional features for the links between \textit{great} and the negative class \(-\), or \textit{no} and the neutral class \(0\), and so on.

Similar features could be designed for other language processing classification tasks. For period disambiguation (deciding if a period is the end of a sentence or part of a word), we might have the two classes EOS (end-of-sentence) and not-EOS and features like \(f_1\) below expressing that the current word is lower case and the class is EOS (perhaps with a positive weight), or that the current word is in our abbreviations dictionary ("Prof.") and the class is EOS (perhaps with a negative weight). A feature can also express a quite complex combination of properties. For example a period following a upper cased word is a likely to be an EOS, but if the word itself is \textit{St.} and the previous word is capitalized, then the period is likely part of a shortening of the word \textit{street}.

\[
\begin{align*}
f_1(c, x) &= \begin{cases} 1 & \text{if } \text{Case}(w_i) = \text{Lower} & c = \text{EOS} \\ 0 & \text{otherwise} \end{cases} \\
f_2(c, x) &= \begin{cases} 1 & \text{if } w_i \in \text{AcronymDict} & c = \text{EOS} \\ 0 & \text{otherwise} \end{cases} \\
f_3(c, x) &= \begin{cases} 1 & \text{if } w_i = \text{St.} & \text{Case}(w_i-1) = \text{Upper} & c = \text{EOS} \\ 0 & \text{otherwise} \end{cases}
\end{align*}
\]

In Chapter 10 we’ll see features for the task of part-of-speech tagging. It’s even possible to do discriminative language modeling as a classification task. In this case the set \(C\) of classes is the vocabulary of the language, and the task is to predict the next word using features of the previous words (traditional \(N\)-gram contexts). In that case, the features might look like the following, with a unigram feature for the word \textit{the} \((f_1)\) or \textit{breakfast} \((f_2)\), or a bigram feature for the context word \textit{American} predicting \textit{breakfast} \((f_3)\). We can even create features that are very difficult to create in a traditional generative language model like predicting the word \textit{breakfast} if the previous word ends in the letters \textit{-an} like \textit{Italian}, \textit{American}, or \textit{Malaysian} \((f_4)\).
The features for the task of discriminative language models make it clear that we’ll often need large numbers of features. Often these are created automatically via **feature templates**, abstract specifications of features. For example a trigram template might create a feature for every predicted word and pair of previous words in the training data. Thus the feature space is sparse, since we only have to create a feature if that n-gram exists in the training set.

The feature is generally created as a hash from the string descriptions. A user description of a feature as, “bigram(American breakfast)” is hashed into a unique integer \( i \) that becomes the feature number \( f_i \).

## 7.2 Classification in Multinomial Logistic Regression

In logistic regression we choose a class by using Eq. 8.11 to compute the probability for each class and then choose the class with the maximum probability.

Fig. 7.1 shows an excerpt from a sample movie review in which the four feature defined in Eq. 7.8 for the two-class sentiment classification task are all 1, with the weights set as \( w_1 = 1.9, w_2 = .9, w_3 = .7, w_4 = -.8 \).

Given these 4 features and the input review \( x \), \( P(+) \) and \( P(-) \) can be computed with Eq. 8.11:

\[
P(+) = \frac{e^{1.9}}{e^{1.9} + e^{9 + .7 - .8}} = .82
\]

\[
P(-) = \frac{e^{9 + .7 - .8}}{e^{1.9} + e^{9 + .7 - .8}} = .18
\]
If the goal is just classification, we can even ignore the denominator and the \( \exp \) and just choose the class with the highest dot product between the weights and features:

\[
\hat{c} = \arg\max_{c \in C} P(c|x) \\
= \arg\max_{c \in C} \frac{\exp \left( \sum_{i=1}^{N} w_i f_i(c, x) \right)}{\sum_{c' \in C} \exp \left( \sum_{i=1}^{N} w_i f_i(c', x) \right)} \\
= \arg\max_{c \in C} \exp \left( \sum_{i=1}^{N} w_i f_i(c, x) \right) / \sum_{c' \in C} \exp \left( \sum_{i=1}^{N} w_i f_i(c', x) \right) \\
= \arg\max_{c \in C} \sum_{i=1}^{N} w_i f_i(c, x) 
\] (7.10)

Computing the actual probability rather than just choosing the best class, however, is useful when the classifier is embedded in a larger system, as in a sequence classification domain like part-of-speech tagging (Section 10.5).

Note that while the index in the inner sum of features in Eq. 7.10 ranges over the entire list of \( N \) features, in practice in classification it’s not necessary to look at every feature, only the non-zero features. For text classification, for example, we don’t have to consider features of words that don’t occur in the test document.

### 7.3 Learning Logistic Regression

How are the parameters of the model, the weights \( w \), learned? The intuition is to choose weights that make the classes of the training examples more likely. Indeed, logistic regression is trained with **conditional maximum likelihood estimation**. This means we choose the parameters \( w \) that maximize the (log) probability of the \( y \) labels in the training data given the observations \( x \).

For an individual training observation \( x^{(j)} \) in our training set (we’ll use superscripts to refer to individual observations in the training set—this would be each individual document for text classification) the optimal weights are:

\[
\hat{w} = \arg\max_{w} \log P(y^{(j)}|x^{(j)}) 
\] (7.11)

For the entire set of observations in the training set, the optimal weights would then be:

\[
\hat{w} = \arg\max_{w} \sum_{j} \log P(y^{(j)}|x^{(j)}) 
\] (7.12)

The objective function \( L \) that we are maximizing is thus
Regularization

There is a problem with learning weights that make the model perfectly match the training data. If a feature is perfectly predictive of the outcome because it happens to only occur in one class, it will be assigned a very high weight. The weights for features will attempt to perfectly fit details of the training set, in fact too perfectly, modeling noisy factors that just accidentally correlate with the class. This problem is called overfitting.

To avoid overfitting a regularization term is added to the objective function in Eq. 7.13. Instead of the optimization in Eq. 7.12, we optimize the following:

\[
\hat{w} = \arg\max_w \sum_j \log P(y^{(j)}|x^{(j)}) - \alpha R(w)
\]  

(7.15)

where \(R(w)\), the regularization term, is used to penalize large weights. Thus a setting of the weights that matches the training data perfectly, but uses lots of weights with
high values to do so, will be penalized more than than a setting that matches the data a little less well, but does so using smaller weights.

There are two common regularization terms $R(w)$. **L2 regularization** is a quadratic function of the weight values, named because it uses the (square of the) L2 norm of the weight values. The L2 norm, $|W|_2$, is the same as the Euclidean distance:

$$R(W) = |W|_2^2 = \sum_{j=1}^{N} w_j^2$$  \hspace{1cm} (7.16)

The L2 regularized objective function becomes:

$$\hat{w} = \arg\max_w \sum_j \log P(y^{(j)}|x^{(j)}) - \alpha \sum_{i=1}^{N} w_i^2$$  \hspace{1cm} (7.17)

**L1 regularization** is a linear function of the weight values, named after the L1 norm $|W|_1$, the sum of the absolute values of the weights, or Manhattan distance (the Manhattan distance is the distance you’d have to walk between two points in a city with a street grid like New York):

$$R(W) = |W|_1 = \sum_{i=1}^{N} |w_i|$$  \hspace{1cm} (7.18)

The L1 regularized objective function becomes:

$$\hat{w} = \arg\max_w \sum_j \log P(y^{(j)}|x^{(j)}) - \alpha \sum_{i=1}^{N} |w_i|$$  \hspace{1cm} (7.19)

These kinds of regularization come from statistics, where L1 regularization is called ‘the lasso’ or lasso regression (Tibshirani, 1996) and L2 regression is called ridge regression, and both are commonly used in language processing. L2 regularization is easier to optimize because of its simple derivative (the derivative of $w^2$ is just $2w$), while L1 regularization is more complex (the derivative of $|w|$ is non-continuous at zero). But where L2 prefers weight vectors with many small weights, L1 prefers sparse solutions with some larger weights but many more weights set to zero. Thus L1 regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on the prior of how weights should look. L1 regularization can be viewed as a Laplace prior on the weights. L2 regularization corresponds to assuming that weights are distributed according to a gaussian distribution with mean $\mu = 0$. In a gaussian or normal distribution, the further away a value is from the mean, the lower its probability (scaled by the variance $\sigma$). By using a gaussian prior on the weights, we are saying that weights prefer to have the value 0. A gaussian for a weight $w_j$ is

$$\frac{1}{\sqrt{2\pi\sigma_j^2}} \exp \left( -\frac{(w_j - \mu_j)^2}{2\sigma_j^2} \right)$$  \hspace{1cm} (7.20)
7.5 Feature Selection

If we multiply each weight by a gaussian prior on the weight, we are thus maximizing the following constraint:

\[
\hat{w} = \arg\max_w \prod_j P(y^{(j)}|x^{(j)}) \times \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp \left( -\frac{(w_i - \mu_j)^2}{2\sigma_j^2} \right)
\]  

(7.21)

which in log space, with \(\mu = 0\), and assuming \(2\sigma^2 = 1\), corresponds to

\[
\hat{w} = \arg\max_w \sum_j \log P(y^{(j)}|x^{(j)}) - \alpha \sum_{i=1}^N w_i^2
\]  

(7.22)

which is in the same form as Eq. 7.17.

7.5 Feature Selection

The regularization technique introduced in the previous section is useful for avoiding overfitting by removing or downweighting features that are unlikely to generalize well. Many kinds of classifiers, however, including naive Bayes, do not have regularization, and so instead feature selection is used to choose the important features to keep and remove the rest. The basis of feature selection is to assign some metric of goodness to each feature, rank the features, and keep the best ones. The number of features to keep is a meta-parameter that can be optimized on a dev set.

Features are generally ranked by how informative they are about the classification decision. A very common metric is information gain. Information gain tells us how many bits of information the presence of the word gives us for guessing the class, and can be computed as follows (where \(c_i\) is the \(i\)th class and \(\bar{w}\) means that a document does not contain the word \(w\)):

\[
G(w) = -\sum_{i=1}^C P(c_i) \log P(c_i)
+ P(w) \sum_{i=1}^C P(c_i|w) \log P(c_i|w)
+ P(\bar{w}) \sum_{i=1}^C P(c_i|\bar{w}) \log P(c_i|\bar{w})
\]  

(7.23)

Other metrics for feature selection include \(\chi^2\), pointwise mutual information, and GINI index; see Yang and Pedersen (1997) for a comparison and Guyon and Elisseeff (2003) for a broad introduction survey of feature selection.

While feature selection is important for unregularized classifiers, it is sometimes also used in regularized classifiers in applications where speed is critical, since it is often possible to get equivalent performance with orders of magnitude fewer features.
7.6 Choosing a classifier and features

Logistic regression has a number of advantages over naive Bayes. The overly strong conditional independence assumptions of Naive Bayes mean that if two features are in fact correlated naive Bayes will multiply them both in as if they were independent, overestimating the evidence. Logistic regression is much more robust to correlated features; if two features \( f_1 \) and \( f_2 \) are perfectly correlated, regression will simply assign half the weight to \( w_1 \) and half to \( w_2 \).

Thus when there are many correlated features, logistic regression will assign a more accurate probability than naive Bayes. Despite the less accurate probabilities, naive Bayes still often makes the correct classification decision. Furthermore, naive Bayes works extremely well (even better than logistic regression or SVMs) on small datasets (Ng and Jordan, 2002) or short documents (Wang and Manning, 2012). Furthermore, naive Bayes is easy to implement and very fast to train. Nonetheless, algorithms like logistic regression and SVMs generally work better on larger documents or datasets.

Classifier choice is also influenced by the bias-variance tradeoff. The bias of a classifier indicates how accurate it is at modeling different training sets. The variance of a classifier indicates how much its decisions are affected by small changes in training sets. Models with low bias (like SVMs with polynomial or RBF kernels) are very accurate at modeling the training data. Models with low variance (like naive Bayes) are likely to come to the same classification decision even from slightly different training data. But low-bias models tend to be so accurate at fitting the training data that they overfit, and do not generalize well to very different test sets. And low-variance models tend to generalize so well that they may not have sufficient accuracy. Thus any given model trades off bias and variance. Adding more features decreases bias by making it possible to more accurately model the training data, but increases variance because of overfitting. Regularization and feature selection are ways to improve (lower) the variance of classifier by downweighting or removing features that are likely to overfit.

In addition to the choice of a classifier, the key to successful classification is the design of appropriate features. Features are generally designed by examining the training set with an eye to linguistic intuitions and the linguistic literature on the domain. A careful error analysis on the training or dev set of an early version of a system often provides insights into features.

For some tasks it is especially helpful to build complex features that are combinations of more primitive features. We saw such a feature for period disambiguation above, where a period on the word *St* was less likely to be the end of sentence if the previous word was capitalized. For logistic regression and naive Bayes these combination features or feature interactions have to be designed by hand.

Some other machine learning models can automatically model the interactions between features. For tasks where these combinations of features are important (especially when combination of categorical features and real-valued features might be helpful), the most useful classifiers may be such classifiers, including Support Vector Machines (SVMs) with polynomial or RBF kernels, and random forests. See the pointers at the end of the chapter.
7.7 Summary

This chapter introduced multinomial logistic regression (MaxEnt) models for classification.

- Multinomial logistic regression (also called MaxEnt or the Maximum Entropy classifier in language processing) is a discriminative model that assigns a class to an observation by computing a probability from an exponential function of a weighted set of features of the observation.
- Regularization is important in MaxEnt models for avoiding overfitting.
- Feature selection can be helpful in removing useless features to speed up training, and is also important in unregularized models for avoiding overfitting.

Bibliographical and Historical Notes

Maximum entropy modeling, including the use of regularization, was first applied to natural language processing (specifically machine translation) in the early 1990s at IBM (Berger et al. 1996, Della Pietra et al. 1997), and was soon applied to other NLP tasks like part-of-speech tagging and parsing (Ratnaparkhi 1996, Ratnaparkhi 1997) and text classification Nigam et al. (1999). See Chen and Rosenfeld (2000), Goodman (2004), and Dudík et al. (2007) on regularization for maximum entropy models.

More on classification can be found in machine learning textbooks (Hastie et al. 2001, Witten and Frank 2005, Bishop 2006, Murphy 2012).

Exercises
Neural networks are an essential computational tool for language processing, and a very old one. They are called neural because their origins lie in the McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the human neuron as a kind of computing element that could be described in terms of propositional logic. But the modern use in language processing no longer draws on these early biological inspirations. Instead, a modern neural network is a network of small computing units, each of which takes a vector of input values and produces a single output value.

In this chapter we consider a neural net classifier, built by combining units into a network. As we’ll see, this is called a feed-forward network because the computation proceeds iteratively from one layer of units to the next. The use of modern neural nets is often called deep learning, because modern networks are often deep (have many hidden layers).

Neural networks share some of the same mathematics and learning architectures as logistic regression. But neural networks are a more powerful classifier than logistic regression, and indeed a neural network with one hidden layer can be shown to learn any function.

Neural net classifiers are different from logistic regression in another way. With logistic regression, we applied the simple and fixed regression classifier to many different asks by developing many rich kinds of feature templates based on domain knowledge. When working with neural networks, it is more common to avoid the use of rich hand-derived features, instead building neural networks that take raw words as inputs and learn to induce features as part of the process of learning to classify. This is especially true with nets that are very deep (have many hidden layers), and for that reason deep neural nets, more than other classifiers, tend to be applied on large scale problems that offer sufficient data to learn features automatically.

In this chapter we’ll see feedforward networks as classifiers, and apply them to the simple task of language modeling: assigning probabilities to word sequences and predicting upcoming words.

In later chapters we’ll introduce many other aspects of neural models. Chapter 9b will introduce recurrent neural networks. Chapter 15 will introduce the use of neural networks to compute the semantic representations for words called embeddings. And Chapter 25 and succeeding chapters will introduce the sequence-
8.1 Units

The building block of a neural network is a single computational unit. A unit takes a set of real valued numbers as input, performs some computation on them, and produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one additional term in the sum called a bias term. Thus given a set of inputs $x_1 \ldots x_n$, a unit has a set of corresponding weights $w_1 \ldots w_n$ and a bias $b$, so the weighted sum $z$ can be represented as:

$$z = b + \sum_i w_i x_i$$  \hspace{1cm} (8.1)

Often it’s more convenient to express this weighted sum using vector notation; recall from linear algebra that a vector is, at heart, just a list or array of numbers. Thus we’ll talk about $z$ in terms of a weight vector $w$, a scalar bias $b$, and an input vector $x$, and we’ll replace the sum with the convenient dot product:

$$z = w \cdot x + b$$  \hspace{1cm} (8.2)

As defined in Eq. 8.2, $z$ is just a real valued number.

Finally, instead of using $z$, a linear function of $x$, as the output, neural units apply a non-linear function $f$ to $z$. We will refer to the output of this function as the activation value for the unit, $a$. Since we are just modeling a single unit, the activation for the node is in fact the final output of the network, which we’ll generally call $y$. So the value $y$ is defined as:

$$y = a = f(z)$$  \hspace{1cm} (8.3)

We’ll discuss three popular non-linear functions $f()$ below (the sigmoid, the tanh, and the rectified linear ReLU) but it’s convenient to start with the sigmoid function:

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$  \hspace{1cm} (8.4)

The sigmoid has a number of advantages; it maps the output into the range $[0, 1]$, which is useful in squashing outliers toward 0 or 1. And it’s differentiable, which as we’ll see in Section 8.4 will be handy for learning. Fig. 8.1 shows a graph.

Substituting the sigmoid equation into Eq. 8.2 gives us the final value for the output of a neural unit:

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$  \hspace{1cm} (8.5)

Fig. 8.2 shows a final schematic of a basic neural unit. In this example the unit takes 3 input values $x_1, x_2,$ and $x_3$, and computes a weighted sum, multiplying each
Figure 8.1  The sigmoid function takes a real value and maps it to the range [0, 1]. Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier values toward 0 or 1.

value by a weight \((w_1, w_2, \text{ and } w_3,\text{ respectively})\), adds them to a bias term \(b\), and then passes the resulting sum through a sigmoid function to result in a number between 0 and 1.

Let’s walk through an example just to get an intuition. Let’s suppose we have a unit with the following weight vectors and bias:

\[
\begin{align*}
    w &= [0.2, 0.3, 0.9] \\
    b &= 0.5
\end{align*}
\]

What would this unit do with the following input vector:

\[
x = [0.5, 0.6, 0.1]
\]
8.2 THE XOR PROBLEM

The resulting output $y$ would be:

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(5 \times 2 + 3 \times 6 + 8 \times 1.5)}} = e^{-0.86} = .42$$

Other nonlinear functions besides the sigmoid are also commonly used. The $\tanh$ function shown in Fig. 8.3a is a variant of the sigmoid that ranges from -1 to +1:

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

The simplest activation function is the rectified linear unit, also called the ReLU, shown in Fig. 8.3b. It’s just the same as $x$ when $x$ is positive, and 0 otherwise:

$$y = \max(x, 0)$$

These activation functions have different properties that make them useful for different language applications or network architectures. For example the rectifier function has nice properties that result from it being very close to linear. In the sigmoid or $\tanh$ functions, very high values of $z$ result in values of $y$ that are saturated, i.e., extremely close to 1, which causes problems for learning. Rectifiers don’t have this problem, since the output of values close to 1 also approaches 1 in a nice gentle linear way. By contrast, the $\tanh$ function has the nice properties of being smoothly differentiable and mapping outlier values toward the mean.

8.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural networks, as with the real neurons that inspired them, comes from combining these units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was the proof by Minsky and Papert (1969) that a single neural unit cannot compute some very simple functions of its input. In the next section we take a look at that intuition.

Consider the very simple task of computing simple logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are the truth tables for those functions:
This example was first shown for the perceptron, which is a very simple neural unit that has a binary output and no non-linear activation function. The output $y$ of a perceptron is 0 or 1, and just computed as follows (using the same weight $w$, input $x$, and bias $b$ as in Eq. 8.2):

$$y = \begin{cases} 
0, & \text{if } w \cdot x + b \leq 0 \\
1, & \text{if } w \cdot x + b > 0 
\end{cases} \quad (8.8)$$

It's very easy to build a perceptron that can compute the logical AND and OR functions of its binary inputs; Fig. 8.4 shows the necessary weights.

---

**Figure 8.4** The weights $w$ and bias $b$ for perceptrons for computing logical functions. The inputs are shown as $x_1$ and $x_2$ and the bias as a special node with value +1 which is multiplied with the bias weight $b$. (a) logical AND, showing weights $w_1 = 1$ and $w_2 = 1$ and bias weight $b = -1$. (b) logical OR, showing weights $w_1 = 1$ and $w_2 = 1$ and bias weight $b = 0$. These weights/biases are just one from an infinite number of possible sets of weights and biases that would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a perceptron is a linear classifier. For a two-dimensional input $x_0$ and $x_1$, the perception equation, $w_1 x_1 + w_2 x_2 + b = 0$ is the equation of a line (we can see this by putting it in the standard linear format: $x_2 = -(w_1/w_2)x_1 - b$.) This line acts as a decision boundary in two-dimensional space in which the output 0 is assigned to all inputs lying on one side of the line, and the output 1 to all input points lying on the other side of the line. If we had more than 2 inputs, the decision boundary becomes a hyperplane instead of a line, but the idea is the same, separating the space into two categories.

Fig. 8.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn by one possible set of parameters for an AND and an OR classifier. Notice that there is simply no way to draw a line that separates the positive cases of XOR (01 and 10) from the negative cases (00 and 11). We say that XOR is not a linearly separable function. Of course we could draw a boundary with a curve, or some other function, but not a single line.
8.2 • The XOR problem

8.2.1 The solution: neural networks

While the XOR function cannot be calculated by a single perceptron, it can be calculated by a layered network of units. Let’s see an example of how to do this from Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units. Fig. 8.6 shows a figure with the input being processed by two layers of neural units. The middle layer (called \( h \)) has two units, and the output layer (called \( y \)) has one unit. A set of weights and biases are shown for each ReLU that correctly computes the XOR function.

Let’s walk through what happens with the input \( x = [0 \ 0] \). If we multiply each input value by the appropriate weight, sum, and then add the bias \( b \), we get the vector \([0 \ -1]\), and we then apply the rectified linear transformation to give the output of the \( h \) layer as \([0 \ 0]\). Now we once again multiply by the weights, sum, and add the bias (0 in this case) resulting in the value 0. The reader should work through the computation of the remaining 3 possible input pairs to see that the resulting \( y \) values correctly are 1 for the inputs \([0 \ 1]\) and \([1 \ 0]\) and 0 for \([0 \ 0]\) and \([1 \ 1]\).

It’s also instructive to look at the intermediate results, the outputs of the two hidden nodes \( h_0 \) and \( h_1 \). We showed in the previous paragraph that the \( h \) vector for
the inputs \( x = [0\ 0] \) was \([0\ 0]\). Fig. 8.7b shows the values of the \( h \) layer for all 4 inputs. Notice that hidden representations of the two input points \( x = [0\ 1] \) and \( x = [1\ 0] \) (the two cases with XOR output = 1) are merged to the single point \( h = [1\ 0] \). The merger makes it easy to linearly separate the positive and negative cases of XOR. In other words, we can view the hidden layer of the network is forming a representation for the input.

![Figure 8.7](image)

Figure 8.7 The hidden layer forming a new representation of the input. Here is the representation of the hidden layer, \( h \), compared to the original input representation \( x \). Notice that the input point \([0\ 1]\) has been collapsed with the input point \([1\ 0]\), making it possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

In this example we just stipulated the weights in Fig. 8.6. But for real examples the weights for neural networks are learned automatically using the error backpropagation algorithm to be introduced in Section 8.4. That means the hidden layers will learn to form useful representations. This intuition, that neural networks can automatically learn useful representations of the input, is one of their key advantages, and one that we will return to again and again in later chapters.

Note that the solution to the XOR problem requires a network of units with non-linear activation functions. A network made up of simple linear (perceptron) units cannot solve the XOR problem. This is because a network formed by many layers of purely linear units can always be reduced (shown to be computationally identical to) a single layer of linear units with appropriate weights, and we’ve already shown (visually, in Fig. 8.5) that a single unit cannot solve the XOR problem.

### 8.3 Feed-Forward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of neural network, the feed-forward network. A feed-forward network is a multilayer network in which the units are connected with no cycles; the outputs from units in each layer are passed to units in the next higher layer, and no outputs are passed back to lower layers. (Later we’ll introduce networks with cycles, called recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer, since the units in modern multilayer networks aren’t perceptrons (perceptrons are...
purely linear, but modern networks are made up of units with non-linearities like sigmoids), but at some point the name stuck.

Simple feed-forward networks have three kinds of nodes: input units, hidden units, and output units. Fig. 8.8 shows a picture.

The input units are simply scalar values just as we saw in Fig. 8.2.

The core of the neural network is the **hidden layer** formed of **hidden units**, each of which is a neural unit as described in Section 8.1, taking a weighted sum of its inputs and then applying a non-linearity. In the standard architecture, each layer is **fully-connected**, meaning that each unit in each layer takes as input the outputs from all the units in the previous layer, and there is a link between every pair of units from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has parameters $w$ (the weight vector) and $b$ (the bias scalar). We represent the parameters for the entire hidden layer by combining the weight $w_i$ and bias $b_i$ for each unit $i$ into a single weight matrix $W$ and a single bias vector $b$ for the whole layer (see Fig. 8.8). Each element $W_{ij}$ of the weight matrix $W$ represents the weight of the connection from the $i$th input unit $x_i$ to the the $j$th hidden unit $h_j$.

The advantage of using a single matrix $W$ for the weights of the entire layer is that now that hidden layer computation for a feedforward network can be done very efficiently with simple matrix operations. In fact, the computation only has three steps: multiplying the weight matrix by the input vector $x$, adding the bias vector $b$, and applying the activation function $f$ (such as the sigmoid, tanh, or rectified linear activation function defined above).

The output of the hidden layer, the vector $h$, is thus the following, assuming the sigmoid function $\sigma$:

$$ h = \sigma(Wx + b) \quad (8.9) $$

Notice that we’re apply the $\sigma$ function here to a vector, while in Eq. 8.4 it was applied to a scalar. We’re thus allowing $\sigma(\cdot)$, and indeed any activation function $f(\cdot)$, to apply to a vector element-wise, so $f[z_1, z_2, z_3] = [f(z_1), f(z_2), f(z_3)]$.

Let’s introduce some constants to represent the dimensionalities of these vectors and matrices. We’ll have $d_{in}$ represent the number of inputs, so $x$ is a vector of real numbers of dimensionality $d_{in}$, or more formally $x \in \mathbb{R}^{d_{in}}$. The hidden layer
has dimensional \(d_h\), so \(h \in \mathbb{R}^{d_h}\) and also \(b \in \mathbb{R}^{d_h}\) (since each hidden unit can take a different bias value). And the weight matrix \(W\) has dimensionality \(W \in \mathbb{R}^{d_h \times d_w}\).

Take a moment to convince yourself that the matrix multiplication in Eq. 8.9 will compute the value of each \(h_{ij}\) as \(\sum_{i=1}^{d_h} w_{ij} x_i + b_j\).

As we saw in Section 8.2, the resulting value \(h\) (for hidden but also for hypothesis) forms a representation of the input. The role of the output layer is to take this new representation \(h\) and compute a final output. This output could be a real-valued number, but in many cases the goal of the network is to make some sort of classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single output node, and its value \(y\) is the probability of positive versus negative sentiment. If we are doing multinomial classification, such as assigning a part-of-speech tag, we might have one output node for each potential part-of-speech, whose output value is the probability of that part-of-speech, and the values of all the output nodes must sum to one. The output layer thus gives a probability distribution across the output nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight matrix (let’s call it \(U\)), but it often doesn’t have a bias vector \(b\), so we’ll eliminate it in our examples here. The weight matrix is multiplied by the input vector \((h)\) to produce the intermediate output \(z\).

\[z = Uh\]

There are \(d_{out}\) output nodes, so \(z \in \mathbb{R}^{d_{out}}\), weight matrix \(U\) has dimensionality \(U \in \mathbb{R}^{d_{out} \times d_h}\), and element \(U_{ij}\) is the weight from unit \(j\) in the hidden layer to unit \(i\) in the output layer.

However, \(z\) can’t be the output of the classifier, since it’s a vector of real-valued numbers, while what we need for classification is a vector of probabilities. There is a convenient function for normalizing a vector of real values, by which we mean converting it to a vector that encodes a probability distribution (all the numbers lie between 0 and 1 and sum to 1): the softmax function.

For a vector \(z\) of dimensionality \(D\), the softmax is defined as:

\[
\text{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{D} e^{z_j}} \quad 1 \leq i \leq D
\] (8.10)

Thus for example given a vector \(z=[0.6 1.1 -1.5 1.2 3.2 -1.1]\), \(\text{softmax}(z)\) is \([0.055 0.090 0.0067 0.10 0.74 0.010]\).

You may recall that softmax was exactly what is used to create a probability distribution from a vector of real-valued numbers (computed from summing weights times features) in logistic regression in Chapter 7; the equation for computing the probability of \(y\) being of class \(c\) given \(x\) in multinomial logistic regression was (repeated from Eq. 8.11):

\[
p(c|x) = \frac{\exp \left( \sum_{i=1}^{N} w_i f_i(c,x) \right)}{\sum_{c' \in C} \exp \left( \sum_{i=1}^{N} w_i f_i(c',x) \right)}
\] (8.11)
In other words, we can think of a neural network classifier with one hidden layer as building a vector $h$ which is a hidden layer representation of the input, and then running standard logistic regression on the features that the network develops in $h$. By contrast, in Chapter 7 the features were mainly designed by hand via feature templates. So a neural network is like logistic regression, but (a) with many layers, since a deep neural network is like layer after layer of logistic regression classifiers, and (b) rather than forming the features by feature templates, the prior layers of the network induce the feature representations themselves.

Here are the final equations for a feed-forward network with a single hidden layer, which takes an input vector $x$, outputs a probability distribution $y$, and is parameterized by weight matrices $W$ and $U$ and a bias vector $b$:

$$h = \sigma(Wx + b) \tag{8.12}$$

$$z = Uh \tag{8.13}$$

$$y = \text{softmax}(z) \tag{8.14}$$

$$L(\hat{y}, y) = \text{How much } \hat{y} \text{ differs from the true } y \tag{8.16}$$

or equivalently, but with more details, making transparent the fact that $\hat{y}$ is computed by a function $f$ that is parameterized by $\theta$:
\[ L(f(x; \theta), y) = \text{How much } f(x) \text{ differs from the true } y \]  

(8.17)

A common loss function for such a network (or for the similar case of linear regression) is the **mean-squared error** or **MSE** between the true value \( y^{(i)} \) and the system’s output \( \hat{y}^{(i)} \), the average over the \( m \) observations of the square of the error in \( \hat{y} \) for each one:

\[ L_{\text{MSE}}(\hat{y}, y) = \frac{1}{n} \sum_{i=1}^{m} (\hat{y}^{(m)} - y^{(i)})^2 \]  

(8.18)

While mean squared error makes sense for regression tasks, mostly in this chapter we have been considering nets as probabilistic classifiers. For probabilistic classifiers a common loss function—also used in training logistic regression—is the **cross entropy loss**, also called the **negative log likelihood**. Let \( y \) be a vector over the \( C \) classes representing the true output probability distribution. Assume this is a **hard classification** task, meaning that only one class is the correct one. If the true class is \( i \), then \( y \) is a vector where \( y_i = 1 \) and \( y_j = 0 \) \( \forall j \neq i \). A vector like this, with one \( \text{value}=1 \) and the rest 0, is called a **one-hot vector**. Now let \( \hat{y} \) be the vector output from the network. The loss is simply the log probability of the correct class:

\[ L(\hat{y}, y) = -\log p(\hat{y}_i) \]  

(8.19)

Why the negative log probability? A perfect classifier would assign the correct class \( i \) probability 1 and all the incorrect classes probability 0. That means the higher \( p(\hat{y}_i) \) (the closer it is to 1), the better the classifier; \( p(\hat{y}_i) \) is (the closer it is to 0), the worse the classifier. The negative log of this probability is a beautiful loss metric since it goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss). This loss function also insures that as probability of the correct answer is maximized, the probability of all the incorrect answers is minimized; since they all sum to one, any increase in the probability of the correct answer is coming at the expense of the incorrect answers.

Given a loss function\(^1\) our goal in training is to move the parameters so as to minimize the loss, finding the minimum of the loss function.

### 8.4.2 Following Gradients

How shall we find the minimum of this loss function? Gradient descent is a method that finds a minimum of a function by figuring out in which direction (in the space of the parameters \( \theta \)) the function’s slope is rising the most steeply, and moving in the opposite direction.

The intuition is that if you are hiking the Grand Canyon and trying to descend most quickly down to the river you might look around yourself 360 degrees, find the direction where the ground is sloping the steepest, and walk downhill in that direction.

Although the algorithm (and the concept of gradient) are designed for direction **vectors**, let’s first consider a visualization of the the case where, \( \theta \), the parameter of our system, is just a single scalar, shown in Fig. 8.9.

Given a random initialization of \( \theta \) at some value \( \theta_1 \), and assuming the loss function \( L \) happened to have the shape in Fig. 8.9, we need the algorithm to tell us

---

\(^1\) See any machine learning textbook for lots of other potential functions like the useful **hinge loss**.
whether at the next iteration, we should move left (making $\theta_2$ smaller than $\theta_1$) or right (making $\theta_2$ bigger than $\theta_1$) to reach the minimum.

![Figure 8.9](image-url) The first step in iteratively finding the minimum of this loss function, by moving $\theta$ in the reverse direction from the slope of the function. Since the slope is negative, we need to move $\theta$ in a positive direction, to the right.

The gradient descent algorithm answers this question by finding the gradient of the loss function at the current point and moving in the opposite direction. The gradient of a function of many variables is a vector pointing in the direction of greatest change in a function. The gradient is a multi-variable generalization of the slope, and indeed for a function of one variable like the one in Fig. 8.9, we can informally think of the gradient as the slope. The dotted line in Fig. 8.9 shows the slope of this hypothetical loss function at point $\theta = \theta_0$. You can see that the slope of this dotted line is negative. Thus to find the minimum, gradient descent tells us to go in the opposite direction: moving $\theta$ in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope $\frac{d}{d\theta} f(\theta_0)$ weighted by another variable called the learning rate $\eta$. A higher (faster) learning rate means that we should move $\theta$ more on each step. The change we make in our parameter is the learning rate times the gradient (or the slope, in our single-variable example):

$$\theta_{t+1} = \theta_t - \eta \frac{d}{d\theta} f(\theta_0)$$ (8.20)

Now let’s extend the intuition from a function of one variable to many variables, because we don’t just want to move left or right, we want to know where in the $N$-dimensional space (of the $N$ parameters that make up $\theta$) we should move. Recall our intuition from standing at the rim of the Grand Canyon. If we are on a mesa and want to know which direction to walk down, we need a vector that tells us in which direction we should move. The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of those $N$ dimensions. If we’re just imagining the two dimensions of the plane, the gradient might be a vector with two orthogonal components, each of which tells us how much the ground slopes in that direction. Fig. 8.10 shows a visualization:

In an actual network $\theta$, the parameter vector, is much longer than 2; it contains all the weights and biases for the whole network, which can be millions of parameters. For each dimension/variable $\theta_j$ that makes up $\theta$, the gradient will have a
component that tells us the slope with respect to that variable. Essentially we’re asking: “How much would a small change in that variable $\theta_j$ influence the loss function $L$?”

In each dimension $\theta_j$, we express the slope as a partial derivative $\frac{\partial}{\partial \theta_j}L$ of the loss function. The gradient is then defined as a vector of these partials:

$$\nabla_\theta L(f(x; \theta), y) = \begin{bmatrix} \frac{\partial}{\partial \theta_1}L(f(x; \theta), y) \\ \frac{\partial}{\partial \theta_2}L(f(x; \theta), y) \\ \vdots \\ \frac{\partial}{\partial \theta_m}L(f(x; \theta), y) \end{bmatrix}$$  \hspace{1cm} (8.21)

The final equation for updating $\theta$ based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$  \hspace{1cm} (8.22)

### 8.4.3 Computing the Gradient

Computing the gradient requires the partial derivative of the loss function with respect to each parameter. This can be complex for deep networks, where we are computing the derivative with respect to weight parameters that appear all the way back in the very early layers of the network, even though the loss is computed only at the very end of the network.

The solution to computing this gradient is known as **error backpropagation** or **backprop** (Rumelhart et al., 1986), which turns out to be a special case of backward differentiation. In backprop, the loss function is first modeled as a computation graph, in which each edge is a computation and each node the result of the computation. The chain rule of differentiation is then used to annotate this graph with the partial derivatives of the loss function along each edge of the graph. We give a brief overview of the algorithm in the next subsections; further details can be found in any machine learning or data-intensive computation textbook.

### Computation Graphs

TBD
8.4.4 Stochastic Gradient Descent

Once we have computed the gradient, we can use it to train $\theta$. The stochastic gradient descent algorithm (LeCun et al., 2012) is an online algorithm that computes this gradient after each training example, and nudges $\theta$ in the right direction. Fig. 8.11 shows the algorithm.

```plaintext
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns $\theta$
    # where: L is the loss function
    # f is a function parameterized by $\theta$
    # x is the set of training inputs $x^{(1)}, x^{(2)}, ..., x^{(n)}$
    # y is the set of training outputs (labels) $y^{(1)}, y^{(2)}, ..., y^{(n)}$

    $\theta \leftarrow$ small random values
    while not done
        Sample a training tuple $(x^{(i)}, y^{(i)})$
        Compute the loss $L(f(x^{(i)}; \theta), y^{(i)})$  # How far off is $f(x^{(i)})$ from $y^{(i)}$?
        $g \leftarrow \nabla_\theta L(f(x^{(i)}; \theta), y^{(i)})$  # How should we move $\theta$ to maximize loss?
        $\theta \leftarrow \theta - \eta_k g$  # go the other way instead
```

Figure 8.11: The stochastic gradient descent algorithm, after (Goldberg, 2017).

Stochastic gradient descent is called stochastic because it chooses a single random example at a time, moving the weights so as to improve performance on that single example. That can result in very choppy movements, so an alternative version of the algorithm, minibatch gradient descent, computes the gradient over batches of training instances rather than a single instance.

The learning rate $\eta_k$ is a parameter that must be adjusted. If it’s too high, the learner will take steps that are too large, overshooting the minimum of the loss function. If it’s too low, the learner will take steps that are too small, and take too long to get to the minimum. It is most common to begin the learning rate at a higher value, and then slowly decrease it, so that it is a function of the iteration $k$ of training.

8.5 Neural Language Models

Now that we’ve introduced neural networks it’s time to see an application. The first application we’ll consider is language modeling: predicting upcoming words from prior word context.

Although we have already introduced a perfectly useful language modeling paradigm (the smoothed N-grams of Chapter 4), neural net-based language models turn out to have many advantages. Among these are that neural language models don’t need smoothing, they can handle much longer histories, and they can generalize over contexts of similar words. Furthermore, neural net language models underlie many of the models we’ll introduce for generation, summarization, machine translation, and dialog.
On the other hand, there is a cost for this improved performance: neural net language models are strikingly slower to train than traditional language models, and so for many tasks traditional language modeling is still the right technology.

In this chapter we’ll describe simple feedforward neural language models, first introduced by Bengio et al. (2003b). We will turn to the recurrent language model, more commonly used today, in Chapter 9b.

A feedforward neural LM is a standard feedforward network that takes as input at time $t$ a representation of some number of previous words ($w_{t-1}, w_{t-2}, \text{ etc}$) and outputs a probability distribution over possible next words. Thus, like the traditional LM the feedforward neural LM approximates the probability of a word given the entire prior context $P(w_t|w_{t-1})$ by approximating based on the $N$ previous words:

$$P(w_t|w_{t-1}) \approx P(w_t|w_{t-N+1})$$  \hspace{1cm} (8.23)

In the following examples we’ll use a 4-gram example, so we’ll show a net to estimate the probability $P(w_t = i|w_{t-1}, w_{t-2}, w_{t-3})$.

### 8.5.1 Embeddings

The insight of neural language models is in how to represent the prior context. Each word is represented as a vector of real numbers of of dimension $d$; $d$ tends to lie between 50 and 500, depending on the system. These vectors for each words are called embeddings, because we represent a word as being embedded in a vector space. By contrast, in many traditional NLP applications, a word is represented as a string of letters, or an index in a vocabulary list.

Why represent a word as a vector of 50 numbers? Vectors turn out to be a really powerful representation for words, because a distributed representation allows words that have similar meanings, or similar grammatical properties, to have similar vectors. As we’ll see in Chapter 15, embedding that are learned for words like “cat” and “dog”—words with similar meaning and parts of speech—will be similar vectors. That will allow us to generalize our language models in ways that wasn’t possible with traditional N-gram models.

For example, suppose we’ve seen this sentence in training:

I have to make sure when I get home to feed the cat.

and then in our test set we are trying to predict what comes after the prefix “I forgot when I got home to feed the”.

A traditional N-gram model will predict “cat”. But suppose we’ve never seen the word “dog” after the words “feed the”. A traditional LM won’t expect “dog”. But by representing words as vectors, and assuming the vector for “cat” is similar to the vector for “dog”, a neural LM, even if it’s never seen “feed the dog”, will assign a reasonably high probability to “dog” as well as “cat”, merely because they have similar vectors.

Representing words as embeddings vectors is central to modern natural language processing, and is generally referred to as the vector space model of meaning. We will go into lots of details on the different kinds of embeddings in Chapter 15 and Chapter 152.

Let’s set aside—just for a few pages—the question of how these embeddings are learned. Imagine that we had an embedding dictionary $E$ that gives us, for each word in our vocabulary $V$, the vector for that word.

Fig. 8.12 shows a sketch of this simplified FFNNLM with $N=3$; we have a moving window at time $t$ with a one-hot vector representing each of the 3 previous words.
(words $w_{t-1}$, $w_{t-2}$, and $w_{t-3}$). These 3 vectors are concatenated together to produce $x$, the input layer of a neural network whose output is a softmax with a probability distribution over words. Thus $y_{42}$, the value of output node 42 is the probability of the next word $w_t$ being $V_{42}$, the vocabulary word with index 42.

The model shown in Fig. 8.12 is quite sufficient, assuming we learn the embeddings separately by a method like the word2vec methods of Chapter 152. The method of using another algorithm to learn the embedding representations we use for input words is called **pretraining**. If those pretrained embeddings are sufficient for your purposes, then this is all you need.

However, often we’d like to learn the embeddings simultaneously with training the network. This is true when whatever task the network is designed for (sentiment classification, or translation, or parsing) places strong constraints on what makes a good representation.

Let’s therefore show an architecture that allows the embeddings to be learned. To do this, we’ll add an extra layer to the network, and propagate the error all the way back to the embedding vectors, starting with embeddings with random values and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re going to represent each of the $N$ previous words as a one-hot vector of length $|V|$, i.e., with one dimension for each word in the vocabulary. A **one-hot vector** is a vector that has one element equal to 1—in the dimension corresponding to that word’s index in the vocabulary— while all the other elements are set to zero.
Thus in a one-hot representation for the word “toothpaste”, supposing it happens to have index 5 in the vocabulary, \( x_5 \) is one and \( x_i = 0 \) \( \forall i \neq 5 \), as shown here:

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 4 & 5 & 6 & \ldots & \ldots & |V|
\end{bmatrix}
\]

Fig. 8.13 shows the additional layers needed to learn the embeddings during LM training. Here the \( N=3 \) context words are represented as 3 one-hot vectors, fully connected to the embedding layer via 3 instantiations of the \( E \) embedding matrix. Note that we don’t want to learn separate weight matrices for mapping each of the 3 previous words to the projection layer, we want one single embedding dictionary \( E \) that’s shared among these three. That’s because over time, many different words will appear as \( w_{t-2} \) or \( w_{t-1} \), and we’d like to just represent each word with one vector, whichever context position it appears in. The embedding weight matrix \( E \) thus has a row for each word, each a vector of \( d \) dimensions, and hence has dimensionality \( V \times d \).

Let’s walk through the forward pass of Fig. 8.13.

1. **Select three embeddings from \( E \):** Given the three previous words, we look up their indices, create 3 one-hot vectors, and then multiply each by the embedding matrix \( E \). Consider \( w_{t-3} \). The one-hot vector for ‘the’ is (index 35) is multiplied by the embedding matrix \( E \), to give the first part of the first hidden layer, called the projection layer. Since each row of the input matrix \( E \) is just an embedding for a word, and the input is a one-hot columnvector \( x_i \) for word \( V_i \), the projection layer for input \( w \) will be \( E x_i = e_i \), the embedding for word \( i \). We now concatenate the three embeddings for the context words.
2. **Multiply by W:** We now multiply by $W$ (and add $b$) and pass through the rectified linear (or other) activation function to get the hidden layer $h$.

3. **Multiply by $U$:** $h$ is now multiplied by $U$.

4. **Apply softmax:** After the softmax, each node $i$ in the output layer estimates the probability $P(w_t = i|w_{t-1}, w_{t-2}, w_{t-3})$.

In summary, if we use $e$ to represent the projection layer, formed by concatenating the 3 embedding for the three context vectors, the equations for a neural language model become:

$$e = (Ex_1, Ex_2, ..., Ex)$$  
$$h = \sigma(We + b)$$  
$$z = Uh$$  
$$y = \text{softmax}(z)$$

### 8.5.2 Training the neural language model

To train the model, i.e. to set all the parameters $\theta = E, W, U, b$, we use the SGD algorithm of Fig. 8.11, with error back propagation to compute the gradient. Training thus not only sets the weights $W$ and $U$ of the network, but also as we’re predicting upcoming words, we’re learning the embeddings $E$ for each words that best predict upcoming words.

Generally training proceedings by taking as input a very long text, concatenating all the sentences, start with random weights, and then iteratively moving through the text predicting each word $w_t$. At each word $w_t$, the categorical cross-entropy (negative log likelihood) loss is:

$$L = -\log p(w_t|w_{t-1}, ..., w_{t-n+1})$$  

The gradient is computed for this loss by differentiation:

$$\theta_{t+1} = \theta_t - \eta \frac{\partial \log p(w_t|w_{t-1}, ..., w_{t-n+1})}{\partial \theta}$$

And then backpropagated through $U, W, b, E$.

### 8.6 Summary

- Neural networks are built out of **neural units**, originally inspired by human neurons but now simple an abstract computational device.
- Each neural unit multiplies input values by a weight vector, adds a bias, and then applies a non-linear activation function like sigmoid, tanh, or rectified linear.
- In a **fully-connected, feedforward** network, each unit in layer $i$ is connected to each unit in layer $i + 1$, and there are no cycles.
- The power of neural networks comes from the ability of early layers to learn representations that can be utilized by later layers in the network.
- Neural networks are trained by optimization algorithms like **stochastic gradient descent**.
- Error back propagation is used to compute the gradients of the loss function for a network.
- Neural language modeling uses a network as a probabilistic classifier, to compute the probability of the next word given the previous $N$ words.
- Neural language models make use of embeddings, dense vectors of between 50 and 500 dimensions that represent words in the input vocabulary.

Bibliographical and Historical Notes

The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the human neuron as a kind of computing element that could be described in terms of propositional logic. By the late 1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and Bernard Widrow at Stanford) developed research into neural networks; this phase saw the development of the perceptron (Rosenblatt, 1958), and the transformation of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single perceptron unit was unable to model functions as simple as XOR (Minsky and Papert, 1969). While some small amount of work continued during the next two decades, a major revival for the field didn’t come until the 1980s, when practical tools for building deeper networks like error back propagation became widespread (Rumelhart et al., 1986). During the 1980s a wide variety of neural network and related architectures were developed, particularly for applications in psychology and cognitive science (Rumelhart and McClelland 1986b, McClelland and Elman 1986, Rumelhart and McClelland 1986a, Elman 1990), for which the term connectionist or parallel distributed processing was often used (Feldman and Ballard 1982, Smolensky 1988).

Many of the principles and techniques developed in this period are foundational to modern work, including the idea of distributed representations (Hinton, 1986), of recurrent networks (Elman, 1990), and the use of tensors for compositionality (Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical language processing tasks as well, like handwriting recognition (LeCun et al. 1989, LeCun et al. 1990) and speech recognition (Morgan and Bourlard 1989, Morgan and Bourlard 1990). By the early 2000s, improvements in computer hardware and advances in optimization and training techniques made it possible to train even larger and deeper networks, leading to the modern term deep learning (Hinton et al. 2006, Bengio et al. 2007). We cover more related history in Chapter 9b.

There are a number of excellent books on the subject. Goldberg (2017) has a superb and comprehensive coverage of neural networks for natural language processing. For neural networks in general see Goodfellow et al. (2016) and Nielsen (2015).

The description in this chapter has been quite high-level, and there are many details of neural network training and architecture that are necessary to successfully train models. For example various forms of regularization are used to prevent overfitting, including dropout: randomly dropping some units and their connections from the network during training (Hinton et al. 2012, Srivastava et al. 2014). Faster optimization methods than vanilla stochastic gradient descent are often used, such as Adam (Kingma and Ba, 2015).
Since neural networks training and decoding require significant numbers of vector operations, modern systems are often trained using vector-based GPUs (Graphic Processing Units). A number of software engineering tools are widely available including TensorFlow (Abadi et al., 2015) and others.
Her sister was called Tatiana.
For the first time with such a name
the tender pages of a novel,
we’ll whimsically grace.

Pushkin, Eugene Onegin, in the Nabokov translation

Alexander Pushkin’s novel in verse, Eugene Onegin, serialized in the early 19th century, tells of the young dandy Onegin, his rejection of the love of young Tatiana, his duel with his friend Lenski, and his later regret for both mistakes. But the novel is mainly beloved for its style and structure rather than its plot. Among other interesting structural innovations, the novel is written in a form now known as the Onegin stanza, iambic tetrameter with an unusual rhyme scheme. These elements have caused complications and controversy in its translation into other languages. Many of the translations have been in verse, but Nabokov famously translated it strictly literally into English prose. The issue of its translation and the tension between literal and verse translations have inspired much commentary—see, for example, Hofstadter (1997).

In 1913, A. A. Markov asked a less controversial question about Pushkin’s text: could we use frequency counts from the text to help compute the probability that the next letter in sequence would be a vowel? In this chapter we introduce a descendant of Markov’s model that is a key model for language processing, the hidden Markov model or HMM.

The HMM is a sequence model. A sequence model or sequence classifier is a model whose job is to assign a label or class to each unit in a sequence, thus mapping a sequence of observations to a sequence of labels. An HMM is a probabilistic sequence model: given a sequence of units (words, letters, morphemes, sentences, whatever), they compute a probability distribution over possible sequences of labels and choose the best label sequence.

Sequence labeling tasks come up throughout speech and language processing, a fact that isn’t too surprising if we consider that language consists of sequences at many representational levels. These include part-of-speech tagging (Chapter 10) named entity tagging (Chapter 20), and speech recognition (Chapter 31) among others.

In this chapter we present the mathematics of the HMM, beginning with the Markov chain and then including the main three constituent algorithms: the Viterbi algorithm, the Forward algorithm, and the Baum-Welch or EM algorithm for unsupervised (or semi-supervised) learning. In the following chapter we’ll see the HMM applied to the task of part-of-speech tagging.
9.1 Markov Chains

The hidden Markov model is one of the most important machine learning models in speech and language processing. To define it properly, we need to first introduce the Markov chain, sometimes called the observed Markov model. Markov chains and hidden Markov models are both extensions of the finite automata of Chapter 3. Recall that a weighted finite automaton is defined by a set of states and a set of transitions between states, with each arc associated with a weight. A Markov chain is a special case of a weighted automaton in which weights are probabilities (the probabilities on all arcs leaving a node must sum to 1) and in which the input sequence uniquely determines which states the automaton will go through. Because it can’t represent inherently ambiguous problems, a Markov chain is only useful for assigning probabilities to unambiguous sequences.

Figure 9.1 shows a Markov chain for assigning a probability to a sequence of weather events, for which the vocabulary consists of HOT, COLD, and WARM. Figure 9.1b shows another simple example of a Markov chain for assigning a probability to a sequence of words $w_1...w_n$. This Markov chain should be familiar; in fact, it represents a bigram language model. Given the two models in Fig. 9.1, we can assign a probability to any sequence from our vocabulary. We go over how to do this shortly.

First, let’s be more formal and view a Markov chain as a kind of probabilistic graphical model: a way of representing probabilistic assumptions in a graph. A Markov chain is specified by the following components:

- $Q = q_1q_2...q_N$ is a set of $N$ states
- $A = a_{01}a_{02}...a_{n1}a_{n2}...a_{nn}$ is a transition probability matrix $A$, each $a_{ij}$ representing the probability of moving from state $i$ to state $j$, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
- $q_0...q_F$ is a special start state and end (final) state that are not associated with observations

Figure 9.1 shows that we represent the states (including start and end states) as nodes in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about these probabilities. In a first-order Markov chain, the probability of a particular state depends only on the
previous state:

**Markov Assumption:** \[ P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1}) \] (9.1)

Note that because each \( a_{ij} \) expresses the probability \( p(q_j|q_i) \), the laws of probability require that the values of the outgoing arcs from a given state must sum to 1:

\[ \sum_{j=1}^{n} a_{ij} = 1 \quad \forall i \] (9.2)

An alternative representation that is sometimes used for Markov chains doesn’t rely on a start or end state, instead representing the distribution over initial states and accepting states explicitly:

\[ \pi = \pi_1, \pi_2, ..., \pi_N \] an initial probability distribution over states. \( \pi_i \) is the probability that the Markov chain will start in state \( i \). Some states \( j \) may have \( \pi_j = 0 \), meaning that they cannot be initial states. Also, \( \sum_{i=1}^{n} \pi_i = 1 \)

\[ QA = \{ q_x, q_y, ... \} \] a set \( QA \subset Q \) of legal accepting states

Thus, the probability of state 1 being the first state can be represented either as \( a_{01} \) or as \( \pi_1 \). Note that because each \( \pi_i \) expresses the probability \( p(q_i|\text{START}) \), all the \( \pi \) probabilities must sum to 1:

\[ \sum_{i=1}^{n} \pi_i = 1 \] (9.3)

Before you go on, use the sample probabilities in Fig. 9.2b to compute the probability of each of the following sequences:

(9.4) hot hot hot hot
(9.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather fact encoded in Fig. 9.2b?

### 9.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence of events that we can observe in the world. In many cases, however, the events we are interested in may not be directly observable in the world. For example, in Chapter 10 we’ll introduce the task of part-of-speech tagging, assigning tags like Noun and Verb to words.

we didn’t observe part-of-speech tags in the world; we saw words and had to infer the correct tags from the word sequence. We call the part-of-speech tags hidden because they are not observed. The same architecture comes up in speech recognition; in that case we see acoustic events in the world and have to infer the presence of “hidden” words that are the underlying causal source of the acoustics. A hidden Markov model (HMM) allows us to talk about both observed events (like words
Figure 9.2 Another representation of the same Markov chain for weather shown in Fig. 9.1. Instead of using a special start state with $a_{01}$ transition probabilities, we use the $\pi$ vector, which represents the distribution over starting state probabilities. The figure in (b) shows sample probabilities.

that we see in the input) and hidden events (like part-of-speech tags) that we think of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002). Imagine that you are a climatologist in the year 2799 studying the history of global warming. You cannot find any records of the weather in Baltimore, Maryland, for the summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice creams Jason ate every day that summer. Our goal is to use these observations to estimate the temperature every day. We’ll simplify this weather task by assuming there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as follows:

Given a sequence of observations $O$, each observation an integer corresponding to the number of ice creams eaten on a given day, figure out the correct ‘hidden’ sequence $Q$ of weather states (H or C) which caused Jason to eat the ice cream.

Let’s begin with a formal definition of a hidden Markov model, focusing on how it differs from a Markov chain. An HMM is specified by the following components:

- $Q = q_1 q_2 \ldots q_N$ a set of $N$ states
- $A = a_{11} a_{12} \ldots a_{n1} \ldots a_{nn}$ a transition probability matrix $A$, each $a_{ij}$ representing the probability of moving from state $i$ to state $j$, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \ \forall i$
- $O = o_1 o_2 \ldots o_T$ a sequence of $T$ observations, each one drawn from a vocabulary $V = v_1, v_2, \ldots, v_V$
- $B = b_i(o_t)$ a sequence of observation likelihoods, also called emission probabilities, each expressing the probability of an observation $o_t$ being generated from a state $i$
- $q_0, q_F$ a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01} a_{02} \ldots a_{0n}$ out of the start state and $a_{1F} a_{2F} \ldots a_{nF}$ into the end state

As we noted for Markov chains, an alternative representation that is sometimes
used for HMMs doesn’t rely on a start or end state, instead representing the distribution over initial and accepting states explicitly. We don’t use the π notation in this textbook, but you may see it in the literature:\footnote{It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a set of probability distributions, one distribution per observation sequence length, just as language models do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and language processing the lengths of the observations are fixed.}

\[ \pi = \pi_1, \pi_2, \ldots, \pi_N \] an initial probability distribution over states. \( \pi_i \) is the probability that the Markov chain will start in state \( i \). Some states \( j \) may have \( \pi_j = 0 \), meaning that they cannot be initial states. Also, \( \sum_{i=1}^{n} \pi_i = 1 \)

\( QA = \{ q_x, q_y \ldots \} \) a set \( QA \subset Q \) of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions. First, as with a first-order Markov chain, the probability of a particular state depends only on the previous state:

\[ \text{Markov Assumption: } P(q_i|q_1\ldots q_{i-1}) = P(q_i|q_{i-1}) \quad (9.6) \]

Second, the probability of an output observation \( o_i \) depends only on the state that produced the observation \( q_i \) and not on any other states or any other observations:

\[ \text{Output Independence: } P(o_i|q_1\ldots q_i\ldots q_T, o_1, \ldots, o_i, \ldots, o_T) = P(o_i|q_i) \quad (9.7) \]

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states (H and C) correspond to hot and cold weather, and the observations (drawn from the alphabet \( O = \{1, 2, 3\} \)) correspond to the number of ice creams eaten by Jason on a given day.

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transitioning between any two states. Such an HMM is called a \textbf{fully connected} or \textbf{ergodic HMM}. Sometimes, however, we have HMMs in which many of the transitions between states have zero probability. For example, in \textbf{left-to-right} (also called \textbf{Bakis}) HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered state (or, more accurately, any transitions from a higher-numbered state to a lower-numbered state have zero probability). Bakis HMMs are generally used to model temporal processes like speech; we show more of them in Chapter 31.
Now that we have seen the structure of an HMM, we turn to algorithms for computing things with them. An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov models should be characterized by three fundamental problems:

**Problem 1 (Likelihood):** Given an HMM $\lambda = (A, B)$ and an observation sequence $O$, determine the likelihood $P(O|\lambda)$.

**Problem 2 (Decoding):** Given an observation sequence $O$ and an HMM $\lambda = (A, B)$, discover the best hidden state sequence $Q$.

**Problem 3 (Learning):** Given an observation sequence $O$ and the set of states in the HMM, learn the HMM parameters $A$ and $B$.

We already saw an example of Problem 2 in Chapter 10. In the next three sections we introduce all three problems more formally.

### 9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence. For example, given the ice-cream eating HMM in Fig. 9.3, what is the probability of the sequence 3 1 3? More formally:

**Computing Likelihood:** Given an HMM $\lambda = (A, B)$ and an observation sequence $O$, determine the likelihood $P(O|\lambda)$.

For a Markov chain, where the surface observations are the same as the hidden events, we could compute the probability of 3 1 3 just by following the states labeled 3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model, things are not so simple. We want to determine the probability of an ice-cream observation sequence like 3 1 3, but we don’t know what the hidden state sequence is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather and wanted to predict how much ice cream Jason would eat. This is a useful part of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state produces only a single observation. Thus, the sequence of hidden states and the
sequence of observations have the same length.\footnote{In a variant of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in text processing) this one-to-one mapping between the length of the hidden state sequence and the length of the observation sequence does not hold.}

Given this one-to-one mapping and the Markov assumptions expressed in Eq. 9.6, for a particular hidden state sequence $Q = q_0, q_1, q_2, \ldots, q_T$ and an observation sequence $O = o_1, o_2, \ldots, o_T$, the likelihood of the observation sequence is

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i) \quad (9.8)$$

The computation of the forward probability for our ice-cream observation $3 1 3$ from one possible hidden state sequence $\text{hot hot cold}$ is shown in Eq. 9.9. Figure 9.5 shows a graphic representation of this computation.

$$P(3 1 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold}) \quad (9.9)$$

![Figure 9.5](image)

Figure 9.5 The computation of the observation likelihood for the ice-cream events $3 1 3$ given the hidden state sequence $\text{hot hot cold}$.

But of course, we don’t actually know what the hidden state (weather) sequence was. We’ll need to compute the probability of ice-cream events $3 1 3$ instead by summing over all possible weather sequences, weighted by their probability. First, let’s compute the joint probability of being in a particular weather sequence $Q$ and generating a particular sequence $O$ of ice-cream events. In general, this is

$$P(O, Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{T} P(o_i|q_i) \times \prod_{i=1}^{T} P(q_i|q_{i-1}) \quad (9.10)$$

The computation of the joint probability of our ice-cream observation $3 1 3$ and one possible hidden state sequence $\text{hot hot cold}$ is shown in Eq. 9.11. Figure 9.6 shows a graphic representation of this computation.

$$P(3 1 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold}) \quad (9.11)$$

Now that we know how to compute the joint probability of the observations with a particular hidden state sequence, we can compute the total probability of the observations just by summing over all possible hidden state sequences:

$$P(O) = \sum_{Q} P(O, Q) = \sum_{Q} P(O|Q)P(Q) \quad (9.12)$$
For our particular case, we would sum over the eight 3-event sequences cold cold cold, cold cold hot, that is,

\[ P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \ldots \]

For an HMM with \( N \) hidden states and an observation sequence of \( T \) observations, there are \( N^T \) possible hidden sequences. For real tasks, where \( N \) and \( T \) are both large, \( N^T \) is a very large number, so we cannot compute the total observation likelihood by computing a separate observation likelihood for each hidden state sequence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient \( O(N^2T) \) algorithm called the \textit{forward algorithm}. The forward algorithm is a kind of \textit{dynamic programming} algorithm, that is, an algorithm that uses a table to store intermediate values as it builds up the probability of the observation sequence. The forward algorithm computes the observation probability by summing over the probabilities of all possible hidden state paths that could generate the observation sequence, but it does so efficiently by implicitly folding each of these paths into a single \textit{forward trellis}.

Figure 9.7 shows an example of the forward trellis for computing the likelihood of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis \( \alpha_t(j) \) represents the probability of being in state \( j \) after seeing the first \( t \) observations, given the automaton \( \lambda \). The value of each cell \( \alpha_t(j) \) is computed by summing over the probabilities of every path that could lead us to this cell. Formally, each cell expresses the following probability:

\[ \alpha_t(j) = P(o_1, o_2, \ldots, o_t, q_t = j | \lambda) \quad (9.13) \]

Here, \( q_t = j \) means “the \( r \)th state in the sequence of states is state \( j \)”. We compute this probability \( \alpha_t(j) \) by summing over the extensions of all the paths that lead to the current cell. For a given state \( q_j \) at time \( t \), the value \( \alpha_t(j) \) is computed as

\[ \alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(o_t) \quad (9.14) \]

The three factors that are multiplied in Eq. 9.14 in extending the previous paths to compute the forward probability at time \( t \) are

- \( \alpha_{t-1}(i) \) \textit{the previous forward path probability} from the previous time step
- \( a_{ij} \) \textit{the transition probability} from previous state \( q_i \) to current state \( q_j \)
- \( b_j(o_t) \) \textit{the state observation likelihood} of the observation symbol \( o_t \) given the current state \( j \)
The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq. 9.14: $\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t)$. The resulting probability expressed in each cell is Eq. 9.13: $\alpha_t(j) = P(o_1, o_2 \ldots o_t, q_t = j|\lambda)$.

Consider the computation in Fig. 9.7 of $\alpha_2(2)$, the forward probability of being at time step 2 in state 2 having generated the partial observation 3 1. We compute by extending the $\alpha$ probabilities from time step 1, via two paths, each extension consisting of the three factors above: $\alpha_1(1) \times P(H|H) \times P(1|H)$ and $\alpha_1(2) \times P(H|C) \times P(1|H)$.

Figure 9.8 shows another visualization of this induction step for computing the value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in Fig. 9.9 and a statement of the definitional recursion here.

1. Initialization:
   $$\alpha_1(j) = a_{0j} b_j(o_1) \quad 1 \leq j \leq N \quad (9.15)$$

2. Recursion (since states 0 and F are non-emitting):
   $$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \leq j \leq N, 1 < t \leq T \quad (9.16)$$

3. Termination:
   $$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^{N} \alpha_T(i) a_{iF} \quad (9.17)$$
Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of determining which sequence of variables is the underlying source of some sequence of observations is called the decoding task. In the ice-cream domain, given a sequence of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find the best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM \( \lambda = (A, B) \) and a sequence of observations \( O = \sigma_1, \sigma_2, ..., \sigma_T \), find the most probable sequence of states \( Q = q_1q_2q_3\ldots q_T \).
We might propose to find the best sequence as follows: For each possible hidden state sequence \((HHH, HHC, HCH, \text{etc.})\), we could run the forward algorithm and compute the likelihood of the observation sequence given that hidden state sequence. Then we could choose the hidden state sequence with the maximum observation likelihood. It should be clear from the previous section that we cannot do this because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algorithm. Like the forward algorithm, Viterbi is a kind of dynamic programming that makes uses of a dynamic programming trellis. Viterbi also strongly resembles another dynamic programming variant, the minimum edit distance algorithm of Chapter 3.

![Diagram](image)

**Figure 9.10** The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events \(3 1 3\). Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of \(v_t(j)\) for two states at two time steps. The computation in each cell follows Eq. 9.19: \(v_t(j) = \max_{1 \leq i \leq N-1} v_{t-1}(i) a_{ij} b_j(o_t)\). The resulting probability expressed in each cell is Eq. 9.18: \(v_t(j) = P(q_0, q_1, ..., q_{t-1}, o_1, o_2, ..., o_t, q_t = j | \lambda)\).

Figure 9.10 shows an example of the Viterbi trellis for computing the best hidden state sequence for the observation sequence \(3 1 3\). The idea is to process the observation sequence left to right, filling out the trellis. Each cell of the trellis, \(v_t(j)\), represents the probability that the HMM is in state \(j\) after seeing the first \(t\) observations and passing through the most probable state sequence \(q_0, q_1, ..., q_{t-1}\), given the automaton \(\lambda\). The value of each cell \(v_t(j)\) is computed by recursively taking the most probable path that could lead us to this cell. Formally, each cell expresses the probability

\[
v_t(j) = \max_{q_0, q_1, ..., q_{t-1}} P(q_0, q_1, ..., q_{t-1}, o_1, o_2, ..., o_t, q_t = j | \lambda) \quad (9.18)
\]
Note that we represent the most probable path by taking the maximum over all possible previous state sequences \( \max_{q_0, q_1, \ldots, q_{t-1}} \). Like other dynamic programming algorithms, Viterbi fills each cell recursively. Given that we had already computed the probability of being in every state at time \( t-1 \), we compute the Viterbi probability by taking the most probable of the extensions of the paths that lead to the current cell. For a given state \( q_j \) at time \( t \), the value \( v_t(j) \) is computed as

\[
v_t(j) = \max_{i=1}^{N} v_{t-1}(i) \ a_{ij} \ b_j(o_t)
\]  

(9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths to compute the Viterbi probability at time \( t \) are

- \( v_{t-1}(i) \): the previous Viterbi path probability from the previous time step
- \( a_{ij} \): the transition probability from previous state \( q_i \) to current state \( q_j \)
- \( b_j(o_t) \): the state observation likelihood of the observation symbol \( o_t \) given the current state \( j \)

```plaintext
function Viterbi(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step
    viterbi[s,1] ← a_0,s * b_s(o_1)
    backpointer[s,1] ← 0
for each time step t from 2 to T do ; recursion step
    for each state s from 1 to N do
        viterbi[s,t] ← \( \max_{s'=1}^{N} \) viterbi[s',t-1] * a_{s',s} * b_s(o_t)
        backpointer[s,t] ← N\( \argmax_{s'=1}^{N} \) viterbi[s',t-1] * a_{s',s}
    viterbi[qF,T] ← \( \max_{s=1}^{N} \) viterbi[s,T] * a_s,qF ; termination step
    backpointer[qF,T] ← N\( \argmax_{s=1}^{N} \) viterbi[s,T] * a_s,qF ; termination step
return the backtrace path by following backpointers to states back in time from backpointer[qF,T]
```

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence and an HMM \( \lambda = (A, B) \), the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and \( q_F \) are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi algorithm is identical to the forward algorithm except that it takes the \( \max \) over the previous path probabilities whereas the forward algorithm takes the \( \sum \). Note also that the Viterbi algorithm has one component that the forward algorithm doesn’t have: backpointers. The reason is that while the forward algorithm needs to produce an observation likelihood, the Viterbi algorithm must produce a probability and also the most likely state sequence. We compute this best state sequence by keeping track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and then at the end backtracing the best path to the beginning (the Viterbi backtrace).
Finally, we can give a formal definition of the Viterbi recursion as follows:

1. **Initialization:**
   \[ v_1(j) = a_0 b_j(o_1) \quad 1 \leq j \leq N \]  \hspace{1cm} (9.20)
   \[ b_{t1}(j) = 0 \]  \hspace{1cm} (9.21)

2. **Recursion** (recall that states 0 and \( q_F \) are non-emitting):
   \[ v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_i b_j(o_t) ; \quad 1 \leq j \leq N, 1 < t \leq T \]  \hspace{1cm} (9.22)
   \[ b_{tj}(j) = \arg \max_{i=1}^{N} v_{t-1}(i) a_i b_j(o_t) ; \quad 1 \leq j \leq N, 1 < t \leq T \]  \hspace{1cm} (9.23)

3. **Termination:**
   The best score:  \[ P^* = v_T(q_F) = \max_{i=1}^{N} v_T(i) * a_i \]  \hspace{1cm} (9.24)
   The start of backtrace:  \[ q_T^* = b_T(q_F) = \arg \max_{i=1}^{N} v_T(i) * a_i \]  \hspace{1cm} (9.25)

### 9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that is, the \( A \) and \( B \) matrices. Formally,
9.5 • HMM Training: The Forward-Backward Algorithm

**Learning:** Given an observation sequence $O$ and the set of possible states in the HMM, learn the HMM parameters $A$ and $B$.

The input to such a learning algorithm would be an unlabeled sequence of observations $O$ and a vocabulary of potential hidden states $Q$. Thus, for the ice cream task, we would start with a sequence of observations $O = \{1, 3, 2, \ldots\}$ and the set of hidden states $H$ and $C$. For the part-of-speech tagging task we introduce in the next chapter, we would start with a sequence of word observations $O = \{w_1, w_2, w_3, \ldots\}$ and a set of hidden states corresponding to parts of speech *Noun, Verb, Adjective*, and so on.

The standard algorithm for HMM training is the **forward-backward**, or **Baum-Welch** algorithm (Baum, 1972), a special case of the **Expectation-Maximization** or EM algorithm (Dempster et al., 1977). The algorithm will let us train both the transition probabilities $A$ and the emission probabilities $B$ of the HMM. Crucially, EM is an iterative algorithm. It works by computing an initial estimate for the probabilities, then using those estimates to computing a better estimate, and so on, iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain rather than a hidden Markov model. Since the states in a Markov chain are observed, we can run the model on the observation sequence and directly see which path we took through the model and which state generated each observation symbol. A Markov chain of course has no emission probabilities $B$ (alternatively, we could view a Markov chain as a degenerate hidden Markov model where all the $b$ probabilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only probabilities we need to train are the transition probability matrix $A$.

We get the maximum likelihood estimate of the probability $a_{ij}$ of a particular transition between states $i$ and $j$ by counting the number of times the transition was taken, which we could call $C(i \to j)$, and then normalizing by the total count of all times we took any transition from state $i$:

$$a_{ij} = \frac{C(i \to j)}{\sum_{q \in Q} C(i \to q)} \quad (9.26)$$

We can directly compute this probability in a Markov chain because we know which states we were in. For an HMM, we cannot compute these counts directly from an observation sequence since we don’t know which path of states was taken through the machine for a given input. The Baum-Welch algorithm uses two neat intuitions to solve this problem. The first idea is to iteratively estimate the counts. We will start with an estimate for the transition and observation probabilities and then use these estimated probabilities to derive better and better probabilities. The second idea is that we get our estimated probabilities by computing the forward probability for an observation and then dividing that probability mass among all the different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the forward probability and called the **backward probability**.

The backward probability $\beta$ is the probability of seeing the observations from time $t + 1$ to the end, given that we are in state $i$ at time $t$ (and given the automaton $\lambda$):

$$\beta_t(i) = P(o_{t+1}, o_{t+2} \ldots o_T| q_t = i, \lambda) \quad (9.27)$$

It is computed inductively in a similar manner to the forward algorithm.
1. **Initialization:**

\[ \beta_T(i) = a_{iF}, \quad 1 \leq i \leq N \]  
(9.28)

2. **Recursion** (again since states 0 and \( q_F \) are non-emitting):

\[ \beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\omega_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t < T \]  
(9.29)

3. **Termination:**

\[ P(O|\lambda) = \alpha_T(q_F) = \beta_1(q_0) = \sum_{j=1}^{N} a_{0j} b_j(\omega_1) \beta_1(j) \]  
(9.30)

Figure 9.13 illustrates the backward induction step.

We are now ready to understand how the forward and backward probabilities can help us compute the transition probability \( a_{ij} \) and observation probability \( b_j(\omega_t) \) from an observation sequence, even though the actual path taken through the machine is hidden.

Let’s begin by seeing how to estimate \( \hat{a}_{ij} \) by a variant of Eq. 9.26:

\[ \hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i} \]  
(9.31)

How do we compute the numerator? Here’s the intuition. Assume we had some estimate of the probability that a given transition \( i \rightarrow j \) was taken at a particular point in time \( t \) in the observation sequence. If we knew this probability for each particular time \( t \), we could sum over all times \( t \) to estimate the total count for the transition \( i \rightarrow j \).

More formally, let’s define the probability \( \xi_t \) as the probability of being in state \( i \) at time \( t \) and state \( j \) at time \( t+1 \), given the observation sequence and of course the model:

\[ \xi_t(i,j) = P(q_t = i, q_{t+1} = j|O, \lambda) \]  
(9.32)
To compute $\xi_t$, we first compute a probability which is similar to $\xi_t$, but differs in including the probability of the observation; note the different conditioning of $O$ from Eq. 9.32:

$$\text{not-quite-}\xi_t(i, j) = P(q_t = i, q_{t+1} = j, O|\lambda)$$  \hspace{1cm} (9.33)

Figure 9.14 shows the various probabilities that go into computing not-quite-\(\xi_t\); the transition probability for the arc in question, the $\alpha$ probability before the arc, the $\beta$ probability after the arc, and the observation probability for the symbol just after the arc. These four are multiplied together to produce not-quite-\(\xi_t\) as follows:

$$\text{not-quite-}\xi_t(i, j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$  \hspace{1cm} (9.34)

To compute $\xi_t$ from not-quite-\(\xi_t\), we follow the laws of probability and divide by $P(O|\lambda)$, since

$$P(X|Y, Z) = \frac{P(X, Y|Z)}{P(Y|Z)}$$  \hspace{1cm} (9.35)

The probability of the observation given the model is simply the forward probability of the whole utterance (or alternatively, the backward probability of the whole utterance), which can thus be computed in a number of ways:

$$P(O|\lambda) = \alpha_T(q_F) = \beta_T(q_0) = \sum_{j=1}^{N} \alpha_t(j) \beta_t(j)$$  \hspace{1cm} (9.36)

So, the final equation for $\xi_t$ is

$$\xi_t(i, j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\alpha_T(q_F)}$$  \hspace{1cm} (9.37)

The expected number of transitions from state $i$ to state $j$ is then the sum over all $t$ of $\xi_t$. For our estimate of $a_{ij}$ in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state $i$. We can get this by summing over all transitions out of state $i$. Here’s the final formula for $\hat{a}_{ij}$:

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

(9.38)

We also need a formula for recomputing the observation probability. This is the probability of a given symbol $v_k$ from the observation vocabulary $V$, given a state $j$: $\hat{b}_j(v_k)$. We will do this by trying to compute

$$\hat{b}_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_k}{\text{expected number of times in state } j}$$

(9.39)

For this, we will need to know the probability of being in state $j$ at time $t$, which we will call $\gamma(j)$:

$$\gamma(j) = P(q_t = j|O, \lambda)$$

(9.40)

Once again, we will compute this by including the observation sequence in the probability:

$$\gamma(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)}$$

(9.41)

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward probability and the backward probability:

$$\gamma(j) = \frac{\alpha_t(j) \beta_t(j)}{P(O|\lambda)}$$

(9.42)

We are ready to compute $b$. For the numerator, we sum $\gamma(j)$ for all time steps $t$ in which the observation $o_t$ is the symbol $v_k$ that we are interested in. For the denominator, we sum $\gamma(j)$ over all time steps $t$. The result is the percentage of the
times that we were in state $j$ and saw symbol $v_k$ (the notation $\sum_{t=1}^{T} O_t = v_k$ means “sum over all $t$ for which the observation at time $t$ was $v_k$”):

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \gamma(t)}{\sum_{t=1}^{T} \gamma(j)}$$

We now have ways in Eq. 9.38 and Eq. 9.43 to re-estimate the transition $A$ and observation $B$ probabilities from an observation sequence $O$, assuming that we already have a previous estimate of $A$ and $B$.

These re-estimations form the core of the iterative forward-backward algorithm. The forward-backward algorithm (Fig. 9.16) starts with some initial estimate of the HMM parameters $\lambda = (A, B)$. We then iteratively run two steps. Like other cases of the EM (expectation-maximization) algorithm, the forward-backward algorithm has two steps: the expectation step, or E-step, and the maximization step, or M-step.

In the E-step, we compute the expected state occupancy count $\gamma$ and the expected state transition count $\xi$ from the earlier $A$ and $B$ probabilities. In the M-step, we use $\gamma$ and $\xi$ to recompute new $A$ and $B$ probabilities.

**Function**

```plaintext
function FORWARD-BACKWARD(observations of len $T$, output vocabulary $V$, hidden state set $Q$) returns HMM=$(A,B)$

initialize $A$ and $B$
iterate until convergence

**E-step**

$$\gamma(j) = \frac{\alpha_0(j)\beta(j)}{\alpha_T(q_F)} \forall t, i, and j$$

$$\xi(i,j) = \frac{\alpha(i) a_{i,j} b(j) \beta(j)}{\alpha_T(q_F)} \forall t, i, and j$$

**M-step**

$$\hat{a}_{i,j} = \frac{\sum_{t=1}^{T-1} \xi(i,j)}{\sum_{t=1}^{T-1} \sum_{i=1}^{N} \sum_{k=1}^{N} \xi(i,k)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \gamma(t)}{\sum_{t=1}^{T} \gamma(j)}$$

return $A$, $B$
```

**Figure 9.16** The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsupervised learning of the $A$ and $B$ parameters, in practice the initial conditions are very important. For this reason the algorithm is often given extra information. For example, for speech recognition, in practice the HMM structure is often set by hand, and only the emission ($B$) and (non-zero) $A$ transition probabilities are trained from a set of observation sequences $O$. Section ?? in Chapter 31 also discusses how initial $A$ and $B$ estimates are derived in speech recognition. We also show that for speech the forward-backward algorithm can be extended to inputs that are non-discrete (“continuous observation densities”).
9.6 Summary

This chapter introduced the hidden Markov model for probabilistic sequence classification.

- Hidden Markov models (HMMs) are a way of relating a sequence of observations to a sequence of hidden classes or hidden states that explain the observations.
- The process of discovering the sequence of hidden states, given the sequence of observations, is known as decoding or inference. The Viterbi algorithm is commonly used for decoding.
- The parameters of an HMM are the $A$ transition probability matrix and the $B$ observation likelihood matrix. Both can be trained with the Baum-Welch or forward-backward algorithm.

Bibliographical and Historical Notes

As we discussed at the end of Chapter 4, Markov chains were first used by Markov (1913, 2006), to predict whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a consonant.

The hidden Markov model was developed by Baum and colleagues at the Institute for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon, 1967).

The Viterbi algorithm was first applied to speech and language processing in the context of speech recognition by Vintsyuk (1968) but has what Kruskal (1983) calls a “remarkable history of multiple independent discovery and publication”.

Kruskal and others give at least the following independently-discovered variants of the algorithm published in four separate fields:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi (1967)</td>
<td>information theory</td>
</tr>
<tr>
<td>Vintsyuk (1968)</td>
<td>speech processing</td>
</tr>
<tr>
<td>Needleman and Wunsch (1970)</td>
<td>molecular biology</td>
</tr>
<tr>
<td>Sakoe and Chiba (1971)</td>
<td>speech processing</td>
</tr>
<tr>
<td>Sankoff (1972)</td>
<td>molecular biology</td>
</tr>
<tr>
<td>Reichert et al. (1973)</td>
<td>molecular biology</td>
</tr>
<tr>
<td>Wagner and Fischer (1974)</td>
<td>computer science</td>
</tr>
</tbody>
</table>

The use of the term Viterbi is now standard for the application of dynamic programming to any kind of probabilistic maximization problem in speech and language processing. For non-probabilistic problems (such as for minimum edit distance), the plain term dynamic programming is often used. Forney, Jr. (1973) wrote an early survey paper that explores the origin of the Viterbi algorithm in the context of information and communications theory.

Our presentation of the idea that hidden Markov models should be characterized by three fundamental problems was modeled after an influential tutorial by Rabiner (1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s. Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the

---

3 Seven is pretty remarkable, but see page ?? for a discussion of the prevalence of multiple discovery.
forward-backward algorithm as applied to the speech recognition problem. Jelinek (1997) also shows the relationship between forward-backward and EM. See also the description of HMMs in other textbooks such as Manning and Schütze (1999).

Exercises

9.1 Implement the Forward algorithm and run it with the HMM in Fig. 9.3 to compute the probability of the observation sequences $331122313$ and $331123312$. Which is more likely?

9.2 Implement the Viterbi algorithm and run it with the HMM in Fig. 9.3 to compute the most likely weather sequences for each of the two observation sequences above, $331122313$ and $331123312$.

9.3 Extend the HMM tagger you built in Exercise 10.5 by adding the ability to make use of some unlabeled data in addition to your labeled training corpus. First acquire a large unlabeled (i.e., no part-of-speech tags) corpus. Next, implement the forward-backward training algorithm. Now start with the HMM parameters you trained on the training corpus in Exercise 10.5; call this model $M_0$. Run the forward-backward algorithm with these HMM parameters to label the unsupervised corpus. Now you have a new model $M_1$. Test the performance of $M_1$ on some held-out labeled data.

9.4 As a generalization of the previous homework, implement Jason Eisner’s HMM tagging homework available from his webpage. His homework includes a corpus of weather and ice-cream observations, a corpus of English part-of-speech tags, and a very hand spreadsheet with exact numbers for the forward-backward algorithm that you can compare against.
Part-of-Speech Tagging

Conjunction Junction, what’s your function?
Bob Dorough, Schoolhouse Rock, 1973

A gnostic was seated before a grammarian. The grammarian said, ‘A word must be one of three things: either it is a noun, a verb, or a particle.’ The gnostic tore his robe and cried, ‘Alas! Twenty years of my life and striving and seeking have gone to the winds, for I laboured greatly in the hope that there was another word outside of this. Now you have destroyed my hope.’ Though the gnostic had already attained the word which was his purpose, he spoke thus in order to arouse the grammarian.

Rumi (1207–1273), The Discourses of Rumi, Translated by A. J. Arberry

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (exact authorship being understandably difficult to be sure of with texts of this vintage), wrote a grammatical sketch of Greek (a “technē”) that summarized the linguistic knowledge of his day. This work is the source of an astonishing proportion of modern linguistic vocabulary, including words like syntax, diphthong, clitic, and analogy. Also included are a description of eight parts-of-speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, and article. Although earlier scholars (including Aristotle as well as the Stoics) had their own lists of parts-of-speech, it was Thrax’s set of eight that became the basis for practically all subsequent part-of-speech descriptions of Greek, Latin, and most European languages for the next 2000 years.

Schoolhouse Rock was a popular series of 3-minute musical animated clips first aired on television in 1973. The series was designed to inspire kids to learn multiplication tables, grammar, basic science, and history. The Grammar Rock sequence, for example, included songs about parts-of-speech, thus bringing these categories into the realm of popular culture. As it happens, Grammar Rock was remarkably traditional in its grammatical notation, including exactly eight songs about parts-of-speech. Although the list was slightly modified from Thrax’s original, substituting adjective and interjection for the original participle and article, the astonishing durability of the parts-of-speech through two millenia is an indicator of both the importance and the transparency of their role in human language. Nonetheless, eight isn’t very many and more recent part-of-speech tagsets have many more word classes, like the 45 tags used by the Penn Treebank (Marcus et al., 1993).

Parts-of-speech (also known as POS, word classes, or syntactic categories) are useful because of the large amount of information they give about a word and its neighbors. Knowing whether a word is a noun or a verb tells us a lot about likely neighboring words (nouns are preceded by determiners and adjectives, verbs by nouns) and about the syntactic structure around the word (nouns are generally part of noun phrases), which makes part-of-speech tagging an important component of syntactic parsing (Chapter 12). Parts of speech are useful features for finding named
10.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely. In this section we give a more complete definition of these and other classes. While word classes do have semantic tendencies—adjectives, for example, often describe properties and nouns people—are traditionally defined instead based on syntactic and morphological function, grouping words that have similar neighboring words (their distributional properties) or take similar affixes (their morphological properties).

Parts-of-speech can be divided into two broad supercategories: closed class types and open class types. Closed classes are those with relatively fixed membership, such as prepositions—new prepositions are rarely coined. By contrast, nouns and verbs are open classes—new nouns and verbs like iPhone or to fax are continually being created or borrowed. Any given speaker or corpus may have different open class words, but all speakers of a language, and sufficiently large corpora, likely share the set of closed class words. Closed class words are generally function words like of, it, and, or you, which tend to be very short, occur frequently, and often have structuring uses in grammar.

Four major open classes occur in the languages of the world: nouns, verbs, adjectives, and adverbs. English has all four, although not every language does. The syntactic class noun includes the words for most people, places, or things, but others as well. Nouns include concrete terms like ship and chair, abstractions like bandwidth and relationship, and verb-like terms like pacing as in His pacing to and fro became quite annoying. What defines a noun in English, then, are things like its ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take possessives (IBM’s annual revenue), and for most but not all nouns to occur in the plural form (goats, abaci).

Open class nouns fall into two classes. Proper nouns, like Regina, Colorado, and IBM, are names of specific persons or entities. In English, they generally aren’t preceded by articles (e.g., the book is upstairs, but Regina is upstairs). In written English, proper nouns are usually capitalized. The other class, common nouns are divided in many languages, including English, into count nouns and mass nouns. Count nouns allow grammatical enumeration, occurring in both the singular and plural (goat/goats, relationship/relationships) and they can be counted (one goat, two goats). Mass nouns are used when something is conceptualized as a homogeneous group. So words like snow, salt, and communism are not counted (i.e., *two snows or *two communisms). Mass nouns can also appear without articles where singular
count nouns cannot (*Snow is white* but not *Goat is white*).

The **verb** class includes most of the words referring to actions and processes, including main verbs like *draw, provide,* and *go.* English verbs have inflections (non-third-person-sg (eat), third-person-sg (eats), progressive (eating), past participle (eaten)). While many researchers believe that all human languages have the categories of noun and verb, others have argued that some languages, such as Riau Indonesian and Tongan, don’t even make this distinction (Broschart 1997; Evans 2000; Gil 2000).

The third open class English form is **adjectives**, a class that includes many terms for properties or qualities. Most languages have adjectives for the concepts of color (*white, black*), age (*old, young*), and value (*good, bad*), but there are languages without adjectives. In Korean, for example, the words corresponding to English adjectives act as a subclass of verbs, so what is in English an adjective “beautiful” acts in Korean like a verb meaning “to be beautiful”.

The final open class form, **adverbs**, is rather a hodge-podge, both semantically and formally. In the following sentence from Schachter (1985) all the italicized words are adverbs:

> Unfortunately, John walked **home extremely slowly yesterday**

What coherence the class has semantically may be solely that each of these words can be viewed as modifying something (often verbs, hence the name “adverb”), but also other adverbs and entire verb phrases. Directional adverbs or locative adverbs (*home, here, downhill*) specify the direction or location of some action; degree adverbs (*extremely, very, somewhat*) specify the extent of some action, process, or property; manner adverbs (*slowly, slinkily, delicately*) describe the manner of some action or process; and temporal adverbs describe the time that some action or event took place (*yesterday, Monday*). Because of the heterogeneous nature of this class, some adverbs (e.g., temporal adverbs like *Monday*) are tagged in some tagging schemes as nouns.

The closed classes differ more from language to language than do the open classes. Some of the important closed classes in English include:

- **prepositions**: on, under, over, near, by, at, from, to, with
- **determiners**: a, an, the
- **pronouns**: she, who, I, others
- **conjunctions**: and, but, or, as, if, when
- **auxiliary verbs**: can, may, should, are
- **particles**: up, down, on, off, in, out, at, by
- **numerals**: one, two, three, first, second, third

**Prepositions** occur before noun phrases. Semantically they often indicate spatial or temporal relations, whether literal (*on it, before then, by the house*) or metaphorical (*on time, with gusto, beside herself*), but often indicate other relations as well, like marking the agent in (*Hamlet was written by Shakespeare,*

A **particle** resembles a preposition or an adverb and is used in combination with a verb. Particles often have extended meanings that aren’t quite the same as the prepositions they resemble, as in the particle over in *she turned the paper over.*

When a verb and a particle behave as a single syntactic and/or semantic unit, we call the combination a **phrasal verb**. Phrasal verbs cause widespread problems with natural language processing because they often behave as a semantic unit with a non-compositional meaning—one that is not predictable from the distinct meanings of the verb and the particle. Thus, *turn down* means something like ‘reject’, *rule out* means ‘eliminate’, *find out* is ‘discover’, and *go on* is ‘continue’. 

A closed class that occurs with nouns, often marking the beginning of a noun phrase, is the **determiner**. One small subtype of determiners is the **article**: English has three articles: *a*, *an*, and *the*. Other determiners include *this* and *that* (**this chapter, that page**). *A* and *an* mark a noun phrase as indefinite, while *the* can mark it as definite; definiteness is a discourse property (Chapter 23). Articles are quite frequent in English; indeed, *the* is the most frequently occurring word in most corpora of written English, and *a* and *an* are generally right behind.

**Conjunctions** join two phrases, clauses, or sentences. Coordinating conjunctions like *and*, *or*, and *but* join two elements of equal status. Subordinating conjunctions are used when one of the elements has some embedded status. For example, *that in “I thought that you might like some milk”* is a subordinating conjunction that links the main clause *I thought* with the subordinate clause *you might like some milk*. This clause is called subordinate because this entire clause is the “content” of the main verb *thought*. Subordinating conjunctions like *that* which link a verb to its argument in this way are also called **complementizers**.

**Pronouns** are forms that often act as a kind of shorthand for referring to some noun phrase or entity or event. **Personal pronouns** refer to persons or entities (*you, she, I, it, me, etc.*). **Possessive pronouns** are forms of personal pronouns that indicate either actual possession or more often just an abstract relation between the person and some object (*my, your, his, her, its, one’s, our, their*). **Wh-pronouns** (*what, who, whom, whoever*) are used in certain question forms, or may also act as complementizers (*Frida, who married Diego . . .*).

A closed class subtype of English verbs are the **auxiliary** verbs. Cross-linguistically, auxiliaries mark certain semantic features of a main verb, including whether an action takes place in the present, past, or future (tense), whether it is completed (aspect), whether it is negated (polarity), and whether an action is necessary, possible, suggested, or desired (mood).

**English auxiliaries** include the **copula** verb *be*, the two verbs *do* and *have*, along with their inflected forms, as well as a class of **modal verbs**. *Be* is called a copula because it connects subjects with certain kinds of predicate nominals and adjectives (*He is a duck*). The verb *have* is used, for example, to mark the perfect tenses (*I have gone, I had gone*), and *be* is used as part of the passive (*We were robbed*) or progressive (*We are leaving*) constructions. The modals are used to mark the mood associated with the event or action depicted by the main verb: *can* indicates ability or possibility, *may* indicates permission or possibility, *must* indicates necessity. In addition to the perfect *have* mentioned above, there is a modal verb *have* (e.g., *I have to go*), which is common in spoken English.

English also has many words of more or less unique function, including **interjections** (*oh, hey, alas, uh, um*), **negatives** (*no, not*), **politeness markers** (*please, thank you*), **greetings** (*hello, goodbye*), and the existential **there** (*there are two on the table*) among others. These classes may be distinguished or lumped together as interjections or adverbs depending on the purpose of the labeling.

### 10.2 The Penn Treebank Part-of-Speech Tagset

While there are many lists of parts-of-speech, most modern language processing on English uses the 45-tag Penn Treebank tagset (Marcus et al., 1993), shown in Fig. 10.1. This tagset has been used to label a wide variety of corpora, including the Brown corpus, the *Wall Street Journal* corpus, and the Switchboard corpus.
Parts-of-speech are generally represented by placing the tag after each word, delimited by a slash, as in the following examples:

(10.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

(10.2) There/EX are/VBP 70/CD children/NNS there/RB

(10.3) Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today’s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

Example (10.1) shows the determiners the and a, the adjectives grand and other, the common nouns jury, number, and topics, and the past tense verb commented. Example (10.2) shows the use of the EX tag to mark the existential there construction in English, and, for comparison, another use of there which is tagged as an adverb (RB). Example (10.3) shows the segmentation of the possessive morpheme ’s a passive construction, ‘were reported’, in which reported is marked as a past participle (VBN). Note that since New England Journal of Medicine is a proper noun, the Treebank tagging chooses to mark each noun in it separately as NNP, including journal and medicine, which might otherwise be labeled as common nouns (NN).

Corpora labeled with parts-of-speech like the Treebank corpora are crucial training (and testing) sets for statistical tagging algorithms. Three main tagged corpora are consistently used for training and testing part-of-speech taggers for English (see Section 10.7 for other languages). The Brown corpus is a million words of samples from 500 written texts from different genres published in the United States in 1961. The WSJ corpus contains a million words published in the Wall Street Journal in 1989. The Switchboard corpus consists of 2 million words of telephone conversations collected in 1990-1991. The corpora were created by running an automatic
part-of-speech tagger on the texts and then human annotators hand-corrected each tag.

There are some minor differences in the tagsets used by the corpora. For example in the WSJ and Brown corpora, the single Penn tag TO is used for both the infinitive to (I like to race) and the preposition to (go to the store), while in the Switchboard corpus the tag TO is reserved for the infinitive use of to, while the preposition use is tagged IN:

Well/UH ,/, I/PRP ,/, I/PRP want/VBP to/TO go/VB to/IN a/DT restaurant/NN

Finally, there are some idiosyncracies inherent in any tagset. For example, because the Penn 45 tags were collapsed from a larger 87-tag tagset, the original Brown tagset, some potential useful distinctions were lost. The Penn tagset was designed for a treebank in which sentences were parsed, and so it leaves off syntactic information recoverable from the parse tree. Thus for example the Penn tag IN is used for both subordinating conjunctions like if, when, unless, after:

after/IN spending/VBG a/DT day/NN at/IN the/DT beach/NN

and prepositions like in, on, after:

after/IN sunrise/NN

Tagging algorithms assume that words have been tokenized before tagging. The Penn Treebank and the British National Corpus split contractions and the 's-genitive from their stems:

would/MD n’t/RB
children/NNS ’s/POS

Indeed, the special Treebank tag POS is used only for the morpheme ‘s, which must be segmented off during tokenization.

Another tokenization issue concerns multipart words. The Treebank tagset assumes that tokenization of words like New York is done at whitespace. The phrase a New York City firm is tagged in Treebank notation as five separate words: a/DT New/NNP York/NNP City/NNP firm/NN. The C5 tagset for the British National Corpus, by contrast, allow prepositions like “in terms of” to be treated as a single word by adding numbers to each tag, as in in/I31 terms/I32 of/I33.

10.3 Part-of-Speech Tagging

tagging Part-of-speech tagging (tagging for short) is the process of assigning a part-of-speech marker to each word in an input text. Because tags are generally also applied to punctuation, tokenization is usually performed before, or as part of, the tagging process: separating commas, quotation marks, etc., from words and disambiguating end-of-sentence punctuation (period, question mark, etc.) from part-of-word punctuation (such as in abbreviations like e.g. and etc.)

The input to a tagging algorithm is a sequence of words and a tagset, and the output is a sequence of tags, a single best tag for each word as shown in the examples on the previous pages.

ambigious Tagging is a disambiguation task; words are ambiguous —have more than one possible part-of-speech—and the goal is to find the correct tag for the situation. For example, the word book can be a verb (book that flight) or a noun (as in hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I thought that your flight was earlier). The problem of POS-tagging is to resolve these ambiguities, choosing the proper tag for the context. Part-of-speech tagging is thus one of the many disambiguation tasks in language processing.

How hard is the tagging problem? And how common is tag ambiguity? Fig. 10.2 shows the answer for the Brown and WSJ corpora tagged using the 45-tag Penn tagset. Most word types (80-86%) are unambiguous; that is, they have only a single tag (Janet is always NNP, funniest JJS, and hesitantly RB). But the ambiguous words, although accounting for only 14-15% of the vocabulary, are some of the most common words of English, and hence 55-67% of word tokens in running text are ambiguous. Note the large differences across the two genres, especially in token frequency. Tags in the WSJ corpus are less ambiguous, presumably because this newspaper’s specific focus on financial news leads to a more limited distribution of word usages than the more general texts combined into the Brown corpus.

<table>
<thead>
<tr>
<th>Types:</th>
<th>WSJ</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unambiguous</td>
<td>44,432 (86%)</td>
<td>45,799 (85%)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>7,025 (14%)</td>
<td>8,050 (15%)</td>
</tr>
<tr>
<td>Tokens:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unambiguous</td>
<td>577,421 (45%)</td>
<td>384,349 (33%)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>711,780 (55%)</td>
<td>786,646 (67%)</td>
</tr>
</tbody>
</table>

Figure 10.2 The amount of tag ambiguity for word types in the Brown and WSJ corpora, from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and assume words are kept in their original case.

Some of the most ambiguous frequent words are that, back, down, put and set; here are some examples of the 6 different parts-of-speech for the word back:

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP about debt
- I was twenty-one back/RB then

Still, even many of the ambiguous tokens are easy to disambiguate. This is because the different tags associated with a word are not equally likely. For example, a can be a determiner or the letter a (perhaps as part of an acronym or an initial). But the determiner sense of a is much more likely. This idea suggests a simplistic baseline algorithm for part of speech tagging: given an ambiguous word, choose the tag which is most frequent in the training corpus. This is a key concept:

**Most Frequent Class Baseline:** Always compare a classifier against a baseline at least as good as the most frequent class baseline (assigning each token to the class it occurred in most often in the training set).

How good is this baseline? A standard way to measure the performance of part-of-speech taggers is **accuracy**: the percentage of tags correctly labeled on a human-labeled test set. One commonly used test set is sections 22-24 of the WSJ corpus. If we train on the rest of the WSJ corpus and test on that test set, the most-frequent-tag baseline achieves an accuracy of 92.34%.

By contrast, the state of the art in part-of-speech tagging on this dataset is around 97% tag accuracy, a performance that is achievable by a number of statistical algo-
10.4 HMM Part-of-Speech Tagging

In this section we introduce the use of the Hidden Markov Model for part-of-speech tagging. The HMM defined in the previous chapter was quite powerful, including a learning algorithm—the Baum-Welch (EM) algorithm—that can be given unlabeled data and find the best mapping of labels to observations. However when we apply HMM to part-of-speech tagging we generally don’t use the Baum-Welch algorithm for learning the HMM parameters. Instead HMMs for part-of-speech tagging are trained on a fully labeled dataset—a set of sentences with each word annotated with a part-of-speech tag—setting parameters by maximum likelihood estimates on this training data.

Thus the only algorithm we will need from the previous chapter is the Viterbi algorithm for decoding, and we will also need to see how to set the parameters from training data.

10.4.1 The basic equation of HMM Tagging

Let’s begin with a quick reminder of the intuition of HMM decoding. The goal of HMM decoding is to choose the tag sequence that is most probable given the observation sequence of \( n \) words \( w_1^n \):

\[
\hat{t}_1^n = \arg \max_{t_1^n} P(t_1^n | w_1^n) \tag{10.4}
\]

by using Bayes’ rule to instead compute:

\[
\hat{t}_1^n = \arg \max_{t_1^n} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)} \tag{10.5}
\]

Furthermore, we simplify Eq. 10.5 by dropping the denominator \( P(w_1^n) \):

\[
\hat{t}_1^n = \arg \max_{t_1^n} P(w_1^n | t_1^n) P(t_1^n) \tag{10.6}
\]

HMM taggers make two further simplifying assumptions. The first is that the probability of a word appearing depends only on its own tag and is independent of neighboring words and tags:

\[
P(w_1^n | t_1^n) \approx \prod_{i=1}^n P(w_i | t_i) \tag{10.7}
\]

The second assumption, the bigram assumption, is that the probability of a tag is dependent only on the previous tag, rather than the entire tag sequence:

\[
P(t_1^n) \approx \prod_{i=1}^n P(t_i | t_{i-1}) \tag{10.8}
\]
Plugging the simplifying assumptions from Eq. 10.7 and Eq. 10.8 into Eq. 10.6 results in the following equation for the most probable tag sequence from a bigram tagger, which as we will soon see, correspond to the emission probability and transition probability from the HMM of Chapter 9.

$$\hat{t}_n = \arg\max_{t_n} P(t_n | w_n) \approx \arg\max_{t_n} \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})$$  \hspace{1cm} (10.9)

### 10.4.2 Estimating Probabilities

Let’s walk through an example, seeing how these probabilities are estimated and used in a sample tagging task, before we return to the Viterbi algorithm.

In HMM tagging, rather than using the full power of HMM EM learning, the probabilities are estimated just by counting on a tagged training corpus. For this example we’ll use the tagged WSJ corpus. The tag transition probabilities $P(t_i | t_{i-1})$ represent the probability of a tag given the previous tag. For example, modal verbs like will are very likely to be followed by a verb in the base form, a VB, like race, so we expect this probability to be high. The maximum likelihood estimate of a transition probability is computed by counting, out of the times we see the first tag in a labeled corpus, how often the first tag is followed by the second

$$P(t_i | t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$  \hspace{1cm} (10.10)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed by VB 10471, for an MLE estimate of

$$P(VB | MD) = \frac{C(MD, VB)}{C(MD)} = \frac{10471}{13124} = .80$$  \hspace{1cm} (10.11)

The emission probabilities, $P(w_i | t_i)$, represent the probability, given a tag (say MD), that it will be associated with a given word (say will). The MLE of the emission probability is

$$P(w_i | t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$  \hspace{1cm} (10.12)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046 times:

$$P(will | MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$$  \hspace{1cm} (10.13)

For those readers who are new to Bayesian modeling, note that this likelihood term is not asking “which is the most likely tag for the word will?” That would be the posterior $P(MD | will)$. Instead, $P(will | MD)$ answers the slightly counterintuitive question “If we were going to generate a MD, how likely is it that this modal would be will?”

The two kinds of probabilities from Eq. 10.9, the transition (prior) probabilities like $P(VB | MD)$ and the emission (likelihood) probabilities like $P(will | MD)$, correspond to the $A$ transition probabilities, and $B$ observation likelihoods of the HMM. Figure 10.3 illustrates some of the the $A$ transition probabilities for three states in an HMM part-of-speech tagger; the full tagger would have one state for each tag.

Figure 10.4 shows another view of these three states from an HMM tagger, focusing on the word likelihoods $B$. Each hidden state is associated with a vector of likelihoods for each observation word.
### 10.4.3 Working through an example

Let’s now work through an example of computing the best sequence of tags that corresponds to the following sequence of words

(10.14) Janet will back the bill

The correct series of tags is:

(10.15) Janet/NNP will/MD back/VB the/DT bill/NN

Let the HMM be defined by the two tables in Fig. 10.5 and Fig. 10.6.

Figure 10.5 lists the $a_{ij}$ probabilities for transitioning between the hidden states (part-of-speech tags).

Figure 10.6 expresses the $b_j(o_t)$ probabilities, the *observation* likelihoods of words given tags. This table is (slightly simplified) from counts in the WSJ corpus. So the word *Janet* only appears as an NNP, *back* has 4 possible parts of speech, and the word *the* can appear as a determiner or as an NNP (in titles like “Somewhere Over the Rainbow” all words are tagged as NNP).
Table 10.5 The A transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus $P(VB|MD)$ is 0.7968.

<table>
<thead>
<tr>
<th></th>
<th>NNP</th>
<th>MD</th>
<th>VB</th>
<th>JJ</th>
<th>NN</th>
<th>RB</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;s &gt;</td>
<td>0.2767</td>
<td>0.0006</td>
<td>0.0031</td>
<td>0.0453</td>
<td>0.0449</td>
<td>0.0510</td>
<td>0.2026</td>
</tr>
<tr>
<td>NNP</td>
<td>0.3777</td>
<td>0.0110</td>
<td>0.0009</td>
<td>0.0084</td>
<td>0.0584</td>
<td>0.0090</td>
<td>0.0025</td>
</tr>
<tr>
<td>MD</td>
<td>0.0008</td>
<td>0.0002</td>
<td>0.7968</td>
<td>0.0005</td>
<td>0.0008</td>
<td>0.1698</td>
<td>0.0441</td>
</tr>
<tr>
<td>VB</td>
<td>0.0322</td>
<td>0.0005</td>
<td>0.0050</td>
<td>0.0837</td>
<td>0.0615</td>
<td>0.0514</td>
<td>0.2231</td>
</tr>
<tr>
<td>JJ</td>
<td>0.0366</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.0733</td>
<td>0.4509</td>
<td>0.0036</td>
<td>0.0036</td>
</tr>
<tr>
<td>NN</td>
<td>0.0096</td>
<td>0.0176</td>
<td>0.0014</td>
<td>0.0086</td>
<td>0.1216</td>
<td>0.0177</td>
<td>0.0068</td>
</tr>
<tr>
<td>RB</td>
<td>0.0068</td>
<td>0.0102</td>
<td>0.1011</td>
<td>0.1012</td>
<td>0.0120</td>
<td>0.0728</td>
<td>0.0479</td>
</tr>
<tr>
<td>DT</td>
<td>0.1147</td>
<td>0.0021</td>
<td>0.0002</td>
<td>0.2157</td>
<td>0.4744</td>
<td>0.0102</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

Figure 10.6 Observation likelihoods $B$ computed from the WSJ corpus without smoothing.

Figure 10.7 A schematic of the tagging task for the sample sentence, showing the ambiguities for each word and the correct tag sequence as the highlighted path through the hidden states.

Figure 10.7 shows a schematic of the possible tags for each word and the correct final tag sequence.

For the reader’s convenience Fig. 10.8 repeats the pseudocode for the Viterbi algorithm from Chapter 9. The Viterbi algorithm sets up a probability matrix, with one column for each observation $t$ and one row for each state in the state graph. Each column thus has a cell for each state $q_i$ in the single combined automaton for the four words.

The algorithm first creates $N = 5$ state columns, the first for the observation of the first word Janet, the second for will, and so on. We begin in the first column by setting the Viterbi value in each cell to the product of the transition probability (into it from the start state) and the observation probability (of the first word); the reader should find this in Fig. 10.9.
function Viterbi(observations of len T, state-graph of len N) returns best-path

create a path probability matrix \text{viterbi}[N+2,T]

for each state s from 1 to N do ; initialization step
\text{viterbi}[s,1] \leftarrow a_{0,s} \times b_s(o_1)
\text{backpointer}[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do
\text{viterbi}[s,t] \leftarrow \max_{s'=1}^{N} \text{viterbi}[s',t-1] \times a_{s',s} \times b_s(o_t)
\text{backpointer}[s,t] \leftarrow \argmax_{s'=1}^{N} \text{viterbi}[s',t-1] \times a_{s',s}

\text{viterbi}[q_F,T] \leftarrow \max_{s=1}^{N} \text{viterbi}[s,T] \times a_{s,q_F} ; termination step
\text{backpointer}[q_F,T] \leftarrow \argmax_{s=1}^{N} \text{viterbi}[s,T] \times a_{s,q_F} ; termination step

return the backtrace path by following backpointers to states back in time from \text{backpointer}[q_F,T]

Figure 10.8  Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM \( \lambda = (A, B) \), the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and \( q_F \) are non-emitting.

Then we move on, column by column; for every state in column 1, we compute the probability of moving into each state in column 2, and so on. For each state \( q_j \) at time \( t \), we compute the value \( \text{viterbi}[s,t] \) by taking the maximum over the extensions of all the paths that lead to the current cell, using the following equation:

\[ v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t) \] (10.16)

Recall from Chapter 9 that the three factors that are multiplied in Eq. 10.16 for extending the previous paths to compute the Viterbi probability at time \( t \) are:

\[ v_{t-1}(i) \] the previous Viterbi path probability from the previous time step
\[ a_{ij} \] the transition probability from previous state \( q_i \) to current state \( q_j \)
\[ b_j(o_t) \] the state observation likelihood of the observation symbol \( o_t \) given the current state \( j \)

In Fig. 10.9, each cell of the trellis in the column for the word Janet is computed by multiplying the previous probability at the start state (1.0), the transition probability from the start state to the tag for that cell, and the observation likelihood of the word Janet given the tag for that cell. Most of the cells in the column are zero since the word Janet cannot be any of those tags. Next, each cell in the will column gets updated with the maximum probability path from the previous column. We have shown the values for the MD, VB, and NN cells. Each cell gets the max of the 7 values from the previous column, multiplied by the appropriate transition probability; as it happens in this case, most of them are zero from the previous column. The remaining value is multiplied by the relevant transition probability, and the (trivial) max is taken. In this case the final value, .0000002772, comes from the NNP state at the previous column. The reader should fill in the rest of the trellis in Fig. 10.9 and backtrace to reconstruct the correct state sequence NNP MD VB DT NN. (Exercise 10.??).
10.4.4 Extending the HMM Algorithm to Trigrams

Practical HMM taggers have a number of extensions of this simple model. One important missing feature is a wider tag context. In the tagger described above the probability of a tag depends only on the previous tag:

$$P(t_i) = \prod_{i=1}^{n} P(t_i|t_{i-1})$$  \hspace{1cm} (10.17)

In practice we use more of the history, letting the probability of a tag depend on the two previous tags:

$$P(t_i) = \prod_{i=1}^{n} P(t_i|t_{i-1}, t_{i-2})$$  \hspace{1cm} (10.18)

Extending the algorithm from bigram to trigram taggers gives a small (perhaps a half point) increase in performance, but conditioning on two previous tags instead of one requires a significant change to the Viterbi algorithm. For each cell, instead of taking a max over transitions from each cell in the previous column, we have to take
a max over paths through the cells in the previous two columns, thus considering $N^2$ rather than $N$ hidden states at every observation.

In addition to increasing the context window, state-of-the-art HMM taggers like Brants (2000) have a number of other advanced features. One is to let the tagger know the location of the end of the sentence by adding dependence on an end-of-sequence marker for $t_{n+1}$. This gives the following equation for part-of-speech tagging:

$$
\hat{t}_i^n = \arg\max_t P(t_i^n | w_i^n) \approx \arg\max_t \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1}, t_{i-2}) \ P(t_{n+1} | t_n) \quad (10.19)
$$

In tagging any sentence with Eq. 10.19, three of the tags used in the context will fall off the edge of the sentence, and hence will not match regular words. These tags, $t_{-1}$, $t_0$, and $t_{n+1}$, can all be set to be a single special ‘sentence boundary’ tag that is added to the tagset, which assumes sentences boundaries have already been marked.

One problem with trigram taggers as instantiated in Eq. 10.19 is data sparsity. Any particular sequence of tags $t_{i-2}, t_{i-1}, t_i$ that occurs in the test set may simply never have occurred in the training set. That means we cannot compute the tag trigram probability just by the maximum likelihood estimate from counts, following Eq. 10.20:

$$
P(t_i | t_{i-1}, t_{i-2}) = \frac{C(t_{i-2}, t_{i-1}, t_i)}{C(t_{i-2}, t_{i-1})} \quad (10.20)
$$

Just as we saw with language modeling, many of these counts will be zero in any training set, and we will incorrectly predict that a given tag sequence will never occur! What we need is a way to estimate $P(t_i | t_{i-1}, t_{i-2})$ even if the sequence $t_{i-2}, t_{i-1}, t_i$ never occurs in the training data.

The standard approach to solving this problem is the same interpolation idea we saw in language modeling: estimate the probability by combining more robust, but weaker estimators. For example, if we’ve never seen the tag sequence PRP VB TO, and so can’t compute $P(\text{TO}|\text{PRP}, \text{VB})$ from this frequency, we still could rely on the bigram probability $P(\text{TO}|\text{VB})$, or even the unigram probability $P(\text{TO})$. The maximum likelihood estimation of each of these probabilities can be computed from a corpus with the following counts:

**Trigrams**  
$$
\hat{P}(t_i | t_{i-1}, t_{i-2}) = \frac{C(t_{i-2}, t_{i-1}, t_i)}{C(t_{i-2}, t_{i-1})} \quad (10.21)
$$

**Bigrams**  
$$
\hat{P}(t_i | t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})} \quad (10.22)
$$

**Unigrams**  
$$
\hat{P}(t_i) = \frac{C(t_i)}{N} \quad (10.23)
$$

The standard way to combine these three estimators to estimate the trigram probability $P(t_i | t_{i-1}, t_{i-2})$ is via linear interpolation. We estimate the probability $P(t_i | t_{i-1}, t_{i-2})$ by a weighted sum of the unigram, bigram, and trigram probabilities:

$$
P(t_i | t_{i-1}, t_{i-2}) = \lambda_1 \hat{P}(t_i | t_{i-1}, t_{i-2}) + \lambda_2 \hat{P}(t_i | t_{i-1}) + \lambda_3 \hat{P}(t_i) \quad (10.24)
$$

We require $\lambda_1 + \lambda_2 + \lambda_3 = 1$, ensuring that the resulting $P$ is a probability distribution. These $\lambda$s are generally set by an algorithm called deleted interpolation.
(Jelinek and Mercer, 1980): we successively delete each trigram from the training corpus and choose the \( \lambda \)'s so as to maximize the likelihood of the rest of the corpus. The deletion helps to set the \( \lambda \)'s in such a way as to generalize to unseen data and not overfit the training corpus. Figure 10.10 gives a deleted interpolation algorithm for tag trigrams.

```plaintext
function DELETED-INTERPOLATION(corpus) returns \( \lambda_1, \lambda_2, \lambda_3 \)
    \( \lambda_1 \leftarrow 0 \)
    \( \lambda_2 \leftarrow 0 \)
    \( \lambda_3 \leftarrow 0 \)
    foreach trigram \( t_1, t_2, t_3 \) with \( C(t_1, t_2, t_3) > 0 \)
        depending on the maximum of the following three values
        case \( \frac{C(t_1, t_2)}{C(t_1)} - 1 \): increment \( \lambda_3 \) by \( C(t_1, t_2, t_3) \)
        case \( \frac{C(t_2)}{C(t_1)} - 1 \): increment \( \lambda_2 \) by \( C(t_1, t_2, t_3) \)
        case \( \frac{C(t_3)}{N} - 1 \): increment \( \lambda_1 \) by \( C(t_1, t_2, t_3) \)
    end
    end
    normalize \( \lambda_1, \lambda_2, \lambda_3 \)
    return \( \lambda_1, \lambda_2, \lambda_3 \)
```

Figure 10.10 The deleted interpolation algorithm for setting the weights for combining unigram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we define the result of that case to be 0. \( N \) is the total number of tokens in the corpus. After Brants (2000).

10.4.5 Unknown Words

words people
never use —
could be
only I
know them
Ishikawa Takuboku 1885–1912

To achieve high accuracy with part-of-speech taggers, it is also important to have a good model for dealing with unknown words. Proper names and acronyms are created very often, and even new common nouns and verbs enter the language at a surprising rate. One useful feature for distinguishing parts of speech is wordshape: words starting with capital letters are likely to be proper nouns (NNP).

But the strongest source of information for guessing the part-of-speech of unknown words is morphology. Words that end in -s are likely to be plural nouns (NNS), words ending with -ed tend to be past participles (VBN), words ending with -able tend to be adjectives (JJ), and so on. One way to take advantage of this is to store for each final letter sequence (for simplicity referred to as word suffixes) the statistics of which tag they were associated with in training. The method of Samuelsson (1993) and Brants (2000), for example, considers suffixes of up to ten letters, computing for each suffix of length \( i \) the probability of the tag \( t \) given the suffix letters:

\[
P(t_i | l_{n-i+1} \ldots l_n)
\]  

(10.25)
10.5 Maximum Entropy Markov Models

We turn now to a second sequence model, the maximum entropy Markov model or MEMM. The MEMM is a sequence model adaptation of the MaxEnt (multinomial logistic regression) classifier. Because it is based on logistic regression, the MEMM is a discriminative sequence model. By contrast, the HMM is a generative sequence model.

Let the sequence of words be \( W = w^n_1 \) and the sequence of tags \( T = t^n_1 \). In an HMM to compute the best tag sequence that maximizes \( P(T|W) \) we rely on Bayes’ rule and the likelihood \( P(W|T) \):

\[
\hat{T} = \arg\max_T P(T|W) \\
= \arg\max_T P(W|T)P(T) \\
= \arg\max_T \prod_i P(\text{word}_i|\text{tag}_i) \prod_i P(\text{tag}_i|\text{tag}_{i-1}) \tag{10.26}
\]

In an MEMM, by contrast, we compute the posterior \( P(T|W) \) directly, training it to discriminate among the possible tag sequences:

\[
\hat{T} = \arg\max_T P(T|W) \\
= \arg\max_T \prod_i P(t_i|w_i, t_{i-1}) \tag{10.27}
\]

We could do this by training a logistic regression classifier to compute the single probability \( P(t_i|w_i, t_{i-1}) \). Fig. 10.11 shows the intuition of the difference via the direction of the arrows; HMMs compute likelihood (observation word conditioned on tags) but MEMMs compute posterior (tags conditioned on observation words).
Figure 10.11  A schematic view of the HMM (top) and MEMM (bottom) representation of the probability computation for the correct sequence of tags for the back sentence. The HMM computes the likelihood of the observation given the hidden state, while the MEMM computes the posterior of each state, conditioned on the previous state and current observation.

10.5.1  Features in a MEMM

Oops. We lied in Eq. 10.27. We actually don’t build MEMMs that condition just on \( w_i \) and \( t_{i-1} \). In fact, an MEMM conditioned on just these two features (the observed word and the previous tag), as shown in Fig. 10.11 and Eq. 10.27 is no more accurate than the generative HMM model and in fact may be less accurate.

The reason to use a discriminative sequence model is that discriminative models make it easier to incorporate a much wider variety of features. Because in HMMs all computation is based on the two probabilities \( P(\text{tag}|\text{tag}) \) and \( P(\text{word}|\text{tag}) \), if we want to include some source of knowledge into the tagging process, we must find a way to encode the knowledge into one of these two probabilities. We saw in the previous section that it was possible to model capitalization or word endings by cleverly fitting in probabilities like \( P(\text{capitalization}|\text{tag}) \), \( P(\text{suffix}|\text{tag}) \), and so on into an HMM-style model. But each time we add a feature we have to do a lot of complicated conditioning which gets harder and harder as we have more and more such features and, as we’ll see, there are lots more features we can add. Figure 10.12 shows a graphical intuition of some of these additional features.

Figure 10.12  An MEMM for part-of-speech tagging showing the ability to condition on more features.

A basic MEMM part-of-speech tagger conditions on the observation word itself, neighboring words, and previous tags, and various combinations, using feature templates like the following:

\[
\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle, \\
\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \\
\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle, \langle t_i, w_i, w_{i+1} \rangle, \\
\langle t_i, w_{i-1} \rangle, \langle t_i, w_{i-2}, t_{i-1} \rangle, \\
\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle, \langle t_i, w_i, w_{i+1} \rangle, \\
\langle t_i, w_{i-2}, t_{i-1}, w_i \rangle. \\
\]

(10.28)
Recall from Chapter 7 that feature templates are used to automatically populate the set of features from every instance in the training and test set. Thus our example Janet/NNP will/MD back/VB the/DT bill/NN, when \( w_i \) is the word \( \text{back} \), would generate the following features:

- \( t_i = \text{VB} \) and \( w_{i-2} = \text{Janet} \)
- \( t_i = \text{VB} \) and \( w_{i-1} = \text{will} \)
- \( t_i = \text{VB} \) and \( w_i = \text{back} \)
- \( t_i = \text{VB} \) and \( w_{i+1} = \text{the} \)
- \( t_i = \text{VB} \) and \( w_{i+2} = \text{bill} \)
- \( t_i = \text{VB} \) and \( t_{i-1} = \text{MD} \)
- \( t_i = \text{VB} \) and \( t_{i-1} = \text{MD} \) and \( t_{i-2} = \text{NNP} \)
- \( t_i = \text{VB} \) and \( w_i = \text{back} \) and \( w_{i+1} = \text{the} \)

Also necessary are features to deal with unknown words, expressing properties of the word’s spelling or shape:

- \( w_i \) contains a particular prefix (from all prefixes of length \( \leq 4 \))
- \( w_i \) contains a particular suffix (from all suffixes of length \( \leq 4 \))
- \( w_i \) contains a number
- \( w_i \) contains an upper-case letter
- \( w_i \) contains a hyphen
- \( w_i \) is all upper case
- \( w_i \)’s word shape
- \( w_i \)’s short word shape
- \( w_i \) is upper case and has a digit and a dash (like \( \text{CFC-12} \))
- \( w_i \) is upper case and followed within 3 words by Co., Inc., etc.

**Word shape** features are used to represent the abstract letter pattern of the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ‘d’, and retaining punctuation. Thus for example I.M.F would map to X.X.X. and DC10-30 would map to XXdd-dd. A second class of shorter word shape features is also used. In these features consecutive character types are removed, so DC10-30 would be mapped to Xd-d but I.M.F would still map to X.X.X. For example the word *well-dressed* would generate the following non-zero valued feature values:

- prefix(\( w_i \)) = w
- prefix(\( w_i \)) = we
- prefix(\( w_i \)) = wel
- prefix(\( w_i \)) = well
- suffix(\( w_i \)) = ssed
- suffix(\( w_i \)) = sed
- suffix(\( w_i \)) = ed
- suffix(\( w_i \)) = d
- has-hyphen(\( w_i \))
- word-shape(\( w_i \)) = xxxx-xxxxxxx
- short-word-shape(\( w_i \)) = x-x

Features for known words, like the templates in Eq. 10.28, are computed for every word seen in the training set. The unknown word features can also be computed for all words in training, or only on rare training words whose frequency is below some threshold.

The result of the known-word templates and word-signature features is a very large set of features. Generally a feature cutoff is used in which features are thrown out if they have count < 5 in the training set.
Given this large set of features, the most likely sequence of tags is then computed by a MaxEnt model that combines these features of the input word $w_i$, its neighbors within $l$ words $w_{i-l}^{i+l}$, and the previous $k$ tags $t_{i-k}^{i-1}$ as follows:

$$
\hat{T} = \arg\max_T P(T|W)
= \arg\max_T \prod_i P(t_i|w_{i-l}^{i+l}, t_{i-1}^{i-l-1})
= \arg\max_T \prod_i \frac{\exp\left(\sum_i w_i f_i(t_i, w_{i-l}^{i+l}, t_{i-1}^{i-l-1})\right)}{\sum_{t' \in \text{tagset}} \exp\left(\sum_i w_i f_i(t', w_{i-l}^{i+l}, t_{i-1}^{i-l-1})\right)}
$$

(10.29)

### 10.5.2 Decoding and Training MEMMs

We’re now ready to see how to use the MaxEnt classifier to solve the decoding problem by finding the most likely sequence of tags described in Eq. 10.29.

The simplest way to turn the MaxEnt classifier into a sequence model is to build a local classifier that classifies each word left to right, making a hard classification of the first word in the sentence, then a hard decision on the the second word, and so on. This is called a greedy decoding algorithm, because we greedily choose the best tag for each word, as shown in Fig. 10.13.

```python
function GREEDY MEMM DECODING(words W, model P) returns tag sequence T
for i = 1 to length(W)
    \( t_i = \arg\max_{t' \in T} P(t' | w_{i-l}^{i+l}, t_{i-1}^{i-l-1}) \)
```

Figure 10.13 In greedy decoding we make a hard decision to choose the best tag left to right.

The problem with the greedy algorithm is that by making a hard decision on each word before moving on to the next word, the classifier cannot temper its decision with information from future decisions. Although greedy algorithm is very fast, and we do use it in some applications when it has sufficient accuracy, in general this hard decision causes sufficient drop in performance that we don’t use it.

Instead we decode an MEMM with the Viterbi algorithm just as we did with the HMM, thus finding the sequence of part-of-speech tags that is optimal for the whole sentence.

Let’s see an example. For pedagogical purposes, let’s assume for this example that our MEMM is only conditioning on the previous tag $t_{i-1}$ and observed word $w_i$. Concretely, this involves filling an $N \times T$ array with the appropriate values for $P(t_i|t_{i-1}, w_i)$, maintaining backpointers as we proceed. As with HMM Viterbi, when the table is filled, we simply follow pointers back from the maximum value in the final column to retrieve the desired set of labels. The requisite changes from the HMM-style application of Viterbi have to do only with how we fill each cell. Recall from Eq. 9.22 that the recursive step of the Viterbi equation computes the Viterbi value of time $t$ for state $j$ as
\[ v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \leq j \leq N, 1 < t \leq T \] (10.30)

which is the HMM implementation of

\[ v_t(j) = \max_{i=1}^N v_{t-1}(i) P(s_j|s_i) P(o_t|s_j) \quad 1 \leq j \leq N, 1 < t \leq T \] (10.31)

The MEMM requires only a slight change to this latter formula, replacing the \( a \) and \( b \) prior and likelihood probabilities with the direct posterior:

\[ v_t(j) = \max_{i=1}^N v_{t-1}(i) P(s_j|s_i, o_t) \quad 1 \leq j \leq N, 1 < t \leq T \] (10.32)

Figure 10.14 shows an example of the Viterbi trellis for an MEMM applied to the ice-cream task from Section 9.4. Recall that the task is figuring out the hidden weather (hot or cold) from observed numbers of ice creams eaten in Jason Eisner’s diary. Figure 10.14 shows the abstract Viterbi probability calculation, assuming that we have a MaxEnt model that computes \( P(s_i|s_{i-1}, o_t) \) for us.

Learning in MEMMs relies on the same supervised learning algorithms we presented for logistic regression. Given a sequence of observations, feature functions, and corresponding hidden states, we train the weights so as maximize the log-likelihood of the training corpus. As with logistic regression, regularization is important, and all modern systems use L1 or L2 regularization.
10.6 Bidirectionality

The one problem with the MEMM and HMM models as presented is that they are exclusively run left-to-right. While the Viterbi algorithm still allows present decisions to be influenced indirectly by future decisions, it would help even more if a decision about word \( w_i \) could directly use information about future tags \( t_{i+1} \) and \( t_{i+2} \).

Adding bidirectionality has another useful advantage. MEMMs have a theoretical weakness, referred to alternatively as the label bias or observation bias problem (Lafferty et al. 2001, Toutanova et al. 2003). These are names for situations when one source of information is ignored because it is explained away by another source. Consider an example from (Toutanova et al., 2003), the sequence will/NN to/TO fight/VB. The tag TO is often preceded by NN but rarely by modals (MD), and so that tendency should help predict the correct NN tag for will. But the previous transition \( P(t_{\text{will}}|\langle s \rangle) \) prefers the modal, and because \( P(TO|to,t_{\text{will}}) \) is so close to 1 regardless of \( t_{\text{will}} \) the model cannot make use of the transition probability and incorrectly chooses MD. The strong information that to must have the tag TO has explained away the presence of TO and so the model doesn’t learn the importance of the previous NN tag for predicting TO. Bidirectionality helps the model by making the link between TO available when tagging the NN.

One way to implement bidirectionality is to switch to a much more powerful model called a Conditional Random Field or CRF, which we will introduce in Chapter 20. But CRFs are much more expensive computationally than MEMMs and don’t work any better for tagging, and so are not generally used for this task.

Instead, other ways are generally used to add bidirectionality. The Stanford tagger uses a bidirectional version of the MEMM called a cyclic dependency network (Toutanova et al., 2003).

Alternatively, any sequence model can be turned into a bidirectional model by using multiple passes. For example, the first pass would use only part-of-speech features from already-disambiguated words on the left. In the second pass, tags for all words, including those on the right, can be used. Alternately, the tagger can be run twice, once left-to-right and once right-to-left. In greedy decoding, for each word the classifier chooses the highest-scoring of the tag assigned by the left-to-right and right-to-left classifier. In Viterbi decoding, the classifier chooses the higher scoring of the two sequences (left-to-right or right-to-left). Multiple-pass decoding is available in publicly available toolkits like the SVMTool system (Giménez and Marquez, 2004), a tagger that applies an SVM classifier instead of a MaxEnt classifier at each position, but similarly using Viterbi (or greedy) decoding to implement a sequence model.

10.7 Part-of-Speech Tagging for Other Languages

The HMM and MEMM speech tagging algorithms have been applied to tagging in many languages besides English. For languages similar to English, the methods work well as is; tagger accuracies for German, for example, are close to those for English. Augmentations become necessary when dealing with highly inflected or agglutinative languages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these languages: a 250,000 word token corpus of Hungarian has more than twice as many
word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while a 10 million word token corpus of Turkish contains four times as many word types as a similarly sized English corpus (Hakkani-Tür et al., 2002). Large vocabularies mean many unknown words, and these unknown words cause significant performance degradations in a wide variety of languages (including Czech, Slovene, Estonian, and Romanian) (Hajič, 2000).

Highly inflectional languages also have much more information than English coded in word morphology, like case (nominative, accusative, genitive) or gender (masculine, feminine). Because this information is important for tasks like parsing and coreference resolution, part-of-speech taggers for morphologically rich languages need to label words with case and gender information. Tagsets for morphologically rich languages are therefore sequences of morphological tags rather than a single primitive tag. Here’s a Turkish example, in which the word *izin* has three possible morphological/part-of-speech tags and meanings (Hakkani-Tür et al., 2002):

1. *Yerdeki izin* temizlenmesi gerek.  
   *The trace* on the floor should be cleaned.

2. *Üzerinde parmak izin* kalmış  
   *Your* fingerprint *is left on* (it).

3. *İçeri girmek için izin* alman gerekiyor.  
   *You need a permission* to enter.

Using a morphological parse sequence like *Noun+A3sg+Pnon+Gen* as the part-of-speech tag greatly increases the number of parts-of-speech, and so tagsets can be 4 to 10 times larger than the 50–100 tags we have seen for English. With such large tagsets, each word needs to be morphologically analyzed (using a method from Chapter 3, or an extensive dictionary) to generate the list of possible morphological tag sequences (part-of-speech tags) for the word. The role of the tagger is then to disambiguate among these tags. This method also helps with unknown words since morphological parsers can accept unknown stems and still segment the affixes properly.

Different problems occur with languages like Chinese in which words are not segmented in the writing system. For Chinese part-of-speech tagging word segmentation (Chapter 2) is therefore generally applied before tagging. It is also possible to build sequence models that do joint segmentation and tagging. Although Chinese words are on average very short (around 2.4 characters per unknown word compared with 7.7 for English) the problem of unknown words is still large, although while English unknown words tend to be proper nouns in Chinese the majority of unknown words are common nouns and verbs because of extensive compounding. Tagging models for Chinese use similar unknown word features to English, including character prefix and suffix features, as well as novel features like the radicals of each character in a word. One standard unknown feature for Chinese is to build a dictionary in which each character is listed with a vector of each part-of-speech tags that it occurred with in any word in the training set. The vectors of each of the characters in a word are then used as a feature in classification (Tseng et al., 2005b).

### 10.8 Summary

This chapter introduced the idea of *parts-of-speech* and *part-of-speech tagging*. The main ideas:
Languages generally have a relatively small set of closed class words that are often highly frequent, generally act as function words, and can be ambiguous in their part-of-speech tags. Open-class words generally include various kinds of nouns, verbs, adjectives. There are a number of part-of-speech coding schemes, based on tagsets of between 40 and 200 tags.

Part-of-speech tagging is the process of assigning a part-of-speech label to each of a sequence of words.

Two common approaches to sequence modeling are a generative approach, HMM tagging, and a discriminative approach, MEMM tagging.

The probabilities in HMM taggers are estimated, not using EM, but directly by maximum likelihood estimation on hand-labeled training corpora. The Viterbi algorithm is used to find the most likely tag sequence.

Maximum entropy Markov model or MEMM taggers train logistic regression models to pick the best tag given an observation word and its context and the previous tags, and then use Viterbi to choose the best sequence of tags for the sentence. More complex augmentations of the MEMM exist, like the Conditional Random Field (CRF) tagger.

Modern taggers are generally run bidirectionally.

Bibliographical and Historical Notes

What is probably the earliest part-of-speech tagger was part of the parser in Zellig Harris’s Transformations and Discourse Analysis Project (TDAP), implemented between June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962), although earlier systems had used part-of-speech information in dictionaries. TDAP used 14 hand-written rules for part-of-speech disambiguation; the use of part-of-speech tag sequences and the relative frequency of tags for a word prefigures all modern algorithms. The parser, whose implementation essentially corresponded a cascade of finite-state transducers, was reimplemented (Joshi and Hopely 1999; Karttunen 1999).

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had three components: a lexicon, a morphological analyzer, and a context disambiguator. The small 1500-word lexicon listed only function words and other irregular words. The morphological analyzer used inflectional and derivational suffixes to assign part-of-speech classes. These were run over words to produce candidate parts-of-speech which were then disambiguated by a set of 500 context rules by relying on surrounding islands of unambiguous words. For example, one rule said that between an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The CGC algorithm reported 90% accuracy on applying a 30-tag tagset to a corpus of articles.

The TAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Simmons (1963) system, using the same architecture but increasing the size of the dictionary and the size of the tagset to 87 tags. TAGGIT was applied to the Brown corpus and, according to Francis and Kučera (1982, p. 9), accurately tagged 77% of the corpus; the remainder of the Brown corpus was then tagged by hand.

All these early algorithms were based on a two-stage architecture in which a dictionary was first used to assign each word a list of potential parts-of-speech and in the second stage large lists of hand-written disambiguation rules winnow down this list to a single part of speech for each word.
Soon afterwards the alternative probabilistic architectures began to be developed. Probabilities were used in tagging by Stolz et al. (1965) and a complete probabilistic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976). The Lancaster-Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown corpus, was tagging in the early 1980’s with the CLAWS tagger (Marshall 1983; Marshall 1987; Garside 1987), a probabilistic algorithm that can be viewed as a simplified approximation to the HMM tagging approach. The algorithm used tag bigram probabilities, but instead of storing the word likelihood of each tag, the algorithm marked tags either as rare \( P(\text{tag}|\text{word}) < .01 \) infrequent \( P(\text{tag}|\text{word}) < .10 \) or normally frequent \( P(\text{tag}|\text{word}) > .10 \).

DeRose (1988) developed an algorithm that was almost the HMM approach, including the use of dynamic programming, although computing a slightly different probability: \( P(t|w)P(w) \) instead of \( P(w|t)P(w) \). The same year, the probabilistic parts tagger of Church (1988), (1989) was probably the first implemented HMM tagger, described correctly in Church (1989), although Church (1988) also described the computation incorrectly as \( P(t|w)P(w) \) instead of \( P(w|t)P(w) \). Church (p.c.) explained that he had simplified for pedagogical purposes because using the probability \( P(t|w) \) made the idea seem more understandable as “storing a lexicon in an almost standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Kupiec 1992; Weischedel et al. 1993; Schütze and Singer 1994). Merialdo (1994) showed that fully unsupervised EM didn’t work well for the tagging task and that reliance on hand-labeled data was important. Charniak et al. (1993) showed the importance of the most frequent tag baseline; the 92.3% number we give above was from Abney et al. (1999). See Brants (2000) for many implementation details of a state-of-the-art HMM tagger.

Ratnaparkhi (1996) introduced the MEMM tagger, called MXPOST, and the modern formulation is very much based on his work.

The idea of using letter suffixes for unknown words is quite old; the early Klein and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The probabilistic formulation we described for HMMs comes from Samuelsson (1993). The unknown word features described on page 159 come mainly from (Ratnaparkhi, 1996), with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art taggers are based on a number of models developed just after the turn of the last century, including (Collins, 2002) which used the the perceptron algorithm, Toutanova et al. (2003) using a bidirectional log-linear model, and (Giménez and Marquez, 2004) using SVMs. HMM (Brants 2000; Thede and Harper 1999) and MEMM tagger accuracies are likely just a tad lower.

An alternative modern formalism, the English Constraint Grammar systems (Karlsson et al. 1995; Voutilainen 1995; Voutilainen 1999), uses a two-stage formalism much like the very early taggers from the 1950s and 1960s. A very large morphological analyzer with tens of thousands of English word stems entries is used to return all possible parts-of-speech for a word, using a rich feature-based set of tags. So the word occurred is tagged with the options \( \langle V \text{ PCP2 SV} \rangle \) and \( \langle V \text{ PAST VFIN SV} \rangle \), meaning it can be a participle (PCP2) for an intransitive (SV) verb, or a past (PAST) finite (VFIN) form of an intransitive (SV) verb. A large set of 3,744 constraints are then applied to the input sentence to rule out parts-of-speech that are inconsistent with the context. For example here’s one rule for the ambiguous word that, that eliminates all tags except the ADV (adverbial intensifier) sense (this is the sense in the sentence it isn’t that odd):
ADVERBIAL-THAT RULE

Given input: “that”

if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */
(+2 SENT-LIM); /* and following which is a sentence boundary, */
(NOT -1 SVOC/A); /* and the previous word is not a verb like */
/* ‘consider’ which allows adj as object complements */

then eliminate non-ADV tags
else eliminate ADV tag

The combination of the extensive morphological analyzer and carefully written constraints leads to a very high accuracy for the constraint grammar algorithm (Samuelsson and Voutilainen, 1997).

Manning (2011) investigates the remaining 2.7% of errors in a state-of-the-art tagger, the bidirectional MEMM-style model described above (Toutanova et al., 2003). He suggests that a third or half of these remaining errors are due to errors or inconsistencies in the training data, a third might be solvable with richer linguistic models, and for the remainder the task is underspecified or unclear.

The algorithms presented in the chapter rely heavily on in-domain training data hand-labeled by experts. Much recent work in part-of-speech tagging focuses on ways to relax this assumption. Unsupervised algorithms for part-of-speech tagging cluster words into part-of-speech-like classes (Schütze 1995; Clark 2000; Goldwater and Griffiths 2007; Berg-Kirkpatrick et al. 2010; Sirts et al. 2014); see Christodoulopoulos et al. (2010) for a summary. Many algorithms focus on combining labeled and unlabeled data, for example by co-training (Clark et al. 2003; Søgaard 2010). Assigning tags to text from very different genres like Twitter text can involve adding new tags for URLs (URL), username mentions (USR), retweets (RT), and hashtags (HT), normalization of non-standard words, and bootstrapping to employ unsupervised data (Derczynski et al., 2013).

Readers interested in the history of parts-of-speech should consult a history of linguistics such as Robins (1967) or Koerner and Asher (1995), particularly the article by Householder (1995) in the latter. Sampson (1987) and Garside et al. (1997) give a detailed summary of the provenance and makeup of the Brown and other tagsets.

Exercises

10.1 Find one tagging error in each of the following sentences that are tagged with the Penn Treebank tagset:

1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

10.2 Use the Penn Treebank tagset to tag each word in the following sentences from Damon Runyon’s short stories. You may ignore punctuation. Some of these are quite difficult; do your best.

1. It is a nice night.
2. This crap game is over a garage in Fifty-second Street . . .
3. . . . Nobody ever takes the newspapers she sells . . .
4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a mournful voice.
5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is a dish I am very fond of, . . .
6. When a guy and a doll get to taking peeks back and forth at each other, why there you are indeed.

10.3 Now compare your tags from the previous exercise with one or two friend’s answers. On which words did you disagree the most? Why?

10.4 Implement the “most likely tag” baseline. Find a POS-tagged training set, and use it to compute for each word the tag that maximizes $p(t|w)$. You will need to implement a simple tokenizer to deal with sentence boundaries. Start by assuming that all unknown words are NN and compute your error rate on known and unknown words. Now write at least five rules to do a better job of tagging unknown words, and show the difference in error rates.

10.5 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus. First split the corpus into a training set and test set. From the labeled training set, train the transition and observation probabilities of the HMM tagger directly on the hand-tagged data. Then implement the Viterbi algorithm from this chapter and Chapter 9 so that you can label an arbitrary test sentence. Now run your algorithm on the test set. Report its error rate and compare its performance to the most frequent tag baseline.

10.6 Do an error analysis of your tagger. Build a confusion matrix and investigate the most frequent errors. Propose some features for improving the performance of your tagger on these errors.
The study of grammar has an ancient pedigree; Panini’s grammar of Sanskrit was written over two thousand years ago and is still referenced today in teaching Sanskrit. Despite this history, knowledge of grammar and syntax remains spotty at best. In this chapter, we make a preliminary stab at addressing some of these gaps in our knowledge of grammar and syntax, as well as introducing some of the formal mechanisms that are available for capturing this knowledge in a computationally useful manner.

The word syntax comes from the Greek σύνταξις, meaning “setting out together or arrangement”, and refers to the way words are arranged together. We have seen various syntactic notions in previous chapters. The regular languages introduced in Chapter 2 offered a simple way to represent the ordering of strings of words, and Chapter 4 showed how to compute probabilities for these word sequences. Chapter 10 showed that part-of-speech categories could act as a kind of equivalence class for words. This chapter and the ones that follow introduce a variety of syntactic phenomena as well as form models of syntax and grammar that go well beyond these simpler approaches.

The bulk of this chapter is devoted to the topic of context-free grammars. Context-free grammars are the backbone of many formal models of the syntax of natural language (and, for that matter, of computer languages). As such, they are integral to many computational applications, including grammar checking, semantic interpretation, dialogue understanding, and machine translation. They are powerful enough to express sophisticated relations among the words in a sentence, yet computationally tractable enough that efficient algorithms exist for parsing sentences with them (as we show in Chapter 12). In Chapter 13, we show that adding probability to context-free grammars gives us a powerful model of disambiguation. And in Chapter 20 we show how they provide a systematic framework for semantic interpretation.

In addition to an introduction to this grammar formalism, this chapter also provides a brief overview of the grammar of English. To illustrate our grammars, we have chosen a domain that has relatively simple sentences, the Air Traffic Information System (ATIS) domain (Hemphill et al., 1990). ATIS systems were an early example of spoken language systems for helping book airline reservations. Users try to book flights by conversing with the system, specifying constraints like I’d like to fly from Atlanta to Denver.

### 11.1 Constituency

The fundamental notion underlying the idea of constituency is that of abstraction — groups of words behaving as a single units, or constituents. A significant part of developing a grammar involves discovering the inventory of constituents present in the language.
11.2 Context-Free Grammars

How do words group together in English? Consider the noun phrase, a sequence of words surrounding at least one noun. Here are some examples of noun phrases (thanks to Damon Runyon):

<table>
<thead>
<tr>
<th>Noun phrase</th>
<th>Noun phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry the Horse</td>
<td>a high-class spot such as Mindy’s</td>
</tr>
<tr>
<td>the Broadway coppers</td>
<td>the reason he comes into the Hot Box</td>
</tr>
<tr>
<td>they</td>
<td>three parties from Brooklyn</td>
</tr>
</tbody>
</table>

What evidence do we have that these words group together (or “form constituents”)? One piece of evidence is that they can all appear in similar syntactic environments, for example, before a verb.

- three parties from Brooklyn arrive…
- a high-class spot such as Mindy’s attracts…
- the Broadway coppers love…
- they sit

But while the whole noun phrase can occur before a verb, this is not true of each of the individual words that make up a noun phrase. The following are not grammatical sentences of English (recall that we use an asterisk (*) to mark fragments that are not grammatical English sentences):

*from arrive… *as attracts…
*the is… *spot sat…

Thus, to correctly describe facts about the ordering of these words in English, we must be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are called preposed or postposed constructions. For example, the prepositional phrase on September seventeenth can be placed in a number of different locations in the following examples, including at the beginning (preposed) or at the end (postposed):

- On September seventeenth, I’d like to fly from Atlanta to Denver
  - I’d like to fly on September seventeenth from Atlanta to Denver
  - I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the individual words making up the phrase cannot be

*On September, I’d like to fly seventeenth from Atlanta to Denver
*On I’d like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

See Radford (1988) for further examples of groups of words behaving as a single constituent.

11.2 Context-Free Grammars

The most widely used formal system for modeling constituent structure in English and other natural languages is the Context-Free Grammar, or CFG. Context-free grammars are also called Phrase-Structure Grammars, and the formalism is equivalent to Backus-Naur Form, or BNF. The idea of basing a grammar on
constituent structure dates back to the psychologist Wilhelm Wundt (1900) but was not formalized until Chomsky (1956) and, independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of which expresses the ways that symbols of the language can be grouped and ordered together, and a lexicon of words and symbols. For example, the following productions express that an NP (or noun phrase) can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or more Nouns.

\[
\begin{align*}
NP & \rightarrow \text{Det Nominal} \\
NP & \rightarrow \text{ProperNoun} \\
\text{Nominal} & \rightarrow \text{Noun} \mid \text{Nominal Noun}
\end{align*}
\]

Context-free rules can be hierarchically embedded, so we can combine the previous rules with others, like the following, that express facts about the lexicon:

\[
\begin{align*}
\text{Det} & \rightarrow \text{a} \\
\text{Det} & \rightarrow \text{the} \\
\text{Noun} & \rightarrow \text{flight}
\end{align*}
\]

The symbols that are used in a CFG are divided into two classes. The symbols that correspond to words in the language (“the”, “nightclub”) are called terminal symbols; the lexicon is the set of rules that introduce these terminal symbols. The symbols that express abstractions over these terminals are called non-terminals. In each context-free rule, the item to the right of the arrow (\(\rightarrow\)) is an ordered list of one or more terminals and non-terminals; to the left of the arrow is a single non-terminal symbol expressing some cluster or generalization. Notice that in the lexicon, the non-terminal associated with each word is its lexical category, or part-of-speech, which we defined in Chapter 10.

A CFG can be thought of in two ways: as a device for generating sentences and as a device for assigning a structure to a given sentence. We saw this same dualism in our discussion of finite-state transducers in Chapter 3. Viewing a CFG as a generator, we can read the \(\rightarrow\) arrow as "rewrite the symbol on the left with the string of symbols on the right". So starting from the symbol: 

\[
NP
\]
we can use our first rule to rewrite \(NP\) as: 

\[
\text{Det Nominal}
\]
and then rewrite \(\text{Nominal}\) as: 

\[
\text{Det Noun}
\]
and finally rewrite these parts-of-speech as: 

\[
a \text{flight}
\]

We say the string \(a \text{flight}\) can be derived from the non-terminal \(NP\). Thus, a CFG can be used to generate a set of strings. This sequence of rule expansions is called a derivation of the string of words. It is common to represent a derivation by a parse tree (commonly shown inverted with the root at the top). Figure 11.1 shows the tree representation of this derivation.

In the parse tree shown in Fig. 11.1, we can say that the node \(NP\) dominates all the nodes in the tree (\(Det, Nom, \text{Noun}, a, \text{flight}\)). We can say further that it immediately dominates the nodes \(Det\) and \(Nom\).

The formal language defined by a CFG is the set of strings that are derivable from the designated start symbol. Each grammar must have one designated start symbol, which is often called \(S\). Since context-free grammars are often used to define sentences, \(S\) is usually interpreted as the “sentence” node, and the set of strings that are derivable from \(S\) is the set of sentences in some simplified version of English.
Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:

\[ S \rightarrow NP \ VP \quad I \ prefer \ a \ morning \ flight \]

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

\[ VP \rightarrow Verb \ NP \quad prefer \ a \ morning \ flight \]

Or the verb may be followed by a noun phrase and a prepositional phrase:

\[ VP \rightarrow Verb \ NP \ PP \quad leave \ Boston \ in \ the \ morning \]

Or the verb phrase may have a verb followed by a prepositional phrase alone:

\[ VP \rightarrow Verb \ PP \quad leaving \ on \ Thursday \]

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

\[ PP \rightarrow Preposition \ NP \quad from \ Los \ Angeles \]

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

- to Seattle
- in Minneapolis
- on Wednesday
- in the evening
- on the ninth of July
- on these flights
- about the ground transportation in Chicago
- of the round trip flight on United Airlines
- of the AP fifty seven flight
- with a stopover in Nashville

Figure 11.2 gives a sample lexicon, and Fig. 11.3 summarizes the grammar rules
we’ve seen so far, which we’ll call \( \mathcal{L}_0 \). Note that we can use the or-symbol \( | \) to
indicate that a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with \( S \), expand it to \( NP \ VP \), then choose a random expansion of \( NP \) (let’s say, to
\( I \)), and a random expansion of \( VP \) (let’s say, to \( Verb \ NP \)), and so on until we generate
the string \( I \ prefer \ a \ morning \ flight \). Figure 11.4 shows a parse tree that represents a
complete derivation of \( I \ prefer \ a \ morning \ flight \).

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation; here is the bracketed representation of the parse tree of
Fig. 11.4:
Chapter 11 • Formal Grammars of English

Noun → flights | breeze | trip | morning
Verb → is | prefer | like | need | want | fly
Adjective → cheapest | non-stop | first | latest | other | direct
Pronoun → me | I | you | it
Proper-Noun → Alaska | Baltimore | Los Angeles | Chicago | United | American
Determiner → the | a | an | this | these | that
Preposition → from | to | on | near
Conjunction → and | or | but

Figure 11.2 The lexicon for $L_0$.

<table>
<thead>
<tr>
<th>Grammar Rules</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>I + want a morning flight</td>
</tr>
<tr>
<td>$NP \rightarrow$ Pronoun</td>
<td>I</td>
</tr>
<tr>
<td>$</td>
<td>Proper-Noun$</td>
</tr>
<tr>
<td>$</td>
<td>Det Nominal$</td>
</tr>
<tr>
<td>Nominal $\rightarrow$ Nominal Noun</td>
<td>morning + flight</td>
</tr>
<tr>
<td>$</td>
<td>Noun$</td>
</tr>
<tr>
<td>$VP \rightarrow$ Verb</td>
<td>do</td>
</tr>
<tr>
<td>$</td>
<td>Verb NP$</td>
</tr>
<tr>
<td>$</td>
<td>Verb NP PP$</td>
</tr>
<tr>
<td>$</td>
<td>Verb PP$</td>
</tr>
<tr>
<td>$PP \rightarrow$ Preposition $NP$</td>
<td>from + Los Angeles</td>
</tr>
</tbody>
</table>

Figure 11.3 The grammar for $L_0$, with example phrases for each rule.

(11.1) $[S [NP [P_{np}, I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of $L_0$ defines a formal language. We saw in Chapter 2 that a formal language is a set of strings. Sentences (strings of words) that can be derived by a grammar are in the formal language defined by that grammar, and are called grammatical sentences. Sentences that cannot be derived by a given formal grammar are not in the language defined by that grammar and are referred to as ungrammatical. This hard line between “in” and “out” characterizes all formal languages but is only a very simplified model of how natural languages really work. This is because determining whether a given sentence is part of a given natural language (say, English) often depends on the context. In linguistics, the use of formal languages to model natural languages is called generative grammar since the language is defined by the set of possible sentences “generated” by the grammar.

11.2.1 Formal Definition of Context-Free Grammar

We conclude this section with a quick, formal description of a context-free grammar and the language it generates. A context-free grammar $G$ is defined by four parameters: $N, \Sigma, R, S$ (technically this is a “4-tuple”).
11.2 • Context-Free Grammars

A language is defined through the concept of derivation. One string derives another one if it can be rewritten as the second one by some series of rule applications. More formally, following Hopcroft and Ullman (1979), if \( A \rightarrow \beta \) is a production of \( R \) and \( \alpha \) and \( \gamma \) are any strings in the set \( (\Sigma \cup N)^* \), then we say that \( \alpha A \gamma \) **directly derives** \( \alpha\beta\gamma \), or \( \alpha A \gamma \Rightarrow \alpha\beta\gamma \).

Derivation is then a generalization of direct derivation:

Let \( \alpha_1, \alpha_2, \ldots, \alpha_m \) be strings in \( (\Sigma \cup N)^* \), \( m \geq 1 \), such that

\[
\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \ldots, \alpha_m-1 \Rightarrow \alpha_m
\]

We say that \( \alpha_1 \) **derives** \( \alpha_m \), or \( \alpha_1 \Rightarrow^* \alpha_m \).

We can then formally define the language \( \mathcal{L}_G \) generated by a grammar \( G \) as the set of strings composed of terminal symbols that can be derived from the designated

---

**Figure 11.4** The parse tree for “I prefer a morning flight” according to grammar \( \mathcal{L}_0 \).

- **N** a set of **non-terminal symbols** (or variables)
- **\( \Sigma \)** a set of **terminal symbols** (disjoint from \( N \))
- **\( R \)** a set of **rules** or productions, each of the form \( A \rightarrow \beta \), where \( A \) is a non-terminal,
- **\( S \)** a designated **start symbol** and a member of \( N \)

For the remainder of the book we adhere to the following conventions when discussing the formal properties of context-free grammars (as opposed to explaining particular facts about English or other languages).

<table>
<thead>
<tr>
<th>Capital letters like ( A ), ( B ), and ( S )</th>
<th>Non-terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>( S )</td>
<td>The start symbol</td>
</tr>
<tr>
<td>Lower-case Greek letters like ( \alpha ), ( \beta ), and ( \gamma )</td>
<td>Strings drawn from ( (\Sigma \cup N)^* )</td>
</tr>
<tr>
<td>Lower-case Roman letters like ( u ), ( v ), and ( w )</td>
<td>Strings of terminals</td>
</tr>
</tbody>
</table>

**Directly derives**

if \( A \rightarrow \beta \) is a production of \( R \) and \( \alpha \) and \( \gamma \) are any strings in the set \( (\Sigma \cup N)^* \), then we say that \( \alpha A \gamma \) directly derives \( \alpha\beta\gamma \), or \( \alpha A \gamma \Rightarrow \alpha\beta\gamma \).

**Derives**

We say that \( \alpha_1 \) derives \( \alpha_m \), or \( \alpha_1 \Rightarrow^* \alpha_m \).
11.3 Some Grammar Rules for English

In this section, we introduce a few more aspects of the phrase structure of English; for consistency we will continue to focus on sentences from the ATIS domain. Because of space limitations, our discussion is necessarily limited to highlights. Readers are strongly advised to consult a good reference grammar of English, such as Huddleston and Pullum (2002).

11.3.1 Sentence-Level Constructions

In the small grammar \( \mathcal{L}_0 \), we provided only one sentence-level construction for declarative sentences like *I prefer a morning flight*. Among the large number of constructions for English sentences, four are particularly common and important: declaratives, imperatives, yes-no questions, and wh-questions.

**Declarative**

Sentences with declarative structure have a subject noun phrase followed by a verb phrase, like *I prefer a morning flight*. Sentences with this structure have a great number of different uses that we follow up on in Chapter 29. Here are a number of examples from the ATIS domain:

- I want a flight from Ontario to Chicago
- The flight should be eleven a.m. tomorrow
- The return flight should leave at around seven p.m.

**Imperative**

Sentences with imperative structure often begin with a verb phrase and have no subject. They are called imperative because they are almost always used for commands and suggestions; in the ATIS domain they are commands to the system.

- Show the lowest fare
- Give me Sunday’s flights arriving in Las Vegas from New York City
- List all flights between five and seven p.m.

We can model this sentence structure with another rule for the expansion of \( S \):

\[ S \rightarrow VP \]

**Yes-no question**

Sentences with yes-no question structure are often (though not always) used to ask questions; they begin with an auxiliary verb, followed by a subject \( NP \), followed by a \( VP \). Here are some examples. Note that the third example is not a question at all but a request; Chapter 29 discusses the uses of these question forms to perform different pragmatic functions such as asking, requesting, or suggesting.

- Do any of these flights have stops?
- Does American’s flight eighteen twenty-five serve dinner?
- Can you give me the same information for United?

Here’s the rule:

\[ S \rightarrow Aux \ NP \ VP \]
The most complex sentence-level structures we examine here are the various *wh*-structures. These are so named because one of their constituents is a *wh-phrase*, that is, one that includes a *wh-word* (*who, whose, when, where, what, which, how, why*). These may be broadly grouped into two classes of sentence-level structures. The *wh-subject-question* structure is identical to the declarative structure, except that the first noun phrase contains some *wh-word*.

What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six p.m.?
Whose flights serve breakfast?

Here is a rule. Exercise 11.7 discusses rules for the constituents that make up the *Wh-NP*.

\[ S \rightarrow Wh-NP \ \text{VP} \]

In the *wh-non-subject-question* structure, the *wh-phrase* is not the subject of the sentence, and so the sentence includes another subject. In these types of sentences the auxiliary appears before the subject *NP*, just as in the yes-no question structures. Here is an example followed by a sample rule:

What flights do you have from Burbank to Tacoma Washington?

\[ S \rightarrow Wh-NP \ \text{Aux} \ \text{NP} \ \text{VP} \]

Constructions like the *wh-non-subject-question* contain what are called *long-distance dependencies* because the *Wh-NP what flights* is far away from the predicate that it is semantically related to, the main verb *have* in the *VP*. In some models of parsing and understanding compatible with the grammar rule above, long-distance dependencies like the relation between *flights* and *have* are thought of as a semantic relation. In such models, the job of figuring out that *flights* is the argument of *have* is done during semantic interpretation. In other models of parsing, the relationship between *flights* and *have* is considered to be a syntactic relation, and the grammar is modified to insert a small marker called a *trace* or *empty category* after the verb.

We return to such empty-category models when we introduce the Penn Treebank on page 182.

### 11.3.2 Clauses and Sentences

Before we move on, we should clarify the status of the *S* rules in the grammars we just described. *S* rules are intended to account for entire sentences that stand alone as fundamental units of discourse. However, *S* can also occur on the right-hand side of grammar rules and hence can be embedded within larger sentences. Clearly then, there’s more to being an *S* than just standing alone as a unit of discourse.

What differentiates sentence constructions (i.e., the *S* rules) from the rest of the grammar is the notion that they are in some sense complete. In this way they correspond to the notion of a *clause*, which traditional grammars often describe as forming a complete thought. One way of making this notion of “complete thought” more precise is to say an *S* is a node of the parse tree below which the main verb of the *S* has all of its argument. We define verbal arguments later, but for now let’s just see an illustration from the tree for *I prefer a morning flight* in Fig. 11.4 on page 173. The verb *prefer* has two arguments: the subject *I* and the object *a morning flight*. One of the arguments appears below the *VP* node, but the other one, the subject *NP*, appears only below the *S* node.
11.3.3 The Noun Phrase

Our \( \mathcal{Z}_0 \) grammar introduced three of the most frequent types of noun phrases that occur in English: pronouns, proper nouns and the \( NP \rightarrow \text{Det Nominal} \) construction. The central focus of this section is on the last type since that is where the bulk of the syntactic complexity resides. These noun phrases consist of a head, the central noun in the noun phrase, along with various modifiers that can occur before or after the head noun. Let’s take a close look at the various parts.

The Determiner

Noun phrases can begin with simple lexical determiners, as in the following examples:

\begin{align*}
\text{a stop} & \quad \text{the flights} & \quad \text{this flight} \\
\text{those flights} & \quad \text{any flights} & \quad \text{some flights}
\end{align*}

The role of the determiner in English noun phrases can also be filled by more complex expressions, as follows:

- United’s flight
- United’s pilot’s union
- Denver’s mayor’s mother’s canceled flight

In these examples, the role of the determiner is filled by a possessive expression consisting of a noun phrase followed by an ’s as a possessive marker, as in the following rule.

\[
\text{Det} \rightarrow \text{NP ’s}
\]

The fact that this rule is recursive (since an \( NP \) can start with a \( \text{Det} \)) helps us model the last two examples above, in which a sequence of possessive expressions serves as a determiner.

Under some circumstances determiners are optional in English. For example, determiners may be omitted if the noun they modify is plural:

\begin{enumerate}
\item[(11.2)] Show me flights from San Francisco to Denver on weekdays
\end{enumerate}

As we saw in Chapter 10, **mass nouns** also don’t require determination. Recall that mass nouns often (not always) involve something that is treated like a substance (including e.g., \textit{water} and \textit{snow}), don’t take the indefinite article “a”, and don’t tend to pluralize. Many abstract nouns are mass nouns (\textit{music}, \textit{homework}). Mass nouns in the ATIS domain include \textit{breakfast}, \textit{lunch}, and \textit{dinner}:

\begin{enumerate}
\item[(11.3)] Does this flight serve dinner?
\end{enumerate}

Exercise 11.?? asks the reader to represent this fact in the CFG formalism.

The Nominal

The nominal construction follows the determiner and contains any pre- and post-head noun modifiers. As indicated in grammar \( \mathcal{Z}_0 \), in its simplest form a nominal can consist of a single noun.

\[
\text{Nominal} \rightarrow \text{Noun}
\]

As we’ll see, this rule also provides the basis for the bottom of various recursive rules used to capture more complex nominal constructions.
Before the Head Noun

A number of different kinds of word classes can appear before the head noun (the “postdeterminers”) in a nominal. These include **cardinal numbers**, **ordinal numbers**, **quantifiers**, and adjectives. Examples of cardinal numbers:

- two friends
- one stop

Ordinal numbers include *first*, *second*, *third*, and so on, but also words like *next*, *last*, *past*, *other*, and *another*:

- the first one
- the next day
- the second leg
- the last flight
- the other American flight

Some quantifiers (*many*, *(a) few*, *several*) occur only with plural count nouns:

- many fares

Adjectives occur after quantifiers but before nouns.

- a *first-class* fare
- a *non-stop* flight
- the *longest* layover
- the *earliest* lunch flight

Adjectives can also be grouped into a phrase called an **adjective phrase** or AP. APs can have an adverb before the adjective (see Chapter 10 for definitions of adjectives and adverbs):

- the *least expensive* fare

After the Head Noun

A head noun can be followed by **postmodifiers**. Three kinds of nominal postmodifiers are common in English:

- **Prepositional phrases**
  - all flights *from Cleveland*
  - any flights *arriving after eleven a.m.*
  - a flight *that serves breakfast*

- **Non-finite clauses**
  - common in the ATIS corpus since they are used to mark the origin and destination of flights.

Here are some examples of prepositional phrase postmodifiers, with brackets inserted to show the boundaries of each PP; note that two or more PPs can be strung together within a single NP:

- all flights *[from Cleveland] [to Newark]*
- arrival *[in San Jose] [before seven p.m.]*
- a reservation *[on flight six oh six] [from Tampa] [to Montreal]*

Here’s a new nominal rule to account for postnominal PPs:

\[ \text{Nominal} \rightarrow \text{Nominal PP} \]

- **Non-finite**
  - The three most common kinds of **non-finite** postmodifiers are the gerundive (-*ing*), -*ed*, and infinitive forms.

- **Gerundive** postmodifiers are so called because they consist of a verb phrase that begins with the gerundive (-*ing*) form of the verb. Here are some examples:

  - any of those *[leaving on Thursday]*
  - any flights *[arriving after eleven a.m.]*
  - flights *[arriving within thirty minutes of each other]*
We can define the Nominals with gerundive modifiers as follows, making use of a new non-terminal GerundVP:

\[ \text{Nominal} \rightarrow \text{Nominal GerundVP} \]

We can make rules for GerundVP constituents by duplicating all of our VP productions, substituting GerundV for V.

\[ \text{GerundVP} \rightarrow \text{GerundV NP} \mid \text{GerundV PP} \mid \text{GerundV} \mid \text{GerundV NP PP} \]

GerundV can then be defined as

\[ \text{GerundV} \rightarrow \text{being} \mid \text{arriving} \mid \text{leaving} \mid \ldots \]

The phrases in italics below are examples of the two other common kinds of non-finite clauses, infinitives and -ed forms:

- the last flight to arrive in Boston
- I need to have dinner served
- Which is the aircraft used by this flight?

A postnominal relative clause (more correctly a restrictive relative clause), is a clause that often begins with a relative pronoun (that and who are the most common). The relative pronoun functions as the subject of the embedded verb in the following examples:

- a flight that serves breakfast
- flights that leave in the morning
- the one that leaves at ten thirty five

We might add rules like the following to deal with these:

\[ \text{Nominal} \rightarrow \text{Nominal RelClause} \]

\[ \text{RelClause} \rightarrow (\text{who} \mid \text{that}) \text{VP} \]

The relative pronoun may also function as the object of the embedded verb, as in the following example; we leave for the reader the exercise of writing grammar rules for more complex relative clauses of this kind.

- the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined, as the following examples show:

- a flight [from Phoenix to Detroit] [leaving Monday evening]
- evening flights [from Nashville to Houston] [that serve dinner]
- a friend [living in Denver] [that would like to visit me here in Washington DC]

**Before the Noun Phrase**

Word classes that modify and appear before NPs are called **predeterminers**. Many of these have to do with number or amount; a common predeterminer is *all*:

- all the flights
- all flights
- all non-stop flights

The example noun phrase given in Fig. 11.5 illustrates some of the complexity that arises when these rules are combined.
11.3 * SOME GRAMMAR RULES FOR ENGLISH  179

Figure 11.5  A parse tree for “all the morning flights from Denver to Tampa leaving before 10”.

11.3.4 The Verb Phrase

The verb phrase consists of the verb and a number of other constituents. In the simple rules we have built so far, these other constituents include NPs and PPs and combinations of the two:

\[
\begin{align*}
VP & \rightarrow \text{Verb} \quad \text{disappear} \\
VP & \rightarrow \text{Verb NP} \quad \text{prefer a morning flight} \\
VP & \rightarrow \text{Verb NP PP} \quad \text{leave Boston in the morning} \\
VP & \rightarrow \text{Verb PP} \quad \text{leaving on Thursday}
\end{align*}
\]

Verb phrases can be significantly more complicated than this. Many other kinds of constituents, such as an entire embedded sentence, can follow the verb. These are called sentential complements:

You [\text{VP} [\text{V} \text{ said } [\text{S} you had a two hundred sixty six dollar fare] ] ]
[\text{VP} [\text{V} \text{ Tell } [\text{NP} \text{ me } [\text{S} \text{ how to get from the airport in Philadelphia to downtown} ] ] ] ]
[\text{I} [\text{VP} [\text{V} \text{ think } [\text{S} \text{ I would like to take the nine thirty flight} ] ] ] ]

Here’s a rule for these:

\[
VP \rightarrow \text{Verb } S
\]

Similarly, another potential constituent of the \( VP \) is another \( VP \). This is often the case for verbs like want, would like, try, intend, need:

I want [\text{VP} to fly from Milwaukee to Orlando]
Hi, I want [\text{VP} to arrange three flights]
While a verb phrase can have many possible kinds of constituents, not every verb is compatible with every verb phrase. For example, the verb *want* can be used either with an *NP* complement (*I want a flight.*...) or with an infinitive *VP* complement (*I want to fly to*...). By contrast, a verb like *find* cannot take this sort of *VP* complement (*I found to fly to Dallas*).

This idea that verbs are compatible with different kinds of complements is a very old one; traditional grammar distinguishes between *transitive* verbs like *find*, which take a direct object *NP* (*I found a flight*), and *intransitive* verbs like *disappear*, which do not (*I disappeared a flight*).

Where traditional grammars subcategorize verbs into these two categories (transitive and intransitive), modern grammars distinguish as many as 100 subcategories. We say that a verb like *find* subcategorizes for an *NP*, and a verb like *want* subcategorizes for either an *NP* or a non-finite *VP*. We also call these constituents the *complements* of the verb (hence our use of the term *sentential complement* above). So we say that *want* can take a *VP* complement. These possible sets of complements are called the *subcategorization frame* for the verb. Another way of talking about the relation between the verb and these other constituents is to think of the verb as a logical predicate and the constituents as logical arguments of the predicate. So we can think of such predicate-argument relations as *FIND*(I, A FLIGHT) or *WANT*(I, TO FLY). We talk more about this view of verbs and arguments in Chapter 19 when we talk about predicate calculus representations of verb semantics. Subcategorization frames for a set of example verbs are given in Fig. 11.6.

We can capture the association between verbs and their complements by making separate subtypes of the class *Verb* (e.g., *Verb-with-NP-complement*, *Verb-with-Inf-VP-complement*, *Verb-with-S-complement*, and so on):

- *Verb-with-NP-complement* → *find* | *leave* | *repeat* | ...
- *Verb-with-S-complement* → *think* | *believe* | *say* | ...
- *Verb-with-Inf-VP-complement* → *want* | *try* | *need* | ...

Each *VP* rule could then be modified to require the appropriate verb subtype:

- *VP* → *Verb-with-no-complement* *disappear*
- *VP* → *Verb-with-NP-comp NP* *prefer a morning flight*
- *VP* → *Verb-with-S-comp S* said there were two flights

A problem with this approach is the significant increase in the number of rules and the associated loss of generality.
11.3.5 Coordination

The major phrase types discussed here can be conjoined with conjunctions like and, or, and but to form larger constructions of the same type. For example, a coordinate noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat \[NP [NP the flights] and [NP the costs]]
I need to know \[NP [NP the aircraft] and [NP the flight number]]

Here’s a rule that allows these structures:

\[NP \rightarrow NP \text{ and } NP\]

Note that the ability to form coordinate phrases through conjunctions is often used as a test for constituency. Consider the following examples, which differ from the ones given above in that they lack the second determiner.

Please repeat the \[Nom [Nom flights] and [Nom costs]]
I need to know the \[Nom [Nom aircraft] and [Nom, flight number]]

The fact that these phrases can be conjoined is evidence for the presence of the underlying Nominal constituent we have been making use of. Here’s a new rule for this:

\[Nominal \rightarrow Nominal \text{ and } Nominal\]

The following examples illustrate conjunctions involving VPs and Ss.

What flights do you have \[VP [VP leaving Denver] and [VP arriving in San Francisco]]
\[S [S I’m interested in a flight from Dallas to Washington] and [S I’m also interested in going to Baltimore]]

The rules for VP and S conjunctions mirror the NP one given above.

\[VP \rightarrow VP \text{ and } VP\]
\[S \rightarrow S \text{ and } S\]

Since all the major phrase types can be conjoined in this fashion, it is also possible to represent this conjunction fact more generally; a number of grammar formalisms such as GPSG ((Gazdar et al., 1985)) do this using metarules such as the following:

\[X \rightarrow X \text{ and } X\]

This metarule simply states that any non-terminal can be conjoined with the same non-terminal to yield a constituent of the same type. Of course, the variable \(X\) must be designated as a variable that stands for any non-terminal rather than a non-terminal itself.

11.4 Treebanks

Sufficiently robust grammars consisting of context-free grammar rules can be used to assign a parse tree to any sentence. This means that it is possible to build a corpus where every sentence in the collection is paired with a corresponding parse
Such a syntactically annotated corpus is called a **treebank**. Treebanks play an important role in parsing, as we discuss in Chapter 12, as well as in linguistic investigations of syntactic phenomena.

A wide variety of treebanks have been created, generally through the use of parsers (of the sort described in the next two chapters) to automatically parse each sentence, followed by the use of humans (linguists) to hand-correct the parses. The **Penn Treebank** project (whose POS tagset we introduced in Chapter 10) has produced treebanks from the Brown, Switchboard, ATIS, and *Wall Street Journal* corpora of English, as well as treebanks in Arabic and Chinese. Other treebanks include the Prague Dependency Treebank for Czech, the Negra treebank for German, and the Susanne treebank for English.

### 11.4.1 Example: The Penn Treebank Project

Figure 11.7 shows sentences from the Brown and ATIS portions of the Penn Treebank.\(^1\) Note the formatting differences for the part-of-speech tags; such small differences are common and must be dealt with in processing treebanks. The Penn Treebank part-of-speech tagset was defined in Chapter 10. The use of LISP-style parenthesized notation for trees is extremely common and resembles the bracketed notation we saw earlier in (11.1). For those who are not familiar with it we show a standard node-and-line tree representation in Fig. 11.8.

![Figure 11.7](image_url)

**Figure 11.7** Parsed sentences from the LDC Treebank3 version of the Brown (a) and ATIS (b) corpora.

Figure 11.9 shows a tree from the *Wall Street Journal*. This tree shows another feature of the Penn Treebanks: the use of **traces** (–NONE– nodes) to mark long-distance dependencies or **syntactic movement**. For example, quotations often follow a quotative verb like *say*. But in this example, the quotation “We would have to wait until we have collected on those assets” precedes the words *he said*. An empty *S* containing only the node –NONE– marks the position after *said* where the quotation sentence often occurs. This empty node is marked (in Treebanks II and III) with the index 2, as is the quotation *S* at the beginning of the sentence. Such co-indexing may make it easier for some parsers to recover the fact that this fronted or topicalized quotation is the complement of the verb *said*. A similar –NONE– node

---

\(^1\) The Penn Treebank project released treebanks in multiple languages and in various stages; for example, there were Treebank I (Marcus et al., 1993), Treebank II (Marcus et al., 1994), and Treebank III releases of English treebanks. We use Treebank III for our examples.
11.4 • Treebanks 183

Figure 11.8 The tree corresponding to the Brown corpus sentence in the previous figure.

marks the fact that there is no syntactic subject right before the verb to wait; instead, the subject is the earlier NP We. Again, they are both co-indexed with the index 1.

Figure 11.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank. Note the use of the empty -NONE- nodes.

The Penn Treebank II and Treebank III releases added further information to make it easier to recover the relationships between predicates and arguments. Cer-
tain phrases were marked with tags indicating the grammatical function of the phrase (as surface subject, logical topic, cleft, non-VP predicates) its presence in particular text categories (headlines, titles), and its semantic function (temporal phrases, locations) (Marcus et al. 1994, Bies et al. 1995). Figure 11.9 shows examples of the -SBJ (surface subject) and -TMP (temporal phrase) tags. Figure 11.8 shows in addition the -PRD tag, which is used for predicates that are not VPs (the one in Fig. 11.8 is an ADJP). We’ll return to the topic of grammatical function when we consider dependency grammars and parsing in Chapter 14.

11.4.2 Treebanks as Grammars

The sentences in a treebank implicitly constitute a grammar of the language represented by the corpus being annotated. For example, from the three parsed sentences in Fig. 11.7 and Fig. 11.9, we can extract each of the CFG rules in them. For simplicity, let’s strip off the rule suffixes (-SBJ and so on). The resulting grammar is shown in Fig. 11.10.

The grammar used to parse the Penn Treebank is relatively flat, resulting in very many and very long rules. For example, among the approximately 4,500 different rules for expanding VPs are separate rules for PP sequences of any length and every possible arrangement of verb arguments:

\[
\begin{align*}
\text{VP} & \rightarrow \text{VBD} \; \text{PP} \\
\text{VP} & \rightarrow \text{VBD} \; \text{PP} \; \text{PP} \\
\text{VP} & \rightarrow \text{VBD} \; \text{PP} \; \text{PP} \; \text{PP} \\
\text{VP} & \rightarrow \text{VB} \; \text{ADVP} \; \text{PP} \\
\text{VP} & \rightarrow \text{VB} \; \text{PP} \; \text{ADVP} \\
\text{VP} & \rightarrow \text{ADVP} \; \text{VB} \; \text{PP}
\end{align*}
\]
as well as even longer rules, such as

\[
\text{VP} \rightarrow \text{VBP PP PP PP PP PP ADVP PP}
\]

which comes from the VP marked in italics:

This mostly happens because we go from football in the fall to lifting in the 
winter to football again in the spring.

Some of the many thousands of NP rules include

\[
\begin{align*}
\text{NP} & \rightarrow \text{DT JJ NN} \\
\text{NP} & \rightarrow \text{DT JJ NNS} \\
\text{NP} & \rightarrow \text{DT JJ NN NN} \\
\text{NP} & \rightarrow \text{DT JJ JJ NN} \\
\text{NP} & \rightarrow \text{DT JJ CD NNS} \\
\text{NP} & \rightarrow \text{RB DT JJ NN NN} \\
\text{NP} & \rightarrow \text{RB DT JJ JJ NNS} \\
\text{NP} & \rightarrow \text{DT JJ NNP NNP NNP JJ NN} \\
\text{NP} & \rightarrow \text{DT JJ NNP CC JJ JJ NN NNS} \\
\text{NP} & \rightarrow \text{RB DT JJSS NN NN SBAR} \\
\text{NP} & \rightarrow \text{DT VBG JJ NNP NNP CC NNP} \\
\text{NP} & \rightarrow \text{DT JJ NNS , NNS CC NN NNS NN} \\
\text{NP} & \rightarrow \text{DT JJ JJ VBG NN NNP NNP FW NNP} \\
\text{NP} & \rightarrow \text{NP JJ , JJ "SBAR " NNS}
\end{align*}
\]

The last two of those rules, for example, come from the following two noun phrases:

\[
[\text{DT The}] [\text{JJ state-owned}] [\text{JJ industrial}] [\text{VBG holding}] [\text{NN company}] [\text{NNP Instituto}] \\
[\text{NNP Nacional}] [\text{FW de}] [\text{NNP Industria}] \\
[\text{NP Shearson's}] [\text{JJ easy-to-film}] [\text{JJ black-and-white}] ["SBAR Where We Stand"] \\
[\text{NNS commercials}]
\]

Viewed as a large grammar in this way, the Penn Treebank III Wall Street Journal corpus, which contains about 1 million words, also has about 1 million non-lexical rule tokens, consisting of about 17,500 distinct rule types.

Various facts about the treebank grammars, such as their large numbers of flat rules, pose problems for probabilistic parsing algorithms. For this reason, it is common to make various modifications to a grammar extracted from a treebank. We discuss these further in Chapter 13.

11.4.3 Heads and Head Finding

We suggested informally earlier that syntactic constituents could be associated with a lexical head; \(N\) is the head of an \(NP\), \(V\) is the head of a \(VP\). This idea of a head for each constituent dates back to Bloomfield (1914). It is central to constituent-based grammar formalisms such as Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994), as well as the dependency-based approaches to grammar we’ll discuss in Chapter 14. Heads and head-dependent relations have also come to play a central role in computational linguistics with their use in probabilistic parsing (Chapter 13) and in dependency parsing (Chapter 14).

In one simple model of lexical heads, each context-free rule is associated with a head (Charniak 1997, Collins 1999). The head is the word in the phrase that is grammatically the most important. Heads are passed up the parse tree; thus, each non-terminal in a parse tree is annotated with a single word, which is its lexical head.
Figure 11.11 shows an example of such a tree from Collins (1999), in which each non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify one right-side constituent to be the head daughter. The headword for a node is then set to the headword of its head daughter. Choosing these head daughters is simple for textbook examples (NN is the head of NP) but is complicated and indeed controversial for most phrases. (Should the complementizer to or the verb be the head of an infinite verb-phrase?) Modern linguistic theories of syntax generally include a component that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational systems. Instead of specifying head rules in the grammar itself, heads are identified dynamically in the context of trees for specific sentences. In other words, once a sentence is parsed, the resulting tree is walked to decorate each node with the appropriate head. Most current systems rely on a simple set of hand-written rules, such as a practical one for Penn Treebank grammars given in Collins (1999) but developed originally by Magerman (1995). For example, the rule for finding the head of an NP is as follows (Collins, 1999, p. 238):

- If the last word is tagged POS, return last-word.
- Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS, or JJR.
- Else search from left to right for the first child which is an NP.
- Else search from right to left for the first child which is a $, ADJP, or PRN.
- Else search from right to left for the first child which is a CD.
- Else search from right to left for the first child which is a JJ, JJS, RB or QP.
- Else return the last word

Selected other rules from this set are shown in Fig. 11.12. For example, for VP rules of the form $VP \rightarrow Y_1 \cdots Y_n$, the algorithm would start from the left of $Y_1 \cdots Y_n$ looking for the first $Y_i$ of type TO; if no TOs are found, it would search for the first $Y_i$ of type VBD; if no VBDs are found, it would search for a VBN, and so on. See Collins (1999) for more details.
A formal language is defined as a (possibly infinite) set of strings of words. This suggests that we could ask if two grammars are equivalent by asking if they generate the same set of strings. In fact, it is possible to have two distinct context-free grammars generate the same language.

We usually distinguish two kinds of grammar equivalence: **weak equivalence** and **strong equivalence**. Two grammars are strongly equivalent if they generate the same set of strings and if they assign the same phrase structure to each sentence (allowing merely for renaming of the non-terminal symbols). Two grammars are weakly equivalent if they generate the same set of strings but do not assign the same phrase structure to each sentence.

It is sometimes useful to have a **normal form** for grammars, in which each of the productions takes a particular form. For example, a context-free grammar is in **Chomsky normal form** (CNF) (Chomsky, 1963) if it is $\epsilon$-free and if in addition each production is either of the form $A \rightarrow B C$ or $A \rightarrow a$. That is, the right-hand side of each rule either has two non-terminal symbols or one terminal symbol. Chomsky normal form grammars are **binary branching**, that is they have binary trees (down to the prelexical nodes). We make use of this binary branching property in the CKY parsing algorithm in Chapter 12.

Any context-free grammar can be converted into a weakly equivalent Chomsky normal form grammar. For example, a rule of the form

$$A \rightarrow B C D$$

can be converted into the following two CNF rules (Exercise 11.8 asks the reader to formulate the complete algorithm):

$$A \rightarrow B X$$
$$X \rightarrow C D$$

Sometimes using binary branching can actually produce smaller grammars. For example, the sentences that might be characterized as

$$VP \rightarrow VBD \ NP \ PP^*$$

are represented in the Penn Treebank by this series of rules:

$$VP \rightarrow VBD \ NP \ PP$$
$$VP \rightarrow VBD \ NP \ PP \ PP$$

### 11.5 Grammar Equivalence and Normal Form

<table>
<thead>
<tr>
<th>Parent</th>
<th>Direction</th>
<th>Priority List</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJP</td>
<td>Left</td>
<td>NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS SBAR RB</td>
</tr>
<tr>
<td>ADVP</td>
<td>Right</td>
<td>RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN</td>
</tr>
<tr>
<td>PRN</td>
<td>Left</td>
<td></td>
</tr>
<tr>
<td>PRT</td>
<td>Right</td>
<td>RP</td>
</tr>
<tr>
<td>QP</td>
<td>Left</td>
<td>$ IN NNS NN JJ RB DT CD NCD QP JJR JJS</td>
</tr>
<tr>
<td>S</td>
<td>Left</td>
<td>TO IN VP S SBAR ADJP UCP NP</td>
</tr>
<tr>
<td>SBAR</td>
<td>Left</td>
<td>WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG</td>
</tr>
<tr>
<td>VP</td>
<td>Left</td>
<td>TO VBD VBN MD VBY VB VBG VBP VP ADJP NN NNS NP</td>
</tr>
</tbody>
</table>

*Figure 11.12* Selected head rules from Collins (1999). The set of head rules is often called a head percolation table.
but could also be generated by the following two-rule grammar:

\[
\begin{align*}
\text{VP} & \rightarrow \text{VBD} \text{ NP} \text{ PP} \\
\text{VP} & \rightarrow \text{VBD} \text{ NP} \text{ PP} \text{ PP} \\
\text{VP} & \rightarrow \text{VP} \text{ PP} \\
\text{VP} & \rightarrow \text{VP} \text{ PP} \\
\end{align*}
\]

The generation of a symbol A with a potentially infinite sequence of symbols B with a rule of the form \( A \rightarrow A \ B \) is known as Chomsky-adjunction.

### 11.6 Lexicalized Grammars

The approach to grammar presented thus far emphasizes phrase-structure rules while minimizing the role of the lexicon. However, as we saw in the discussions of agreement, subcategorization, and long distance dependencies, this approach leads to solutions that are cumbersome at best, yielding grammars that are redundant, hard to manage, and brittle. To overcome these issues, numerous alternative approaches have been developed that all share the common theme of making better use of the lexicon. Among the more computationally relevant approaches are Lexical-Functional Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi, 1985), and Combinatory Categorial Grammar (CCG). These approaches differ with respect to how lexicalized they are — the degree to which they rely on the lexicon as opposed to phrase structure rules to capture facts about the language.

The following section provides an introduction to CCG, a heavily lexicalized approach motivated by both syntactic and semantic considerations, which we will return to in Chapter 19. Chapter 14 discusses dependency grammars, an approach that eliminates phrase-structure rules entirely.

#### 11.6.1 Combinatory Categorial Grammar

In this section, we provide an overview of categorial grammar (Ajdukiewicz 1935, Bar-Hillel 1953), an early lexicalized grammar model, as well as an important modern extension, combinatory categorial grammar, or CCG (Steedman 1996, Steedman 1989, Steedman 2000).

The categorial approach consists of three major elements: a set of categories, a lexicon that associates words with categories, and a set of rules that govern how categories combine in context.

**Categories**

Categories are either atomic elements or single-argument functions that return a category as a value when provided with a desired category as argument. More formally, we can define \( \mathcal{C} \), a set of categories for a grammar as follows:

- \( \mathcal{A} \subseteq \mathcal{C} \), where \( \mathcal{A} \) is a given set of atomic elements
- \( (X/Y), (X\setminus Y) \in \mathcal{C} \), if \( X, Y \in \mathcal{C} \)

The slash notation shown here is used to define the functions in the grammar. It specifies the type of the expected argument, the direction it is expected to be found,
and the type of the result. Thus, \((X/Y)\) is a function that seeks a constituent of type \(Y\) to its right and returns a value of \(X\); \((X\setminus Y)\) is the same except it seeks its argument to the left.

The set of atomic categories is typically very small and includes familiar elements such as sentences and noun phrases. Functional categories include verb phrases and complex noun phrases among others.

The Lexicon

The lexicon in a categorial approach consists of assignments of categories to words. These assignments can either be to atomic or functional categories, and due to lexical ambiguity words can be assigned to multiple categories. Consider the following sample lexical entries.

- **flight**: \(N\)
- **Miami**: \(NP\)
- **cancel**: \((S\setminus NP)/NP\)

Nouns and proper nouns like `flight` and `Miami` are assigned to atomic categories, reflecting their typical role as arguments to functions. On the other hand, a transitive verb like `cancel` is assigned the category \((S\setminus NP)/NP\): a function that seeks an \(NP\) on its right and returns as its value a function with the type \((S\setminus NP)\). This function can, in turn, combine with an \(NP\) on the left, yielding an \(S\) as the result. This captures the kind of subcategorization information discussed in Section 11.3.4, however here the information has a rich, computationally useful, internal structure.

Ditransitive verbs like `give`, which expect two arguments after the verb, would have the category \(((S\setminus NP)/NP)/NP\): a function that combines with an \(NP\) on its right to yield yet another function corresponding to the transitive verb \((S\setminus NP)/NP\) category such as the one given above for `cancel`.

Rules

The rules of a categorial grammar specify how functions and their arguments combine. The following two rule templates constitute the basis for all categorial grammars.

\[
\begin{align*}
X/Y \ Y & \Rightarrow X \\
Y \ X\setminus Y & \Rightarrow X
\end{align*}
\]

The first rule applies a function to its argument on the right, while the second looks to the left for its argument. We’ll refer to the first as forward function application, and the second as backward function application. The result of applying either of these rules is the category specified as the value of the function being applied.

Given these rules and a simple lexicon, let’s consider an analysis of the sentence `United serves Miami`. Assume that `serves` is a transitive verb with the category \((S\setminus NP)/NP\) and that `United` and `Miami` are both simple \(NP\)s. Using both forward and backward function application, the derivation would proceed as follows:

\[
\begin{array}{c|ccc}
\hline
\text{United} & \text{serves} & \text{Miami} \\
\hline
\text{NP} & \text{(S\setminus NP)/NP} & \text{NP} \\
\hline
 & \text{S\setminus NP} \\
\hline
 & \text{S}
\end{array}
\]
Categorial grammar derivations are illustrated growing down from the words, rule applications are illustrated with a horizontal line that spans the elements involved, with the type of the operation indicated at the right end of the line. In this example, there are two function applications: one forward function application indicated by the $\triangleright$ that applies the verb \textit{serves} to the \textit{NP} on its right, and one backward function application indicated by the $\triangleleft$ that applies the result of the first to the \textit{NP United} on its left.

With the addition of another rule, the categorial approach provides a straightforward way to implement the coordination metarule described earlier on page 181. Recall that English permits the coordination of two constituents of the same type, resulting in a new constituent of the same type. The following rule provides the mechanism to handle such examples.

$$X \text{ CONJ } X \Rightarrow X$$  \hspace{1cm} (11.6)

This rule states that when two constituents of the same category are separated by a constituent of type \textit{CONJ} they can be combined into a single larger constituent of the same type. The following derivation illustrates the use of this rule.

$$
\begin{array}{cccccccc}
\text{We} & \text{flew} & \text{to} & \text{Geneva} & \text{and} & \text{drove} & \text{to} & \text{Chamonix} \\
\text{NP} & (S\backslash NP)/PP & \text{PP/} & \text{NP} & \text{CONJ} & (S\backslash NP)/PP & \text{PP/} & \text{NP} \\
\text{PP} & \triangleright & \text{S}\backslash NP & \triangleright & \text{S}\backslash NP & \text{<Φ> } \\
\text{S}\backslash NP & \triangleleft & \text{S} \\
\end{array}
$$

Here the two $S\backslash NP$ constituents are combined via the conjunction operator $\triangleleft \Phi$ to form a larger constituent of the same type, which can then be combined with the subject \textit{NP} via backward function application.

These examples illustrate the lexical nature of the categorial grammar approach. The grammatical facts about a language are largely encoded in the lexicon, while the rules of the grammar are boiled down to a set of three rules. Unfortunately, the basic categorial approach does not give us any more expressive power than we had with traditional CFG rules; it just moves information from the grammar to the lexicon. To move beyond these limitations CCG includes operations that operate over functions.

The first pair of operators permit us to \textbf{compose} adjacent functions.

$$X/Y \ Y/Z \Rightarrow X/Z$$  \hspace{1cm} (11.7)

$$Y/Z \ X\backslash Y \Rightarrow X\backslash Z$$  \hspace{1cm} (11.8)

The first rule, called \textbf{forward composition}, can be applied to adjacent constituents where the first is a function seeking an argument of type \textit{Y} to its right, and the second is a function that provides \textit{Y} as a result. This rule allows us to compose these two functions into a single one with the type of the first constituent and the argument of the second. Although the notation is a little awkward, the second rule, \textbf{backward composition} is the same, except that we’re looking to the left instead of to the right for the relevant arguments. Both kinds of composition are signalled by a \textbf{B} in CCG diagrams, accompanied by a $\triangleleft$ or $\triangleright$ to indicate the direction.

The next operator is \textbf{type raising}. Type raising elevates simple categories to the status of functions. More specifically, type raising takes a category and converts it to function that seeks as an argument a function that takes the original category...
as its argument. The following schema show two versions of type raising: one for arguments to the right, and one for the left.

\[
X \Rightarrow T/(T\setminus X) \quad (11.9)
\]

\[
X \Rightarrow T\setminus(T/X) \quad (11.10)
\]

The category \( T \) in these rules can correspond to any of the atomic or functional categories already present in the grammar.

A particularly useful example of type raising transforms a simple \( NP \) argument in subject position to a function that can compose with a following \( VP \). To see how this works, let’s revisit our earlier example of \( \text{United serves Miami} \). Instead of classifying \( \text{United} \) as an \( NP \) which can serve as an argument to the function attached to \( \text{serve} \), we can use type raising to reinvent it as a function in its own right as follows.

\[
NP \Rightarrow S/(S\setminus NP)
\]

Combining this type-raised constituent with the forward composition rule (11.7) permits the following alternative to our previous derivation.

\[
\begin{array}{c}
\text{United} \\
\text{NP}
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{serves} \\
(S\setminus NP)/NP \\
\text{NP}
\end{array} \quad \Rightarrow \quad \\
\begin{array}{c}
S/(S\setminus NP) \\
\end{array} \Rightarrow ^{T} \quad \begin{array}{c}
S/\NP \\
\end{array} \Rightarrow ^{B} \quad \begin{array}{c}
S
\end{array}
\]

By type raising \( \text{United} \) to \( S/(S\setminus NP) \), we can compose it with the transitive verb \( \text{serves} \) to yield the \( (S/\NP) \) function needed to complete the derivation.

There are several interesting things to note about this derivation. First, is it provides a left-to-right, word-by-word derivation that more closely mirrors the way humans process language. This makes CCG a particularly apt framework for psycholinguistic studies. Second, this derivation involves the use of an intermediate unit of analysis, \( \text{United serves} \), that does not correspond to a traditional constituent in English. This ability to make use of such non-constituent elements provides CCG with the ability to handle the coordination of phrases that are not proper constituents, as in the following example.

\[(11.11) \text{We flew IcelandAir to Geneva and SwissAir to London.}\]

Here, the segments that are being coordinated are \( \text{IcelandAir to Geneva} \) and \( \text{SwissAir to London} \), phrases that would not normally be considered constituents, as can be seen in the following standard derivation for the verb phrase \( \text{flew IcelandAir to Geneva} \).

\[
\begin{array}{c}
\text{flew} \\
(VP/PP)/\NP \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{IcelandAir} \\
\text{NP} \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{to} \\
PP/\NP \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{Geneva} \\
\NP
\end{array} \quad \Rightarrow \quad \\
\begin{array}{c}
VP/PP \\
\end{array} \Rightarrow \quad \begin{array}{c}
\text{PP} \\
\end{array} \Rightarrow \quad \begin{array}{c}
\end{array}
\]

In this derivation, there is no single constituent that corresponds to \( \text{IcelandAir to Geneva} \), and hence no opportunity to make use of the \(<\Phi>\) operator. Note that complex CCG categories can can get a little cumbersome, so we’ll use \( VP \) as a shorthand for \( (S/\NP) \) in this and the following derivations.

The following alternative derivation provides the required element through the use of both backward type raising (11.10) and backward function composition (11.8).
flew IcelandAir to Geneva

\[
\begin{align*}
(VP/PP)/NP & \rightarrow NP \\
(VP/PP)/(VP/PP) & \rightarrow PP \\
(VP/PP)/(VP/PP) & \rightarrow VP/(VP/PP) \\
\end{align*}
\]

Applying the same analysis to SwissAir to London satisfies the requirements for the \(<\Phi>\) operator, yielding the following derivation for our original example (11.11).

Finally, let’s examine how these advanced operators can be used to handle long-distance dependencies (also referred to as syntactic movement or extraction). As mentioned in Section 11.3.1, long-distance dependencies arise from many English constructions including wh-questions, relative clauses, and topicalization. What these constructions have in common is a constituent that appears somewhere distant from its usual, or expected, location. Consider the following relative clause as an example.

the flight that United diverted

Here, divert is a transitive verb that expects two NP arguments, a subject NP to its left and a direct object NP to its right; its category is therefore \((S/\NP)/\NP\). However, in this example the direct object the flight has been “moved” to the beginning of the clause, while the subject United remains in its normal position. What is needed is a way to incorporate the subject argument, while dealing with the fact that the flight is not in its expected location.

The following derivation accomplishes this, again through the combined use of type raising and function composition.

As we saw with our earlier examples, the first step of this derivation is type raising United to the category \(S/(S/\NP)\) allowing it to combine with diverted via forward composition. The result of this composition is \(S/\NP\) which preserves the fact that we are still looking for an NP to fill the missing direct object. The second critical piece is the lexical category assigned to the word that: \((NP/\NP)/(S/\NP)\). This function seeks a verb phrase missing an argument to its right, and transforms it into an NP seeking a missing element to its left, precisely where we find the flight.
CCGBank

As with phrase-structure approaches, treebanks play an important role in CCG-based approaches to parsing. CCGBank (Hockenmaier and Steedman, 2007) is the largest and most widely used CCG treebank. It was created by automatically translating phrase-structure trees from the Penn Treebank via a rule-based approach. The method produced successful translations of over 99% of the trees in the Penn Treebank resulting in 48,934 sentences paired with CCG derivations. It also provides a lexicon of 44,000 words with over 1200 categories. Chapter 13 will discuss how these resources can be used to train CCG parsers.

11.7 Summary

This chapter has introduced a number of fundamental concepts in syntax through the use of context-free grammars.

- In many languages, groups of consecutive words act as a group or a constituent, which can be modeled by context-free grammars (which are also known as phrase-structure grammars).
- A context-free grammar consists of a set of rules or productions, expressed over a set of non-terminal symbols and a set of terminal symbols. Formally, a particular context-free language is the set of strings that can be derived from a particular context-free grammar.
- A generative grammar is a traditional name in linguistics for a formal language that is used to model the grammar of a natural language.
- There are many sentence-level grammatical constructions in English; declarative, imperative, yes-no question, and wh-question are four common types; these can be modeled with context-free rules.
- An English noun phrase can have determiners, numbers, quantifiers, and adjective phrases preceding the head noun, which can be followed by a number of postmodifiers; gerundive VPs, infinitives VPs, and past participial VPs are common possibilities.
- Subjects in English agree with the main verb in person and number.
- Verbs can be subcategorized by the types of complements they expect. Simple subcategories are transitive and intransitive; most grammars include many more categories than these.
- Treebanks of parsed sentences exist for many genres of English and for many languages. Treebanks can be searched with tree-search tools.
- Any context-free grammar can be converted to Chomsky normal form, in which the right-hand side of each rule has either two non-terminals or a single terminal.
- Lexicalized grammars place more emphasis on the structure of the lexicon, lessening the burden on pure phrase-structure rules.
- Combinatorial categorial grammar (CCG) is an important computationally relevant lexicalized approach.
Bibliographical and Historical Notes

[The origin of the idea of phrasal constituency, cited in Percival (1976)]:

\[\text{den sprachlichen Ausdruck für die willkürliche Gliederung einer Gesammtvorstellung in ihre in logische Beziehung zueinander gesetzten Bestandteile'}\]

[the linguistic expression for the arbitrary division of a total idea into its constituent parts placed in logical relations to one another]

W. Wundt

According to Percival (1976), the idea of breaking up a sentence into a hierarchy of constituents appeared in the Völkerpsychologie of the groundbreaking psychologist Wilhelm Wundt (Wundt, 1900). Wundt’s idea of constituency was taken up into linguistics by Leonard Bloomfield in his early book An Introduction to the Study of Language (Bloomfield, 1914). By the time of his later book, Language (Bloomfield, 1933), what was then called “immediate-constituent analysis” was a well-established method of syntactic study in the United States. By contrast, traditional European grammar, dating from the Classical period, defined relations between words rather than constituents, and European syntacticians retained this emphasis on such dependency grammars, the subject of Chapter 14.

American Structuralism saw a number of specific definitions of the immediate constituent, couched in terms of their search for a “discovery procedure”: a methodological algorithm for describing the syntax of a language. In general, these attempts to capture the intuition that “The primary criterion of the immediate constituent is the degree in which combinations behave as simple units” (Bazell, 1966, p. 284). The most well known of the specific definitions is Harris’ idea of distributional similarity to individual units, with the substitutability test. Essentially, the method proceeded by breaking up a construction into constituents by attempting to substitute simple structures for possible constituents—if a substitution of a simple form, say, man, was substitutable in a construction for a more complex set (like intense young man), then the form intense young man was probably a constituent. Harris’s test was the beginning of the intuition that a constituent is a kind of equivalence class.

The first formalization of this idea of hierarchical constituency was the phrase-structure grammar defined in Chomsky (1956) and further expanded upon (and argued against) in Chomsky (1957) and Chomsky (1975). From this time on, most generative linguistic theories were based at least in part on context-free grammars or generalizations of them (such as Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994), Lexical-Functional Grammar (Bresnan, 1982), Government and Binding (Chomsky, 1981), and Construction Grammar (Kay and Fillmore, 1999), inter alia); many of these theories used schematic context-free templates known as X-bar schemata, which also relied on the notion of syntactic head.

Shortly after Chomsky’s initial work, the context-free grammar was reinvented by Backus (1959) and independently by Naur et al. (1960) in their descriptions of the ALGOL programming language; Backus (1996) noted that he was influenced by the productions of Emil Post and that Naur’s work was independent of his (Backus’) own. (Recall the discussion on page ?? of multiple invention in science.) After this early work, a great number of computational models of natural language processing were based on context-free grammars because of the early development of efficient algorithms to parse these grammars (see Chapter 12).
As we have already noted, grammars based on context-free rules are not ubiquitous. Various classes of extensions to CFGs are designed specifically to handle long-distance dependencies. We noted earlier that some grammars treat long-distance-dependent items as being related semantically but not syntactically; the surface syntax does not represent the long-distance link (Kay and Fillmore 1999, Culicover and Jackendoff 2005). But there are alternatives.

One extended formalism is Tree Adjoining Grammar (TAG) (Joshi, 1985). The primary TAG data structure is the tree, rather than the rule. Trees come in two kinds: initial trees and auxiliary trees. Initial trees might, for example, represent simple sentential structures, and auxiliary trees add recursion into a tree. Trees are combined by two operations called substitution and adjunction. The adjunction operation handles long-distance dependencies. See Joshi (1985) for more details. An extension of Tree Adjoining Grammar, called Lexicalized Tree Adjoining Grammars is discussed in Chapter 13. Tree Adjoining Grammar is a member of the family of mildly context-sensitive languages.

We mentioned on page 182 another way of handling long-distance dependencies, based on the use of empty categories and co-indexing. The Penn Treebank uses this model, which draws (in various Treebank corpora) from the Extended Standard Theory and Minimalism (Radford, 1997).

Readers interested in the grammar of English should get one of the three large reference grammars of English: Huddleston and Pullum (2002), Biber et al. (1999), and Quirk et al. (1985). Another useful reference is McCawley (1998).

There are many good introductory textbooks on syntax from different perspectives. Sag et al. (2003) is an introduction to syntax from a generative perspective, focusing on the use of phrase-structure rules, unification, and the type hierarchy in Head-Driven Phrase Structure Grammar. Van Valin, Jr. and La Polla (1997) is an introduction from a functional perspective, focusing on cross-linguistic data and on the functional motivation for syntactic structures.

Exercises

11.1 Draw tree structures for the following ATIS phrases:
1. Dallas
2. from Denver
3. after five p.m.
4. arriving in Washington
5. early flights
6. all redeye flights
7. on Thursday
8. a one-way fare
9. any delays in Denver

11.2 Draw tree structures for the following ATIS sentences:
1. Does American airlines have a flight between five a.m. and six a.m.?
2. I would like to fly on American airlines.
3. Please repeat that.
4. Does American 487 have a first-class section?
5. I need to fly between Philadelphia and Atlanta.
6. What is the fare from Atlanta to Denver?
7. Is there an American airlines flight from Philadelphia to Dallas?

11.3 Assume a grammar that has many VP rules for different subcategorizations, as expressed in Section 11.3.4, and differently subcategorized verb rules like Verb-with-NP-complement. How would the rule for postnominal relative clauses (11.4) need to be modified if we wanted to deal properly with examples like the earliest flight that you have? Recall that in such examples the pronoun that is the object of the verb get. Your rules should allow this noun phrase but should correctly rule out the ungrammatical S *I get.

11.4 Does your solution to the previous problem correctly model the NP the earliest flight that I can get? How about the earliest flight that I think my mother wants me to book for her? Hint: this phenomenon is called long-distance dependency.

11.5 Write rules expressing the verbal subcategory of English auxiliaries; for example, you might have a rule verb-with-bare-stem-VP-complement → can.

11.6 NPs like Fortune’s office or my uncle’s marks are called possessive or genitive noun phrases. We can model possessive noun phrases by treating the sub-NP like Fortune’s or my uncle’s as a determiner of the following head noun. Write grammar rules for English possessives. You may treat ‘s as if it were a separate word (i.e., as if there were always a space before ‘s).

11.7 Page 175 discussed the need for a Wh-NP constituent. The simplest Wh-NP is one of the Wh-pronouns (who, whom, whose, which). The Wh-words what and which can be determiners: which four will you have?, what credit do you have with the Duke? Write rules for the different types of Wh-NPs.

11.8 Write an algorithm for converting an arbitrary context-free grammar into Chomsky normal form.
We introduced parsing in Chapter 3 as a combination of recognizing an input string and assigning a structure to it. Syntactic parsing, then, is the task of recognizing a sentence and assigning a syntactic structure to it. This chapter focuses on the kind of structures assigned by context-free grammars of the kind described in Chapter 11. Since they are based on a purely declarative formalism, context-free grammars don’t specify how the parse tree for a given sentence should be computed. We therefore need to specify algorithms that employ these grammars to efficiently produce correct trees.

Parse trees are directly useful in applications such as grammar checking in word-processing systems: a sentence that cannot be parsed may have grammatical errors (or at least be hard to read). More typically, however, parse trees serve as an important intermediate stage of representation for semantic analysis (as we show in Chapter 20) and thus play an important role in applications like question answering and information extraction. For example, to answer the question

What books were written by British women authors before 1800?

we’ll need to know that the subject of the sentence was what books and that the by-adjunct was British women authors to help us figure out that the user wants a list of books (and not a list of authors).

Before presenting any algorithms, we begin by discussing how the ambiguity arises again in this context and the problems it presents. The section that follows then presents the Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965, Younger 1967), the standard dynamic programming approach to syntactic parsing. Recall that we’ve already seen several applications of dynamic programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, and Forward. Finally, we discuss partial parsing methods, for use in situations in which a superficial syntactic analysis of an input may be sufficient.

12.1 Ambiguity

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.
Groucho Marx, Animal Crackers, 1930

Ambiguity is perhaps the most serious problem faced by syntactic parsers. Chapter 10 introduced the notions of part-of-speech ambiguity and part-of-speech disambiguation. Here, we introduce a new kind of ambiguity, called structural ambiguity, which arises from many commonly used rules in phrase-structure grammars. To illustrate the issues associated with structural ambiguity, we’ll make use of a new toy grammar $L_1$, shown in Figure 12.1, which consists of the $L_0$ grammar from the last chapter augmented with a few additional rules.
### Figure 12.1 The $L_1$ miniature English grammar and lexicon.

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$Det \rightarrow that</td>
</tr>
<tr>
<td>$S \rightarrow Aux NP \ VP$</td>
<td>$Noun \rightarrow book</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$Verb \rightarrow book</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$Pronoun \rightarrow I</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$Proper-Noun \rightarrow Houston</td>
</tr>
<tr>
<td>$NP \rightarrow Det Nominal$</td>
<td>$Aux \rightarrow does$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Noun$</td>
<td>$Preposition \rightarrow from</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal Noun$</td>
<td></td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal PP$</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow Verb$</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow Verb NP$</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow Verb NP PP$</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow Verb PP$</td>
<td></td>
</tr>
<tr>
<td>$VP \rightarrow VP PP$</td>
<td></td>
</tr>
<tr>
<td>$PP \rightarrow Preposition NP$</td>
<td></td>
</tr>
</tbody>
</table>

Structural ambiguity occurs when the grammar can assign more than one parse to a sentence. Groucho Marx’s well-known line as Captain Spaulding in *Animal Crackers* is ambiguous because the phrase *in my pajamas* can be part of the NP headed by *elephant* or a part of the verb phrase headed by *shot*. Figure 12.2 illustrates these two analyses of Marx’s line using rules from $L_1$.

Structural ambiguity, appropriately enough, comes in many forms. Two common kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be attached to the parse tree at more than one place. The Groucho Marx sentence is an example of PP-attachment ambiguity. Various kinds of adverbial phrases are also subject to this kind of ambiguity. For instance, in the following example the gerundive-VP *flying to Paris* can be part of a gerundive sentence whose subject is *the Eiffel Tower* or it can be an adjunct modifying the VP headed by *saw*:

(12.1) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity different sets of phrases can be conjoined by a conjunction like *and*. For example, the phrase *old men and women* can be bracketed as *[old [men and women]]*, referring to *old men* and *old women*, or as *[old men] and [women]*, in which case it is only the men who are old.

These ambiguities combine in complex ways in real sentences. A program that summarized the news, for example, would need to be able to parse sentences like the following from the Brown corpus:

(12.2) President Kennedy today pushed aside other White House business to devote all his time and attention to working on the Berlin crisis address he will deliver tomorrow night to the American people over nationwide television and radio.

This sentence has a number of ambiguities, although since they are semantically unreasonable, it requires a careful reading to see them. The last noun phrase could be parsed *[nationwide [television and radio]]* or *[nationwide television] and radio*. The direct object of *pushed aside* should be *other White House business* but could also be the bizarre phrase *[other White House business to devote all his time and attention to working]* (i.e., a structure like *Kennedy affirmed [his intention to propose*...*].
Figure 12.2  Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which Captain Spaulding did the shooting in his pajamas.

The fact that there are many grammatically correct but semantically unreasonable parses for naturally occurring sentences is an irksome problem that affects all parsers. Ultimately, most natural language processing systems need to be able to choose a single correct parse from the multitude of possible parses through a process of syntactic disambiguation. Effective disambiguation algorithms require statistical, semantic, and contextual knowledge sources that vary in how well they can be integrated into parsing algorithms.

Fortunately, the CKY algorithm presented in the next section is designed to efficiently handle structural ambiguities of the kind we’ve been discussing. And as we’ll see in Chapter 13, there are straightforward ways to integrate statistical techniques into the basic CKY framework to produce highly accurate parsers.

12.2 CKY Parsing: A Dynamic Programming Approach

The previous section introduced some of the problems associated with ambiguous grammars. Fortunately, **dynamic programming** provides a powerful framework for addressing these problems, just as it did with the Minimum Edit Distance, Viterbi, and Forward algorithms. Recall that dynamic programming approaches systematically fill in tables of solutions to sub-problems. When complete, the tables contain the solution to all the sub-problems needed to solve the problem as a whole. In the case of syntactic parsing, these sub-problems represent parse trees for all the constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our grammar rules — once a constituent has been discovered in a segment of the input
we can record its presence and make it available for use in any subsequent derivation that might require it. This provides both time and storage efficiencies since subtrees can be looked up in a table, not reanalyzed. This section presents the Cocke–Kasami–Younger (CKY) algorithm, the most widely used dynamic-programming based approach to parsing. Related approaches include the Earley algorithm (Earley, 1970) and chart parsing (Kaplan 1973, Kay 1982).

12.2.1 Conversion to Chomsky Normal Form

We begin our investigation of the CKY algorithm by examining the requirement that grammars used with it must be in Chomsky Normal Form (CNF). Recall from Chapter 11 that grammars in CNF are restricted to rules of the form $A \rightarrow B C$ or $A \rightarrow w$. That is, the right-hand side of each rule must expand either to two non-terminals or to a single terminal. Restricting a grammar to CNF does not lead to any loss in expressiveness, since any context-free grammar can be converted into a corresponding CNF grammar that accepts exactly the same set of strings as the original grammar.

Let’s start with the process of converting a generic CFG into one represented in CNF. Assuming we’re dealing with an $\epsilon$-free grammar, there are three situations we need to address in any generic grammar: rules that mix terminals with non-terminals on the right-hand side, rules that have a single non-terminal on the right-hand side, and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce a new dummy non-terminal that covers only the original terminal. For example, a rule for an infinitive verb phrase such as $INF-VP \rightarrow to VP$ would be replaced by the two rules $INF-VP \rightarrow TO VP$ and $TO \rightarrow to$.

Rules with a single non-terminal on the right are called unit productions. We can eliminate unit productions by rewriting the right-hand side of the original rules with the right-hand side of all the non-unit production rules that they ultimately lead to. More formally, if $A \Rightarrow B$ by a chain of one or more unit productions and $B \rightarrow \gamma$ is a non-unit production in our grammar, then we add $A \rightarrow \gamma$ for each such rule in the grammar and discard all the intervening unit productions. As we demonstrate with our toy grammar, this can lead to a substantial flattening of the grammar and a consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduction of new non-terminals that spread the longer sequences over several new rules. Formally, if we have a rule like

$$A \rightarrow B C \gamma$$

we replace the leftmost pair of non-terminals with a new non-terminal and introduce a new production result in the following new rules:

$$A \rightarrow X1 \gamma$$
$$X1 \rightarrow B C$$

In the case of longer right-hand sides, we simply iterate this process until the offending rule has been replaced by rules of length 2. The choice of replacing the leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results in binary rules would suffice.

In our current grammar, the rule $S \rightarrow Aux NP VP$ would be replaced by the two rules $S \rightarrow X1 VP$ and $X1 \rightarrow Aux NP$. 

<table>
<thead>
<tr>
<th>$L_1$ Grammar</th>
<th>$L_1$ in CNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>$S \rightarrow NP \ VP$</td>
</tr>
<tr>
<td>$S \rightarrow Aux \ NP \ VP$</td>
<td>$S \rightarrow XL \ VP$</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>$S \rightarrow book \</td>
</tr>
<tr>
<td>$S \rightarrow NP$</td>
<td>$S \rightarrow VP$</td>
</tr>
<tr>
<td>$S \rightarrow VP PP$</td>
<td>$S \rightarrow VP PP$</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>$NP \rightarrow I \</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>$NP \rightarrow TWA \</td>
</tr>
<tr>
<td>$NP \rightarrow Det Nominal$</td>
<td>$NP \rightarrow Det Nominal$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Noun$</td>
<td>Nominal $\rightarrow book \</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal Noun$</td>
<td>Nominal $\rightarrow Nominal Noun$</td>
</tr>
<tr>
<td>Nominal $\rightarrow Nominal PP$</td>
<td>Nominal $\rightarrow Nominal PP$</td>
</tr>
<tr>
<td>VP $\rightarrow Verb$</td>
<td>VP $\rightarrow book \</td>
</tr>
<tr>
<td>VP $\rightarrow Verb NP$</td>
<td>VP $\rightarrow Verb NP$</td>
</tr>
<tr>
<td>VP $\rightarrow Verb NP PP$</td>
<td>VP $\rightarrow X2 PP$</td>
</tr>
<tr>
<td>VP $\rightarrow Verb PP$</td>
<td>$X2 \rightarrow Verb NP$</td>
</tr>
<tr>
<td>VP $\rightarrow VP PP$</td>
<td>VP $\rightarrow VP PP$</td>
</tr>
<tr>
<td>PP $\rightarrow Preposition NP$</td>
<td>PP $\rightarrow Preposition NP$</td>
</tr>
</tbody>
</table>

**Figure 12.3** $L_1$ Grammar and its conversion to CNF. Note that although they aren’t shown here, all the original lexical rules from $L_1$ carry over unchanged as well.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
2. Convert terminals within rules to dummy non-terminals.
3. Convert unit-productions.
4. Make all rules binary and add them to new grammar.

Figure 12.3 shows the results of applying this entire conversion procedure to the $L_1$ grammar introduced earlier on page 198. Note that this figure doesn’t show the original lexical rules; since these original lexical rules are already in CNF, they all carry over unchanged to the new grammar. Figure 12.3 does, however, show the various places where the process of eliminating unit productions has, in effect, created new lexical rules. For example, all the original verbs have been promoted to both VPs and to Ss in the converted grammar.

### 12.2.2 CKY Recognition

With our grammar now in CNF, each non-terminal node above the part-of-speech level in a parse tree will have exactly two daughters. A two-dimensional matrix can be used to encode the structure of an entire tree. For a sentence of length $n$, we will work with the upper-triangular portion of an $(n + 1) \times (n + 1)$ matrix. Each cell $[i, j]$ in this matrix contains the set of non-terminals that represent all the constituents that span positions $i$ through $j$ of the input. Since our indexing scheme begins with 0, it’s natural to think of the indexes as pointing at the gaps between the input words (as in $Book_1 \ that_2 \ flight_3$). It follows then that the cell that represents the entire input resides in position $[0, n]$ in the matrix.
Since each non-terminal entry in our table has two daughters in the parse, it follows that for each constituent represented by an entry \([i, j]\), there must be a position in the input, \(k\), where it can be split into two parts such that \(i < k < j\). Given such a position \(k\), the first constituent \([i, k]\) must lie to the left of entry \([i, j]\) somewhere along row \(i\), and the second entry \([k, j]\) must lie beneath it, along column \(j\).

To make this more concrete, consider the following example with its completed parse matrix, shown in Fig. 13.4.

(12.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each input word in the input. The subsequent diagonals above that superdiagonal contain constituents that cover all the spans of increasing length in the input.

Given this setup, CKY recognition consists of filling the parse table in the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point where we are filling any cell \([i, j]\), the cells containing the parts that could contribute to this entry (i.e., the cells to the left and the cells below) have already been filled. The algorithm given in Fig. 12.5 fills the upper-triangular matrix a column at a time working from left to right, with each column filled from bottom to top, as the right side of Fig. 13.4 illustrates. This scheme guarantees that at each point in time we have all the information we need (to the left, since all the columns to the left have already been filled, and below since we’re filling bottom to top). It also mirrors online parsing since filling the columns from left to right corresponds to processing each word one at a time.

The outermost loop of the algorithm given in Fig. 12.5 iterates over the columns, and the second loop iterates over the rows, from the bottom up. The purpose of the innermost loop is to range over all the places where a substring spanning \(i\) to \(j\) in the input might be split in two. As \(k\) ranges over the places where the string can be split, the pairs of cells we consider move, in lockstep, to the right along row \(i\) and down along column \(j\). Figure 12.6 illustrates the general case of filling cell \([i, j]\). At each such split, the algorithm considers whether the contents of the two cells can be combined in a way that is sanctioned by a rule in the grammar. If such a rule exists, the non-terminal on its left-hand side is entered into the table.
12.2  •  CKY Parsing: A Dynamic Programming Approach  203

function CKY-PARSE(words, grammar) returns table

for $j$ ← from 1 to LENGTH(words) do
  for all $A | A \rightarrow \text{words}[j] \in$ grammar
    table[$j-1, j$] ← table[$j-1, j$] ∪ $A$
  for $i$ ← from $j - 2$ downto 0 do
    for $k$ ← $i + 1$ to $j - 1$ do
      for all $A | A \rightarrow BC \in$ grammar and $B \in$ table[$i, k$] and $C \in$ table[$k, j$]
        table[$i, j$] ← table[$i, j$] ∪ $A$

Figure 12.5  The CKY algorithm.

Figure 12.6  All the ways to fill the $[i, j]$th cell in the CKY table.

Figure 12.7 shows how the five cells of column 5 of the table are filled after the word Houston is read. The arrows point out the two spans that are being used to add an entry to the table. Note that the action in cell $[0, 5]$ indicates the presence of three alternative parses for this input, one where the PP modifies the flight, one where it modifies the booking, and one that captures the second argument in the original $VP \rightarrow \text{Verb} \ NP \ PP$ rule, now captured indirectly with the $VP \rightarrow X2 \ PP$ rule.
Figure 12.7  Filling the cells of column 5 after reading the word *Houston*.
12.2.3 CKY Parsing

The algorithm given in Fig. 12.5 is a recognizer, not a parser; for it to succeed, it simply has to find an $S$ in cell $[0, n]$. To turn it into a parser capable of returning all possible parses for a given input, we can make two simple changes to the algorithm: the first change is to augment the entries in the table so that each non-terminal is paired with pointers to the table entries from which it was derived (more or less as shown in Fig. 12.7), the second change is to permit multiple versions of the same non-terminal to be entered into the table (again as shown in Fig. 12.7). With these changes, the completed table contains all the possible parses for a given input. Returning an arbitrary single parse consists of choosing an $S$ from cell $[0, n]$ and then recursively retrieving its component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost since an exponential number of parses may be associated with a given input. In such cases, returning all the parses will have an unavoidable exponential cost. Looking forward to Chapter 13, we can also think about retrieving the best parse for a given input by further augmenting the table to contain the probabilities of each entry. Retrieving the most probable parse consists of running a suitably modified version of the Viterbi algorithm from Chapter 10 over the completed parse table.

12.2.4 CKY in Practice

Finally, we should note that while the restriction to CNF does not pose a problem theoretically, it does pose some non-trivial problems in practice. Obviously, as things stand now, our parser isn’t returning trees that are consistent with the grammar given to us by our friendly syntacticians. In addition to making our grammar developers unhappy, the conversion to CNF will complicate any syntax-driven approach to semantic analysis.

One approach to getting around these problems is to keep enough information around to transform our trees back to the original grammar as a post-processing step of the parse. This is trivial in the case of the transformation used for rules with length greater than 2. Simply deleting the new dummy non-terminals and promoting their daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the basic CKY algorithm to handle them directly than it is to store the information needed to recover the correct trees. Exercise 12.3 asks you to make this change. Many of the probabilistic parsers presented in Chapter 13 use the CKY algorithm altered in just this manner. Another solution is to adopt a more complex dynamic programming solution that simply accepts arbitrary CFGs. The next section presents such an approach.

12.3 Partial Parsing

Many language processing tasks do not require complex, complete parse trees for all inputs. For these tasks, a partial parse, or shallow parse, of input sentences may be sufficient. For example, information extraction systems generally do not extract all the possible information from a text: they simply identify and classify the segments in a text that are likely to contain valuable information. Similarly, information retrieval systems may index texts according to a subset of the constituents found in
There are many different approaches to partial parsing. Some make use of cascades of FSTs, of the kind discussed in Chapter 3, to produce tree-like representations. These approaches typically produce flatter trees than the ones we’ve been discussing in this chapter and the previous one. This flatness arises from the fact that FST cascade approaches generally defer decisions that may require semantic or contextual factors, such as prepositional phrase attachments, coordination ambiguities, and nominal compound analyses. Nevertheless, the intent is to produce parse trees that link all the major constituents in an input.

An alternative style of partial parsing is known as chunking. Chunking is the process of identifying and classifying the flat, non-overlapping segments of a sentence that constitute the basic non-recursive phrases corresponding to the major parts-of-speech found in most wide-coverage grammars. This set typically includes noun phrases, verb phrases, adjective phrases, and prepositional phrases; in other words, the phrases that correspond to the content-bearing parts-of-speech. Of course, not all applications require the identification of all of these categories; indeed, the most common chunking task is to simply find all the base noun phrases in a text.

Since chunked texts lack a hierarchical structure, a simple bracketing notation is sufficient to denote the location and the type of the chunks in a given example. The following example illustrates a typical bracketed notation.

(12.4) \[
NP \text{The morning flight} \quad PP \text{from} \quad NP \text{Denver} \quad VP \text{has arrived.}
\]

This bracketing notation makes clear the two fundamental tasks that are involved in chunking: finding the non-overlapping extents of the chunks and assigning the correct label to the discovered chunks.

Note that in this example all the words are contained in some chunk. This will not be the case in all chunking applications. Many words in any input will often fall outside of any chunk, for example, in systems searching for base NPs in their inputs, as in the following:

(12.5) \[
NP \text{The morning flight} \quad PP \text{from} \quad NP \text{Denver} \quad has \quad arrived.
\]

The details of what constitutes a syntactic base phrase for any given system varies according to the syntactic theories underlying the system and whether the phrases are being derived from a treebank. Nevertheless, some standard guidelines are followed in most systems. First and foremost, base phrases of a given type do not recursively contain any constituents of the same type. Eliminating this kind of recursion leaves us with the problem of determining the boundaries of the non-recursive phrases. In most approaches, base phrases include the headword of the phrase, along with any pre-head material within the constituent, while crucially excluding any post-head material. Eliminating post-head modifiers from the major categories automatically removes the need to resolve attachment ambiguities. Note that this exclusion does lead to certain oddities, such as PP and VP often consisting solely of their heads. Thus, our earlier example a flight from Indianapolis to Houston on NWA is reduced to the following:

(12.6) \[
NP \text{a flight} \quad PP \text{from} \quad NP \text{Indianapolis} \quad PP \text{to} \quad NP \text{Houston} \quad PP \text{on} \quad NP \text{NWA}
\]

### 12.3.1 Machine Learning-Based Approaches to Chunking

State-of-the-art approaches to chunking use supervised machine learning to train a chunker by using annotated data as a training set. As described earlier in Chapter 9,
we can view this task as one of sequence labeling, where a classifier is trained to label each element of the input sequence. Any of the standard approaches to training classifiers apply to this problem.

The first step in such an approach is to cast the chunking process in a way that is amenable to sequence labeling. A particularly fruitful approach has been to treat chunking as a tagging task similar to part-of-speech tagging (Ramshaw and Marcus, 1995). In this approach, a small tagset simultaneously encodes both the segmentation and the labeling of the chunks in the input. The standard way to do this is called IOB tagging and is accomplished by introducing tags to represent the beginning (B) and internal (I) parts of each chunk, as well as those elements of the input that are outside (O) any chunk. Under this scheme, the size of the tagset is \((2n+1)\), where \(n\) is the number of categories to be classified. The following example shows the bracketing notation of (12.4) on page 206 reframed as a tagging task:

\[
\begin{array}{cccccc}
B & \text{NP} & I & \text{NP} & B & \text{PP} & B & \text{VP} & B & \text{NP} & I & \text{VP} \\
\end{array}
\]

The same sentence with only the base-NPs tagged illustrates the role of the O tags.

\[
\begin{array}{cccccc}
B & \text{NP} & I & \text{NP} & O & B & \text{NP} & O & O \\
\end{array}
\]

Notice that there is no explicit encoding of the end of a chunk in this scheme; the end of any chunk is implicit in any transition from an I or B to a B or O tag. This encoding reflects the notion that when sequentially labeling words, it is generally easier (at least in English) to detect the beginning of a new chunk than it is to know when a chunk has ended. Not surprisingly, a variety of other tagging schemes represent chunks in subtly different ways, including some that explicitly mark the end of constituents. Tjong Kim Sang and Veenstra (1999) describe three variations on this basic tagging scheme and investigate their performance on a variety of chunking tasks.

Given such a scheme, building a chunker consists of training a classifier to label each word of an input sentence with one of the IOB tags from the tagset. Of course, training requires training data consisting of the phrases of interest delimited and marked with the appropriate category. The direct approach is to annotate a representative corpus. Unfortunately, annotation efforts can be both expensive and time consuming. It turns out that the best place to find such data for chunking is in an existing treebank such as the Penn Treebank described in Chapter 11.

Such treebanks provide a complete parse for each corpus sentence, allowing base syntactic phrases to be extracted from the parse constituents. To find the phrases we’re interested in, we just need to know the appropriate non-terminal names in the corpus. Finding chunk boundaries requires finding the head and then including the material to the left of the head, ignoring the text to the right. This is somewhat error-prone since it relies on the accuracy of the head-finding rules described in Chapter 11.

Having extracted a training corpus from a treebank, we must now cast the training data into a form that’s useful for training classifiers. In this case, each input can be represented as a set of features extracted from a context window that surrounds the word to be classified. Using a window that extends two words before and two words after the word being classified seems to provide reasonable performance. Features extracted from this window include the words themselves, their parts-of-speech, and the chunk tags of the preceding inputs in the window.
Figure 12.8 illustrates this scheme with the example given earlier. During training, the classifier would be provided with a training vector consisting of the values of 13 features; the two words to the left of the decision point, their parts-of-speech and chunk tags, the word to be tagged along with its part-of-speech, the two words that follow along with their parts-of-speech, and finally the correct chunk tag, in this case, I_NP. During classification, the classifier is given the same vector without the answer and assigns the most appropriate tag from its tagset.

12.3.2 Chunking-System Evaluations

As with the evaluation of part-of-speech taggers, the evaluation of chunkers proceeds by comparing chunker output with gold-standard answers provided by human annotators. However, unlike part-of-speech tagging, word-by-word accuracy measures are not appropriate. Instead, chunkers are evaluated according to the notions of precision, recall, and the $F$-measure borrowed from the field of information retrieval.

**Precision** measures the percentage of system-provided chunks that were correct. Correct here means that both the boundaries of the chunk and the chunk’s label are correct. Precision is therefore defined as

\[
\text{Precision} = \frac{\text{Number of correct chunks given by system}}{\text{Total number of chunks given by system}}
\]

**Recall** measures the percentage of chunks actually present in the input that were correctly identified by the system. Recall is defined as

\[
\text{Recall} = \frac{\text{Number of correct chunks given by system}}{\text{Total number of actual chunks in the text}}
\]

The $F$-measure (van Rijsbergen, 1975) provides a way to combine these two measures.
measures into a single metric. The $F$-measure is defined as

$$F_\beta = \frac{(\beta^2 + 1)PR}{\beta^2P + R}$$

The $\beta$ parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application. Values of $\beta > 1$ favor recall, while values of $\beta < 1$ favor precision. When $\beta = 1$, precision and recall are equally balanced; this is sometimes called $F_{\beta=1}$ or just $F_1$:

$$F_1 = \frac{2PR}{P + R}$$ (12.9)

$F$-measure comes from a weighted harmonic mean of precision and recall. The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of reciprocals:

$$\text{HarmonicMean}(a_1, a_2, a_3, ..., a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}$$ (12.10)

and hence $F$-measure is

$$F = \frac{1}{\alpha P + (1 - \alpha) \frac{1}{R}} \quad \text{or} \quad \left( \text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2P + R}$$ (12.11)

Statistical significance results on sequence labeling tasks such as chunking can be computed using matched-pair tests such as McNemar’s test, or variants such as the Matched-Pair Sentence Segment Word Error (MAPSSWE) test described on page ??.

Factors limiting the performance of current systems include part-of-speech tagging accuracy, inconsistencies in the training data introduced by the process of extracting chunks from parse trees, and difficulty resolving ambiguities involving conjunctions. Consider the following examples that involve pre-nominal modifiers and conjunctions.

(12.12) \[ NP \text{ Late arrivals and departures} \] are commonplace during winter.

(12.13) \[ NP \text{ Late arrivals} \] and \[ NP \text{ cancellations} \] are commonplace during winter.

In the first example, \textit{late} is shared by both \textit{arrivals} and \textit{departures}, yielding a single long base-NP. In the second example, \textit{late} is not shared and modifies \textit{arrivals} alone, thus yielding two base-NPs. Distinguishing these two situations, and others like them, requires access to semantic and context information unavailable to current chunkers.

12.4 Summary

The two major ideas introduced in this chapter are those of \textbf{parsing} and \textbf{partial parsing}. Here’s a summary of the main points we covered about these ideas:

- \textbf{Structural ambiguity} is a significant problem for parsers. Common sources of structural ambiguity include \textit{PP-attachment}, \textit{coordination ambiguity}, and \textit{noun-phrase bracketing ambiguity}. 
Dynamic programming parsing algorithms, such as CKY, use a table of partial parses to efficiently parse ambiguous sentences.

CKY restricts the form of the grammar to Chomsky normal form (CNF).

Many practical problems, including information extraction problems, can be solved without full parsing.

Partial parsing and chunking are methods for identifying shallow syntactic constituents in a text.

State-of-the-art methods for partial parsing use supervised machine learning techniques.

Bibliographical and Historical Notes

Writing about the history of compilers, Knuth notes:

In this field there has been an unusual amount of parallel discovery of the same technique by people working independently.

Well, perhaps not unusual, if multiple discovery is the norm (see page ??). But there has certainly been enough parallel publication that this history errs on the side of succinctness in giving only a characteristic early mention of each algorithm; the interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who gave a breadth-first, bottom-up parsing algorithm as part of an illustration of a machine translation procedure. Top-down approaches to parsing and translation were described (presumably independently) by at least Glennie (1960), Irons (1961), and Kuno and Oettinger (1963). Dynamic programming parsing, once again, has a history of independent discovery. According to Martin Kay (personal communication), a dynamic programming parser containing the roots of the CKY algorithm was first implemented by John Cocke in 1960. Later work extended and formalized the algorithm, as well as proving its time complexity (Kay 1967, Younger 1967, Kasami 1965).

The related well-formed substring table (WFST) seems to have been independently proposed by Kuno (1965) as a data structure that stores the results of all previous computations in the course of the parse. Based on a generalization of Cocke’s work, a similar data structure had been independently described in Kay 1967, Kay 1973. The top-down application of dynamic programming to parsing was described in Earley’s Ph.D. dissertation (Earley 1968, Earley 1970). Sheil (1976) showed the equivalence of the WFST and the Earley algorithm. Norvig (1991) shows that the efficiency offered by dynamic programming can be captured in any language with a memoization function (such as in LISP) simply by wrapping the memoization operation around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite soon afterward. Church (1980) argued for a return to finite-state grammars as a processing model for natural language understanding; other early finite-state parsing models include Ejerhed (1988). Abney (1991) argued for the important practical role of shallow parsing. Much recent work on shallow parsing applies machine learning to the task of learning the patterns; see, for example, Ramshaw and Marcus (1995), Argamon et al. (1998), Munoz et al. (1999).
The classic reference for parsing algorithms is Aho and Ullman (1972); although the focus of that book is on computer languages, most of the algorithms have been applied to natural language. A good programming languages textbook such as Aho et al. (1986) is also useful.

Exercises

12.1 Implement the algorithm to convert arbitrary context-free grammars to CNF. Apply your program to the $L_1$ grammar.

12.2 Implement the CKY algorithm and test it with your converted $L_1$ grammar.

12.3 Rewrite the CKY algorithm given in Fig. 12.5 on page 203 so that it can accept grammars that contain unit productions.

12.4 Discuss the relative advantages and disadvantages of partial versus full parsing.

12.5 Discuss how to augment a parser to deal with input that may be incorrect, for example, containing spelling errors or mistakes arising from automatic speech recognition.
Chapter 13: Statistical Parsing

The characters in Damon Runyon’s short stories are willing to bet “on any proposition whatever”, as Runyon says about Sky Masterson in *The Idyll of Miss Sarah Brown*, from the probability of getting aces back-to-back to the odds against a man being able to throw a peanut from second base to home plate. There is a moral here for language processing: with enough knowledge we can figure the probability of just about anything. The last two chapters have introduced sophisticated models of syntactic structure and its parsing. Here, we show that it is possible to build probabilistic models of syntactic knowledge and use some of this probabilistic knowledge to build efficient probabilistic parsers.

One crucial use of probabilistic parsing is to solve the problem of disambiguation. Recall from Chapter 12 that sentences on average tend to be syntactically ambiguous because of phenomena like coordination ambiguity and attachment ambiguity. The CKY parsing algorithm can represent these ambiguities in an efficient way but is not equipped to resolve them. A probabilistic parser offers a solution to the problem: compute the probability of each interpretation and choose the most probable interpretation. Thus, due to the prevalence of ambiguity, most modern parsers used for natural language understanding tasks (semantic analysis, summarization, question-answering, machine translation) are of necessity probabilistic.

The most commonly used probabilistic grammar formalism is the probabilistic context-free grammar (PCFG), a probabilistic augmentation of context-free grammars in which each rule is associated with a probability. We introduce PCFGs in the next section, showing how they can be trained on Treebank grammars and how they can be parsed. We present the most basic parsing algorithm for PCFGs, which is the probabilistic version of the CKY algorithm that we saw in Chapter 12.

We then show a number of ways that we can improve on this basic probability model (PCFGs trained on Treebank grammars). One method of improving a trained Treebank grammar is to change the names of the non-terminals. By making the non-terminals sometimes more specific and sometimes more general, we can come up with a grammar with a better probability model that leads to improved parsing scores. Another augmentation of the PCFG works by adding more sophisticated conditioning factors, extending PCFGs to handle probabilistic subcategorization information and probabilistic lexical dependencies.

Heavily lexicalized grammar formalisms such as Lexical-Functional Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi, 1985), and Combinatory Categorial Grammar (CCG) pose additional problems for probabilistic parsers. Section 13.7 introduces the task of supertagging and the use of heuristic search methods based on the A* algorithm in the context of CCG parsing.

Finally, we describe the standard techniques and metrics for evaluating parsers and discuss some relevant psychological results on human parsing.
The simplest augmentation of the context-free grammar is the **Probabilistic Context-Free Grammar (PCFG)**, also known as the **Stochastic Context-Free Grammar (SCFG)**, first proposed by Booth (1969). Recall that a context-free grammar \( G \) is defined by four parameters \( (N, \Sigma, R, S) \); a probabilistic context-free grammar is also defined by four parameters, with a slight augmentation to each of the rules in \( R \):

- \( N \) a set of non-terminal symbols (or variables)
- \( \Sigma \) a set of terminal symbols (disjoint from \( N \))
- \( R \) a set of rules or productions, each of the form \( A \rightarrow \beta [p] \), where \( A \) is a non-terminal,
- \( \beta \) is a string of symbols from the infinite set of strings \( (\Sigma \cup N)^* \), and \( p \) is a number between 0 and 1 expressing \( P(\beta|A) \)
- \( S \) a designated start symbol

That is, a PCFG differs from a standard CFG by augmenting each rule in \( R \) with a conditional probability:

\[
A \rightarrow \beta [p]
\]  

Here \( p \) expresses the probability that the given non-terminal \( A \) will be expanded to the sequence \( \beta \). That is, \( p \) is the conditional probability of a given expansion \( \beta \) given the left-hand-side (LHS) non-terminal \( A \). We can represent this probability as

\[
P(A \rightarrow \beta)
\]

or as

\[
P(A \rightarrow \beta|A)
\]

or as

\[
P(RHS|LHS)
\]

Thus, if we consider all the possible expansions of a non-terminal, the sum of their probabilities must be 1:

\[
\sum_{\beta} P(A \rightarrow \beta) = 1
\]

Figure 13.1 shows a PCFG: a probabilistic augmentation of the \( L_1 \) miniature English CFG grammar and lexicon. Note that the probabilities of all of the expansions of each non-terminal sum to 1. Also note that these probabilities were made up for pedagogical purposes. A real grammar has a great many more rules for each non-terminal; hence, the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be **consistent** if the sum of the probabilities of all sentences in the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsistent by causing infinitely looping derivations for some sentences. For example, a rule \( S \rightarrow S \) with probability 1 would lead to lost probability mass due to derivations that never terminate. See Booth and Thompson (1973) for more details on consistent and inconsistent grammars.
The definition of joint probability:

\[ P(T, S) = \prod_{i=1}^{n} P(RHS_i | LHS_i) \]  

(13.2)

The resulting probability \( P(T, S) \) is both the joint probability of the parse and the sentence and also the probability of the parse \( P(T) \). How can this be true? First, by the definition of joint probability:

\[ P(T, S) = P(T)P(S | T) \]  

(13.3)

13.1.1 PCFGs for Disambiguation

A PCFG assigns a probability to each parse tree \( T \) (i.e., each derivation) of a sentence \( S \). This attribute is useful in disambiguation. For example, consider the two parses of the sentence “Book the dinner flight” shown in Fig. 13.2. The sensible parse on the left means “Book a flight that serves dinner”. The nonsensical parse on the right, however, would have to mean something like “Book a flight on behalf of ‘the dinner’” just as a structurally similar sentence like “Can you book John a flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse \( T \) is defined as the product of the probabilities of all the \( n \) rules used to expand each of the \( n \) non-terminal nodes in the parse tree \( T \), where each rule \( i \) can be expressed as \( LHS_i \rightarrow RHS_i \):

\[
P(T, S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)
\]

How are PCFGs used? A PCFG can be used to estimate a number of useful probabilities concerning a sentence and its parse tree(s), including the probability of a particular parse tree (useful in disambiguation) and the probability of a sentence or a piece of a sentence (useful in language modeling). Let’s see how this works.
But since a parse tree includes all the words of the sentence, $P(S|T)$ is 1. Thus,

$$P(T, S) = P(T)P(S|T) = P(T)$$  \hspace{1cm} (13.4)
Thus, out of all parse trees with a yield of $S$, the disambiguation algorithm picks the parse tree that is most probable given $S$:

$$
\hat{T}(S) = \arg\max_{T : S = \text{yield}(T)} P(T|S)
$$

(13.5)

By definition, the probability $P(T|S)$ can be rewritten as $P(T,S)/P(S)$, thus leading to

$$
\hat{T}(S) = \arg\max_{T : S = \text{yield}(T)} \frac{P(T,S)}{P(S)}
$$

(13.6)

Since we are maximizing over all parse trees for the same sentence, $P(S)$ will be a constant for each tree, so we can eliminate it:

$$
\hat{T}(S) = \arg\max_{T : S = \text{yield}(T)} P(T,S)
$$

(13.7)

Furthermore, since we showed above that $P(T,S) = P(T)$, the final equation for choosing the most likely parse neatly simplifies to choosing the parse with the highest probability:

$$
\hat{T}(S) = \arg\max_{T : S = \text{yield}(T)} P(T)
$$

(13.8)

13.1.2 PCFGs for Language Modeling

A second attribute of a PCFG is that it assigns a probability to the string of words constituting a sentence. This is important in language modeling, whether for use in speech recognition, machine translation, spelling correction, augmentative communication, or other applications. The probability of an unambiguous sentence is $P(T,S) = P(T)$ or just the probability of the single parse tree for that sentence. The probability of an ambiguous sentence is the sum of the probabilities of all the parse trees for the sentence:

$$
P(S) = \sum_{T : S = \text{yield}(T)} P(T,S)
$$

(13.9)

$$
= \sum_{T : S = \text{yield}(T)} P(T)
$$

(13.10)

An additional feature of PCFGs that is useful for language modeling is their ability to assign a probability to substrings of a sentence. For example, suppose we want to know the probability of the next word $w_i$ in a sentence given all the words we’ve seen so far $w_1, \ldots, w_{i-1}$. The general formula for this is

$$
P(w_i|w_1, w_2, \ldots, w_{i-1}) = \frac{P(w_1, w_2, \ldots, w_{i-1}, w_i)}{P(w_1, w_2, \ldots, w_{i-1})}
$$

(13.11)

We saw in Chapter 4 a simple approximation of this probability using $N$-grams, conditioning on only the last word or two instead of the entire context; thus, the bigram approximation would give us

$$
P(w_i|w_1, w_2, \ldots, w_{i-1}) \approx \frac{P(w_{i-1}, w_i)}{P(w_{i-1})}
$$

(13.12)
But the fact that the N-gram model can only make use of a couple words of context means it is ignoring potentially useful prediction cues. Consider predicting the word *after* in the following sentence from Chelba and Jelinek (2000):

\[(13.13)\text{ the contract ended with a loss of 7 cents after trading as low as 9 cents}\]

A trigram grammar must predict *after* from the words *7 cents*, while it seems clear that the verb *ended* and the subject *contract* would be useful predictors that a PCFG-based parser could help us make use of. Indeed, it turns out that PCFGs allow us to condition on the entire previous context \(w_1, w_2, ..., w_{i-1}\) shown in Eq. 13.11.

In summary, this section and the previous one have shown that PCFGs can be applied both to disambiguation in syntactic parsing and to word prediction in language modeling. Both of these applications require that we be able to compute the probability of parse tree \(T\) for a given sentence \(S\). The next few sections introduce some algorithms for computing this probability.

### 13.2 Probabilistic CKY Parsing of PCFGs

The parsing problem for PCFGs is to produce the most-likely parse \(\hat{T}\) for a given sentence \(S\), that is,

\[
\hat{T}(S) = \arg\max_{T \in \mathcal{G}} P(T) \quad \text{s.t. } S = \text{yield}(T)
\]

The algorithms for computing the most likely parse are simple extensions of the standard algorithms for parsing; most modern probabilistic parsers are based on the probabilistic CKY algorithm, first described by Ney (1991).

As with the CKY algorithm, we assume for the probabilistic CKY algorithm that the PCFG is in Chomsky normal form. Recall from page 187 that grammars in CNF are restricted to rules of the form \(A \rightarrow B C\) or \(A \rightarrow w\). That is, the right-hand side of each rule must expand to either two non-terminals or to a single terminal.

For the CKY algorithm, we represented each sentence as having indices between the words. Thus, an example sentence like

\[(13.15)\text{ Book the flight through Houston.}\]

would assume the following indices between each word:

\[(13.16)\text{ Book} [0] \text{ the} [1] \text{ flight} [2] \text{ through} [3] \text{ Houston} [4]\]

Using these indices, each constituent in the CKY parse tree is encoded in a two-dimensional matrix. Specifically, for a sentence of length \(n\) and a grammar that contains \(V\) non-terminals, we use the upper-triangular portion of an \((n + 1) \times (n + 1)\) matrix. For CKY, each cell \(table[i, j]\) contained a list of constituents that could span the sequence of words from \(i\) to \(j\). For probabilistic CKY, it’s slightly simpler to think of the constituents in each cell as constituting a third dimension of maximum length \(V\). This third dimension corresponds to each non-terminal that can be placed in this cell, and the value of the cell is then a probability for that non-terminal/constituent rather than a list of constituents. In summary, each cell \([i, j, A]\) in this \((n + 1) \times (n + 1) \times V\) matrix is the probability of a constituent of type \(A\) that spans positions \(i\) through \(j\) of the input.

Figure 13.3 gives pseudocode for this probabilistic CKY algorithm, extending the basic CKY algorithm from Fig. 12.5.
function Probabilistic-CKY(words, grammar) returns most probable parse and its probability

for \( j \leftarrow 1 \) to \( \text{LENGTH}(words) \) do
  for all \( \{A \mid A \rightarrow \text{words}[j]\} \in \text{grammar} \)
    table\([j-1, j, A] \leftarrow P(A \rightarrow \text{words}[j])

for \( i \leftarrow j - 2 \) downto 0 do
  for \( k \leftarrow i + 1 \) to \( j - 1 \) do
    for all \( \{A \mid A \rightarrow BC \in \text{grammar}, \text{and} \ \text{table}[i, k, B] > 0 \text{ and} \ \text{table}[k, j, C] > 0 \} \)
      if \( \text{table}[i, j, A] < P(A \rightarrow BC) \times \text{table}[i, k, B] \times \text{table}[k, j, C] \) then
        \( \text{table}[i, j, A] \leftarrow P(A \rightarrow BC) \times \text{table}[i, k, B] \times \text{table}[k, j, C] \)
    \( \text{back}[i, j, A] \leftarrow \{k, B, C\} \)

return build_tree(back\([1, \text{LENGTH}(words), S]), \text{table}\([1, \text{LENGTH}(words), S])\)

Figure 13.3 The probabilistic CKY algorithm for finding the maximum probability parse of a string of \( \text{num_words} \) words given a PCFG grammar with \( \text{num_rules} \) rules in Chomsky normal form. \( \text{back} \) is an array of backpointers used to recover the best parse. The \text{build_tree} function is left as an exercise to the reader.

Like the basic CKY algorithm, the probabilistic CKY algorithm as shown in Fig. 13.3 requires a grammar in Chomsky normal form. Converting a probabilistic grammar to CNF requires that we also modify the probabilities so that the probability of each parse remains the same under the new CNF grammar. Exercise 13.2 asks you to modify the algorithm for conversion to CNF in Chapter 12 so that it correctly handles rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly is typically used. Recall that Exercise 13.3 asked you to make this change in CKY; Exercise 13.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-grammar, which is already in CNF:

\[
\begin{align*}
S & \rightarrow NP \ VP \quad .80 \\
NP & \rightarrow \text{Det} \ N \quad .30 \\
VP & \rightarrow \text{V} \ NP \quad .20 \\
\text{V} & \rightarrow \text{includes} \quad .05 \\
\text{Det} & \rightarrow \text{the} \quad .40 \\
\text{Det} & \rightarrow \text{a} \quad .40 \\
N & \rightarrow \text{meal} \quad .01 \\
N & \rightarrow \text{flight} \quad .02
\end{align*}
\]

Given this grammar, Fig. 13.4 shows the first steps in the probabilistic CKY parse of the following example:

(13.17) The flight includes a meal

13.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn probabilities for the rules of a grammar. The simplest way is to use a treebank, a corpus of already parsed sentences. Recall that we introduced in Chapter 11 the idea of treebanks and the commonly used Penn Treebank (Marcus et al., 1993), a collection of parse trees in English, Chinese, and other languages that is distributed by the Linguistic Data Consortium. Given a treebank, we can compute the probability of each expansion of a non-terminal by counting the number of times that expansion
13.3  •  Ways to Learn PCFG Rule Probabilities  •  219

### The flight includes a meal

<table>
<thead>
<tr>
<th>Det: .40</th>
<th>NP: .30 * .40 * .02 = .0024</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,1]</td>
<td>[0,2]</td>
</tr>
<tr>
<td>N: .02</td>
<td>[0,3]</td>
</tr>
<tr>
<td>[1,2]</td>
<td>[1,3]</td>
</tr>
<tr>
<td>V: .05</td>
<td>[1,4]</td>
</tr>
<tr>
<td>[2,3]</td>
<td>[2,4]</td>
</tr>
<tr>
<td>Det: .40</td>
<td>[2,5]</td>
</tr>
<tr>
<td>[3,4]</td>
<td>[3,5]</td>
</tr>
<tr>
<td>N: .01</td>
<td>[4,5]</td>
</tr>
</tbody>
</table>

Figure 13.4  The beginning of the probabilistic CKY matrix. Filling out the rest of the chart is left as Exercise 13.4 for the reader.

occurs and then normalizing.

\[
P(\alpha \rightarrow \beta | \alpha) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \text{Count}(\alpha \rightarrow \gamma)} = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)} \quad (13.18)
\]

If we don’t have a treebank but we do have a (non-probabilistic) parser, we can generate the counts we need for computing PCFG rule probabilities by first parsing a corpus of sentences with the parser. If sentences were unambiguous, it would be as simple as this: parse the corpus, increment a counter for every rule in the parse, and then normalize to get probabilities.

But wait! Since most sentences are ambiguous, that is, have multiple parses, we don’t know which parse to count the rules in. Instead, we need to keep a separate count for each parse of a sentence and weight each of these partial counts by the probability of the parse it appears in. But to get these parse probabilities to weight the rules, we need to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally improve our estimates by beginning with a parser with equal rule probabilities, then parse the sentence, compute a probability for each parse, use these probabilities to
weight the counts, re-estimate the rule probabilities, and so on, until our proba-
bilities converge. The standard algorithm for computing this solution is called the
\textbf{inside-outside} algorithm; it was proposed by Baker (1979) as a generalization of the
\textit{forward-backward} algorithm of Chapter 9. Like forward-backward, inside-outside
is a special case of the Expectation Maximization (EM) algorithm, and hence has
two steps: the \textbf{expectation step}, and the \textbf{maximization step}. See Lari and Young
(1990) or Manning and Schütze (1999) for a complete description of the algorithm.

This use of the inside-outside algorithm to estimate the rule probabilities for
a grammar is actually a kind of limited use of inside-outside. The inside-outside
algorithm can actually be used not only to set the rule probabilities but even to induce
the grammar rules themselves. It turns out, however, that grammar induction is so
difficult that inside-outside by itself is not a very successful grammar inducer; see
the Historical Notes at the end of the chapter for pointers to other grammar induction
algorithms.

\section*{13.4 Problems with PCFGs}

While probabilistic context-free grammars are a natural extension to context-free
grammars, they have two main problems as probability estimators:

\textbf{Poor independence assumptions}: CFG rules impose an independence assumption
on probabilities, resulting in poor modeling of structural dependencies across
the parse tree.

\textbf{Lack of lexical conditioning}: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition
attachment, and coordinate structure ambiguities.

Because of these problems, most current probabilistic parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
In the next few sections after discussing the problems in more detail we introduce
some of these augmentations.

\subsection*{13.4.1 Independence Assumptions Miss Structural Dependencies
Between Rules}

Let’s look at these problems in more detail. Recall that in a CFG the expansion of a
non-terminal is independent of the context, that is, of the other nearby non-terminals
in the parse tree. Similarly, in a PCFG, the probability of a particular rule like
\textit{NP} \rightarrow \textit{Det N} is also independent of the rest of the tree. By definition, the probability
of a group of independent events is the product of their probabilities. These two facts
explain why in a PCFG we compute the probability of a tree by just multiplying the
probabilities of each non-terminal expansion.

Unfortunately, this CFG independence assumption results in poor probability
estimates. This is because in English the choice of how a node expands can after all
depend on the location of the node in the parse tree. For example, in English it turns
out that \textit{NPs} that are syntactic \textbf{subjects} are far more likely to be pronouns, and \textit{NPs}
that are syntactic \textbf{objects} are far more likely to be non-pronominal (e.g., a proper
noun or a determiner noun sequence), as shown by these statistics for \textit{NPs} in the
Switchboard corpus (Francis et al., 1999):¹

<table>
<thead>
<tr>
<th></th>
<th>Pronoun</th>
<th>Non-Pronoun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>Object</td>
<td>34%</td>
<td>66%</td>
</tr>
</tbody>
</table>

Unfortunately, there is no way to represent this contextual difference in the probabilities in a PCFG. Consider two expansions of the non-terminal NP as a pronoun or as a determiner+noun. How shall we set the probabilities of these two rules? If we set their probabilities to their overall probability in the Switchboard corpus, the two rules have about equal probability.

\[
\begin{align*}
NP & \rightarrow DT \text{ NN} \quad .28 \\
NP & \rightarrow PRP \quad .25
\end{align*}
\]

Because PCFGs don’t allow a rule probability to be conditioned on surrounding context, this equal probability is all we get; there is no way to capture the fact that in subject position, the probability for \( NP \rightarrow PRP \) should go up to .91, while in object position, the probability for \( NP \rightarrow DT \text{ NN} \) should go up to .66.

These dependencies could be captured if the probability of expanding an NP as a pronoun (e.g., \( NP \rightarrow PRP \)) versus a lexical NP (e.g., \( NP \rightarrow DT \text{ NN} \)) were conditioned on whether the NP was a subject or an object. Section 13.5 introduces the technique of parent annotation for adding this kind of conditioning.

### 13.4.2 Lack of Sensitivity to Lexical Dependencies

A second class of problems with PCFGs is their lack of sensitivity to the words in the parse tree. Words do play a role in PCFGs since the parse probability includes the probability of a word given a part-of-speech (i.e., from rules like \( V \rightarrow sleep \), \( NN \rightarrow book \), etc.).

But it turns out that lexical information is useful in other places in the grammar, such as in resolving prepositional phrase (PP) attachment ambiguities. Since prepositional phrases in English can modify a noun phrase or a verb phrase, when a parser finds a prepositional phrase, it must decide where to attach it into the tree. Consider the following example:

(13.19) Workers dumped sacks into a bin.

Figure 13.5 shows two possible parse trees for this sentence; the one on the left is the correct parse; Fig. 13.6 shows another perspective on the preposition attachment problem, demonstrating that resolving the ambiguity in Fig. 13.5 is equivalent to deciding whether to attach the prepositional phrase into the rest of the tree at the NP or VP nodes; we say that the correct parse requires \textbf{VP attachment}, and the incorrect parse implies \textbf{NP attachment}.

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that the two parse trees in Fig. 13.5 have almost exactly the same rules; they differ only in that the left-hand parse has this rule:

\[
VP \rightarrow VBD \text{ NP PP}
\]

¹ Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sentences. This tendency is caused by the use of subject position to realize the topic or old information in a sentence (Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal (“lexical”) noun-phrases are often used to introduce new referents. We talk more about new and old information in Chapter 23.
Figure 13.5  Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is the sensible one, in which “into a bin” describes the resulting location of the sacks. In the right incorrect parse, the sacks to be dumped are the ones which are already “into a bin”, whatever that might mean.

Figure 13.6  Another view of the preposition attachment problem. Should the PP on the right attach to the VP or NP nodes of the partial parse tree on the left?

while the right-hand parse has these:

\[
\begin{align*}
VP & \rightarrow VBD \, NP \\
NP & \rightarrow NP \, PP
\end{align*}
\]

Depending on how these probabilities are set, a PCFG will always either prefer NP attachment or VP attachment. As it happens, NP attachment is slightly more common in English, so if we trained these rule probabilities on a corpus, we might always prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sentence. Now we would misparse the following sentence, which requires NP attachment:

(13.20) fishermen caught tons of herring
What information in the input sentence lets us know that (13.20) requires NP attachment while (13.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs, nouns, and prepositions. It seems that the affinity between the verb dumped and the preposition into is greater than the affinity between the noun sacks and the preposition into, thus leading to VP attachment. On the other hand, in (13.20) the affinity between tons and of is greater than that between caught and of, leading to NP attachment.

Thus, to get the correct parse for these kinds of examples, we need a model that somehow augments the PCFG probabilities to deal with these lexical dependency statistics for different verbs and prepositions.

Coordination ambiguities are another case in which lexical dependencies are the key to choosing the proper parse. Figure 13.7 shows an example from Collins (1999) with two parses for the phrase dogs in houses and cats. Because dogs is semantically a better conjunct for cats than houses (and because most dogs can’t fit inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and should be dispreferred. The two parses in Fig. 13.7, however, have exactly the same PCFG rules, and thus a PCFG will assign them the same probability.

In summary, we have shown in this section and the previous one that probabilistic context-free grammars are incapable of modeling important structural and lexical dependencies. In the next two sections we sketch current methods for augmenting PCFGs to deal with both these issues.

13.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their inability to model structural dependencies, like the fact that NPs in subject position tend to be pronouns, whereas NPs in object position tend to have full lexical (non-pronominal) form. How could we augment a PCFG to correctly model this fact?

One idea would be to split the NP non-terminal into two versions: one for sub-
jects, one for objects. Having two nodes (e.g., $NP_{subject}$ and $NP_{object}$) would allow us to correctly model their different distributional properties, since we would have different probabilities for the rule $NP_{subject} \rightarrow PRP$ and the rule $NP_{object} \rightarrow PRP$.

One way to implement this intuition of splits is to do parent annotation (Johnson, 1998), in which we annotate each node with its parent in the parse tree. Thus, an $NP$ node that is the subject of the sentence and hence has parent $S$ would be annotated $NP^S$, while a direct object $NP$ whose parent is $VP$ would be annotated $NP^VP$. Figure 13.8 shows an example of a tree produced by a grammar that parent-annotates the phrasal non-terminals (like $NP$ and $VP$).

![Figure 13.8](image)

**Figure 13.8** A standard PCFG parse tree (a) and one which has parent annotation on the nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For example, different kinds of adverbs (RB) tend to occur in different syntactic positions: the most common adverbs with ADVP parents are also and now, with VP parents n’t and not, and with NP parents only and just. Thus, adding tags like RB’ADVP, RB’VP, and RB’NP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech, including subordinating conjunctions (while, as, if), complementizers (that, for), and prepositions (of, in, from). Some of these differences can be captured by parent annotation (subordinating conjunctions occur under S, prepositions under PP), while others require specifically splitting the pre-terminal nodes. Figure 13.9 shows an example from Klein and Manning (2003b) in which even a parent-annotated grammar incorrectly parses works as a noun in to see if advertising works. Splitting pre-terminals to allow if to prefer a sentential complement results in the correct verbal parse.

To deal with cases in which parent annotation is insufficient, we can also hand-write rules that specify a particular node split based on other features of the tree. For example, to distinguish between complementizer IN and subordinating conjunction IN, both of which can have the same parent, we could write rules conditioned on other aspects of the tree such as the lexical identity (the lexeme that is likely to be a complementizer, as a subordinating conjunction).

Node-splitting is not without problems; it increases the size of the grammar and hence reduces the amount of training data available for each grammar rule, leading to overfitting. Thus, it is important to split to just the correct level of granularity for a particular training set. While early models employed hand-written rules to try to find an optimal number of non-terminals (Klein and Manning, 2003b), modern models
automatically search for the optimal splits. The split and merge algorithm of Petrov et al. (2006), for example, starts with a simple X-bar grammar, alternately splits the non-terminals, and merges non-terminals, finding the set of annotated nodes that maximizes the likelihood of the training set treebank. As of the time of this writing, the performance of the Petrov et al. (2006) algorithm was the best of any known parsing algorithm on the Penn Treebank.

13.6 Probabilistic Lexicalized CFGs

The previous section showed that a simple probabilistic CKY algorithm for parsing raw PCFGs can achieve extremely high parsing accuracy if the grammar rule symbols are redesigned by automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of modifying the grammar rules, we modify the probabilistic model of the parser to allow for lexicalized rules. The resulting family of lexicalized parsers includes the well-known Collins parser (Collins, 1999) and Charniak parser (Charniak, 1997), both of which are publicly available and widely used throughout natural language processing.

We saw in Section 11.4.3 that syntactic constituents could be associated with a lexical head, and we defined a lexicalized grammar in which each non-terminal in the tree is annotated with its lexical head, where a rule like $VP \rightarrow VBD NP PP$ would be extended as

$$VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into)$$

In the standard type of lexicalized grammar, we actually make a further extension, which is to associate the head tag, the part-of-speech tags of the headwords, with the non-terminal symbols as well. Each rule is thus lexicalized by both the

![Figure 13.9](image-url) An incorrect parse even with a parent-annotated parse (left). The correct parse (right), was produced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to capture the fact that *if* prefers sentential complements. Adapted from Klein and Manning (2003b).
headword and the head tag of each constituent resulting in a format for lexicalized rules like

\[ VP(dumped,VBD) \rightarrow VBD(dumped,VBD) \ NP(sacks,NNS) PP(into,P) \]  \hspace{1cm} (13.22)

We show a lexicalized parse tree with head tags in Fig. 13.10, extended from Fig. 11.11.

To generate such a lexicalized tree, each PCFG rule must be augmented to identify one right-hand constituent to be the head daughter. The headword for a node is then set to the headword of its head daughter, and the head tag to the part-of-speech tag of the headword. Recall that we gave in Fig. 11.12 a set of hand-written rules for identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is as a parent annotation, that is, as a simple context-free grammar with many copies of each rule, one copy for each possible headword/head tag for each constituent. Thinking of a probabilistic lexicalized CFG in this way would lead to the set of simple PCFG rules shown below the tree in Fig. 13.10.

Note that Fig. 13.10 shows two kinds of rules: **lexical rules**, which express the expansion of a pre-terminal to a word, and **internal rules**, which express the other rule expansions. We need to distinguish these kinds of rules in a lexicalized grammar because they are associated with very different kinds of probabilities. The lexical rules are deterministic, that is, they have probability 1.0 since a lexicalized pre-terminal like \( NN(bin,NN) \) can only expand to the word \( bin \). But for the internal rules, we need to estimate probabilities.
Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG that just happened to have lots of very complex non-terminals and estimate the probabilities for each rule from maximum likelihood estimates. Thus, according to Eq. 13.18, the MLE estimate for the probability for the rule $P(VP(dumped,VBD) \rightarrow VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))$ would be

$$\frac{\text{Count}(VP(dumped,VBD) \rightarrow VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))}{\text{Count}(VP(dumped,VBD))}$$  \hspace{1cm} (13.23)$$

But there’s no way we can get good estimates of counts like those in (13.23) because they are so specific: we’re unlikely to see many (or even any) instances of a sentence with a verb phrase headed by *dumped* that has one NP argument headed by *sacks* and a PP argument headed by *into*. In other words, counts of fully lexicalized PCFG rules like this will be far too sparse, and most rule probabilities will come out 0.

The idea of lexicalized parsing is to make some further independence assumptions to break down each rule so that we would estimate the probability

$$P(VP(dumped,VBD) \rightarrow VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))$$

as the product of smaller independent probability estimates for which we could acquire reasonable counts. The next section summarizes one such method, the Collins parsing method.

### 13.6.1 The Collins Parser

Modern statistical parsers differ in exactly which independence assumptions they make. In this section we describe a simplified version of Collins’s worth knowing about; see the summary at the end of the chapter.

The first intuition of the Collins parser is to think of the right-hand side of every (internal) CFG rule as consisting of a head non-terminal, together with the non-terminals to the left of the head and the non-terminals to the right of the head. In the abstract, we think about these rules as follows:

$$LHS \rightarrow L_n L_{n-1} \ldots L_1 H R_1 \ldots R_{n-1} R_n$$  \hspace{1cm} (13.24)$$

Since this is a lexicalized grammar, each of the symbols like $L_1$ or $R_3$ or $H$ or $LHS$ is actually a complex symbol representing the category and its head and head tag, like $VP(dumped,VP)$ or $NP(sacks,NNS)$.

Now, instead of computing a single MLE probability for this rule, we are going to break down this rule via a neat generative story, a slight simplification of what is called Collins Model 1. This new generative story is that given the left-hand side, we first generate the head of the rule and then generate the dependents of the head, one by one, from the inside out. Each of these generation steps will have its own probability.

We also add a special STOP non-terminal at the left and right edges of the rule; this non-terminal allows the model to know when to stop generating dependents on a given side. We generate dependents on the left side of the head until we’ve generated STOP on the left side of the head, at which point we move to the right side of the head and start generating dependents there until we generate STOP. So it’s as if we
are generating a rule augmented as follows:

\[ P(VP(dumped, VBD) \rightarrow \]
\[ STOP \quad VBD(dumped, VBD) \quad NP(sacks, NNS) \quad PP(into, P) \quad STOP \quad \]  

(13.25)

Let’s see the generative story for this augmented rule. We make use of three kinds of probabilities: \( P_H \) for generating heads, \( P_L \) for generating dependents on the left, and \( P_R \) for generating dependents on the right.

---

1. Generate the head \( VBD(dumped, VBD) \) with probability

\[ P_H(VBD(dumped, VBD) \mid VP(dumped, VBD)) \]

2. Generate the left dependent (which is STOP, since there isn’t one) with probability

\[ P_L(STOP \mid VP(dumped, VBD), VBD(dumped, VBD)) \]

3. Generate right dependent \( NP(sacks, NNS) \) with probability

\[ P_R(NP(sacks, NNS) \mid VP(dumped, VBD), VBD(dumped, VBD)) \]

4. Generate the right dependent \( PP(into, P) \) with probability

\[ P_R(PP(into, P) \mid VP(dumped, VBD), VBD(dumped, VBD)) \]

5. Generate the right dependent STOP with probability

\[ P_R(STOP \mid VP(dumped, VBD), VBD(dumped, VBD)) \]

In summary, the probability of this rule

\[ P(VP(dumped, VBD) \rightarrow \]
\[ VBD(dumped, VBD) \quad NP(sacks, NNS) \quad PP(into, P) \quad \]  

(13.26)

is estimated as

\[ P_H(VBD \mid VP, dumped) \times P_L(STOP \mid VP, VBD, dumped) \times P_R(NP(sacks, NNS) \mid VP, VBD, dumped) \times P_R(PP(into, P) \mid VP, VBD, dumped) \times P_R(STOP \mid VP, VBD, dumped) \]

(13.27)

Each of these probabilities can be estimated from much smaller amounts of data than the full probability in (13.26). For example, the maximum likelihood estimate
for the component probability $P_R(NP(sacks,NNS)|VP,VBD,dumped)$ is

$$
\text{Count}(VP(dumped,VBD) \text{ with } NNS(sacks) \text{ as a daughter somewhere on the right })
\frac{\text{Count}(VP(dumped,VBD))}{(13.28)}
$$

These counts are much less subject to sparsity problems than are complex counts like those in (13.26).

More generally, if $H$ is a head with head word $hw$ and head tag $ht$, $lw/lt$ and $rw/rt$ are the word/tag on the left and right respectively, and $P$ is the parent, then the probability of an entire rule can be expressed as follows:

1. Generate the head of the phrase $H(hw,ht)$ with probability:

$$
P_H(H(hw,ht)|P,hw,ht)
$$

2. Generate modifiers to the left of the head with total probability:

$$
\prod_{i=1}^{n+1} P_L(L_i(lw_i,lt_i)|P,H,hw,ht)
$$

such that $L_{n+1}(lw_{n+1},lt_{n+1})=\text{STOP}$, and we stop generating once we’ve generated a $\text{STOP}$ token.

3. Generate modifiers to the right of the head with total probability:

$$
\prod_{i=1}^{n+1} P_R(R_i(rw_i,rt_i)|P,H,hw,ht)
$$

such that $R_{n+1}(rw_{n+1},rt_{n+1})=\text{STOP}$, and we stop generating once we’ve generated a $\text{STOP}$ token.

### 13.6.2 Advanced: Further Details of the Collins Parser

The actual Collins parser models are more complex (in a couple of ways) than the simple model presented in the previous section. Collins Model 1 includes a distance feature. Thus, instead of computing $P_L$ and $P_R$ as follows,

$$
P_L(L_i(lw_i,lt_i)|P,H,hw,ht)
$$

$$
P_R(R_i(rw_i,rt_i)|P,H,hw,ht)
$$

Collins Model 1 conditions also on a distance feature:

$$
P_L(L_i(lw_i,lt_i)|P,H,hw,ht,distance_L(i-1))
$$

$$
P_R(R_i(rw_i,rt_i)|P,H,hw,ht,distance_R(i-1))
$$

The distance measure is a function of the sequence of words below the previous modifiers (i.e., the words that are the yield of each modifier non-terminal we have already generated on the left).

The simplest version of this distance measure is just a tuple of two binary features based on the surface string below these previous dependencies: (1) Is the string of length zero? (i.e., were no previous words generated?) (2) Does the string contain a verb?
Collins Model 2 adds more sophisticated features, conditioning on subcategorization frames for each verb and distinguishing arguments from adjuncts.

Finally, smoothing is as important for statistical parsers as it was for N-gram models. This is particularly true for lexicalized parsers, since the lexicalized rules will otherwise condition on many lexical items that may never occur in training (even using the Collins or other methods of independence assumptions).

Consider the probability $P_R(R_i(rw_i, rt_i) | P, hw, ht)$. What do we do if a particular right-hand constituent never occurs with this head? The Collins model addresses this problem by interpolating three backed-off models: fully lexicalized (conditioning on the headword), backing off to just the head tag, and altogether unlexicalized.

| Backoff | $P_R(R_i(rw_i, rt_i) | ...)$ | Example |
|---------|-----------------------------|---------|
| 1       | $P_R(R_i(rw_i, rt_i) | P, hw, ht)$ | $P_R$(NP(sacks,NNS)|VP, VBD, dumped) |
| 2       | $P_R(R_i(rw_i, rt_i) | P, ht)$ | $P_R$(NP(sacks,NNS)|VP, VBD) |
| 3       | $P_R(R_i(rw_i, rt_i) | P)$ | $P_R$(NP(sacks,NNS)|VP) |

Similar backoff models are built also for $P_L$ and $P_H$. Although we’ve used the word “backoff”, in fact these are not backoff models but interpolated models. The three models above are linearly interpolated, where $e_1$, $e_2$, and $e_3$ are the maximum likelihood estimates of the three backoff models above:

$$P_R(... ) = \lambda_1 e_1 + (1 - \lambda_1)(\lambda_2 e_2 + (1 - \lambda_2) e_3)$$  \hspace{1cm} (13.33)

The values of $\lambda_1$ and $\lambda_2$ are set to implement Witten-Bell discounting (Witten and Bell, 1991) following Bikel et al. (1997).

The Collins model deals with unknown words by replacing any unknown word in the test set, and any word occurring less than six times in the training set, with a special UNKNOWN word token. Unknown words in the test set are assigned a part-of-speech tag in a preprocessing step by the Ratnaparkhi (1996) tagger; all other words are tagged as part of the parsing process.

The parsing algorithm for the Collins model is an extension of probabilistic CKY; see Collins (2003a). Extending the CKY algorithm to handle basic lexicalized probabilities is left as Exercises 14.5 and 14.6 for the reader.

### 13.7 Probabilistic CCG Parsing

Lexicalized grammar frameworks such as CCG pose problems for which the phrase-based methods we’ve been discussing are not particularly well-suited. To quickly review, CCG consists of three major parts: a set of categories, a lexicon that associates words with categories, and a set of rules that govern how categories combine in context. Categories can be either atomic elements, such as $S$ and $NP$, or functions such as $(S\backslash NP)/NP$ which specifies the transitive verb category. Rules specify how functions, their arguments, and other functions combine. For example, the following rule templates, forward and backward function application, specify the way that functions apply to their arguments.

$$X/Y \ Y \ \Rightarrow \ X$$
$$Y \ X\backslash Y \ \Rightarrow \ X$$

The first rule applies a function to its argument on the right, while the second looks to the left for its argument. The result of applying either of these rules is the
category specified as the value of the function being applied. For the purposes of this discussion, we’ll rely on these two rules along with the forward and backward composition rules and type-raising, as described in Chapter 11.

### 13.7.1 Ambiguity in CCG

As is always the case in parsing, managing ambiguity is the key to successful CCG parsing. The difficulties with CCG parsing arise from the ambiguity caused by the large number of complex lexical categories combined with the very general nature of the grammatical rules. To see some of the ways that ambiguity arises in a categorial framework, consider the following example.

(13.34) United diverted the flight to Reno.

Our grasp of the role of the flight in this example depends on whether the prepositional phrase to Reno is taken as a modifier of the flight, as a modifier of the entire verb phrase, or as a potential second argument to the verb divert. In a context-free grammar approach, this ambiguity would manifest itself as a choice among the following rules in the grammar.

\[
\begin{align*}
\text{Nominal} & \rightarrow \text{Nominal PP} \\
\text{VP} & \rightarrow \text{VP PP} \\
\text{VP} & \rightarrow \text{Verb NP PP}
\end{align*}
\]

In a phrase-structure approach we would simply assign the word to to the category P allowing it to combine with Reno to form a prepositional phrase. The subsequent choice of grammar rules would then dictate the ultimate derivation. In the categorial approach, we can associate to with distinct categories to reflect the ways in which it might interact with other elements in a sentence. The fairly abstract combinatoric rules would then sort out which derivations are possible. Therefore, the source of ambiguity arises not from the grammar but rather from the lexicon.

Let’s see how this works by considering several possible derivations for this example. To capture the case where the prepositional phrase to Reno modifies the flight, we assign the preposition to the category \((NP\setminus NP)/NP\), which gives rise to the following derivation.

Here, the category assigned to to expects to find two arguments: one to the right as with a traditional preposition, and one to the left that corresponds to the NP to be modified.

Alternatively, we could assign to to the category \((S\setminus S)/NP\), which permits the following derivation where to Reno modifies the preceding verb phrase.
A third possibility is to view *diverted* as a ditransitive verb by assigning it to the category \((S\backslash NP)/PP)/NP\), while treating *to Reno* as a simple prepositional phrase.

While CCG parsers are still subject to ambiguity arising from the choice of grammar rules, including the kind of spurious ambiguity discussed in Chapter 11, it should be clear that the choice of lexical categories is the primary problem to be addressed in CCG parsing.

### 13.7.2 CCG Parsing Frameworks

Since the rules in combinatory grammars are either binary or unary, a bottom-up, tabular approach based on the CKY algorithm should be directly applicable to CCG parsing. Recall from Fig. 13.3 that PCKY employs a table that records the location, category and probability of all valid constituents discovered in the input. Given an appropriate probability model for CCG derivations, the same kind of approach can work for CCG parsing.

Unfortunately, the large number of lexical categories available for each word, combined with the promiscuity of CCG’s combinatoric rules, leads to an explosion in the number of (mostly useless) constituents added to the parsing table. The key to managing this explosion of zombie constituents is to accurately assess and exploit the most likely lexical categories possible for each word — a process called supertagging.

The following sections describe two approaches to CCG parsing that make use of supertags. Section 13.7.4, presents an approach that structures the parsing process as a heuristic search through the use of the A* algorithm. The following section then briefly describes a more traditional maximum entropy approach that manages the search space complexity through the use of adaptive supertagging — a process that iteratively considers more and more tags until a parse is found.

### 13.7.3 Supertagging

Chapter 10 introduced the task of part-of-speech tagging, the process of assigning the correct lexical category to each word in a sentence. Supertagging is the corresponding task for highly lexicalized grammar frameworks, where the assigned tags
often dictate much of the derivation for a sentence. Indeed, we refer to supertagging as *almost parsing*.

CCG supertaggers rely on treebanks such as CCGbank to provide both the overall set of lexical categories as well as the allowable category assignments for each word in the lexicon. CCGbank includes over 1000 lexical categories, however, in practice, most supertaggers limit their tagsets to those tags that occur at least 10 times in the training corpus. This results in an overall total of around 425 lexical categories available for use in the lexicon. Note that even this smaller number is large in contrast to the 45 POS types used by the Penn Treebank tagset.

As with traditional part-of-speech tagging, the standard approach to building a CCG supertagger is to use supervised machine learning to build a sequence classifier using labeled training data. A common approach is to use the maximum entropy Markov model (MEMM), as described in Chapter 10, to find the most likely sequence of tags given a sentence. The features in such a model consist of the current word \( w_i \), its surrounding words within \( l \) words \( w_{i-l}^{i+l} \), as well as the \( k \) previously assigned supertags \( t_{i-k}^{i-1} \). This type of model is summarized in the following equation from Chapter 10. Training by maximizing log-likelihood of the training corpus and decoding via the Viterbi algorithm are the same as described in Chapter 10.

\[
\hat{T} = \arg\max_T \log \sum_{t' \in \text{tagset}} \exp \left( \sum_i w_i f_i (t', w_{i-l}^{i+l}, t_{i-k}^{i-1}) \right) \\
= \arg\max_T \prod_i \exp \left( \sum_i w_i f_i (t, w_{i-l}^{i+l}, t_{i-k}^{i-1}) \right) \\
= \arg\max_T \prod_i \frac{\exp \left( \sum_i w_i f_i (t, w_{i-l}^{i+l}, t_{i-k}^{i-1}) \right)}{\sum_{t' \in \text{tagset}} \exp \left( \sum_i w_i f_i (t', w_{i-l}^{i+l}, t_{i-k}^{i-1}) \right)} 
\]

\[ (13.35) \]

Word and tag-based features with \( k \) and \( l \) both set to 2 provides reasonable results given sufficient training data. Additional features such as POS tags and short character suffixes are also commonly used to improve performance.

Unfortunately, even with additional features the large number of possible supertags combined with high per-word ambiguity leads to error rates that are too high for practical use in a parser. More specifically, the single best tag sequence \( \hat{T} \) will typically contain too many incorrect tags for effective parsing to take place.

To overcome this, we can instead return a probability distribution over the possible supertags for each word in the input. The following table illustrates an example distribution for a simple example sentence. In this table, each column represents the probability of each supertag for a given word in the context of the input sentence. The “...” represent all the remaining supertags possible for each word.

<table>
<thead>
<tr>
<th>United</th>
<th>serves</th>
<th>Denver</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N/N ): 0.4</td>
<td>( (S\backslash NP)/NP ): 0.8</td>
<td>( NP ): 0.9</td>
</tr>
<tr>
<td>( NP ): 0.3</td>
<td>( N ): 0.1</td>
<td>( N/N ): 0.05</td>
</tr>
<tr>
<td>( S/S ): 0.1</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
| \( S\backslash S \):
| .05 | ... | ... |

In a MEMM framework, the probability of the optimal tag sequence defined in Eq. 13.35 is efficiently computed with a suitably modified version of the Viterbi
algorithm. However, since Viterbi only finds the single best tag sequence it doesn’t provide exactly what we need here; we need to know the probability of each possible word/tag pair. The probability of any given tag for a word is the sum of the probabilities of all the supertag sequences that contain that tag at that location. Fortunately, we’ve seen this problem before — a table representing these values can be computed efficiently by using a version of the forward-backward algorithm presented in Chapter 9.

The same result can also be achieved through the use of deep learning approaches based on recurrent neural networks (RNNs). Recent efforts have demonstrated considerable success with RNNs as alternatives to HMM-based methods. These approaches differ from traditional classifier-based methods in the following ways:

- The use of vector-based word representations (embeddings) rather than word-based feature functions.
- Input representations that span the entire sentence, as opposed to size-limited sliding windows.
- Avoiding the use of high-level features, such as part of speech tags, since errors in tag assignment can propagate to errors in supertags.

As with the forward-backward algorithm, RNN-based methods can provide a probability distribution over the lexical categories for each word in the input.

### 13.7.4 CCG Parsing using the A* Algorithm

The A* algorithm is a heuristic search method that employs an agenda to find an optimal solution. Search states representing partial solutions are added to an agenda based on a cost function, with the least-cost option being selected for further exploration at each iteration. When a state representing a complete solution is first selected from the agenda, it is guaranteed to be optimal and the search terminates.

The A* cost function, \( f(n) \), is used to efficiently guide the search to a solution. The \( f \)-cost has two components: \( g(n) \), the exact cost of the partial solution represented by the state \( n \), and \( h(n) \) a heuristic approximation of the cost of a solution that makes use of \( n \). When \( h(n) \) satisfies the criteria of not overestimating the actual cost, A* will find an optimal solution. Not surprisingly, the closer the heuristic can get to the actual cost, the more effective A* is at finding a solution without having to explore a significant portion of the solution space.

When applied to parsing, search states correspond to edges representing completed constituents. As with the PCKY algorithm, edges specify a constituent’s start and end positions, its grammatical category, and its \( f \)-cost. Here, the \( g \) component represents the current cost of an edge and the \( h \) component represents an estimate of the cost to complete a derivation that makes use of that edge. The use of A* for phrase structure parsing originated with (Klein and Manning, 2003a), while the CCG approach presented here is based on (Lewis and Steedman, 2014).

Using information from a supertagger, an agenda and a parse table are initialized with states representing all the possible lexical categories for each word in the input, along with their \( f \)-costs. The main loop removes the lowest cost edge from the agenda and tests to see if it is a complete derivation. If it reflects a complete derivation it is selected as the best solution and the loop terminates. Otherwise, new states based on the applicable CCG rules are generated, assigned costs, and entered into the agenda to await further processing. The loop continues until a complete derivation is discovered, or the agenda is exhausted, indicating a failed parse. The algorithm is given in Fig. 13.11.
Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how to assess the quality of CCG derivations. For the generic PCFG model, we defined the probability of a tree as the product of the probability of the rules that made up the tree. Given CCG’s lexical nature, we’ll make the simplifying assumption that the probability of a CCG derivation is just the product of the probability of the supertags assigned to the words in the derivation, ignoring the rules used in the derivation. More formally, given a sentence $S$ and derivation $D$ that contains supertag sequence $T$, we have:

$$P(D,S) = P(T,S)$$  \hspace{1cm} (13.36)
$$= \prod_{i=1}^{n} P(t_i | s_i)$$  \hspace{1cm} (13.37)

To better fit with the traditional A* approach, we’d prefer to have states scored by a cost function where lower is better (i.e., we’re trying to minimize the cost of a derivation). To achieve this, we’ll use negative log probabilities to score derivations; this results in the following equation, which we’ll use to score completed CCG derivations.

$$P(D,S) = P(T,S)$$  \hspace{1cm} (13.38)
$$= \sum_{i=1}^{n} -\log P(t_i | s_i)$$  \hspace{1cm} (13.39)

Given this model, we can define our $f$-cost as follows. The $f$-cost of an edge is the sum of two components: $g(n)$, the cost of the span represented by the edge, and
\( h(n) \), the estimate of the cost to complete a derivation containing that edge (these are often referred to as the \textit{inside} and \textit{outside costs}). We’ll define \( g(n) \) for an edge using Equation 13.39. That is, it is just the sum of the costs of the supertags that comprise the span.

For \( h(n) \), we need a score that approximates but \textit{never overestimates} the actual cost of the final derivation. A simple heuristic that meets this requirement assumes that each of the words in the outside span will be assigned its \textit{most probable supertag}. If these are the tags used in the final derivation, then its score will equal the heuristic. If any other tags are used in the final derivation the \( f \)-cost will be higher since the new tags must have higher costs, thus guaranteeing that we will not overestimate.

Putting this all together, we arrive at the following definition of a suitable \( f \)-cost for an edge.

\[
f(w_{i,j}, t_{i,j}) = g(w_{i,j}) + h(w_{i,j})
\]

\[
= \sum_{k=i}^{j} -\log P(t_k|w_k) + \sum_{k=1}^{i-1} \max_{t \in \text{tags}} (-\log P(t|w_k)) + \sum_{k=j+1}^{N} \max_{t \in \text{tags}} (-\log P(t|w_k))
\]

As an example, consider an edge representing the word \textit{serves} with the supertag \textit{N} in the following example.

(13.41) United serves Denver.

The \( g \)-cost for this edge is just the negative log probability of the tag, or \( X \). The outside \( h \)-cost consists of the most optimistic supertag assignments for \textit{United} and \textit{Denver}. The resulting \( f \)-cost for this edge is therefore \( x+y+z = 1.494 \).

\textbf{An Example}

Fig. 13.12 shows the initial agenda and the progress of a complete parse for this example. After initializing the agenda and the parse table with information from the supertagger, it selects the best edge from the agenda — the entry for \textit{United} with the tag \textit{N/N} and \( f \)-cost 0.591. This edge does not constitute a complete parse and is therefore used to generate new states by applying all the relevant grammar rules. In this case, applying forward application to \textit{United: N/N} and \textit{serves: N} results in the creation of the edge \textit{United serves: N[0,2], 1.795} to the agenda.

Skipping ahead, at the the third iteration an edge representing the complete derivation \textit{United serves Denver, S[0,3], .716} is added to the agenda. However, the algorithm does not terminate at this point since the cost of this edge (.716) does not place it at the top of the agenda. Instead, the edge representing \textit{Denver} with the category \textit{NP} is popped. This leads to the addition of another edge to the agenda (type-raising \textit{Denver}). Only after this edge is popped and dealt with does the earlier state representing a complete derivation rise to the top of the agenda where it is popped, goal tested, and returned as a solution.

The effectiveness of the A* approach is reflected in the coloring of the states in Fig. 13.12 as well as the final parsing table. The edges shown in blue (including all the initial lexical category assignments not explicitly shown) reflect states in the search space that never made it to the top of the agenda and, therefore, never
contributed any edges to the final table. This is in contrast to the PCKY approach where the parser systematically fills the parse table with all possible constituents for all possible spans in the input, filling the table with myriad constituents that do not contribute to the final analysis.
13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PARSEVAL measures; they were proposed by Black et al. (1991) and were based on the same ideas from signal-detection theory that we saw in earlier chapters. The intuition of the PARSEVAL metric is to measure how much the constituents in the hypothesis parse tree look like the constituents in a hand-labeled, gold-reference parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse tree for each sentence in the test set; we generally draw these gold-standard parses from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in a hypothesis parse \( C \) of a sentence \( s \) is labeled “correct” if there is a constituent in the reference parse \( C_r \) with the same starting point, ending point, and non-terminal symbol.

We can then measure the precision and recall just as we did for chunking in the previous chapter.

\[
\text{labeled recall: } \frac{\# \text{ of correct constituents in hypothesis parse of } s}{\# \text{ of correct constituents in reference parse of } s}
\]

\[
\text{labeled precision: } \frac{\# \text{ of correct constituents in hypothesis parse of } s}{\# \text{ of total constituents in hypothesis parse of } s}
\]

As with other uses of precision and recall, instead of reporting them separately, we often report a single number, the \( F \)-measure (van Rijsbergen, 1975): The \( F \)-measure is defined as

\[
F_\beta = \frac{(\beta^2 + 1)PR}{\beta^2P + R}
\]

The \( \beta \) parameter differentially weights the importance of recall and precision, based perhaps on the needs of an application. Values of \( \beta > 1 \) favor recall and values of \( \beta < 1 \) favor precision. When \( \beta = 1 \), precision and recall are equally balanced; this is sometimes called \( F_{\beta=1} \) or just \( F_1 \):

\[
F_1 = \frac{2PR}{P + R}
\]

The \( F \)-measure derives from a weighted harmonic mean of precision and recall. Remember that the harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of the reciprocals:

\[
\text{HarmonicMean}(a_1, a_2, a_3, a_4, ..., a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}
\]

and hence the \( F \)-measure is

\[
F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \text{or} \quad \left( \text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2P + R}
\]

We additionally use a new metric, crossing brackets, for each sentence \( s \):

\text{cross-brackets: } \text{the number of constituents for which the reference parse has a bracketing such as ((A B) C) but the hypothesis parse has a bracketing such as (A (B C)).}
As of the time of this writing, the performance of modern parsers that are trained and tested on the Wall Street Journal treebank was somewhat higher than 90% recall, 90% precision, and about 1% cross-bracketed constituents per sentence.

For comparing parsers that use different grammars, the PARSEVAL metric includes a canonicalization algorithm for removing information likely to be grammar-specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score. The interested reader should see Black et al. (1991). The canonical publicly available implementation of the PARSEVAL metrics is called evalb (Sekine and Collins, 1997).

Nonetheless, phrasal constituents are not always an appropriate unit for parser evaluation. In lexically-oriented grammars, such as CCG and LFG, the ultimate goal is to extract the appropriate predicate-argument relations or grammatical dependencies, rather than a specific derivation. Such relations often give us a better metric for how useful a parser output will be for further semantic processing. For these purposes, we can use alternative evaluation metrics based on measuring the precision and recall of labeled dependencies, where the labels indicate the grammatical relations (Lin, 1995; Carroll et al., 1998; Collins et al., 1999). Indeed, the parsing model of Clark and Curran (2007) presented in Section ?? incorporates a dependency model as part of its training objective function.

Such evaluation metrics also allow us to compare parsers developed using different grammatical frameworks by converting their outputs to a common neutral representation. Kaplan et al. (2004), for example, compared the Collins (1999) parser with the Xerox XLE parser (Riezler et al., 2002), which produces much richer semantic representations by converting both parse trees to a dependency representation.

Finally, you might wonder why we don’t evaluate parsers by measuring how many sentences are parsed correctly instead of measuring component accuracy in the form of constituents or dependencies. The reason we use components is that it gives us a more fine-grained metric. This is especially true for long sentences, where most parsers don’t get a perfect parse. If we just measured sentence accuracy, we wouldn’t be able to distinguish between a parse that got most of the parts wrong and one that just got one part wrong.

### 13.9 Human Parsing

Are the kinds of probabilistic parsing models we have been discussing also used by humans when they are parsing? The answer to this question lies in a field called human sentence processing. Recent studies suggest that there are at least two ways in which humans apply probabilistic parsing algorithms, although there is still disagreement on the details.

One family of studies has shown that when humans read, the predictability of a word seems to influence the reading time; more predictable words are read more quickly. One way of defining predictability is from simple bigram measures. For example, Scott and Shillcock (2003) used an eye-tracker to monitor the gaze of participants reading sentences. They constructed the sentences so that some would have a verb-noun pair with a high bigram probability (such as (13.45a)) and others a verb-noun pair with a low bigram probability (such as (13.45b)).

\[(13.45) \quad \text{a) HIGH PROB: One way to avoid confusion is to make the changes}\]
during vacation
b) LOW PROB: One way to avoid discovery is to make the changes
during vacation

They found that the higher the bigram predictability of a word, the shorter the
time that participants looked at the word (the initial-fixation duration).

While this result provides evidence only for N-gram probabilities, more recent
experiments have suggested that the probability of an upcoming word given the syn-
tactic parse of the preceding sentence prefix also predicts word reading time (Hale,
2001; Levy, 2008).

Interestingly, this effect of probability on reading time has also been shown for
morphological structure; the time to recognize a word is influenced by entropy of
the word and the entropy of the word’s morphological paradigm (Moscoso del Prado
Martín et al., 2004).

The second family of studies has examined how humans disambiguate sentences
that have multiple possible parses, suggesting that humans prefer whichever parse
is more probable. These studies often rely on a specific class of temporarily am-
biguous sentences called garden-path sentences. These sentences, first described
by Bever (1970), are sentences that are cleverly constructed to have three properties
that combine to make them very difficult for people to parse:

1. They are temporarily ambiguous: The sentence is unambiguous, but its ini-
tial portion is ambiguous.
2. One of the two or more parses in the initial portion is somehow preferable to
the human parsing mechanism.
3. But the dispreferred parse is the correct one for the sentence.

The result of these three properties is that people are “led down the garden path”
toward the incorrect parse and then are confused when they realize it’s the wrong
one. Sometimes this confusion is quite conscious, as in Bever’s example (13.46);
in fact, this sentence is so hard to parse that readers often need to be shown the
correct structure. In the correct structure, raced is part of a reduced relative clause
modifying The horse, and means “The horse [which was raced past the barn] fell”;
this structure is also present in the sentence “Students taught by the Berlitz method
do worse when they get to France”.

(13.46) The horse raced past the barn fell.

\[ \text{(a) S} \]

\[ \begin{array}{c}
\text{NP} \\
\text{Det} \\
\text{The} \\
\text{horse} \\
raced \\
\text{past} \\
\text{Det} \\
\text{the} \\
\text{barn} \\
\text{VP} \\
\text{V} \\
fell \\
\end{array} \]

\[ \text{(b) S} \]

\[ \begin{array}{c}
\text{NP} \\
\text{Det} \\
\text{The} \\
\text{horse} \\
raced \\
\text{past} \\
\text{Det} \\
\text{the} \\
\text{barn} \\
\text{VP} \\
\text{V} \\
fell \\
\end{array} \]
In Marti Hearst’s example (13.47), readers often misparse the verb *houses* as a noun (analyzing *the complex houses* as a noun phrase, rather than a noun phrase and a verb). Other times, the confusion caused by a garden-path sentence is so subtle that it can only be measured by a slight increase in reading time. Thus, in (13.48) readers often misparse *the solution* as the direct object of *forgot* rather than as the subject of an embedded sentence. This misparse is subtle, and is only noticeable because experimental participants take longer to read the word *was* than in control sentences. This “mini garden path” effect at the word *was* suggests that subjects had chosen the direct object parse and had to reanalyze or rearrange their parse now that they realize they are in a sentential complement.

(13.47) The complex houses married and single students and their families.

(13.48) The student forgot the solution was in the back of the book.

While many factors seem to play a role in these preferences for a particular (incorrect) parse, at least one factor seems to be syntactic probabilities, especially lexicalized (subcategorization) probabilities. For example, the probability of the verb *forgot* taking a direct object (*VP → V NP*) is higher than the probability of it taking a sentential complement (*VP → V S*); this difference causes readers to expect a direct object after *forgot* and be surprised (longer reading times) when they encounter a sentential complement. By contrast, a verb which prefers a sentential complement (like *hope*) didn’t cause extra reading time at *was*.

The garden path in (13.47) may arise from the fact that \( P(\text{houses}|\text{Noun}) \) is higher than \( P(\text{houses}|\text{Verb}) \) and \( P(\text{complex}|\text{Adjective}) \) is higher than \( P(\text{complex}|\text{Noun}) \), and the garden path in (13.46) at least partially caused by the low probability of the reduced relative clause construction.

Besides grammatical knowledge, human parsing is affected by many other factors including resource constraints (such as memory limitations, thematic structure...
(such as whether a verb expects semantic agents or patients, discussed in Chapter 22) and discourse constraints (Chapter 23).

13.10 Summary

This chapter has sketched the basics of probabilistic parsing, concentrating on probabilistic context-free grammars and probabilistic lexicalized context-free grammars.

- Probabilistic grammars assign a probability to a sentence or string of words while attempting to capture more sophisticated syntactic information than the N-gram grammars of Chapter 4.
- A probabilistic context-free grammar (PCFG) is a context-free grammar in which every rule is annotated with the probability of that rule being chosen. Each PCFG rule is treated as if it were conditionally independent; thus, the probability of a sentence is computed by multiplying the probabilities of each rule in the parse of the sentence.
- The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic version of the CKY parsing algorithm. There are also probabilistic versions of other parsers like the Earley algorithm.
- PCFG probabilities can be learned by counting in a parsed corpus or by parsing a corpus. The inside-outside algorithm is a way of dealing with the fact that the sentences being parsed are ambiguous.
- Raw PCFGs suffer from poor independence assumptions among rules and lack of sensitivity to lexical dependencies.
- One way to deal with this problem is to split and merge non-terminals (automatically or by hand).
- Probabilistic lexicalized CFGs are another solution to this problem in which the basic PCFG model is augmented with a lexical head for each rule. The probability of a rule can then be conditioned on the lexical head or nearby heads.
- Parsers for lexicalized PCFGs (like the Charniak and Collins parsers) are based on extensions to probabilistic CKY parsing.
- Parsers are evaluated with three metrics: labeled recall, labeled precision, and cross-brackets.
- Evidence from garden-path sentences and other on-line sentence-processing experiments suggest that the human parser uses some kinds of probabilistic information about grammar.

Bibliographical and Historical Notes

Many of the formal properties of probabilistic context-free grammars were first worked out by Booth (1969) and Salomaa (1969). Baker (1979) proposed the inside-outside algorithm for unsupervised training of PCFG probabilities, and used a CKY-style parsing algorithm to compute inside probabilities. Jelinek and Lafferty (1991)
extended the CKY algorithm to compute probabilities for prefixes. Stolcke (1995) drew on both of these algorithms in adapting the Earley algorithm to use with PCFGs.

A number of researchers starting in the early 1990s worked on adding lexical dependencies to PCFGs and on making PCFG rule probabilities more sensitive to surrounding syntactic structure. For example, Schabes et al. (1988) and Schabes (1990) presented early work on the use of heads. Many papers on the use of lexical dependencies were first presented at the DARPA Speech and Natural Language Workshop in June 1990. A paper by Hindle and Rooth (1990) applied lexical dependencies to the problem of attaching prepositional phrases; in the question session to a later paper, Ken Church suggested applying this method to full parsing (Marcus, 1990).

Early work on such probabilistic CFG parsing augmented with probabilistic dependency information includes Magerman and Marcus (1991), Black et al. (1992), Bod (1993), and Jelinek et al. (1994), in addition to Collins (1996), Charniak (1997), and Collins (1999) discussed above. Other recent PCFG parsing models include Klein and Manning (2003a) and Petrov et al. (2006).

This early lexical probabilistic work led initially to work focused on solving specific parsing problems like preposition-phrase attachment by using methods including transformation-based learning (TBL) (Brill and Resnik, 1994), maximum entropy (Ratnaparkhi et al., 1994), memory-based Learning (Zavrel and Daelemans, 1997), log-linear models (Franz, 1997), decision trees that used semantic distance between heads (computed from WordNet) (Stetina and Nagao, 1997), and boosting (Abney et al., 1999).

Another direction extended the lexical probabilistic parsing work to build probabilistic formulations of grammars other than PCFGs, such as probabilistic TAG grammar (Resnik 1992, Schabes 1992), based on the TAG grammars discussed in Chapter 11, probabilistic LR parsing (Briscoe and Carroll, 1993), and probabilistic link grammar (Lafferty et al., 1992). An approach to probabilistic parsing called supertagging extends the part-of-speech tagging metaphor to parsing by using very complex tags that are, in fact, fragments of lexicalized parse trees (Bangalore and Joshi 1999, Joshi and Srinivas 1994), based on the lexicalized TAG grammars of Schabes et al. (1988). For example, the noun *purchase* would have a different tag as the first noun in a noun compound (where it might be on the left of a small tree dominated by Nominal) than as the second noun (where it might be on the right).

Goodman (1997), Abney (1997), and Johnson et al. (1999) gave early discussions of probabilistic treatments of feature-based grammars. Other recent work on building statistical models of feature-based grammar formalisms like HPSG and LFG includes (Riezler et al. 2002, Kaplan et al. 2004), and Toutanova et al. (2005).

We mentioned earlier that discriminative approaches to parsing fall into the two broad categories of dynamic programming methods and discriminative reranking methods. Recall that discriminative reranking approaches require \( N \)-best parses. Parsers based on \( A^* \) search can easily be modified to generate \( N \)-best lists just by continuing the search past the first-best parse (Roark, 2001). Dynamic programming algorithms like the ones described in this chapter can be modified by the elimination of the dynamic programming with heavy pruning (Collins 2000, Collins and Koo 2005, Bikel 2004), or through new algorithms (Jiménez and Marziali 2000, Charniak and Johnson 2005, Huang and Chiang 2005), some adapted from speech recognition algorithms such as those of Schwartz and Chow (1990) (see Section ??).

In dynamic programming methods, instead of outputting and then reranking an \( N \)-best list, the parses are represented compactly in a chart, and log-linear and other
methods are applied for decoding directly from the chart. Such modern methods include (Johnson 2001, Clark and Curran 2004), and Taskar et al. (2004). Other reranking developments include changing the optimization criterion (Titov and Henderson, 2006).

Collins’ (1999) dissertation includes a very readable survey of the field and an introduction to his parser. Manning and Schütze (1999) extensively cover probabilistic parsing.

The field of grammar induction is closely related to statistical parsing, and a parser is often used as part of a grammar induction algorithm. One of the earliest statistical works in grammar induction was Horning (1969), who showed that PCFGs could be induced without negative evidence. Early modern probabilistic grammar work showed that simply using EM was insufficient (Lari and Young 1990, Carroll and Charniak 1992). Recent probabilistic work, such as Yuret (1998), Clark (2001), Klein and Manning (2002), and Klein and Manning (2004), are summarized in Klein (2005) and Adriaans and van Zaanen (2004). Work since that summary includes Smith and Eisner (2005), Haghighi and Klein (2006), and Smith and Eisner (2007).

Exercises

13.1 Implement the CKY algorithm.

13.2 Modify the algorithm for conversion to CNF from Chapter 12 to correctly handle rule probabilities. Make sure that the resulting CNF assigns the same total probability to each parse tree.

13.3 Recall that Exercise 13.3 asked you to update the CKY algorithm to handle unit productions directly rather than converting them to CNF. Extend this change to probabilistic CKY.

13.4 Fill out the rest of the probabilistic CKY chart in Fig. ??.

13.5 Sketch how the CKY algorithm would have to be augmented to handle lexicalized probabilities.

13.6 Implement your lexicalized extension of the CKY algorithm.

13.7 Implement the PARSEVAL metrics described in Section 13.8. Next, either use a treebank or create your own hand-checked parsed test set. Now use your CFG (or other) parser and grammar, parse the test set and compute labeled recall, labeled precision, and cross-brackets.
CHAPTER 14

Dependency Parsing

The focus of the three previous chapters has been on context-free grammars and their use in automatically generating constituent-based representations. Here we present another family of grammar formalisms called dependency grammars that are quite important in contemporary speech and language processing systems. In these formalisms, phrasal constituents and phrase-structure rules do not play a direct role. Instead, the syntactic structure of a sentence is described solely in terms of the words (or lemmas) in a sentence and an associated set of directed binary grammatical relations that hold among the words.

The following diagram illustrates a dependency-style analysis using the standard graphical method favored in the dependency-parsing community.

(14.1)

Relations among the words are illustrated above the sentence with directed, labeled arcs from heads to dependents. We call this a typed dependency structure because the labels are drawn from a fixed inventory of grammatical relations. It also includes a root node that explicitly marks the root of the tree, the head of the entire structure.

Figure 14.1 shows the same dependency analysis as a tree alongside its corresponding phrase-structure analysis of the kind given in Chapter 11. Note the absence of nodes corresponding to phrasal constituents or lexical categories in the dependency parse; the internal structure of the dependency parse consists solely of directed relations between lexical items in the sentence. These relationships directly encode important information that is often buried in the more complex phrase-structure parses. For example, the arguments to the verb prefer are directly linked to it in the dependency structure, while their connection to the main verb is more distant in the phrase-structure tree. Similarly, morning and Denver, modifiers of flight, are linked to it directly in the dependency structure.

A major advantage of dependency grammars is their ability to deal with languages that are morphologically rich and have a relatively free word order. For example, word order in Czech can be much more flexible than in English; a grammatical object might occur before or after a location adverbial. A phrase-structure grammar would need a separate rule for each possible place in the parse tree where such an adverbial phrase could occur. A dependency-based approach would just have one link type representing this particular adverbial relation. Thus, a dependency grammar approach abstracts away from word-order information, representing only the information that is necessary for the parse.

An additional practical motivation for a dependency-based approach is that the head-dependent relations provide an approximation to the semantic relationship be-
between predicates and their arguments that makes them directly useful for many applications such as coreference resolution, question answering and information extraction. Constituent-based approaches to parsing provide similar information, but it often has to be distilled from the trees via techniques such as the head finding rules discussed in Chapter 11.

In the following sections, we’ll discuss in more detail the inventory of relations used in dependency parsing, as well as the formal basis for these dependency structures. We’ll then move on to discuss the dominant families of algorithms that are used to automatically produce these structures. Finally, we’ll discuss how to evaluate dependency parsers and point to some of the ways they are used in language processing applications.

### 14.1 Dependency Relations

The traditional linguistic notion of **grammatical relation** provides the basis for the binary relations that comprise these dependency structures. The arguments to these relations consist of a **head** and a **dependent**. We’ve already discussed the notion of heads in Chapter 11 and Chapter 13 in the context of constituent structures. There, the head word of a constituent was the central organizing word of a larger constituent (e.g., the primary noun in a noun phrase, or verb in a verb phrase). The remaining words in the constituent are either direct, or indirect, dependents of their head. In dependency-based approaches, the head-dependent relationship is made explicit by directly linking heads to the words that are immediately dependent on them, bypassing the need for constituent structures.

In addition to specifying the head-dependent pairs, dependency grammars allow us to further classify the kinds of grammatical relations, or **grammatical function**,
in terms of the role that the dependent plays with respect to its head. Familiar notions such as subject, direct object and indirect object are among the kind of relations we have in mind. In English these notions strongly correlate with, but by no means determine, both position in a sentence and constituent type and are therefore somewhat redundant with the kind of information found in phrase-structure trees. However, in more flexible languages the information encoded directly in these grammatical relations is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well beyond the familiar notions of subject and object. While there is considerable variation from theory to theory, there is enough commonality that efforts to develop a computationally useful standard are now possible. The Universal Dependencies project (Nivre et al., 2016) provides an inventory of dependency relations that are linguistically motivated, computationally useful, and cross-linguistically applicable. Fig. 14.2 shows a subset of the relations from this effort. Fig. 14.3 provides some example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is beyond the scope of this chapter, but the core set of frequently used relations can be broken into two sets: clausal relations that describe syntactic roles with respect to a predicate (often a verb), and modifier relations that categorize the ways that words that can modify their heads.

Consider the following example sentence:

(14.2) United canceled the morning flights to Houston

The clausal relations NSUBJ and DOBJ identify the subject and direct object of the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of the nouns flights and Houston.
14.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply directed graphs. That is, structures $G = (V, A)$ consisting of a set of vertices $V$, and a set of ordered pairs of vertices $A$, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, $V$, corresponds exactly to the set of words in a given sentence. However, they might also correspond to punctuation, or when dealing with morphologically complex languages the set of vertices might consist of stems and affixes of the kind discussed in Chapter 3. The set of arcs, $A$, captures the head-dependent and grammatical function relationships between the elements in $V$.

Further constraints on these dependency structures are specific to the underlying grammatical theory or formalism. Among the more frequent restrictions are that the structures must be connected, have a designated root node, and be acyclic or planar. Of most relevance to the parsing approaches discussed in this chapter is the common, computationally-motivated, restriction to rooted trees. That is, a dependency tree is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in $V$.

Taken together, these constraints ensure that each word has a single head, that the dependency structure is connected, and that there is a single root node from which one can follow a unique directed path to each of the words in the sentence.

14.2.1 Projectivity

The notion of projectivity imposes an additional constraint that is derived from the order of the words in the input, and is closely related to the context-free nature of human languages discussed in Chapter 11. An arc from a head to a dependent is said to be projective if there is a path from the head to every word that lies between the head and the dependent in the sentence. A dependency tree is then said to be projective if all the arcs that make it up are projective. All the dependency trees we’ve seen thus far have been projective. There are, however, many perfectly valid
constructions which lead to non-projective trees, particularly in languages with a relatively flexible word order.

Consider the following example.

\[(14.3)\]

JetBlue canceled our flight this morning which was already late

In this example, the arc from \textit{flight} to its modifier \textit{was} is non-projective since there is no path from \textit{flight} to the intervening words \textit{this} and \textit{morning}. As we can see from this diagram, projectivity (and non-projectivity) can be detected in the way we’ve been drawing our trees. A dependency tree is projective if it can be drawn without crossing edges. Here there is no way to link \textit{flight} to its dependent \textit{was} without crossing the arc that links \textit{morning} to its head.

Our concern with projectivity arises from two related issues. First, the most widely used English dependency treebanks were automatically derived from phrase-structure treebanks through the use of head-finding rules (Chapter 11). The trees generated in such a fashion are guaranteed to be projective since they’re generated from context-free grammars.

Second, there are computational limitations to the most widely used families of parsing algorithms. The transition-based approaches discussed in Section 14.4 can only produce projective trees, hence any sentences with non-projective structures will necessarily contain some errors. This limitation is one of the motivations for the more flexible graph-based parsing approach described in Section 14.5.

14.3 Dependency Treebanks

As with constituent-based methods, treebanks play a critical role in the development and evaluation of dependency parsers. Dependency treebanks have been created using similar approaches to those discussed in Chapter 11 — having human annotators directly generate dependency structures for a given corpus, or using automatic parsers to provide an initial parse and then having annotators hand correct those parsers. We can also use a deterministic process to translate existing constituent-based treebanks into dependency trees through the use of head rules.

For the most part, directly annotated dependency treebanks have been created for morphologically rich languages such as Czech, Hindi and Finnish that lend themselves to dependency grammar approaches, with the Prague Dependency Treebank (Bejček et al., 2013) for Czech being the most well-known effort. The major English dependency treebanks have largely been extracted from existing resources such as the Wall Street Journal sections of the Penn Treebank (Marcus et al., 1993). The more recent OntoNotes project (Hovy et al. 2006, Weischedel et al. 2011) extends this approach going beyond traditional news text to include conversational telephone speech, weblogs, usenet newsgroups, broadcast, and talk shows in English, Chinese and Arabic.

The translation process from constituent to dependency structures has two sub-tasks: identifying all the head-dependent relations in the structure and identifying the correct dependency relations for these relations. The first task relies heavily on

1. Mark the head child of each node in a phrase structure, using the appropriate head rules.

2. In the dependency structure, make the head of each non-head child depend on the head of the head-child.

When a phrase-structure parse contains additional information in the form of grammatical relations and function tags, as in the case of the Penn Treebank, these tags can be used to label the edges in the resulting tree. When applied to the parse tree in Fig. 14.4, this algorithm would produce the dependency structure in Fig. 14.4.

![Dependencyparsing algorithm](image)

(14.4) Vinken will join the board as a nonexecutive director Nov 29

The primary shortcoming of these extraction methods is that they are limited by the information present in the original constituent trees. Among the most important issues are the failure to integrate morphological information with the phrase-structure trees, the inability to easily represent non-projective structures, and the lack of internal structure to most noun-phrases, as reflected in the generally flat rules used in most treebank grammars. For these reasons, outside of English, most dependency treebanks are developed directly using human annotators.

14.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach called shift-reduce parsing originally developed for analyzing programming languages (Aho and Ullman, 1972). This classic approach is simple and elegant, employing a context-free grammar, a stack, and a list of tokens to be parsed. Input tokens are successively shifted onto the stack and the top two elements of the stack are matched against the right-hand side of the rules in the grammar; when a match is found the matched elements are replaced on the stack (reduced) by the non-terminal from the left-hand side of the rule being matched. In adapting this approach for dependency parsing, we forgo the explicit use of a grammar and alter the reduce operation so that instead of adding a non-terminal to a parse tree, it introduces a dependency relation between a word and its head. More specifically, the reduce action is replaced with two possible actions: assert a head-dependent relation between the word at the top of the stack and the word below it, or vice versa. Figure 14.5 illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration which consists of a stack, an input buffer of words, or tokens, and a set of relations representing a dependency tree. Given this framework, the parsing process consists of a sequence of transitions through the space of possible configurations. The goal of
this process is to find a final configuration where all the words have been accounted for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which when applied to a configuration produce new configurations. Given this setup, we can view the operation of a parser as a search through a space of configurations for a sequence of transitions that leads from a start state to a desired goal state. At the start of this process we create an initial configuration in which the stack contains the
ROOT node, the word list is initialized with the set of the words or lemmatized tokens in the sentence, and an empty set of relations is created to represent the parse. In the final goal state, the stack and the word list should be empty, and the set of relations will represent the final parse.

In the standard approach to transition-based parsing, the operators used to produce new configurations are surprisingly simple and correspond to the intuitive actions one might take in creating a dependency tree by examining the words in a single pass over the input from left to right (Covington, 2001):

- Assign the current word as the head of some previously seen word,
- Assign some previously seen word as the head of the current word,
- Or postpone doing anything with the current word, adding it to a store for later processing.

To make these actions more precise, we’ll create three transition operators that will operate on the top two elements of the stack:

- LEFTARC: Assert a head-dependent relation between the word at the top of stack and the word directly beneath it; remove the lower word from the stack.
- RIGHTARC: Assert a head-dependent relation between the second word on the stack and the word at the top; remove the word at the top of the stack;
- SHIFT: Remove the word from the front of the input buffer and push it onto the stack.

This particular set of operators implements the what is known as the arc standard approach to transition-based parsing (Covington 2001, Nivre 2003). There are two notable characteristics to this approach: the transition operators only assert relations between elements at the top of the stack, and once an element has been assigned its head it is removed from the stack and is not available for further processing. As we’ll see, there are alternative transition systems which demonstrate different parsing behaviors, but the arc standard approach is quite effective and is simple to implement.
To assure that these operators are used properly we’ll need to add some pre-
conditions to their use. First, since, by definition, the ROOT node cannot have any
incoming arcs, we’ll add the restriction that the LEFTARC operator cannot be ap-
plicated when ROOT is the second element of the stack. Second, both reduce operators
require two elements to be on the stack to be applied. Given these transition operators and preconditions, the specification of a transition-based parser is quite simple.

Fig. 14.6 gives the basic algorithm.

```
function DEPENDENCYPARSE(words) returns dependency tree
    state← {root, words, []} ; initial configuration
    while state not final
        t← ORACLE(state) ; choose a transition operator to apply
        state← APPLY(t, state) ; apply it, creating a new state
    return state
```

Figure 14.6  A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration. The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm. The complexity is linear in the length of the sentence since it is based on a single left
to right pass through the words in the sentence. More specifically, each word must
first be shifted onto the stack and then later reduced.

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapters 12 and 13, this approach is a straightforward greedy algorithm — the oracle provides a single choice at each step and the parser proceeds with that
choice, no other options are explored, no backtracking is employed, and a single
parse is returned in the end.

Figure 14.7 illustrates the operation of the parser with the sequence of transitions
leading to a parse for the following example.

(14.5) Book me the morning flight

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Word List</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, book, me]</td>
<td>[the, morning, flight]</td>
<td></td>
</tr>
</tbody>
</table>

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Word List</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, book]</td>
<td>[the, morning, flight]</td>
<td>(book → me)</td>
</tr>
</tbody>
</table>
### Figure 14.7 Trace of a transition-based parse.

After several subsequent applications of the `SHIFT` and `LEFTARC` operators, the configuration in Step 6 looks like the following:

<table>
<thead>
<tr>
<th>Stack</th>
<th>Word List</th>
<th>Action</th>
<th>Relation Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, book, the, morning, flight]</td>
<td>[]</td>
<td>LEFTARC</td>
<td>(book → me)</td>
</tr>
<tr>
<td>[root, book, the, flight]</td>
<td>[]</td>
<td>LEFTARC</td>
<td>(the ← flight)</td>
</tr>
<tr>
<td>[root, book, flight]</td>
<td>[]</td>
<td>RIGHTARC</td>
<td>(book → flight)</td>
</tr>
<tr>
<td>[root]</td>
<td>[]</td>
<td>Done</td>
<td></td>
</tr>
</tbody>
</table>

Here, all the remaining words have been passed onto the stack and all that is left to do is to apply the appropriate reduce operators. In the current configuration, we employ the `LEFTARC` operator resulting in the following state.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Word List</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, book, the, flight]</td>
<td>[]</td>
<td>(book → me)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(morning ← flight)</td>
</tr>
</tbody>
</table>

At this point, the parse for this sentence consists of the following structure.

(14.6) Book me the morning flight

There are several important things to note when examining sequences such as the one in Figure 14.7. First, the sequence given is not the only one that might lead to a reasonable parse. In general, there may be more than one path that leads to the same result, and due to ambiguity, there may be other transition sequences that lead to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator at each point in the parse — an assumption that is unlikely to be true in practice. As a result, given the greedy nature of this algorithm, incorrect choices will lead to incorrect parses since the parser has no opportunity to go back and pursue alternative choices. Section 14.4.2 will introduce several techniques that allow transition-based approaches to explore the search space more fully.

Finally, for simplicity, we have illustrated this example without the labels on the dependency relations. To produce labeled trees, we can parameterize the `LEFTARC` and `RIGHTARC` operators with dependency labels, as in `LEFTARC(NSUBJ)` or `RIGHTARC(DOBJ)`. This is equivalent to expanding the set of transition operators from our original set of three to a set that includes `LEFTARC` and `RIGHTARC` operators for each relation in the set of dependency relations being used, plus an additional one for the `SHIFT` operator. This, of course, makes the job of the oracle more difficult since it now has a much larger set of operators from which to choose.
14.4.1 Creating an Oracle

State-of-the-art transition-based systems use supervised machine learning methods to train classifiers that play the role of the oracle. Given appropriate training data, these methods learn a function that maps from configurations to transition operators.

As with all supervised machine learning methods, we will need access to appropriate training data and we will need to extract features useful for characterizing the decisions to be made. The source for this training data will be representative tree-banks containing dependency trees. The features will consist of many of the same features we encountered in Chapter 10 for part-of-speech tagging, as well as those used in Chapter 13 for statistical parsing models.

Generating Training Data

Let’s revisit the oracle from the algorithm in Fig. 14.6 to fully understand the learning problem. The oracle takes as input a configuration and returns as output a transition operator. Therefore, to train a classifier, we will need configurations paired with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately, treebanks pair entire sentences with their corresponding trees, and therefore they don’t directly provide what we need.

To generate the required training data, we will employ the oracle-based parsing algorithm in a clever way. We will supply our oracle with the training sentences to be parsed along with their corresponding reference parses from the treebank. To produce training instances, we will then simulate the operation of the parser by running the algorithm and relying on a new training oracle to give us correct transition operators for each successive configuration.

To see how this works, let’s first review the operation of our parser. It begins with a default initial configuration where the stack contains the ROOT, the input list is just the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC operators each add relations between the words at the top of the stack to the set of relations being accumulated for a given sentence. Since we have a gold-standard reference parse for each training sentence, we know which dependency relations are valid for a given sentence. Therefore, we can use the reference parse to guide the selection of operators as the parser steps through a sequence of configurations.

To be more precise, given a reference parse and a configuration, the training oracle proceeds as follows:

- Choose LEFTARC if it produces a correct head-dependent relation given the reference parse and the current configuration,
- Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent relation given the reference parse and (2) all of the dependents of the word at the top of the stack have already been assigned,
- Otherwise, choose SHIFT.

The restriction on selecting the RIGHTARC operator is needed to ensure that a word is not popped from the stack, and thus lost to further processing, before all its dependents have been assigned to it.

More formally, during training the oracle has access to the following information:

- A current configuration with a stack $S$ and a set of dependency relations $R_c$
- A reference parse consisting of a set of vertices $V$ and a set of dependency relations $R_p$
Given this information, the oracle chooses in transitions as follows:

- **LEFTARC(r):** if \((S_1 r S_2) \in R_p\)
- **RIGHTARC(r):** if \((S_2 r S_1) \in R_p\) and \(\forall r', w s.t. (S_1 r' w) \in R_p\) then \((S_1 r' w) \in R_c\)
- **SHIFT:** otherwise

Let’s walk through some the steps of this process with the following example as shown in Fig. 14.8.

Book the flight through Houston

(14.7)

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts a relation, \((root \leftarrow book)\), not in the reference answer; RIGHTARC does assert a relation contained in the final answer \((root \rightarrow book)\), however book has not been attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only possible action. The same conditions hold in the next two steps. In step 3, LEFTARC is selected to link the to its head.

Now consider the situation in Step 4.

Here, we might be tempted to add a dependency relation between book and flight, which is present in the reference parse. But doing so now would prevent the later attachment of Houston since flight would have been removed from the stack. Fortunately, the precondition on choosing RIGHTARC prevents this choice and we’re again left with SHIFT as the only viable option. The remaining choices complete the set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-transition pairs from a treebank by simulating the operation of a parser in the context of a reference dependency tree. We can deterministically record correct parser actions at each step as we progress through each training example, thereby creating the training set we require.
Features

Having generated appropriate training instances (configuration-transition pairs), we need to extract useful features from the configurations so what we can train classifiers. The features that are used to train transition-based systems vary by language, genre, and the kind of classifier being employed. For example, morphosyntactic features such as case marking on subjects or direct objects may be more or less important depending on the language being processed. That said, the basic features that we have already seen with part-of-speech tagging and partial parsing have proven to be useful in training dependency parsers across a wide range of languages. Word forms, lemmas and parts of speech are all powerful features, as are the head, and dependency relation to the head.

In the transition-based parsing framework, such features need to be extracted from the configurations that make up the training data. Recall that configurations consist of three elements: the stack, the buffer and the current set of relations. In principle, any property of any or all of these elements can be represented as features in the usual way for training. However, to avoid sparsity and encourage generalization, it is best to focus the learning algorithm on the most useful aspects of decision making at each point in the parsing process. The focus of feature extraction for transition-based parsing is, therefore, on the top levels of the stack, the words near the front of the buffer, and the dependency relations already associated with any of those elements.

By combining simple features, such as word forms or parts of speech, with specific locations in a configuration, we can employ the notion of a feature template that we’ve already encountered with sentiment analysis and part-of-speech tagging. Feature templates allow us to automatically generate large numbers of specific features from a training set. As an example, consider the following feature templates that are based on single positions in a configuration.

\[
\langle s_1.w, op \rangle, \langle s_2.w, op \rangle, \langle s_1.t, op \rangle, \langle s_2.t, op \rangle \\
\langle b_1.w, op \rangle, \langle b_1.t, op \rangle, \langle s_1.wt, op \rangle
\]

(14.8)

In these examples, individual features are denoted as location.property, where $s$ denotes the stack, $b$ the word buffer, and $r$ the set of relations. Individual properties of locations include $w$ for word forms, $l$ for lemmas, and $t$ for part-of-speech. For example, the feature corresponding to the word form at the top of the stack would be denoted as $s_1.w$, and the part of speech tag at the front of the buffer $b_1.t$. We can also combine individual features via concatenation into more specific features that may prove useful. For example, the feature designated by $s_1.wt$ represents the word form concatenated with the part of speech of the word at the top of the stack. Finally, $op$ stands for the transition operator for the training example in question (i.e., the label for the training instance).

Let’s consider the simple set of single-element feature templates given above in the context of the following intermediate configuration derived from a training oracle for Example 14.2.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Word buffer</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root, canceled, flights]</td>
<td>[to Houston]</td>
<td>(canceled → United)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(flights → morning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(flights → the)</td>
</tr>
</tbody>
</table>

The correct transition here is SHIFT (you should convince yourself of this before
The application of our set of feature templates to this configuration would result in the following set of instantiated features.

\[
\begin{align*}
\langle s_{1}.w = \text{flights}, op = \text{shift} \rangle \\
\langle s_{2}.w = \text{canceled}, op = \text{shift} \rangle \\
\langle s_{1}.t = \text{NNS}, op = \text{shift} \rangle \\
\langle s_{2}.t = \text{VBD}, op = \text{shift} \rangle \\
\langle b_{1}.w = \text{to}, op = \text{shift} \rangle \\
\langle b_{1}.t = \text{TO}, op = \text{shift} \rangle \\
\langle s_{1}.wt = \text{flightsNNS}, op = \text{shift} \rangle
\end{align*}
\]

Given that the left and right arc transitions operate on the top two elements of the stack, features that combine properties from these positions are even more useful. For example, a feature like \( s_{1}.t \circ s_{2}.t \) concatenates the part of speech tag of the word at the top of the stack with the tag of the word beneath it.

\[
\langle s_{1}.t \circ s_{2}.t = \text{NNSVBD}, op = \text{shift} \rangle
\]

Not surprisingly, if two properties are useful then three or more should be even better. Figure 14.9 gives a baseline set of feature templates that have been employed in various state-of-the-art systems (Zhang and Clark 2008, Huang and Sagae 2010, Zhang and Nivre 2011).

Note that some of these features make use of dynamic features — features such as head words and dependency relations that have been predicted at earlier steps in the parsing process, as opposed to features that are derived from static properties of the input.

<table>
<thead>
<tr>
<th>Source Feature templates</th>
<th>Feature templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>One word</td>
<td></td>
</tr>
<tr>
<td>( s_{1}.w )</td>
<td>( s_{1}.t )</td>
</tr>
<tr>
<td>( s_{2}.w )</td>
<td>( s_{2}.t )</td>
</tr>
<tr>
<td>( b_{1}.w )</td>
<td>( b_{1}.t )</td>
</tr>
<tr>
<td>Two word</td>
<td></td>
</tr>
<tr>
<td>( s_{1}.w \circ s_{2}.w )</td>
<td>( s_{1}.t \circ s_{2}.t )</td>
</tr>
<tr>
<td>( s_{1}.t \circ s_{2}.wt )</td>
<td>( s_{1}.w \circ s_{2}.w \circ s_{2}.t )</td>
</tr>
<tr>
<td>( s_{1}.w \circ s_{1}.t \circ s_{2}.t )</td>
<td>( s_{1}.w \circ s_{1}.t )</td>
</tr>
</tbody>
</table>

Figure 14.9 Standard feature templates for training transition-based dependency parsers.

Learning

Over the years, the dominant approaches to training transition-based dependency parsers have been multinomial logistic regression and support vector machines, both of which can make effective use of large numbers of sparse features of the kind described in the last section. More recently, neural network, or deep learning, approaches of the kind described in Chapter 8 have been applied successfully to transition-based parsing (Chen and Manning, 2014). These approaches eliminate the need for complex, hand-crafted features and have been particularly effective at overcoming the data sparsity issues normally associated training transition-based parsers.
14.4.2 Advanced Methods in Transition-Based Parsing

The basic transition-based approach can be elaborated in a number of ways of ways to improve performance by addressing some of the most obvious flaws in the approach.

Alternative Transition Systems

The arc-standard transition system described above is only one of many possible systems. A frequently used alternative is the **arc eager** transition system. The arc eager approach gets its name from its ability to assert rightward relations much sooner than in the arc standard approach. To see this, let’s revisit the arc standard trace of Example 14.7, repeated here.

Consider the dependency relation between *book* and *flight* in this analysis. As is shown in Fig. 14.8, an arc-standard approach would assert this relation at Step 8, despite the fact that *book* and *flight* first come together on the stack much earlier at Step 4. The reason this relation can’t be captured at this point is due to the presence of the post-nominal modifier *through Houston*. In an arc-standard approach, dependents are removed from the stack as soon as they are assigned their heads. If *flight* had been assigned *book* as its head in Step 4, it would no longer be available to serve as the head of *Houston*.

While this delay doesn’t cause any issues in this example, in general the longer a word has to wait to get assigned its head the more opportunities there are for something to go awry. The arc-eager system addresses this issue by allowing words to be attached to their heads as early as possible, before all the subsequent words dependent on them have been seen. This is accomplished through minor changes to the LEFTARC and RIGHTARC operators and the addition of a new REDUCE operator.

- **LEFTARC**: Assert a head-dependent relation between the word at the front of the input buffer and the word at the top of the stack; pop the stack.
- **RIGHTARC**: Assert a head-dependent relation between the word on the top of the stack and the word at front of the input buffer; shift the word at the front of the input buffer to the stack.
- **SHIFT**: Remove the word from the front of the input buffer and push it onto the stack.
- **REDUCE**: Pop the stack.

The LEFTARC and RIGHTARC operators are applied to the top of the stack and the front of the input buffer, instead of the top two elements of the stack as in the arc-standard approach. The RIGHTARC operator now moves the dependent to the stack from the buffer rather than removing it, thus making it available to serve as the head of following words. The new REDUCE operator removes the top element from the stack. Together these changes permit a word to be eagerly assigned its head and still allow it to serve as the head for later dependents. The trace shown in Fig. 14.10 illustrates the new decision sequence for this example.

In addition to demonstrating the arc-eager transition system, this example demonstrates the power and flexibility of the overall transition-based approach. We were
<table>
<thead>
<tr>
<th>Step</th>
<th>Stack</th>
<th>Word List</th>
<th>Action</th>
<th>Relation Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[root]</td>
<td>[book, the, flight, through, houston]</td>
<td></td>
<td>(root → book)</td>
</tr>
<tr>
<td>1</td>
<td>[root, book]</td>
<td>[the, flight, through, houston]</td>
<td>LEFTARC</td>
<td>(the ← flight)</td>
</tr>
<tr>
<td>2</td>
<td>[root, book, the]</td>
<td>[flight, through, houston]</td>
<td>FILET</td>
<td>(book → flight)</td>
</tr>
<tr>
<td>3</td>
<td>[root, book]</td>
<td>[flight, through, houston]</td>
<td>SHIFT</td>
<td>(through ← houston)</td>
</tr>
<tr>
<td>4</td>
<td>[root, book, flight]</td>
<td>[through, houston]</td>
<td></td>
<td>(flight → houston)</td>
</tr>
<tr>
<td>5</td>
<td>[root, book, flight, through]</td>
<td>[houston]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>[root, book, flight]</td>
<td>[houston]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>[root, book, flight, houston]</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>[root, book, flight]</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>[root, book]</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>[root]</td>
<td>[]</td>
<td></td>
<td>Done</td>
</tr>
</tbody>
</table>

Figure 14.10 A processing trace of Book the flight through Houston using the arc-eager transition operators.

able to swap in a new transition system without having to make any changes to the underlying parsing algorithm. This flexibility has led to the development of a diverse set of transition systems that address different aspects of syntax and semantics including: assigning part of speech tags (Choi and Palmer, 2011a), allowing the generation of non-projective dependency structures (Nivre, 2009), assigning semantic roles (Choi and Palmer, 2011b), and parsing texts containing multiple languages (Bhat et al., 2017).

**Beam Search**

The computational efficiency of the transition-based approach discussed earlier derives from the fact that it makes a single pass through the sentence, greedily making decisions without considering alternatives. Of course, this is also the source of its greatest weakness — once a decision has been made it can not be undone, even in the face of overwhelming evidence arriving later in a sentence. Another approach is to systematically explore alternative decision sequences, selecting the best among those alternatives. The key problem for such a search is to manage the large number of potential sequences. **Beam search** accomplishes this by combining a breadth-first search strategy with a heuristic filter that prunes the search frontier to stay within a fixed-size **beam width**.

In applying beam search to transition-based parsing, we’ll elaborate on the algorithm given in Fig. 14.6. Instead of choosing the single best transition operator at each iteration, we’ll apply all applicable operators to each state on an agenda and then score the resulting configurations. We then add each of these new configurations to the frontier, subject to the constraint that there has to be room within the beam. As long as the size of the agenda is within the specified beam width, we can add new configurations to the agenda. Once the agenda reaches the limit, we only add new configurations that are better than the worst configuration on the agenda (removing the worst element so that we stay within the limit). Finally, to insure that we retrieve the best possible state on the agenda, the while loop continues as long as there are non-final states on the agenda.

The beam search approach requires a more elaborate notion of scoring than we used with the greedy algorithm. There, we assumed that a classifier trained using supervised machine learning would serve as an oracle, selecting the best transition operator based on features extracted from the current configuration. Regardless of the specific learning approach, this choice can be viewed as assigning a score to all
the possible transitions and picking the best one.

\[ \hat{T}(c) = \text{argmaxScore}(t, c) \]

With a beam search we are now searching through the space of decision sequences, so it makes sense to base the score for a configuration on its entire history. More specifically, we can define the score for a new configuration as the score of its predecessor plus the score of the operator used to produce it.

- \[ \text{ConfigScore}(c_0) = 0.0 \]
- \[ \text{ConfigScore}(c_i) = \text{ConfigScore}(c_{i-1}) + \text{Score}(t_i, c_{i-1}) \]

This score is used both in filtering the agenda and in selecting the final answer. The new beam search version of transition-based parsing is given in Fig. 14.11.

```
function DEPENDENCYBEAMPARSE(words, width) returns dependency tree
    state ← { [root], [words], [], 0.0 }; initial configuration
    agenda ← ⟨ state ⟩; initial agenda

    while agenda contains non-final states
        newagenda ← ⟨ ⟩
        for each state ∈ agenda do
            for all \( \{ t \mid t ∈ \text{VALIDOPERATORS}(state) \} \) do
                child ← APPLY(t, state)
                newagenda ← ADDTOBEAM(child, newagenda, width)
                agenda ← newagenda
        return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda
    if LENGTH(agenda) < width then
        agenda ← INSERT(state, agenda)
    else if SCORE(state) > SCORE(WORSTOF(agenda))
        agenda ← REMOVE(WORSTOF(agenda))
        agenda ← INSERT(state, agenda)
    return agenda
```

**Figure 14.11** Beam search applied to transition-based dependency parsing.

### 14.5 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible trees for a given sentence for a tree (or trees) that maximize some score. These methods encode the search space as directed graphs and employ methods drawn from graph theory to search the space for optimal solutions. More formally, given a sentence \( S \) we’re looking for the best dependency tree in \( \mathcal{G}_S \), the space of all possible trees for that sentence, that maximizes some score.

\[ \hat{T}(S) = \text{argmax}_{t \in \mathcal{G}_S} \text{score}(t, S) \]
As with the probabilistic approaches to context-free parsing discussed in Chapter 13, the overall score for a tree can be viewed as a function of the scores of the parts of the tree. The focus of this section is on edge-factored approaches where the score for a tree is based on the scores of the edges that comprise the tree.

$$\text{score}(t, S) = \sum_{e \in t} \text{score}(e)$$

There are several motivations for the use of graph-based methods. First, unlike transition-based approaches, these methods are capable of producing non-projective trees. Although projectivity is not a significant issue for English, it is definitely a problem for many of the world’s languages. A second motivation concerns parsing accuracy, particularly with respect to longer dependencies. Empirically, transition-based methods have high accuracy on shorter dependency relations but accuracy declines significantly as the distance between the head and dependent increases (McDonald and Nivre, 2011). Graph-based methods avoid this difficulty by scoring entire trees, rather than relying on greedy local decisions.

The following section examines a widely-studied approach based on the use of a maximum spanning tree (MST) algorithm for weighted, directed graphs. We then discuss features that are typically used to score trees, as well as the methods used to train the scoring models.

### 14.5.1 Parsing

The approach described here uses an efficient greedy algorithm to search for optimal spanning trees in directed graphs. Given an input sentence, it begins by constructing a fully-connected, weighted, directed graph where the vertices are the input words and the directed edges represent all possible head-dependent assignments. An additional ROOT node is included with outgoing edges directed at all of the other vertices. The weights in the graph reflect the score for each possible head-dependent relation as provided by a model generated from training data. Given these weights, a maximum spanning tree of this graph emanating from the ROOT represents the preferred dependency parse for the sentence. A directed graph for the example Book that flight is shown in Fig. 14.12, with the maximum spanning tree corresponding to the desired parse shown in blue. For ease of exposition, we’ll focus here on unlabeled dependency parsing. Graph-based approaches to labeled parsing are discussed in Section 14.5.3.

Before describing the algorithm its useful to consider two intuitions about directed graphs and their spanning trees. The first intuition begins with the fact that every vertex in a spanning tree has exactly one incoming edge. It follows from this that every connected component of a spanning tree will also have one incoming edge. The second intuition is that the absolute values of the edge scores are not critical to determining its maximum spanning tree. Instead, it is the relative weights of the edges entering each vertex that matters. If we were to subtract a constant amount from each edge entering a given vertex it would have no impact on the choice of the maximum spanning tree since every possible spanning tree would decrease by exactly the same amount.

The first step of the algorithm itself is quite straightforward. For each vertex in the graph, an incoming edge (representing a possible head assignment) with the highest score is chosen. If the resulting set of edges produces a spanning tree then we’re done. More formally, given the original fully-connected graph $G = (V, E)$, a subgraph $T = (V, F)$ is a spanning tree if it has no cycles and each vertex (other than
the root) has exactly one edge entering it. If the greedy selection process produces such a tree then it is the best possible one.

Unfortunately, this approach doesn’t always lead to a tree since the set of edges selected may contain cycles. Fortunately, in yet another case of multiple discovery, there is a straightforward way to eliminate cycles generated during the greedy selection phase. Chu and Liu (1965) and Edmonds (1967) independently developed an approach that begins with greedy selection and follows with an elegant recursive cleanup phase that eliminates cycles.

The cleanup phase begins by adjusting all the weights in the graph by subtracting the score of the maximum edge entering each vertex from the score of all the edges entering that vertex. This is where the intuitions mentioned earlier come into play. We have scaled the values of the edges so that the weight of the edges in the cycle have no bearing on the weight of any of the possible spanning trees. Subtracting the value of the edge with maximum weight from each edge entering a vertex results in a weight of zero for all of the edges selected during the greedy selection phase, including all of the edges involved in the cycle.

Having adjusted the weights, the algorithm creates a new graph by selecting a cycle and collapsing it into a single new node. Edges that enter or leave the cycle are altered so that they now enter or leave the newly collapsed node. Edges that do not touch the cycle are included and edges within the cycle are dropped. Now, if we knew the maximum spanning tree of this new graph, we would have what we need to eliminate the cycle. The edge of the maximum spanning tree directed towards the vertex representing the collapsed cycle tells us which edge to delete to eliminate the cycle. How do we find the maximum spanning tree of this new graph? We recursively apply the algorithm to the new graph. This will either result in a spanning tree or a graph with a cycle. The recursions can continue as long as cycles are encountered. When each recursion completes we expand the collapsed vertex, restoring all the vertices and edges from the cycle with the exception of the single edge to be deleted.

Putting all this together, the maximum spanning tree algorithm consists of greedy edge selection, re-scoring of edge costs and a recursive cleanup phase when needed. The full algorithm is shown in Fig. 14.13.


```plaintext
function MaxSpanningTree(G=(V,E), root, score) returns spanning tree

F ← []
T' ← []
score' ← []

for each v ∈ V do
    bestInEdge ← argmax e=(u,v)∈ E score[e]
    F ← F ∪ bestInEdge
    for each e=(u,v) ∈ E do
        score'[e] ← score[e] − score[bestInEdge]
    if T=(V,F) is a spanning tree then return it
    else
        C ← a cycle in F
        G' ← Contract(G, C)
        T' ← MaxSpanningTree(G', root, score')
        T ← Expand(T', C)
        return T

function Contract(G, C) returns contracted graph

function Expand(T, C) returns expanded graph
```

**Figure 14.13** The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a weighted directed graph.

Fig. 14.14 steps through the algorithm with our Book that flight example. The first row of the figure illustrates greedy edge selection with the edges chosen shown in blue (corresponding to the set $F$ in the algorithm). This results in a cycle between that and flight. The scaled weights using the maximum value entering each node are shown in the graph to the right.

Collapsing the cycle between that and flight to a single node (labelled tf) and recursing with the newly scaled costs is shown in the second row. The greedy selection step in this recursion yields a spanning tree that links root to book, as well as an edge that links book to the contracted node. Expanding the contracted node, we can see that this edge corresponds to the edge from book to flight in the original graph. This in turn tells us which edge to drop to eliminate the cycle.

On arbitrary directed graphs, this version of the CLE algorithm runs in $O(mn)$ time, where $m$ is the number of edges and $n$ is the number of nodes. Since this particular application of the algorithm begins by constructing a fully connected graph $m = n^2$ yielding a running time of $O(n^3)$. Gabow et al. (1986) present a more efficient implementation with a running time of $O(m + n \log n)$.

### 14.5.2 Features and Training

Given a sentence, $S$, and a candidate tree, $T$, edge-factored parsing models reduce the score for the tree to a sum of the scores of the edges that comprise the tree.

$$\text{score}(S, T) = \sum_{e \in T} \text{score}(S, e)$$

Each edge score can, in turn, be reduced to a weighted sum of features extracted
Figure 14.14 Chu-Liu-Edmonds graph-based example for Book that flight from it.

\[
\text{score}(S,e) = \sum_{i=1}^{N} w_i f_i(S,e)
\]

Or more succinctly.

\[
\text{score}(S,e) = w \cdot f
\]

Given this formulation, we are faced with two problems in training our parser: identifying relevant features and finding the weights used to score those features.

The features used to train edge factored models mirror those used in training transition-based parsers (as shown in Fig. 14.9). This is hardly surprising since in both cases we’re trying to capture information about the relationship between heads and their dependents in the context of a single relation. To summarize this earlier discussion, commonly used features include:

- Wordforms, lemmas, and parts of speech of the headword and its dependent.
- Corresponding features derived from the contexts before, after and between the words.
- Pre-trained word embeddings such as those discussed in Chapter 3.
- The dependency relation itself.
- The direction of the relation (to the right or left).
• The distance from the head to the dependent.

As with transition-based approaches, pre-selected combinations of these features are often used as well.

Given a set of features, our next problem is to learn a set of weights corresponding to each. Unlike many of the learning problems discussed in earlier chapters, here we are not training a model to associate training items with class labels, or parser actions. Instead, we seek to train a model that assigns higher scores to correct trees than to incorrect ones. An effective framework for problems like this is to use inference-based learning combined with the perceptron learning rule from Chapter 3. In this framework, we parse a sentence (i.e., perform inference) from the training set using some initially random set of initial weights. If the resulting parse matches the corresponding tree in the training data, we do nothing to the weights. Otherwise, we find those features in the incorrect parse that are not present in the reference parse and we lower their weights by a small amount based on the learning rate. We do this incrementally for each sentence in our training data until the weights converge.

More recently, recurrent neural network (RNN) models have demonstrated state-of-the-art performance in shared tasks on multilingual parsing (Zeman et al. 2017, Dozat et al. 2017). These neural approaches rely solely on lexical information in the form of word embeddings, eschewing the use of hand-crafted features such as those described earlier.

14.5.3 Advanced Issues in Graph-Based Parsing

14.6 Evaluation

As with phrase structure-based parsing, the evaluation of dependency parsers proceeds by measuring how well they work on a test-set. An obvious metric would be exact match (EM) — how many sentences are parsed correctly. This metric is quite pessimistic, with most sentences being marked wrong. Such measures are not fine-grained enough to guide the development process. Our metrics need to be sensitive enough to tell if actual improvements are being made.

For these reasons, the most common method for evaluating dependency parsers are labeled and unlabeled attachment accuracy. Labeled attachment refers to the proper assignment of a word to its head along with the correct dependency relation. Unlabeled attachment simply looks at the correctness of the assigned head, ignoring the dependency relation. Given a system output and a corresponding reference parse, accuracy is simply the percentage of words in an input that are assigned the correct head with the correct relation. This metrics are usually referred to as the labeled attachment score (LAS) and unlabeled attachment score (UAS). Finally, we can make use of a label accuracy score (LS), the percentage of tokens with correct labels, ignoring where the relations are coming from.

As an example, consider the reference parse and system parse for the following example shown in Fig. 14.15.

(14.11) Book me the flight through Houston.

The system correctly finds 4 of the 6 dependency relations present in the reference parse and therefore receives an LAS of 2/3. However, one of the 2 incorrect relations found by the system holds between book and flight, which are in a head-
dependent relation in the reference parse; therefore the system therefore achieves an UAS of 5/6.

Figure 14.15 Reference and system parses for Book me the flight through Houston, resulting in an LAS of 3/6 and an UAS of 4/6.

Beyond attachment scores, we may also be interested in how well a system is performing on particular kind of dependency relation, for example NSUBJ, across a development corpus. Here we can make use of the notions of precision and recall introduced in Chapter 10, measuring the percentage of relations labeled NSUBJ by the system that were correct (precision), and the percentage of the NSUBJ relations present in the development set that were in fact discovered by the system (recall). We can employ a confusion matrix (Ch. 5) to keep track of how often each dependency type was confused for another.

14.7 Summary

This chapter has introduced the concept of dependency grammars and dependency parsing. Here’s a summary of the main points that we covered:

- In dependency-based approaches to syntax, the structure of a sentence is described in terms of a set of binary relations that hold between the words in a sentence. Larger notions of constituency are not directly encoded in dependency analyses.
- The relations in a dependency structure capture the head-dependent relationship among the words in a sentence.
- Dependency-based analyses provides information directly useful in further language processing tasks including information extraction, semantic parsing and question answering
- Transition-based parsing systems employ a greedy stack-based algorithm to create dependency structures.
- Graph-based methods for creating dependency structures are based on the use of maximum spanning tree methods from graph theory.
- Both transition-based and graph-based approaches are developed using supervised machine learning techniques.
- Treebanks provide the data needed to train these systems. Dependency treebanks can be created directly by human annotators or via automatic transformation from phrase-structure treebanks.
- Evaluation of dependency parsers is based on labeled and unlabeled accuracy scores as measured against withheld development and test corpora.
Bibliographical and Historical Notes

The dependency-based approach to grammar is much older than the relatively recent phrase-structure or constituency grammars that have been the primary focus of both theoretical and computational linguistics for years. It has its roots in the ancient Greek and Indian linguistic traditions. Contemporary theories of dependency grammar all draw heavily on the work of Tesnière (1959). The most influential dependency grammar frameworks include Meaning-Text Theory (MTT) (Mel’čuk, 1988), Word Grammar (Hudson, 1984), Functional Generative Description (FDG) (Sgall et al., 1986). These frameworks differ along a number of dimensions including the degree and manner in which they deal with morphological, syntactic, semantic and pragmatic factors, their use of multiple layers of representation, and the set of relations used to categorize dependency relations.

Automatic parsing using dependency grammars was first introduced into computational linguistics by early work on machine translation at the RAND Corporation led by David Hays. This work on dependency parsing closely paralleled work on constituent parsing and made explicit use of grammars to guide the parsing process. After this early period, computational work on dependency parsing remained intermittent over the following decades. Notable implementations of dependency parsers for English during this period include Link Grammar (Sleator and Temperley, 1993), Constraint Grammar (Karlsson et al., 1995), and MINIPAR (Lin, 2003).

Dependency parsing saw a major resurgence in the late 1990’s with the appearance of large dependency-based treebanks and the associated advent of data driven approaches described in this chapter. Eisner (1996) developed an efficient dynamic programming approach to dependency parsing based on bilexical grammars derived from the Penn Treebank. Covington (2001) introduced the deterministic word by word approach underlying current transition-based approaches. Yamada and Matsumoto (2003) and Kudo and Matsumoto (2002) introduced both the shift-reduce paradigm and the use of supervised machine learning in the form of support vector machines to dependency parsing.


The earliest source of data for training and evaluating dependency English parsers came from the WSJ Penn Treebank (Marcus et al., 1993) described in Chapter 11. The use of head-finding rules developed for use with probabilistic parsing facilitated the automatic extraction of dependency parses from phrase-based ones (Xia and Palmer, 2001).

The long-running Prague Dependency Treebank project (Hajič, 1998) is the most significant effort to directly annotate a corpus with multiple layers of morphological, syntactic and semantic information. The current PDT 3.0 now contains over 1.5 M tokens (Bejček et al., 2013).

Universal Dependencies (UD) (Nivre et al., 2016) is a project directed at creating a consistent framework for dependency treebank annotation across languages with the goal of advancing parser development across the worlds languages. Un-
der the auspices of this effort, treebanks for over 30 languages have been annotated and made available in a single consistent format. The UD annotation scheme evolved out of several distinct efforts including Stanford dependencies de Marneffe et al. 2006, de Marneffe and Manning 2008, de Marneffe et al. 2014, Google’s universal part-of-speech tags (Petrov et al., 2012) al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). Driven in part by the UD framework, dependency treebanks of a significant size and quality are now available in over 30 languages (Nivre et al., 2016).

The Conference on Natural Language Learning (CoNLL) has conducted an influential series of shared tasks related to dependency parsing over the years (Buchholz and Marsi 2006, Nilsson et al. 2007, Surdeanu et al. 2008a, Hajic et al. 2009). More recent evaluations have focused on parser robustness with respect to morphologically rich languages (Seddah et al., 2013), and non-canonical language forms such as social media, texts, and spoken language (Petrov and McDonald, 2012). Choi et al. (2015) presents a detailed performance analysis of 10 state-of-the-art dependency parsers across an impressive range of metrics, as well as DEPENDABLE, a robust parser evaluation tool.

Exercises
The asphalt that Los Angeles is famous for occurs mainly on its freeways. But in the middle of the city is another patch of asphalt, the La Brea tar pits, and this asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleistocene Epoch. One of these fossils is the *Smilodon*, or sabre-toothed tiger, instantly recognizable by its long canines. Five million years ago or so, a completely different sabre-tooth tiger called *Thylacosmilus* lived in Argentina and other parts of South America. Thylacosmilus was a marsupial whereas Smilodon was a placental mammal, but Thylacosmilus had the same long upper canines and, like Smilodon, had a protective bone flange on the lower jaw. The similarity of these two mammals is one of many examples of parallel or convergent evolution, in which particular contexts or environments lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind of organism: the word. Words that occur in similar contexts tend to have similar meanings. This insight was perhaps first formulated by Harris (1954) who pointed out that "oculist and eye-doctor . . . occur in almost the same environments" and more generally that "If A and B have almost identical environments . . . we say that they are synonyms." But the most famous statement of the principle comes a few years later from the linguist J. R. Firth (1957), who phrased it as "You shall know a word by the company it keeps!".

The meaning of a word is thus related to the distribution of words around it. Imagine you had never seen the word *tesgüíno*, but I gave you the following 4 sentences (an example modified by Lin (1998a) from (Nida, 1975, page 167)):

(15.1) A bottle of *tesgüíno* is on the table.

Everybody likes *tesgüíno*.

*Tesgüíno* makes you drunk.

We make *tesgüíno* out of corn.

You can figure out from these sentences that *tesgüíno* means a fermented alcoholic drink like beer, made from corn. We can capture this same intuition automatically by just counting words in the context of *tesgüíno*; we'll tend to see words like *bottle* and *drunk*. The fact that these words and other similar context words also occur around the word *beer* or *liquor* or *tequila* can help us discover the similarity between these words and *tesgüíno*. We can even look at more sophisticated features of the context, syntactic features like ‘occurs before *drunk*’ or ‘occurs after *bottle*’ or ‘is the direct object of *likes*’.
In this chapter we introduce such *distributional* methods, in which the meaning of a word is computed from the distribution of words around it. These words are generally represented as a *vector* or array of numbers related in some way to counts, and so these methods are often called *vector semantics*.

In this chapter we introduce a simple method in which the meaning of a word is simply defined by how often it occurs near other words. We will see that this method results in very long (technically ‘high dimensional’) vectors that are sparse, i.e., contain mostly zeros (since most words simply never occur in the context of others). In the following chapter we’ll expand on this simple idea by introducing three ways of constructing short, *dense* vectors that have useful semantic properties.

The shared intuition of vector space models of semantics is to model a word by *embedding* it into a vector space. For this reason the representation of a word as a vector is often called an *embedding*. By contrast, in many traditional NLP applications, a word is represented as an index in a vocabulary list, or as a string of letters. (Consider the old philosophy joke:

Q: What’s the meaning of life?
A: LIFE

drawing on the philosophical tradition of representing concepts by words with small capital letters.) As we’ll see, vector models of meaning offer a method of representing a word that is much more fine-grained than a simple atom like *LIFE*, and hence may help in drawing rich inferences about word meaning.

Vector models of meaning have been used in NLP for over 50 years. They are commonly used as features to represent words in applications from named entity extraction to parsing to semantic role labeling to relation extraction. Vector models are also the most common way to compute *semantic similarity*, the similarity between two words, two sentences, or two documents, an important tool in practical applications like question answering, summarization, or automatic essay grading.

## 15.1 Words and Vectors

Vector or distributional models of meaning are generally based on a *co-occurrence matrix*, a way of representing how often words co-occur. Let’s begin by looking at one such co-occurrence matrix, a term-document matrix.

### 15.1.1 Vectors and documents

In a *term-document matrix*, each row represents a word in the vocabulary and each column represents a document from some collection. Fig. 15.1 shows a small selection from a term-document matrix showing the occurrence of four words in four plays by Shakespeare. Each cell in this matrix represents the number of times a particular word (defined by the row) occurs in a particular document (defined by the column). Thus *clown* appeared 117 times in *Twelfth Night*.

The term-document matrix of Fig. 15.1 was first defined as part of the *vector space model* of information retrieval (Salton, 1971). In this model, a document is represented as a count vector, a column in Fig. 15.2.

To review some basic linear algebra, a *vector* is, at heart, just a list or array of numbers. So *As You Like It* is represented as the list [1,2,37,5] and *Julius Caesar* is represented as the list [8,12,1,0]. A *vector space* is a collection of vectors, char-
characterized by their dimension. The ordering of the numbers in a vector space is not arbitrary; each position indicates a meaningful dimension on which the documents can vary. Thus the first dimension for both these vectors corresponds to the number of times the word battle occurs, and we can compare each dimension, noting for example that the vectors for As You Like It and Twelfth Night have the same value 1 for the first dimension.

We can think of the vector for a document as identifying a point in $|V|$-dimensional space; thus the documents in Fig. 15.2 are points in 4-dimensional space. Since 4-dimensional spaces are hard to draw in textbooks, Fig. 15.3 shows a visualization in two dimensions; we've arbitrarily chosen the dimensions corresponding to the words battle and fool.

Term-document matrices were originally defined as a means of finding similar documents for the task of document information retrieval. Two documents that are similar will tend to have similar words, and if two documents have similar words their column vectors will tend to be similar. The vectors for the comedies As You Like It [1,2,37,5] and Twelfth Night [1,2,58,117] look a lot more like each other (more fools and clowns than soldiers and battles) than they do like Julius Caesar [8,12,1,0] or Henry V [15,36,5,0]. We can see the intuition with the raw numbers; in the
first dimension (battle) the comedies have low numbers and the others have high numbers, and we can see it visually in Fig. 15.3; we’ll see very shortly how to quantify this intuition more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns, let alone 2. More generally, the term-document matrix $X$ has $|V|$ rows (one for each word type in the vocabulary) and $D$ columns (one for each document in the collection); as we’ll see, vocabulary sizes are generally at least in the tens of thousands, and the number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document $d$ from the $D$ documents in some collection that best matches a query $q$. For IR we’ll therefore also represent a query by a vector, also of length $|V|$, and we’ll need a way to compare two vectors to find how similar they are. (Doing IR will also require efficient ways to store and manipulate these vectors, which is accomplished by making use of the convenient fact that these vectors are sparse, i.e., mostly zeros). Later in the chapter we’ll introduce some of the components of this vector comparison process: the tf-idf term weighting, and the cosine similarity metric.

15.1.2 Words as vectors

We’ve seen that documents can be represented as vectors in a vector space. But vector semantics can also be used to represent the meaning of words, by associating each word with a vector.

The word vector is now a row vector rather than a column vector, and hence the dimensions of the vector are different. The four dimensions of the vector for fool, $[37, 58, 1, 5]$, correspond to the four Shakespeare plays. The same four dimensions are used to form the vectors for the other 3 words: clown, $[5, 117, 0, 0]$; battle, $[1, 1, 8, 15]$; and soldier $[2, 2, 12, 36]$. Each entry in the vector thus represents the counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because similar documents tend to have similar words. This same principle applies to words: similar words have similar vectors because they tend to occur in similar documents. The term-document matrix thus lets us represent the meaning of a word by the documents it tends to occur in.

However, it is most common to use a different kind of context for the dimensions of a word’s vector representation. Rather than the term-document matrix we use the term-term matrix, more commonly called the word-word matrix or the term-context matrix, in which the columns are labeled by words rather than documents. This matrix is thus of dimensionality $|V| 	imes |V|$ and each cell records the number of times the row (target) word and the column (context) word co-occur in some context in some training corpus. The context could be the document, in which case the cell represents the number of times the two words appear in the same document. It is most common, however, to use smaller contexts, generally a window around the word, for example of 4 words to the left and 4 words to the right, in which case the cell represents the number of times (in some training corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the Brown corpus (just one example of each word):
sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of, pineapple and another fruit whose taste she likened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence) of the occurrences of context words. Fig. 15.4 shows a selection from the word-word co-occurrence matrix computed from the Brown corpus for these four words.

<table>
<thead>
<tr>
<th></th>
<th>aardvark</th>
<th>...</th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>...</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 15.4** Co-occurrence vectors for four words, computed from the Brown corpus, showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the word *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 15.4 that the two words *apricot* and *pineapple* are more similar to each other (both *pinch* and *sugar* tend to occur in their window) than they are to other words like *digital*; conversely, *digital* and *information* are more similar to each other than, say, to *apricot*. Fig. 15.5 shows a spatial visualization.

**Figure 15.5** A spatial visualization of word vectors for *digital* and *information*, showing just two of the dimensions, corresponding to the words *data* and *result*.

Note that $|V|$, the length of the vector, is generally the size of the vocabulary, usually between 10,000 and 50,000 words (using the most frequent words in the training corpus; keeping words after about the most frequent 50,000 or so is generally not helpful). But of course since most of these numbers are zero these are sparse vector representations, and there are efficient algorithms for storing and computing with sparse matrices.

The size of the window used to collect counts can vary based on the goals of the representation, but is generally between 1 and 8 words on each side of the target word (for a total context of 3-17 words). In general, the shorter the window, the more syntactic the representations, since the information is coming from immediately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish two kinds of similarity or association between words (Schütze and Pedersen, 1993). Two words have **first-order co-occurrence** (sometimes called syntagmatic association) if they are typically nearby each other. Thus *wrote* is a first-order associate
of book or poem. Two words have **second-order co-occurrence** (sometimes called **paradigmatic association** if they have similar neighbors. Thus *wrote* is a second-order associate of words like *said* or *remarked*.

Now that we have some intuitions, let’s move on to examine the details of computing a vector representation for a word. We’ll begin with one of the most commonly used vector representations: PPMI or positive pointwise mutual information.

### 15.2 Weighing terms: Pointwise Mutual Information (PMI)

The co-occurrence matrix in Fig. 15.4 represented each cell by the raw frequency of the co-occurrence of two words. It turns out, however, that simple frequency isn’t the best measure of association between words. One problem is that raw frequency is very skewed and not very discriminative. If we want to know what kinds of contexts are shared by *apricot* and *pineapple* but not by *digital* and *information*, we’re not going to get good discrimination from words like *the*, *it*, or *they*, which occur frequently with all sorts of words and aren’t informative about any particular word.

Instead we’d like context words that are particularly informative about the target word. The best weighting or measure of association between words should tell us how much more often than chance the two words co-occur.

Pointwise mutual information is just such a measure. It was proposed by Church and Hanks (1989) and (Church and Hanks, 1990), based on the notion of mutual information. The **mutual information** between two random variables $X$ and $Y$ is

$$I(X, Y) = \sum_x \sum_y P(x, y) \log_2 \frac{P(x, y)}{P(x)P(y)} \quad (15.2)$$

The **pointwise mutual information** (Fano, 1961)\(^1\) is a measure of how often two events $x$ and $y$ occur, compared with what we would expect if they were independent:

$$I(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)} \quad (15.3)$$

We can apply this intuition to co-occurrence vectors by defining the pointwise mutual information association between a target word $w$ and a context word $c$ as

$$\text{PMI}(w, c) = \log_2 \frac{P(w, c)}{P(w)P(c)} \quad (15.4)$$

The numerator tells us how often we observed the two words together (assuming we compute probability by using the MLE). The denominator tells us how often we would expect the two words to co-occur assuming they each occurred independently, so their probabilities could just be multiplied. Thus, the ratio gives us an estimate of how much more the target and feature co-occur than we expect by chance.

PMI values range from negative to positive infinity. But negative PMI values (which imply things are co-occurring less often than we would expect by chance) tend to be unreliable unless our corpora are enormous. To distinguish whether two

---

\(^1\) Fano actually used the phrase *mutual information* to refer to what we now call *pointwise mutual information* and the phrase *expectation of the mutual information* for what we now call *mutual information*; the term *mutual information* is still often used to mean *pointwise mutual information*. 
words whose individual probability is each \(10^{-6}\) occur together more often than chance, we would need to be certain that the probability of the two occurring together is significantly different than \(10^{-12}\), and this kind of granularity would require an enormous corpus. Furthermore it’s not clear whether it’s even possible to evaluate such scores of ‘unrelatedness’ with human judgments. For this reason it is more common to use Positive PMI (called PPMI) which replaces all negative PMI values with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)\(^2\):

\[
\text{PPMI}(w, c) = \max(\log_2 \frac{P(w, c)}{P(w)P(c)}, 0)
\]

(15.5)

More formally, let’s assume we have a co-occurrence matrix \(F\) with \(W\) rows (words) and \(C\) columns (contexts), where \(f_{ij}\) gives the number of times word \(w_i\) occurs in context \(c_j\). This can be turned into a PPMI matrix where \(ppmi_{ij}\) gives the PPMI value of word \(w_i\) with context \(c_j\) as follows:

\[
p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}
\]

(15.6)

\[
\text{PPMI}_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)
\]

(15.7)

Thus for example we could compute PPMI\((w=\text{information}, c=\text{data})\), assuming we pretended that Fig. 15.4 encompassed all the relevant word contexts/dimensions, as follows:

\[
P(w=\text{information}, c=\text{data}) = \frac{6}{19} = .316
\]

\[
P(w=\text{information}) = \frac{11}{19} = .579
\]

\[
P(c=\text{data}) = \frac{7}{19} = .368
\]

\[
\text{ppmi(\text{information}, \text{data})} = \log_2(.316/(.368 \times .579)) = .568
\]

Fig. 15.6 shows the joint probabilities computed from the counts in Fig. 15.4, and Fig. 15.7 shows the PPMI values.

<table>
<thead>
<tr>
<th>(p(w,\text{context}))</th>
<th>(p(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>data</td>
</tr>
<tr>
<td>apricot</td>
<td>0</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
</tr>
<tr>
<td>digital</td>
<td>0.11</td>
</tr>
<tr>
<td>information</td>
<td>0.05</td>
</tr>
<tr>
<td>(p(\text{context}))</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Fig. 15.6 Replacing the counts in Fig. 15.4 with joint probabilities, showing the marginals around the outside.

PMI has the problem of being biased toward infrequent events; very rare words tend to have very high PMI values. One way to reduce this bias toward low frequency

\(^2\) Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the \(-\infty\) from \(\log(0)\).
15.2  •  Weighing terms: Pointwise Mutual Information (PMI)  277

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>0</td>
<td>2.25</td>
<td>0</td>
<td>2.25</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>0</td>
<td>2.25</td>
<td>0</td>
<td>2.25</td>
</tr>
<tr>
<td>digital</td>
<td>1.66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>0.57</td>
<td>0</td>
<td>0.47</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 15.7** The PPMI matrix showing the association between words and context words, computed from the counts in Fig. 15.4 again showing five dimensions. Note that the 0 ppmi values are ones that had a negative pmi; for example 

\[ \text{pmi}(\text{information, computer}) = \log_2(\frac{.05}{(.16 + .58)}) = -0.618, \]

meaning that information and computer co-occur in this mini-corpus slightly less often than we would expect by chance, and with ppmi we replace negative values by zero. Many of the zero ppmi values had a pmi of \(-\infty\), like

\[ \text{pmi}(\text{apricot, computer}) = \log_2(\frac{0}{(0.16 * 0.11)}) = \log_2(0) = -\infty. \]

events is to slightly change the computation for \( P(c) \), using a different function \( P_\alpha(c) \) that raises contexts to the power of \( \alpha \) (Levy et al., 2015):

\[
\text{PPMI}_\alpha(w, c) = \max(\log_2 \frac{P(w, c)}{P(w)P_\alpha(c)}), 0) \tag{15.8}
\]

\[
P_\alpha(c) = \frac{\text{count}(c)^\alpha}{\sum_c \text{count}(c)^\alpha} \tag{15.9}
\]

Levy et al. (2015) found that a setting of \( \alpha = 0.75 \) improved performance of embeddings on a wide range of tasks (drawing on a similar weighting used for skip-grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works because raising the probability to \( \alpha = 0.75 \) increases the probability assigned to rare contexts, and hence lowers their PMI \( P_\alpha(c) > P(c) \) when \( c \) is rare.

Another possible solution is Laplace smoothing: Before computing PMI, a small constant \( k \) (values of 0.1-3 are common) is added to each of the counts, shrinking (discounting) all the non-zero values. The larger the \( k \), the more the non-zero counts are discounted.

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>pineapple</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>digital</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>information</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

**Figure 15.8** Laplace (add-2) smoothing of the counts in Fig. 15.4.

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
<td>0.56</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
<td>0.56</td>
</tr>
<tr>
<td>digital</td>
<td>0.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>0.58</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 15.9** The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts in Fig. 15.8.

15.2.1 Alternatives to PPMI for measuring association

While PPMI is quite popular, it is by no means the only measure of association between two words (or between a word and some other feature). Other common
measures of association come from information retrieval (tf-idf, Dice) or from hypothesis testing (the t-test, the likelihood-ratio test). In this section we briefly summarize one of each of these types of measures.

Let’s first consider the standard weighting scheme for term-document matrices in information retrieval, called tf-idf. Tf-idf (this is a hyphen, not a minus sign) is the product of two factors. The first is the term frequency (Luhn, 1957): simply the frequency of the word in the document, although we may also use functions of this frequency like the log frequency.

The second factor is used to give a higher weight to words that occur only in a few documents. Terms that are limited to a few documents are useful for discriminating those documents from the rest of the collection; terms that occur frequently across the entire collection aren’t as helpful. The inverse document frequency or IDF term weight (Sparck Jones, 1972) is one way of assigning higher weights to these more discriminative words. IDF is defined using the fraction \( \frac{N}{df_i} \), where \( N \) is the total number of documents in the collection, and \( df_i \) is the number of documents in which term \( i \) occurs. The fewer documents in which a term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that occur in all the documents. Because of the large number of documents in many collections, this measure is usually squashed with a log function. The resulting definition for inverse document frequency (IDF) is thus

\[
idf_i = \log \left( \frac{N}{df_i} \right)
\]

Combining term frequency with IDF results in a scheme known as tf-idf weighting of the value for word \( i \) in document \( j \), \( w_{ij} \):

\[
w_{ij} = tf_{ij}idf_i
\]

Tf-idf thus prefers words that are frequent in the current document \( j \) but rare overall in the collection.

The tf-idf weighting is by far the dominant way of weighting co-occurrence matrices in information retrieval, but also plays a role in many other aspects of natural language processing including summarization.

Tf-idf, however, is not generally used as a component in measures of word similarity; for that PPMI and significance-testing metrics like t-test and likelihood-ratio are more common. The t-test statistic, like PMI, can be used to measure how much more frequent the association is than chance. The t-test statistic computes the difference between observed and expected means, normalized by the variance. The higher the value of \( t \), the greater the likelihood that we can reject the null hypothesis that the observed and expected means are the same.

\[
t = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{N}}}
\]

When applied to association between words, the null hypothesis is that the two words are independent, and hence \( P(a,b) = P(a)P(b) \) correctly models the relationship between the two words. We want to know how different the actual MLE probability \( P(a,b) \) is from this null hypothesis value, normalized by the variance. The variance \( s^2 \) can be approximated by the expected probability \( P(a)P(b) \) (see Manning...
15.3 Measuring similarity: the cosine

To define similarity between two target words $v$ and $w$, we need a measure for taking two such vectors and giving a measure of vector similarity. By far the most common similarity metric is the cosine of the angle between the vectors. In this section we’ll motivate and introduce this important measure.

The cosine—like most measures for vector similarity used in NLP—is based on the dot product operator from linear algebra, also called the inner product:

\[ \text{dot product}(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \ldots + v_N w_N \]  \hfill (15.14)

As we will see, most metrics for similarity between vectors are based on the dot product. The dot product acts as a similarity metric because it will tend to be high just when the two vectors have large values in the same dimensions. Alternatively, vectors that have zeros in different dimensions—orthogonal vectors—will have a dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors long vectors. The vector length is defined as

\[ |\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2} \]  \hfill (15.15)

The dot product is higher if a vector is longer, with higher values in each dimension. More frequent words have longer vectors, since they tend to co-occur with more words and have higher co-occurrence values with each of them. The raw dot product thus will be higher for frequent words. But this is a problem; we’d like a similarity metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is to divide the dot product by the lengths of each of the two vectors. This normalized dot product turns out to be the same as the cosine of the angle between the two vectors, following from the definition of the dot product between two vectors $\vec{a}$ and $\vec{b}$:

\[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}| \cos \theta \]

\[ \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \cos \theta \]  \hfill (15.16)

The cosine similarity metric between two vectors $\vec{v}$ and $\vec{w}$ thus can be computed...
as:

\[
\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| ||\vec{w}||} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \tag{15.17}
\]

For some applications we pre-normalize each vector, by dividing it by its length, creating a unit vector of length 1. Thus we could compute a unit vector from \(\vec{a}\) by dividing it by \(||\vec{a}||\). For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through 0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions. But raw frequency or PPMI values are non-negative, so the cosine for these vectors ranges from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer in meaning to information, just using raw counts from the following simplified table:

<table>
<thead>
<tr>
<th></th>
<th>large</th>
<th>data</th>
<th>computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>2 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>digital</td>
<td>0 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>information</td>
<td>1 6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[
\cos(\text{apricot, information}) = \frac{2 + 0 + 0}{\sqrt{4 + 0 + 0} \sqrt{1 + 36 + 1}} = \frac{2}{2\sqrt{38}} = .16
\]

\[
\cos(\text{digital, information}) = \frac{0 + 6 + 2}{\sqrt{0 + 1 + 4} \sqrt{1 + 36 + 1}} = \frac{8}{\sqrt{38}\sqrt{5}} = .58 \tag{15.18}
\]

The model decides that information is closer to digital than it is to apricot, a result that seems sensible. Fig. 15.10 shows a visualization.

Fig. 15.11 uses clustering of vectors as a way to visualize what words are most similar to other ones (Rohde et al., 2006).
15.3 • Measuring similarity: the cosine

15.3.1 Alternative Similarity Metrics

Jaccard

There are alternatives to the cosine metric for measuring similarity. The Jaccard (Jaccard 1908, Jaccard 1912) measure, originally designed for binary vectors, was extended by Grefenstette (1994) to vectors of weighted associations as follows:

$$\text{sim}_{\text{Jaccard}}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)}$$

The numerator of the Grefenstette/Jaccard function uses the min function, essentially computing the (weighted) number of overlapping features (since if either vector has a zero association value for an attribute, the result will be zero). The denominator can be viewed as a normalizing factor.

Dice

The Dice measure, was similarly extended from binary vectors to vectors of weighted associations; one extension from Curran (2003) uses the Jaccard numerator but uses as the denominator normalization factor the total weighted value of non-zero entries in the two vectors.

$$\text{sim}_{\text{Dice}}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)}$$

Finally, there is a family of information-theoretic distributional similarity measures (Pereira et al. 1993, Dagan et al. 1994, Dagan et al. 1999, Lee 1999). The intuition of these models is that if two vectors, \( \vec{v} \) and \( \vec{w} \), each express a probability distribution (their values sum to one), then they are similar to the extent that these probability distributions are similar. The basis of comparing two probability distributions \( P \) and \( Q \) is the **Kullback-Leibler divergence** or **KL divergence** or **relative entropy** (Kullback and Leibler, 1951):
\[
\text{PMI}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(f)} \quad (15.4)
\]
\[
t\text{-test}(w, f) = \frac{P(w, f) - P(w)P(f)}{\sqrt{P(f)P(w)}} \quad (15.13)
\]

\[
\text{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2 \sum_{i=1}^{N} w_i^2}} \quad (15.17)
\]
\[
\text{Jaccard}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \quad (15.19)
\]
\[
\text{Dice}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)} \quad (15.20)
\]
\[
\text{JS}(\vec{v} || \vec{w}) = D(\vec{v} \frac{P+Q}{2}) + D(\vec{w} \frac{P+Q}{2}) \quad (15.22)
\]

Figure 15.12 Defining word similarity: measures of association between a target word \( w \) and a feature \( f = (r, w') \) to another word \( w' \), and measures of vector similarity between word co-occurrence vectors \( \vec{v} \) and \( \vec{w} \).

\[
D(P || Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} \quad (15.21)
\]

Unfortunately, the KL-divergence is undefined when \( Q(x) = 0 \) and \( P(x) \neq 0 \), which is a problem since these word-distribution vectors are generally quite sparse. One alternative (Lee, 1999) is to use the **Jensen-Shannon divergence**, which represents the divergence of each distribution from the mean of the two and doesn’t have this problem with zeros.

\[
\text{JS}(P || Q) = D(\vec{v} \frac{P+Q}{2}) + D(\vec{w} \frac{P+Q}{2}) \quad (15.22)
\]

Rephrased in terms of vectors \( \vec{v} \) and \( \vec{w} \),

\[
\text{simJS}(\vec{v} || \vec{w}) = D(\vec{v} \frac{P+Q}{2}) + D(\vec{w} \frac{P+Q}{2}) \quad (15.23)
\]

Figure 15.12 summarizes the measures of association and of vector similarity that we have designed. See the Historical Notes section for a summary of other vector similarity measures.

### 15.4 Using syntax to define a word’s context

Instead of defining a word’s context by nearby words, we could instead define it by the syntactic relations of these neighboring words. This intuition was first suggested by Harris (1968), who pointed out the relation between meaning and syntactic combinatory possibilities:

The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities.
Consider the words *duty* and *responsibility*. The similarity between the meanings of these words is mirrored in their syntactic behavior. Both can be modified by adjectives like *additional*, *administrative*, *assumed*, *collective*, *congressional*, *constitutional*, and both can be the direct objects of verbs like *assert*, *assign*, *assume*, *attend to*, *avoid*, *become*, *breach* (Lin and Pantel, 2001).

In other words, we could define the dimensions of our context vector not by the presence of a word in a window, but by the presence of a word in a particular dependency (or other grammatical relation), an idea first worked out by Hindle (1990). Since each word can be in a variety of different dependency relations with other words, we’ll need to augment the feature space. Each feature is now a pairing of a word and a relation, so instead of a vector of $|V|$ features, we have a vector of $|V| \times R$ features, where $R$ is the number of possible relations. Figure 15.13 shows a schematic early example of such a vector, taken from Lin (1998a), showing one row for the word *cell*. As the value of each attribute we have shown the raw frequency of the feature co-occurring with *cell*.

<table>
<thead>
<tr>
<th>subj-of absorb</th>
<th>subj-of adapt</th>
<th>subj-of behave</th>
<th>subj-of inside</th>
<th>subj-of into</th>
<th>pobj-of abnormality</th>
<th>pobj-of anemia</th>
<th>pobj-of architecture</th>
<th>obj-of attack</th>
<th>obj-of come from</th>
<th>obj-of come from</th>
<th>obj-of come from</th>
<th>nmod-of abnormality</th>
<th>nmod-of anemia</th>
<th>nmod-of architecture</th>
<th>nmod of bacteria</th>
<th>nmod of body</th>
<th>nmod of bone</th>
<th>nmod of bone marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15.13 Co-occurrence vector for the word *cell*, from Lin (1998a), showing grammatical function (dependency) features. Values for each attribute are frequency counts from a 64-million word corpus, parsed by an early version of MINIPAR.

An alternative to augmenting the feature space is to use the dependency paths just as a way to accumulate feature counts, but continue to have just $|V|$ dimensions of words. The value for a context word dimension, instead of counting all instances of that word in the neighborhood of the target word, counts only words in a dependency relationship with the target word. More complex models count only certain kinds of dependencies, or weigh the counts based on the length of the dependency path (Padó and Lapata, 2007). And of course we can use PPMI or other weighting schemes to weight the elements of these vectors rather than raw frequency.

### 15.5 Evaluating Vector Models

Of course the most important evaluation metric for vector models is extrinsic evaluation on tasks; adding them as features into any NLP task and seeing whether this improves performance.

Nonetheless it is useful to have intrinsic evaluations. The most common metric is to test their performance on *similarity*, and in particular on computing the correlation between an algorithm’s word similarity scores and word similarity ratings assigned by humans. The various sets of human judgments are the same as we described in Chapter 17 for thesaurus-based similarity, summarized here for convenience. *WordSim-353* (Finkelstein et al., 2002) is a commonly used set of of ratings from 0 to 10 for 353 noun pairs; for example (*plane*, *car*) had an average score of
5.77. SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies similarity (cup, mug) rather than relatedness (cup, coffee), and including both concrete and abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 questions, each consisting of a target word with 4 additional word choices; the task is to choose which is the correct synonym, as in the example: Levied is closest in meaning to: imposed, believed, requested, correlated (Landauer and Dumais, 1997). All of these datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) offers a richer evaluation scenario, giving human judgments on 2,003 pairs of words in their sentential context, including nouns, verbs, and adjectives. This dataset enables the evaluation of word similarity algorithms that can make use of context words. The semantic textual similarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the performance of sentence-level similarity algorithms, consisting of a set of pairs of sentences, each pair with human-labeled similarity scores.

Another task used for evaluate is an analogy task, where the system has to solve problems of the form $a$ is to $b$ as $c$ is to $d$, given $a$, $b$, and $c$ and having to find $d$. The system is given two words that participate in a relation (for example Athens and Greece, which participate in the capital relation) and a word like Oslo and must find the word Norway. Or more syntactically-oriented examples: given mouse, mice, and dollar the system must return dollars. Large sets of such tuples have been created (Mikolov et al. 2013, Mikolov et al. 2013b).

15.6 Summary

- The term-document matrix, first created for information retrieval, has rows for each word (term) in the vocabulary and a column for each document. The cell specify the count of that term in the document.
- The word-context (or word-word, or term-term) matrix has a row for each (target) word in the vocabulary and a column for each context term in the vocabulary. Each cell indicates the number of times the context term occurs in a window (of a specified size) around the target word in a corpus.
- A common weighting for the instead of using the raw word word co-occurrence matrix, it is often weighted. A common weighting is positive pointwise mutual information or PPMI.
- Alternative weightings are tf-idf, used for information retrieval task, and significance-based methods like t-test.
- PPMI and other versions of the word-word matrix can be viewed as offering high-dimensional, sparse (most values are 0) vector representations of words.
- The cosine of two vectors is a common function used for word similarity.

Bibliographical and Historical Notes

Models of distributional word similarity arose out of research in linguistics and psychology of the 1950s. The idea that meaning was related to distribution of words
in context was widespread in linguistic theory of the 1950s; even before the well-known Firth (1957) and Harris (1968) dictums discussed earlier, Joos (1950) stated that

the linguist’s “meaning” of a morpheme...is by definition the set of conditional probabilities of its occurrence in context with all other morphemes.

The related idea that the meaning of a word could be modeled as a point in a Euclidean space and that the similarity of meaning between two words could be modeled as the distance between these points was proposed in psychology by Os-good et al. (1957).

The application of these ideas in a computational framework was first made by Sparck Jones (1986) and became a core principle of information retrieval, whence it came into broader use in language processing.

The idea of defining words by a vector of discrete features has a venerable history in our field, with roots at least as far back Descartes and Leibniz (Wierzbicka 1992, Wierzbicka 1996). By the middle of the 20th century, beginning with the work of Hjelmslev (Hjelmslev, 1969) and fleshed out in early models of generative grammar (Katz and Fodor, 1963), the idea arose of representing meaning with semantic features, symbols that represent some sort of primitive meaning. For example words like hen, rooster, or chick, have something in common (they all describe chickens) and something different (their age and sex), representable as:

\[
\begin{align*}
\text{hen} & \quad +\text{female}, +\text{chicken}, +\text{adult} \\
\text{rooster} & \quad -\text{female}, +\text{chicken}, +\text{adult} \\
\text{chick} & \quad +\text{chicken}, -\text{adult}
\end{align*}
\]

The dimensions used by vector models of meaning to define words are only abstractly related to these small fixed number of hand-built dimensions. Nonetheless, there has been some attempt to show that certain dimensions of embedding models do contribute some specific compositional aspect of meaning like these early semantic features.

Turney and Pantel (2010) is an excellent and comprehensive survey of vector semantics.

There are a wide variety of other weightings and methods for word similarity. The largest class of methods not discussed in this chapter are the variants to and details of the information-theoretic methods like Jensen-Shannon divergence, KL-divergence and $\alpha$-skew divergence that we briefly introduced (Pereira et al. 1993, Dagan et al. 1994, Dagan et al. 1999, Lee 1999, Lee 2001). Manning and Schütze (1999, Chapters 5 and 8) give collocation measures and other related similarity measures.

Exercises
In the previous chapter we saw how to represent a word as a sparse vector with dimensions corresponding to the words in the vocabulary, and whose values were some function of the count of the word co-occurring with each neighboring word. Each word is thus represented with a vector that is both long (length $|V|$, with vocabularies of 20,000 to 50,000) and sparse, with most elements of the vector for each word equal to zero.

In this chapter we turn to an alternative family of methods of representing a word: the use of vectors that are short (of length perhaps 50-1000) and dense (most values are non-zero).

Short vectors have a number of potential advantages. First, they are easier to include as features in machine learning systems; for example if we use 100-dimensional word embeddings as features, a classifier can just learn 100 weights to represent a function of word meaning, instead of having to learn tens of thousands of weights for each of the sparse dimensions. Because they contain fewer parameters than sparse vectors of explicit counts, dense vectors may generalize better and help avoid overfitting. And dense vectors may do a better job of capturing synonymy than sparse vectors. For example, *car* and *automobile* are synonyms; but in a typical sparse vectors representation, the *car* dimension and the *automobile* dimension are distinct dimensions. Because the relationship between these two dimensions is not modeled, sparse vectors may fail to capture the similarity between a word with *car* as a neighbor and a word with *automobile* as a neighbor.

We will introduce three methods of generating very dense, short vectors: (1) using dimensionality reduction methods like SVD, (2) using neural nets like the popular skip-gram or CBOW approaches. (3) a quite different approach based on neighboring words called Brown clustering.

### 16.1 Dense Vectors via SVD

We begin with a classic method for generating dense vectors: **singular value decomposition**, or SVD, first applied to the task of generating embeddings from term-document matrices by Deerwester et al. (1988) in a model called **Latent Semantic Indexing** or **Latent Semantic Analysis** (LSA).

Singular Value Decomposition (SVD) is a method for finding the most important dimensions of a data set, those dimensions along which the data varies the most. It can be applied to any rectangular matrix. SVD is part of a family of methods that can approximate an N-dimensional dataset using fewer dimensions, including **Principal Components Analysis** (PCA), **Factor Analysis**, and so on.

In general, dimensionality reduction methods first rotate the axes of the original dataset into a new space. The new space is chosen so that the highest order dimension captures the most variance in the original dataset, the next dimension captures
the next most variance, and so on. Fig. 16.1 shows a visualization. A set of points (vectors) in two dimensions is rotated so that the first new dimension captures the most variation in the data. In this new space, we can represent data with a smaller number of dimensions (for example using one dimension instead of two) and still capture much of the variation in the original data.

![Visualizing principle components analysis](image)

Figure 16.1 Visualizing principle components analysis: Given original data (a) find the rotation of the data (b) such that the first dimension captures the most variation, and the second dimension is the one orthogonal to the first that captures the next most variation. Use this new rotated space (c) to represent each point on a single dimension (d). While some information about the relationship between the original points is necessarily lost, the remaining dimension preserves the most that any one dimension could.

### 16.1.1 Latent Semantic Analysis

The use of SVD as a way to reduce large sparse vector spaces for word meaning, like the vector space model itself, was first applied in the context of information retrieval, briefly called latent semantic indexing (LSI) (Deerwester et al., 1988) but most frequently referred to as **LSA** (latent semantic analysis) (Deerwester et al., 1990).

LSA is a particular application of SVD to a $|V| \times c$ term-document matrix $X$ representing $|V|$ words and their co-occurrence with $c$ documents or contexts. SVD factorizes any such rectangular $|V| \times c$ matrix $X$ into the product of three matrices $W$, $\Sigma$, and $C^T$. In the $|V| \times m$ matrix $W$, each of the $w$ rows still represents a word, but the columns do not; each column now represents one of $m$ dimensions in a latent space, such that the $m$ column vectors are orthogonal to each other and the columns
are ordered by the amount of variance in the original dataset each accounts for. The number of such dimensions \( m \) is the rank of \( X \) (the rank of a matrix is the number of linearly independent rows). \( \Sigma \) is a diagonal \( m \times m \) matrix, with singular values along the diagonal, expressing the importance of each dimension. The \( m \times c \) matrix \( C^T \) still represents documents or contexts, but each row now represents one of the new latent dimensions and the \( m \) row vectors are orthogonal to each other.

By using only the first \( k \) dimensions, of \( W, \Sigma, \) and \( C \) instead of all \( m \) dimensions, the product of these 3 matrices becomes a least-squares approximation to the original \( X \). Since the first dimensions encode the most variance, one way to view the reconstruction is thus as modeling the most important information in the original dataset.

SVD applied to co-occurrence matrix \( X \):

\[
\begin{bmatrix}
X \\
|V| \times c
\end{bmatrix}
= 
\begin{bmatrix}
W \\
|V| \times m
\end{bmatrix}
\begin{bmatrix}
\sigma_1 & 0 & 0 & \ldots & 0 \\
0 & \sigma_2 & 0 & \ldots & 0 \\
0 & 0 & \sigma_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_m
\end{bmatrix}
\begin{bmatrix}
C \\
|V| \times m
\end{bmatrix}
\]

Taking only the top \( k, k \leq m \) dimensions after the SVD is applied to the co-occurrence matrix \( X \):

\[
\begin{bmatrix}
X \\
|V| \times c
\end{bmatrix}
= 
\begin{bmatrix}
W_k \\
|V| \times k
\end{bmatrix}
\begin{bmatrix}
\sigma_1 & 0 & 0 & \ldots & 0 \\
0 & \sigma_2 & 0 & \ldots & 0 \\
0 & 0 & \sigma_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_k
\end{bmatrix}
\begin{bmatrix}
C \\
k \times c
\end{bmatrix}
\]

Figure 16.2 SVD factors a matrix \( X \) into a product of three matrices, \( W, \Sigma, \) and \( C \). Taking the first \( k \) dimensions gives a \( |V| \times k \) matrix \( W_k \) that has one \( k \)-dimensioned row per word that can be used as an embedding.

Using only the top \( k \) dimensions (corresponding to the \( k \) most important singular values) leads to a reduced \( |V| \times k \) matrix \( W_k \), with one \( k \)-dimensioned row per word. This row now acts as a dense \( k \)-dimensional vector (embedding) representing that word, substituting for the very high-dimensional rows of the original \( X \).

LSA embeddings generally set \( k=300 \), so these embeddings are relatively short by comparison to other dense embeddings.

Instead of PPMI or tf-idf weighting on the original term-document matrix, LSA implementations generally use a particular weighting of each co-occurrence cell that multiplies two weights called the local and global weights for each cell \((i, j)\)—term \( i \) in document \( j \). The local weight of each term \( i \) is its log frequency: \( \log f(i, j) + 1 \) The global weight of term \( i \) is a version of its entropy: \( 1 + \frac{\sum_j p(i,j) \log p(i,j)}{\log D} \), where \( D \)
is the number of documents.

LSA has also been proposed as a cognitive model for human language use (Landauer and Dumais, 1997) and applied to a wide variety of NLP applications; see the end of the chapter for details.

16.1.2 SVD applied to word-context matrices

Rather than applying SVD to the term-document matrix (as in the LSA algorithm of the previous section), an alternative that is widely practiced is to apply SVD to the word-word or word-context matrix. In this version the context dimensions are words rather than documents, an idea first proposed by Schütze (1992b).

The mathematics is identical to what is described in Fig. 16.2: SVD factorizes the word-context matrix $X$ into three matrices $W$, $\Sigma$, and $C^T$. The only difference is that we are starting from a PPMI-weighted word-word matrix, instead of a term-document matrix.

Once again only the top $k$ dimensions are retained (corresponding to the $k$ most important singular values), leading to a reduced $|V| \times k$ matrix $W_k$, with one $k$-dimensioned row per word. Just as with LSA, this row acts as a dense $k$-dimensional vector (embedding) representing that word. The other matrices ($\Sigma$ and $C$) are simply thrown away.

This use of just the top dimensions, whether for a term-document matrix like LSA, or for a term-term matrix, is called truncated SVD. Truncated SVD is parameterized by $k$, the number of dimensions in the representation for each word, typically ranging from 500 to 5000. Thus SVD run on term-context matrices tends to use many more dimensions than the 300-dimensional embeddings produced by LSA. This difference presumably has something to do with the difference in granularity; LSA counts for words are much coarser-grained, counting the co-occurrences in an entire document, while word-context PPMI matrices count words in a small window. Generally the dimensions we keep are the highest-order dimensions, although for some tasks, it helps to throw out a small number of the most high-order dimensions, such as the first 1 or even the first 50 (Lapesa and Evert, 2014).

Fig. 16.3 shows a high-level sketch of the entire SVD process. The dense embeddings produced by SVD sometimes perform better than the raw PPMI matrices on semantic tasks like word similarity. Various aspects of the dimensionality reduction seem to be contributing to the increased performance. If low-order dimensions represent unimportant information, the truncated SVD may be acting to removing noise. By removing parameters, the truncation may also help the models generalize better to unseen data. When using vectors in NLP tasks, having a smaller number of dimensions may make it easier for machine learning classifiers to properly weight the dimensions for the task. And as mentioned above, the models may do better at capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-occurrence matrix, and performance is not always better than using the full sparse PPMI vectors, so for many applications the sparse vectors are the right approach. Alternatively, the neural embeddings we discuss in the next section provide a popular efficient solution to generating dense embeddings.

---

1 Some early systems weighted $W_k$ by the singular values, using the product $W_k \cdot \Sigma_k$ as an embedding instead of just the matrix $W_k$, but this weighting leads to significantly worse embeddings and is not generally used (Levy et al., 2015).
16.2 Embeddings from prediction: Skip-gram and CBOW

A second method for generating dense embeddings draws its inspiration from the neural network models used for language modeling. Recall from Chapter 8 that neural network language models are given a word and predict context words. This prediction process can be used to learn embeddings for each target word. The intuition is that words with similar meanings often occur near each other in texts. The neural models therefore learn an embedding by starting with a random vector and then iteratively shifting a word’s embeddings to be more like the embeddings of neighboring words, and less like the embeddings of words that don’t occur nearby.

Although the metaphor for this architecture comes from word prediction, we’ll see that the process for learning these neural embeddings actually has a strong relationship to PMI co-occurrence matrices, SVD factorization, and dot-product similarity metrics.

The most popular family of methods is referred to as word2vec, after the software package that implements two methods for generating dense embeddings: skip-gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolov et al. 2013a).

Like the neural language models, the word2vec models learn embeddings by training a network to predict neighboring words. But in this case the prediction task is not the main goal; words that are semantically similar often occur near each other in text, and so embeddings that are good at predicting neighboring words are also good at representing similarity. The advantage of the word2vec methods is that they are fast, efficient to train, and easily available online with code and pretrained embeddings.

We’ll begin with the skip-gram model. Like the SVD model in the previous
section, the skip-gram model actually learns two separate embeddings for each word \( w \): the **word embedding** \( v \) and the **context embedding** \( c \). These embeddings are encoded in two matrices, the **word matrix** \( W \) and the **context matrix** \( C \). We’ll discuss in Section 16.2.1 how \( W \) and \( C \) are learned, but let’s first see how they are used. Each row \( i \) of the word matrix \( W \) is the \( 1 \times d \) vector embedding \( v_i \) for word \( i \) in the vocabulary. Each column \( i \) of the context matrix \( C \) is a \( d \times 1 \) vector embedding \( c_j \) for word \( j \) in the vocabulary. In principle, the word matrix and the context matrix could use different vocabularies \( V_w \) and \( V_c \). For the remainder of the chapter, however we’ll simplify by assuming the two matrices share the same vocabulary, which we’ll just call \( V \).

Let’s consider the prediction task. We are walking through a corpus of length \( T \) and currently pointing at the \( t \)th word \( w^{(t)} \), whose index in the vocabulary is \( j \), so we’ll call it \( w_j \) \((1 < j < |V|)\). The skip-gram model predicts each neighboring word in a context window of \( 2L \) words from the current word. So for a context window \( L = 2 \) the context is \([w^{t-2}, w^{t-1}, w^{t+1}, w^{t+2}]\) and we are predicting each of these from word \( w_j \). But let’s simplify for a moment and imagine just predicting one of the \( 2L \) context words, for example \( w^{(t+1)} \), whose index in the vocabulary is \( k \) \((1 < k < |V|)\).

Hence our task is to compute \( P(w_k|w_j) \).

The heart of the skip-gram computation of the probability \( p(w_k|w_j) \) is computing the dot product between the vectors for \( w_k \) and \( w_j \), the **context vector** for \( w_k \) and the **target vector** for \( w_j \). For simplicity, we’ll represent this dot product as \( c_k \cdot v_j \), (although more correctly, it should be \( c_k^T v_j \)), where \( c_k \) is the context vector of word \( k \) and \( v_j \) is the target vector for word \( j \). As we saw in the previous chapter, the higher the dot product between two vectors, the more similar they are. (That was the intuition of using the cosine as a similarity metric, since cosine is just a normalized dot product). Fig. 16.4 shows the intuition that the similarity function requires selecting out a target vector \( v_j \) from \( W \), and a context vector \( c_k \) from \( C \).

![Figure 16.4](image_url)

Of course, the dot product \( c_k \cdot v_j \) is not a probability, it’s just a number ranging from \(-\infty \) to \( \infty \). We can use the **softmax** function from Chapter 7 to normalize the dot product into probabilities. Computing this denominator requires computing the dot product between each other word \( w \) in the vocabulary with the target word \( w_j \):

\[
p(w_k|w_j) = \frac{\exp(c_k \cdot v_j)}{\sum_{l \in |V|} \exp(c_l \cdot v_j)} \quad (16.1)
\]

In summary, the skip-gram computes the probability \( p(w_k|w_j) \) by taking the dot product between the word vector for \( j \) \((v_j)\) and the context vector for \( k \) \((c_k)\), and...
turning this dot product $v_j \cdot c_k$ into a probability by passing it through a softmax function.

This version of the algorithm, however, has a problem: the time it takes to compute the denominator. For each word $w_t$, the denominator requires computing the dot product with all other words. As we’ll see in the next section, we generally solve this by using an approximation of the denominator.

CBOW  The CBOW (continuous bag of words) model is roughly the mirror image of the skip-gram model. Like skip-grams, it is based on a predictive model, but this time predicting the current word $w_t$ from the context window of $2L$ words around it, e.g. for $L = 2$ the context is $[w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}]$

While CBOW and skip-gram are similar algorithms and produce similar embeddings, they do have slightly different behavior, and often one of them will turn out to be the better choice for any particular task.

16.2.1 Learning the word and context embeddings

We already mentioned the intuition for learning the word embedding matrix $W$ and the context embedding matrix $C$: iteratively make the embeddings for a word more like the embeddings of its neighbors and less like the embeddings of other words.

In the version of the prediction algorithm suggested in the previous section, the probability of a word is computed by normalizing the dot-product between a word and each context word by the dot products for all words. This probability is optimized when a word’s vector is closest to the words that occur near it (the numerator), and further from every other word (the denominator). Such a version of the algorithm is very expensive; we need to compute a whole lot of dot products to make the denominator.

Instead, the most commonly used version of skip-gram, *skip-gram with negative sampling*, approximates this full denominator.

This section offers a brief sketch of how this works. In the training phase, the algorithm walks through the corpus, at each target word choosing the surrounding context words as positive examples, and for each positive example also choosing $k$ noise samples or negative samples: non-neighbor words. The goal will be to move the embeddings toward the neighbor words and away from the noise words.

For example, in walking through the example text below we come to the word *apricot*, and let $L = 2$ so we have 4 context words $c_1$ through $c_4$:

lemon, a [tablespoon of apricot preserves or] jam
c1 c2 w c3 c4

The goal is to learn an embedding whose dot product with each context word is high. In practice skip-gram uses a sigmoid function $\sigma$ of the dot product, where $\sigma(x) = \frac{1}{1+e^{-x}}$. So for the above example we want $\sigma(c1 \cdot w) + \sigma(c2 \cdot w) + \sigma(c3 \cdot w) + \sigma(c4 \cdot w)$ to be high.

In addition, for each context word the algorithm chooses $k$ random noise words according to their unigram frequency. If we let $k = 2$, for each target/context pair, we’ll have 2 noise words for each of the 4 context words:

[cement metaphysical dear coaxial apricot attendant whence forever puddle]n1 n2 n3 n4 n5 n6 n7 n8

We’d like these noise words $n$ to have a low dot-product with our target embedding $w$; in other words we want $\sigma(n1 \cdot w) + \sigma(n2 \cdot w) + \ldots + \sigma(n8 \cdot w)$ to be low.
More formally, the learning objective for one word/context pair \((w, c)\) is

\[
\log \sigma(c \cdot w) + \sum_{i=1}^{k} \log \sigma(-w_i \cdot w)
\]

That is, we want to maximize the dot product of the word with the actual context words, and minimize the dot products of the word with the \(k\) negative sampled non-neighbor words. The noise words \(w_i\) are sampled from the vocabulary \(V\) according to their weighted unigram probability; in practice rather than \(p(w)\) it is common to use the weighting \(p^3(w)\).

The learning algorithm starts with randomly initialized \(W\) and \(C\) matrices, and then walks through the training corpus moving \(W\) and \(C\) so as to maximize the objective in Eq. 16.2. An algorithm like stochastic gradient descent is used to iteratively shift each value so as to maximize the objective, using error backpropagation to propagate the gradient back through the network as described in Chapter 8 (Mikolov et al., 2013a).

In summary, the learning objective in Eq. 16.2 is not the same as the \(p(w_k | w_j)\) defined in Eq. 16.3. Nonetheless, although negative sampling is a different objective than the probability objective, and so the resulting dot products will not produce optimal predictions of upcoming words, it seems to produce good embeddings, and that’s the goal we care about.

**Visualizing the network** Using error backpropagation requires that we envision the selection of the two vectors from the \(W\) and \(C\) matrices as a network that we can propagate backwards across. Fig. 16.5 shows a simplified visualization of the model; we’ve simplified to predict a single context word rather than 2L context words, and simplified to show the softmax over the entire vocabulary rather than just the \(k\) noise words.

It’s worth taking a moment to envision how the network is computing the same probability as the dot product version we described above. In the network of Fig. 16.5, we begin with an input vector \(x\), which is a **one-hot** vector for the current word \(w_j\). A one-hot vector is just a vector that has one element equal to 1, and all the other elements are set to zero. Thus in a one-hot representation for the word \(w_j\), \(x_j = 1\), and \(x_i = 0\ \forall i \neq j\), as shown in Fig. 16.6.
We then predict the probability of each of the $2L$ output words—in Fig. 16.5—that means the one output word $w_{t+1}$— in 3 steps:

1. **Select the embedding from $W$:** $x$ is multiplied by $W$, the input matrix, to give the hidden or projection layer. Since each row of the input matrix $W$ is just an embedding for word $w_i$, and the input is a one-hot columnvector for $w_j$, the projection layer for input $x$ will be $h = W \cdot w_j = v_j$, the input embedding for $w_j$.

2. **Compute the dot product $c_k \cdot v_j$:** For each of the $2L$ context words we now multiply the projection vector $h$ by the context matrix $C$. The result for each context word, $o = Ch$, is a $1 \times |V|$ dimensional output vector giving a score for each of the $|V|$ vocabulary words. In doing so, the element $o_k$ was computed by multiplying $h$ by the output embedding for word $w_k$: $o_k = c_k \cdot h = c_k \cdot v_j$.

3. **Normalize the dot products into probabilities:** For each context word we normalize this vector of dot product scores, turning each score element $o_k$ into a probability by using the soft-max function:

$$p(w_k|w_j) = y_k = \frac{\exp(c_k \cdot v_j)}{\sum_{i \in |V|} \exp(c_i \cdot v_j)} \quad (16.3)$$

### 16.2.2 Relationship between different kinds of embeddings

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI. If we multiply the two context matrices $WC$, we produce a $|V| \times |V|$ matrix $X$, each entry $x_{ij}$ corresponding to some association between input word $i$ and context word $j$. Levy and Goldberg (2014b) prove that skip-gram’s optimal value occurs when this learned matrix is actually a version of the PMI matrix, with the values shifted by $\log k$ (where $k$ is the number of negative samples in the skip-gram with negative sampling algorithm):

$$WC = X^{PMI} - \log k \quad (16.4)$$

In other words, skip-gram is implicitly factorizing a (shifted version of the) PMI matrix into the two embedding matrices $W$ and $C$, just as SVD did, albeit with a different kind of factorization. See Levy and Goldberg (2014b) for more details.

Once the embeddings are learned, we’ll have two embeddings for each word $w_j$: $v_j$ and $c_j$. We can choose to throw away the $C$ matrix and just keep $W$, as we did with SVD, in which case each word $i$ will be represented by the vector $v_i$.

Alternatively we can add the two embeddings together, using the summed embedding $v_j + c_j$ as the new $d$-dimensional embedding, or we can concatenate them into an embedding of dimensionality $2d$.

As with the simple count-based methods like PPMI, the context window size $L$ affects the performance of skip-gram embeddings, and experiments often tune the parameter $L$ on a dev set. As with PPMI, window sizing leads to qualitative differences: smaller windows capture more syntactic information, larger ones more semantic and relational information. One difference from the count-based methods is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the chapter for a pointer to surveys which have explored parameterizations like window-size for different tasks.

16.3 Properties of embeddings

We’ll discuss in Section 15.5 how to evaluate the quality of different embeddings. But it is also sometimes helpful to visualize them. Fig. 16.7 shows the words/phrases that are most similar to some sample words using the phrase-based version of the skip-gram algorithm (Mikolov et al., 2013a).

<table>
<thead>
<tr>
<th>target:</th>
<th>Redmond</th>
<th>Havel</th>
<th>ninjutsu</th>
<th>graffiti</th>
<th>capitulate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Redmond Wash.</td>
<td>Vaclav Havel</td>
<td>ninja</td>
<td>spray paint</td>
<td>capitulation</td>
</tr>
<tr>
<td></td>
<td>Redmond Washington</td>
<td>president Vaclav Havel</td>
<td>martial arts</td>
<td>graffiti</td>
<td>capitulated</td>
</tr>
<tr>
<td></td>
<td>Microsoft</td>
<td>Velvet Revolution</td>
<td>swordsmanship</td>
<td>taggers</td>
<td>capitulating</td>
</tr>
</tbody>
</table>

Figure 16.7 Examples of the closest tokens to some target words using a phrase-based extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their usefulness is their ability to capture relational meanings.

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings can capture some relations between words, for example that the result of the expression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vector(‘queen’); the left panel in Fig. 16.8 visualizes this by projecting a representation down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vector(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of embeddings also seem to have this property.

Figure 16.8 Vector offsets showing relational properties of the vector space, shown by projecting vectors onto two dimensions using PCA. In the left panel, ‘king’ - ’man’ + ’woman’ is close to ’queen’. In the right, we see the way offsets seem to capture grammatical number (Mikolov et al., 2013b).

16.4 Brown Clustering

Brown clustering (Brown et al., 1992) is an agglomerative clustering algorithm for
deriving vector representations of words by clustering words based on their associations with the preceding or following words.

The algorithm makes use of the class-based language model (Brown et al., 1992), a model in which each word $w \in V$ belongs to a class $c \in C$ with a probability $P(w|c)$. Class based LMs assigns a probability to a pair of words $w_{i-1}$ and $w_i$ by modeling the transition between classes rather than between words:

$$P(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$$  \hspace{1cm} (16.5)

The class-based LM can be used to assign a probability to an entire corpus given a particularly clustering $C$ as follows:

$$P(\text{corpus}|C) = \prod_{i=1}^{n} P(c_i|c_{i-1})P(w_i|c_i)$$  \hspace{1cm} (16.6)

Class-based language models are generally not used as a language model for applications like machine translation or speech recognition because they don’t work as well as standard n-grams or neural language models. But they are an important component in Brown clustering.

Brown clustering is a hierarchical clustering algorithm. Let’s consider a naive (albeit inefficient) version of the algorithm:

1. Each word is initially assigned to its own cluster.
2. We now consider merging each pair of clusters. The pair whose merger results in the smallest decrease in the likelihood of the corpus (according to the class-based language model) is merged.
3. Clustering proceeds until all words are in one big cluster.

Two words are thus most likely to be clustered if they have similar probabilities for preceding and following words, leading to more coherent clusters. The result is that words will be merged if they are contextually similar.

By tracing the order in which clusters are merged, the model builds a binary tree from bottom to top, in which the leaves are the words in the vocabulary, and each intermediate node in the tree represents the cluster that is formed by merging its children. Fig. 16.9 shows a schematic view of a part of a tree.

After clustering, a word can be represented by the binary string that corresponds to its path from the root node; 0 for left, 1 for right, at each choice point in the binary tree. For example in Fig. 16.9, the word chairman is the vector $\emptyset 010$ and October is $\emptyset 11$. Since Brown clustering is a hard clustering algorithm (each word has only one cluster), there is just one string per word.

Now we can extract useful features by taking the binary prefixes of this bit string; each prefix represents a cluster to which the word belongs. For example the string $\emptyset 1$ ...
in the figure represents the cluster of month names \{November, October\}, the string 0001 the names of common nouns for corporate executives \{chairman, president\}, 1 is verbs \{run, sprint, walk\}, and 0 is nouns. These prefixes can then be used as a vector representation for the word; the shorter the prefix, the more abstract the cluster. The length of the vector representation can thus be adjusted to fit the needs of the particular task. Koo et al. (2008) improving parsing by using multiple features: a 4-6 bit prefix to capture part of speech information and a full bit string to represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or 9-bits of a Brown clustering perform well at grammar induction. Because they are based on immediately neighboring words, Brown clusters are most commonly used for representing the syntactic properties of words, and hence are commonly used as a feature in parsers. Nonetheless, the clusters do represent some semantic properties as well. Fig. 16.10 shows some examples from a large clustering from Brown et al. (1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays June March July April January December October November September August pressure temperature permeability density porosity stress velocity viscosity gravity tension anyone someone anybody somebody had hadn’t hath would’ve could’ve should’ve must’ve might’ve asking telling wondering instructing informing kidding reminding deposing mother wife father son husband brother daughter sister boss uncle great big vast sudden mere sheer gigantic lifelong scant colossal down backwards ashore sideways southward northward overboard aloft downwards adrift

Figure 16.10 Some sample Brown clusters from a 260,741-word vocabulary trained on 366 million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature of the clusters.

Note that the naive version of the Brown clustering algorithm described above is extremely inefficient — \(O(n^2)\): at each of \(n\) iterations, the algorithm considers each of \(n^2\) merges, and for each merge, compute the value of the clustering by summing over \(n^2\) terms. because it has to consider every possible pair of merges. In practice we use more efficient \(O(n^3)\) algorithms that use tables to pre-compute the values for each merge (Brown et al. 1992, Liang 2005).

16.5 Summary

- **Singular Value Decomposition (SVD)** is a dimensionality technique that can be used to create lower-dimensional embeddings from a full term-term or term-document matrix.
- **Latent Semantic Analysis** is an application of SVD to the term-document matrix, using particular weightings and resulting in embeddings of about 300 dimensions.
- Two algorithms inspired by neural language models, **skip-gram** and **CBOW**, are popular efficient ways to compute embeddings. They learn embeddings (in a way initially inspired from the neural word prediction literature) by finding embeddings that have a high dot-product with neighboring words and a low dot-product with noise words.
- **Brown clustering** is a method of grouping words into clusters based on their relationship with the preceding and following words. Brown clusters can be
used to create bit-vectors for a word that can function as a syntactic representation.

Bibliographical and Historical Notes

The use of SVD as a way to reduce large sparse vector spaces for word meaning, like the vector space model itself, was first applied in the context of information retrieval, briefly as latent semantic indexing (LSI) (Deerwester et al., 1988) and then afterwards as LSA (latent semantic analysis) (Deerwester et al., 1990). LSA was based on applying SVD to the term-document matrix (each cell weighted by log frequency and normalized by entropy), and then using generally the top 300 dimensions as the embedding. Landauer and Dumais (1997) summarizes LSA as a cognitive model. LSA was then quickly applied to a wide variety of NLP applications: spell checking (Jones and Martin, 1997), language modeling (Bellegarda 1997, Coccaro and Jurafsky 1998, Bellegarda 2000) morphology induction (Schone and Jurafsky 2000, Schone and Jurafsky 2001), and essay grading (Rehder et al., 1998).

The idea of SVD on the term-term matrix (rather than the term-document matrix) as a model of meaning for NLP was proposed soon after LSA by Schütze (1992b). Schütze applied the low-rank (97-dimensional) embeddings produced by SVD to the task of word sense disambiguation, analyzed the resulting semantic space, and also suggested possible techniques like dropping high-order dimensions. See Schütze (1997a).

A number of alternative matrix models followed on from the early SVD work, including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999).

Neural networks were used as a tool for language modeling by Bengio et al. (2003a) and Bengio et al. (2006), and extended to recurrent net language models in Mikolov et al. (2011). Collobert and Weston (2007), Collobert and Weston (2008), and Collobert et al. (2011) is a very influential line of work demonstrating that embeddings could play a role as the first representation layer for representing word meanings for a number of NLP tasks. (Turian et al., 2010) compared the value of different kinds of embeddings for different NLP tasks. The idea of simplifying the hidden layer of these neural net language models to create the skip-gram and CBOW algorithms was proposed by Mikolov et al. (2013). The negative sampling training algorithm was proposed in Mikolov et al. (2013a). Both algorithms were made available in the word2vec package, and the resulting embeddings widely used in many applications.

The development of models of embeddings is an active research area, with new models including GloVe (Pennington et al., 2014) (based on ratios of probabilities from the word-word co-occurrence matrix), or sparse embeddings based on non-negative matrix factorization (Fyshe et al., 2015). Many survey experiments have explored the parameterizations of different kinds of vector space embeddings and their parameterizations, including sparse and dense vectors, and count-based and predict-based models (Dagan 2000, ?, Curran 2003, Bullinaria and Levy 2007, Bullinaria and Levy 2012, Lapesa and Evert 2014, Kiela and Clark 2014, Levy et al. 2015).
Exercises
The previous two chapters focused on meaning representations for entire sentences. In those discussions, we made a simplifying assumption by representing word meanings as unanalyzed symbols like EAT or JOHN or RED. But representing the meaning of a word by capitalizing it is a pretty unsatisfactory model. In this chapter we introduce a richer model of the semantics of words, drawing on the linguistic study of word meaning, a field called lexical semantics, as well as the computational study of these meanings, known as computational lexical semantics.

In representing word meaning, we’ll begin with the lemma or citation form which we said in Chapter 4 is the grammatical form of a word that is used to represent a word in dictionaries and thesaurus. Thus carpet is the lemma for carpets, and sing the lemma for sing, sang, sung. In many languages the infinitive form is used as the lemma for the verb, so Spanish dormir “to sleep” is the lemma for duermes “you sleep”. The specific forms sung or carpets or sing or duermes are called wordforms.

But a lemma can still have many different meanings. The lemma bank can refer to a financial institution or to the sloping side of a river. We call each of these aspects of the meaning of bank a word sense. The fact that lemmas can be homonymous (have multiple senses) causes all sorts of problems in text processing. Word sense disambiguation is the task of determining which sense of a word is being used in a particular context, a task with a long history in computational linguistics and applications tasks from machine translation to question answering. We give a number of algorithms for using features from the context for deciding which sense was intended in a particular context.

We’ll also introduce WordNet, a widely-used thesaurus for representing word senses themselves and for representing relations between senses, like the IS-A relation between dog and mammal or the part-whole relationship between car and engine. Finally, we’ll introduce the task of computing word similarity and show how a sense-based thesaurus like WordNet can be used to decide whether two words have a similar meaning.

### 17.1 Word Senses

Consider the two uses of the lemma bank mentioned above, meaning something like “financial institution” and “sloping mound”, respectively:

(17.1) Instead, a bank can hold the investments in a custodial account in the client’s name.

(17.2) But as agriculture burgeons on the east bank, the river will shrink even more.
We represent this variation in usage by saying that the lemma bank has two senses. A sense (or word sense) is a discrete representation of one aspect of the meaning of a word. Loosely following lexicographic tradition, we represent each sense by placing a superscript on the orthographic form of the lemma as in bank¹ and bank².

The senses of a word might not have any particular relation between them; it may be almost coincidental that they share an orthographic form. For example, the financial institution and sloping mound senses of bank seem relatively unrelated. In such cases we say that the two senses are homonyms, and the relation between the senses is one of homonymy. Thus bank¹ (“financial institution”) and bank² (“sloping mound”) are homonyms, as are the sense of bat meaning “club for hitting a ball” and the one meaning “nocturnal flying animal”. We say that these two uses of bank are homographs, as are the two uses of bat, because they are written the same. Two words can be homonyms in a different way if they are spelled differently but pronounced the same, like write and right, or piece and peace. We call these homophones and we saw in Ch. 5 that homophones are one cause of real-word spelling errors.

Homonymy causes problems in other areas of language processing as well. In question answering or information retrieval, we can do a much better job helping a user who typed “bat care” if we know whether they are vampires or just want to play baseball. And they will also have different translations; in Spanish the animal bat is a murciélago while the baseball bat is a bate. Homographs that are pronounced differently cause problems for speech synthesis (Chapter 32) such as these homographs of the word bass, the fish pronounced bæs and the instrument pronounced bæs.

(17.3) The expert angler from Dora, Mo., was fly-casting for bass rather than the traditional trout.

(17.4) The curtain rises to the sound of angry dogs baying and ominous bass chords sounding.

Sometimes there is also some semantic connection between the senses of a word. Consider the following example:

(17.5) While some banks furnish blood only to hospitals, others are less restrictive.

Although this is clearly not a use of the “sloping mound” meaning of bank, it just as clearly is not a reference to a charitable giveaway by a financial institution. Rather, bank has a whole range of uses related to repositories for various biological entities, as in blood bank, egg bank, and sperm bank. So we could call this “biological repository” sense bank³. Now this new sense bank³ has some sort of relation to bank¹; both bank¹ and bank³ are repositories for entities that can be deposited and taken out; in bank¹ the entity is monetary, whereas in bank³ the entity is biological.

When two senses are related semantically, we call the relationship between them polysemy rather than homonymy. In many cases of polysemy, the semantic relation between the senses is systematic and structured. For example, consider yet another sense of bank, exemplified in the following sentence:

(17.6) The bank is on the corner of Nassau and Witherspoon.

This sense, which we can call bank⁴, means something like “the building belonging to a financial institution”. It turns out that these two kinds of senses (an

¹ Confusingly, the word “lemma” is itself ambiguous; it is also sometimes used to mean these separate senses, rather than the citation form of the word. You should be prepared to see both uses in the literature.
organization and the building associated with an organization) occur together for many other words as well (school, university, hospital, etc.). Thus, there is a systematic relationship between senses that we might represent as

BUILDING ↔ ORGANIZATION

This particular subtype of polysemy relation is often called metonymy. Metonymy is the use of one aspect of a concept or entity to refer to other aspects of the entity or to the entity itself. Thus, we are performing metonymy when we use the phrase the White House to refer to the administration whose office is in the White House. Other common examples of metonymy include the relation between the following pairings of senses:

Author (Jane Austen wrote Emma) ↔ Works of Author (I really love Jane Austen)
Tree (Plums have beautiful blossoms) ↔ Fruit (I ate a preserved plum yesterday)

While it can be useful to distinguish polysemy from unrelated homonymy, there is no hard threshold for how related two senses must be to be considered polysemous. Thus, the difference is really one of degree. This fact can make it very difficult to decide how many senses a word has, that is, whether to make separate senses for closely related usages. There are various criteria for deciding that the differing uses of a word should be represented as distinct discrete senses. We might consider two senses discrete if they have independent truth conditions, different syntactic behavior, and independent sense relations, or if they exhibit antagonistic meanings.

Consider the following uses of the verb serve from the WSJ corpus:

(17.7) They rarely serve red meat, preferring to prepare seafood.
(17.8) He served as U.S. ambassador to Norway in 1976 and 1977.
(17.9) He might have served his time, come out and led an upstanding life.

The serve of serving red meat and that of serving time clearly have different truth conditions and presuppositions; the serve of serve as ambassador has the distinct subcategorization structure serve as NP. These heuristics suggest that these are probably three distinct senses of serve. One practical technique for determining if two senses are distinct is to conjoin two uses of a word in a single sentence; this kind of conjunction of antagonistic readings is called zeugma. Consider the following ATIS examples:

(17.10) Which of those flights serve breakfast?
(17.11) Does Midwest Express serve Philadelphia?
(17.12) ?Does Midwest Express serve breakfast and Philadelphia?

We use (?) to mark those examples that are semantically ill-formed. The oddness of the invented third example (a case of zeugma) indicates there is no sensible way to make a single sense of serve work for both breakfast and Philadelphia. We can use this as evidence that serve has two different senses in this case.

Dictionaries tend to use many fine-grained senses so as to capture subtle meaning differences, a reasonable approach given that the traditional role of dictionaries is aiding word learners. For computational purposes, we often don’t need these fine distinctions, so we may want to group or cluster the senses; we have already done this for some of the examples in this chapter.

How can we define the meaning of a word sense? Can we just look in a dictionary? Consider the following fragments from the definitions of right, left, red, and blood from the American Heritage Dictionary (Morris, 1985).
17.2 Relations Between Senses

This section explores some of the relations that hold among word senses, focusing on a few that have received significant computational investigation: synonymy, antonymy, and hypernymy, as well as a brief mention of other relations like meronymy.

17.2.1 Synonymy and Antonymy

When two senses of two different words (lemmas) are identical, or nearly identical, we say the two senses are synonyms. Synonyms include such pairs as:

- couch/sofa
- vomit/throw up
- filbert/hazelnut
- car/automobile

A more formal definition of synonymy (between words rather than senses) is that two words are synonymous if they are substitutable one for the other in any sentence without changing the truth conditions of the sentence. We often say in this case that the two words have the same propositional meaning.

While substitutions between some pairs of words like car/automobile or water/H₂O are truth preserving, the words are still not identical in meaning. Indeed, probably no two words are absolutely identical in meaning, and if we define synonymy as identical meanings and connotations in all contexts, there are probably no absolute synonyms. Besides propositional meaning, many other facets of meaning that distinguish these words are important. For example, H₂O is used in scientific contexts and would be inappropriate in a hiking guide; this difference in genre is part of the meaning of the word. In practice, the word synonym is therefore commonly used to describe a relationship of approximate or rough synonymy.
Synonymy is actually a relationship between senses rather than words. Considering the words *big* and *large*. These may seem to be synonyms in the following ATIS sentences, since we could swap *big* and *large* in either sentence and retain the same meaning:

(17.13) How big is that plane?
(17.14) Would I be flying on a large or small plane?

But note the following WSJ sentence in which we cannot substitute *large* for *big*:

(17.15) Miss Nelson, for instance, became a kind of big sister to Benjamin.
(17.16) Miss Nelson, for instance, became a kind of large sister to Benjamin.

This is because the word *big* has a sense that means being older or grown up, while *large* lacks this sense. Thus, we say that some senses of *big* and *large* are (nearly) synonymous while other ones are not.

Synonyms are words with identical or similar meanings. **Antonyms**, by contrast, are words with opposite meaning such as the following:

- *long/short*  
- *big/little*  
- *fast/slow*  
- *cold/hot*  
- *dark/light*  
- *rise/fall*  
- *up/down*  
- *in/out*

Two senses can be antonyms if they define a binary opposition or are at opposite ends of some scale. This is the case for *long/short*, *fast/slow*, or *big/little*, which are at opposite ends of the *length* or *size* scale. Another group of antonyms, **reversives**, describe change or movement in opposite directions, such as *rise/fall* or *up/down*.

Antonyms thus differ completely with respect to one aspect of their meaning—their position on a scale or their direction—but are otherwise very similar, sharing almost all other aspects of meaning. Thus, automatically distinguishing synonyms from antonyms can be difficult.

### 17.2.2 Hyponymy

One sense is a **hyponym** of another sense if the first sense is more specific, denoting a subclass of the other. For example, *car* is a hyponym of *vehicle*; *dog* is a hyponym of *animal*, and *mango* is a hyponym of *fruit*. Conversely, we say that *vehicle* is a **hypernym** of *car*, and *animal* is a hypernym of *dog*. It is unfortunate that the two words (hypernym and hyponym) are very similar and hence easily confused; for this reason, the word **superordinate** is often used instead of **hypernym**.

<table>
<thead>
<tr>
<th>Superordinate</th>
<th>vehicle</th>
<th>fruit</th>
<th>furniture</th>
<th>mammal</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hyponym</strong></td>
<td>car</td>
<td>mango</td>
<td>chair</td>
<td>dog</td>
</tr>
</tbody>
</table>

We can define hypernymy more formally by saying that the class denoted by the superordinate extensionally includes the class denoted by the hyponym. Thus, the class of animals includes as members all dogs, and the class of moving actions includes all walking actions. Hypernymy can also be defined in terms of **entailment**. Under this definition, a sense $A$ is a hyponym of a sense $B$ if everything that is $A$ is also $B$, and hence being an $A$ entails being a $B$, or $\forall x \ A(x) \Rightarrow B(x)$. Hyponymy is usually a transitive relation; if $A$ is a hyponym of $B$ and $B$ is a hypernym of $C$, then $A$ is a hyponym of $C$. Another name for the hypernym/hyponym structure is the **IS-A** hierarchy, in which we say $A$ IS-A $B$, or $B$ subsumes $A$.

**Meronymy** Another common relation is **meronymy**, the **part-whole** relation. A *leg* is part of a *chair*; a *wheel* is part of a *car*. We say that *wheel* is a **meronym** of *car*, and *car* is a **holonym** of *wheel*. 
17.3 WordNet: A Database of Lexical Relations

The most commonly used resource for English sense relations is the WordNet lexical database (Fellbaum, 1998). WordNet consists of three separate databases, one for nouns and verbs and a third for adjectives and adverbs; closed class words are not included. Each database contains a set of lemmas, each one annotated with a set of senses. The WordNet 3.0 release has 117,798 nouns, 11,529 verbs, 22,479 adjectives, and 4,481 adverbs. The average noun has 1.23 senses, and the average verb has 2.16 senses. WordNet can be accessed on the Web or downloaded and accessed locally. Figure 17.1 shows the lemma entry for the noun and adjective bass.

The noun “bass” has 8 senses in WordNet.
1. bass$^1$ - (the lowest part of the musical range)
2. bass$^2$, bass part$^1$ - (the lowest part in polyphonic music)
3. bass$^3$, basso$^1$ - (an adult male singer with the lowest voice)
4. sea bass$^1$, bass$^4$ - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass$^1$, bass$^5$ - (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
6. bass$^6$, bass voice$^1$, basso$^2$ - (the lowest adult male singing voice)
7. bass$^7$ - (the member with the lowest range of a family of musical instruments)
8. bass$^8$ - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective “bass” has 1 sense in WordNet.
1. bass$^1$, deep$^6$ - (having or denoting a low vocal or instrumental range)
   “a deep voice”; “a bass voice is lower than a baritone voice”;
   “a bass clarinet”

Note that there are eight senses for the noun and one for the adjective, each of which has a gloss (a dictionary-style definition), a list of synonyms for the sense, and sometimes also usage examples (shown for the adjective sense). Unlike dictionaries, WordNet doesn’t represent pronunciation, so doesn’t distinguish the pronunciation [bæs] in bass$^4$, bass$^5$, and bass$^8$ from the other senses pronounced [bɛs].

The set of near-synonyms for a WordNet sense is called a synset (for synonym set); synsets are an important primitive in WordNet. The entry for bass includes synsets like \{bass$^1$, deep$^6$\}, or \{bass$^6$, bass voice$^1$, basso$^2$\}. We can think of a synset as representing a concept of the type we discussed in Chapter 19. Thus, instead of representing concepts in logical terms, WordNet represents them as lists of the word senses that can be used to express the concept. Here’s another synset example:

\{chump$^1$, fool$^2$, gull$^1$, mark$^9$, patsy$^1$, fall guy$^1$, sucker$^1$, soft touch$^1$, mug$^7$\}

The gloss of this synset describes it as a person who is gullible and easy to take advantage of. Each of the lexical entries included in the synset can, therefore, be used to express this concept. Synsets like this one actually constitute the senses associated with WordNet entries, and hence it is synsets, not wordforms, lemmas, or individual senses, that participate in most of the lexical sense relations in WordNet.

WordNet represents all the kinds of sense relations discussed in the previous section, as illustrated in Fig. 17.2 and Fig. 17.3. WordNet hyponymy relations cor-
respond to the notion of immediate hyponymy discussed on page 304. Each synset is related to its immediately more general and more specific synsets through direct hypernym and hyponym relations. These relations can be followed to produce longer chains of more general or more specific synsets. Figure 17.4 shows hypernym chains for bass\(^3\) and bass\(^7\).

In this depiction of hyponymy, successively more general synsets are shown on successive indented lines. The first chain starts from the concept of a human bass singer. Its immediate superordinate is a synset corresponding to the generic concept of a singer. Following this chain leads eventually to concepts such as entertainer and person. The second chain, which starts from musical instrument, has a completely different path leading eventually to such concepts as musical instrument, device, and physical object. Both paths do eventually join at the very abstract synset whole, unit, and then proceed together to entity which is the top (root) of the noun hierarchy (in WordNet this root is generally called the unique beginner).

### 17.4 Word Sense Disambiguation: Overview

Our discussion of compositional semantic analyzers in Chapter 20 pretty much ignored the issue of lexical ambiguity. It should be clear by now that this is an unreasonable approach. Without some means of selecting correct senses for the words in an input, the enormous amount of homonymy and polysemy in the lexicon would quickly overwhelm any approach in an avalanche of competing interpretations.
The task of selecting the correct sense for a word is called word sense disambiguation, or WSD. Disambiguating word senses has the potential to improve many natural language processing tasks, including machine translation, question answering, and information retrieval.

WSD algorithms take as input a word in context along with a fixed inventory of potential word senses and return as output the correct word sense for that use. The input and the senses depends on the task. For machine translation from English to Spanish, the sense tag inventory for an English word might be the set of different Spanish translations. If our task is automatic indexing of medical articles, the sense-tag inventory might be the set of MeSH (Medical Subject Headings) thesaurus entries.

When we are evaluating WSD in isolation, we can use the set of senses from a dictionary/thesaurus resource like WordNet. Figure 17.4 shows an example for the word bass, which can refer to a musical instrument or a kind of fish.\(^2\)

It is useful to distinguish two variants of the generic WSD task. In the lexical sample task, a small pre-selected set of target words is chosen, along with an inventory of senses for each word from some lexicon. Since the set of words and

\(^2\) The WordNet database includes eight senses; we have arbitrarily selected two for this example; we have also arbitrarily selected one of the many Spanish fishes that could translate English sea bass.
the set of senses are small, supervised machine learning approaches are often used to handle lexical sample tasks. For each word, a number of corpus instances (context sentences) can be selected and hand-labeled with the correct sense of the target word in each. Classifier systems can then be trained with these labeled examples. Unlabeled target words in context can then be labeled using such a trained classifier. Early work in word sense disambiguation focused solely on lexical sample tasks of this sort, building word-specific algorithms for disambiguating single words like *line*, *interest*, or *plant*.

In contrast, in the all-words task, systems are given entire texts and a lexicon with an inventory of senses for each entry and are required to disambiguate every content word in the text. The all-words task is similar to part-of-speech tagging, except with a much larger set of tags since each lemma has its own set. A consequence of this larger set of tags is a serious data sparseness problem; it is unlikely that adequate training data for every word in the test set will be available. Moreover, given the number of polysemous words in reasonably sized lexicons, approaches based on training one classifier per term are unlikely to be practical.

In the following sections we explore the application of various machine learning paradigms to word sense disambiguation.

### 17.5 Supervised Word Sense Disambiguation

If we have data that has been hand-labeled with correct word senses, we can use a supervised learning approach to the problem of sense disambiguation—extracting features from the text and training a classifier to assign the correct sense given these features. The output of training is thus a classifier system capable of assigning sense labels to unlabeled words in context.

For lexical sample tasks, there are various labeled corpora for individual words; these corpora consist of context sentences labeled with the correct sense for the target word. These include the *line-hard-serve* corpus containing 4,000 sense-tagged examples of *line* as a noun, *hard* as an adjective and *serve* as a verb (Leacock et al., 1993), and the *interest* corpus with 2,369 sense-tagged examples of *interest* as a noun (Bruce and Wiebe, 1994). The SENSEVAL project has also produced a number of such sense-labeled lexical sample corpora (SENSEVAL-1 with 34 words from the HECTOR lexicon and corpus (Kilgarriff and Rosenzweig 2000, Atkins 1993), SENSEVAL-2 and -3 with 73 and 57 target words, respectively (Palmer et al. 2001, Kilgarriff 2001).

For training all-word disambiguation tasks we use a semantic concordance, a corpus in which each open-class word in each sentence is labeled with its word sense from a specific dictionary or thesaurus. One commonly used corpus is SemCor, a subset of the Brown Corpus consisting of over 234,000 words that were man-

<table>
<thead>
<tr>
<th>WordNet Sense</th>
<th>Spanish Translation</th>
<th>Roget Category</th>
<th>Target Word in Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass&lt;sup&gt;3&lt;/sup&gt;</td>
<td>lubina</td>
<td>FISH/INSECT</td>
<td>...fish as Pacific salmon and striped bass and...</td>
</tr>
<tr>
<td>bass&lt;sup&gt;4&lt;/sup&gt;</td>
<td>lubina</td>
<td>FISH/INSECT</td>
<td>...produce filets of smoked bass or sturgeon...</td>
</tr>
<tr>
<td>bass&lt;sup&gt;7&lt;/sup&gt;</td>
<td>bajo</td>
<td>MUSIC</td>
<td>...exciting jazz bass player since Ray Brown...</td>
</tr>
<tr>
<td>bass&lt;sup&gt;7&lt;/sup&gt;</td>
<td>bajo</td>
<td>MUSIC</td>
<td>...play bass because he doesn’t have to solo...</td>
</tr>
</tbody>
</table>

Figure 17.5 Possible definitions for the inventory of sense tags for *bass*. 
ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In addition, sense-tagged corpora have been built for the SENSEVAL all-words tasks. The SENSEVAL-3 English all-words test data consisted of 2081 tagged content word tokens, from 5,000 total running words of English from the WSJ and Brown corpora (Palmer et al., 2001).

The first step in supervised training is to extract features that are predictive of word senses. The insight that underlies all modern algorithms for word sense disambiguation was famously first articulated by Weaver (1955) in the context of machine translation:

If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words. […] But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word. […] The practical question is: “What minimum value of N will, at least in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?”

We first perform some processing on the sentence containing the window, typically including part-of-speech tagging, lemmatization, and, in some cases, syntactic parsing to reveal headwords and dependency relations. Context features relevant to the target word can then be extracted from this enriched input. A feature vector consisting of numeric or nominal values encodes this linguistic information as an input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts, both of which we have seen previously in part-of-speech tagging: collocational features and bag-of-words features. A collocation is a word or series of words in a position-specific relationship to a target word (i.e., exactly one word to the right, or the two words starting 3 words to the left, and so on). Thus, collocational features encode information about specific positions located to the left or right of the target word. Typical features extracted for these context words include the word itself, the root form of the word, and the word’s part-of-speech. Such features are effective at encoding local lexical and grammatical information that can often accurately isolate a given sense.

For example consider the ambiguous word bass in the following WSJ sentence:

(17.17) An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right and left of the target word, made up of the words themselves, their respective parts-of-speech, and pairs of words, that is,

\[ [w_{i-2}, \text{POS}_{i-2}, w_{i-1}, \text{POS}_{i-1}, w_{i+1}, \text{POS}_{i+1}, w_{i+2}, \text{POS}_{i+2}, w_{i+3}, \text{POS}_{i+3}] \] (17.18)

would yield the following vector:

\[ [\text{guitar}, \text{NN}, \text{and}, \text{CC}, \text{player}, \text{NN}, \text{stand}, \text{VB}, \text{and}\text{guitar}, \text{player stand}] \]

High performing systems generally use POS tags and word collocations of length 1, 2, and 3 from a window of words 3 to the left and 3 to the right (Zhong and Ng, 2010).

The second type of feature consists of bag-of-words information about neighboring words. A bag-of-words means an unordered set of words, with their exact
The simplest bag-of-words approach represents the context of a target word by a vector of features, each binary feature indicating whether a vocabulary word occurs or doesn’t occur in the context.

This vocabulary is typically pre-selected as a useful subset of words in the training corpus. In most WSD applications, the context region surrounding the target word is generally a small, symmetric, fixed-size window with the target word at the center. Bag-of-word features are effective at capturing the general topic of the discourse in which the target word has occurred. This, in turn, tends to identify senses of a word that are specific to certain domains. We generally don’t use stopwords, punctuation, or number as features, and words are lemmatized and lower-cased. In some cases we may also limit the bag-of-words to consider only frequently used words. For example, a bag-of-words vector consisting of the 12 most frequent content words from a collection of bass sentences drawn from the WSJ corpus would have the following ordered word feature set:

\[ \text{fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band} \]

Using these word features with a window size of 10, (17.17) would be represented by the following binary vector:

\[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0] \]

Given training data together with the extracted features, any supervised machine learning paradigm can be used to train a sense classifier.

### 17.5.1 Wikipedia as a source of training data

Supervised methods for WSD are very dependent on the amount of training data, especially because of their reliance on sparse lexical and collocation features. One way to increase the amount of training data is to use Wikipedia as a source of sense-labeled data. When a concept is mentioned in a Wikipedia article, the article text may contain an explicit link to the concept’s Wikipedia page, which is named by a unique identifier. This link can be used as a sense annotation. For example, the ambiguous word bar is linked to a different Wikipedia article depending on its meaning in context, including the page BAR (LAW), the page BAR (MUSIC), and so on, as in the following Wikipedia examples (Mihalcea, 2007).

In 1834, Sumner was admitted to the [[bar (law)\bar]] at the age of twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning approx. 180 degrees every [[bar (music)\bar]].

Jenga is a popular beer in the [[bar (establishment)\bar]]s of Thailand.

These sentences can then be added to the training data for a supervised system. In order to use Wikipedia in this way, however, it is necessary to map from Wikipedia concepts to whatever inventory of senses is relevant for the WSD application. Automatic algorithms that map from Wikipedia to WordNet, for example, involve finding the WordNet sense that has the greatest lexical overlap with the Wikipedia sense, by comparing the vector of words in the WordNet synset, gloss, and related senses with the vector of words in the Wikipedia page title, outgoing links, and page category (Ponzetto and Navigli, 2010).

### 17.5.2 Evaluation

To evaluate WSD algorithms, it’s better to consider extrinsic, task-based, or end-
17.6 WSD: Dictionary and Thesaurus Methods

Supervised algorithms based on sense-labeled corpora are the best-performing algorithms for sense disambiguation. However, such labeled training data is expensive and limited. One alternative is to get indirect supervision from dictionaries and thesauruses or similar knowledge bases and so this method is also called knowledge-based WSD. Methods like this that do not use texts that have been hand-labeled with senses are also called weakly supervised.

17.6.1 The Lesk Algorithm

The most well-studied dictionary-based algorithm for sense disambiguation is the Lesk algorithm, really a family of algorithms that choose the sense whose dictionary gloss or definition shares the most words with the target word’s neighborhood. Figure 17.6 shows the simplest version of the algorithm, often called the Simplified Lesk algorithm (Kilgarriff and Rosenzweig, 2000).

As an example of the Lesk algorithm at work, consider disambiguating the word bank in the following context:

(17.19) The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

given the following two WordNet senses:
function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense ← most frequent sense for word
max-overlap ← 0
context ← set of words in sentence
for each sense in senses of word do
signature ← set of words in the gloss and examples of sense
overlap ← COMPUTE_OVERLAP(signature, context)
if overlap > max-overlap then
max-overlap ← overlap
best-sense ← sense
end
return (best-sense)

Figure 17.6 The Simplified Lesk algorithm. The COMPUTE_OVERLAP function returns the number of words in common between two sets, ignoring function words or other words on a stop list. The original Lesk algorithm defines the context in a more complex way. The Corpus Lesk algorithm weights each overlapping word $w$ by its $-\log P(w)$ and includes labeled training corpus data in the signature.

| bank$^1$ | Gloss: | a financial institution that accepts deposits and channels the money into lending activities |
| Examples: | “he cashed a check at the bank”, “that bank holds the mortgage on my home” |
| bank$^2$ | Gloss: | sloping land (especially the slope beside a body of water) |
| Examples: | “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the currents” |

Sense bank$^1$ has two non-stopwords overlapping with the context in (17.19): deposits and mortgage, while sense bank$^2$ has zero words, so sense bank$^1$ is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algorithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s signature with the context words, the target signature is compared with the signatures of each of the context words. For example, consider Lesk’s example of selecting the appropriate sense of cone in the phrase pine cone given the following definitions for pine and cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness
cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone$^3$ as the correct sense since two of the words in its entry, evergreen and tree, overlap with words in the entry for pine, whereas neither of the other entries has any overlap with words in the definition of pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, however, is that the dictionary entries for the target words are short and may not provide enough chance of overlap with the context. One remedy is to expand the list of words used in the classifier to include words related to, but not contained in, their length of the dictionary entries.

---

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the length of the dictionary entries.
individual sense definitions. But the best solution, if any sense-tagged corpus data like SemCor is available, is to add all the words in the labeled corpus sentences for a word sense into the signature for that sense. This version of the algorithm, the Corpus Lesk algorithm, is the best-performing of all the Lesk variants (Kilgarriff and Rosenzweig 2000, Vasilescu et al. 2004) and is used as a baseline in the SENSEVAL competitions. Instead of just counting up the overlapping words, the Corpus Lesk algorithm also applies a weight to each overlapping word. The weight is the inverse document frequency or IDF, a standard information-retrieval measure introduced in Chapter 15. IDF measures how many different “documents” (in this case, glosses and examples) a word occurs in and is thus a way of discounting function words. Since function words like the, of, etc., occur in many documents, their IDF is very low, while the IDF of content words is high. Corpus Lesk thus uses IDF instead of a stop list.

Formally, the IDF for a word \( i \) can be defined as

\[
\text{idf}_i = \log \left( \frac{N_{\text{doc}}}{n_d} \right)
\]  

where \( N_{\text{doc}} \) is the total number of “documents” (glosses and examples) and \( n_d \) is the number of these documents containing word \( i \).

Finally, we can combine the Lesk and supervised approaches by adding new Lesk-like bag-of-words features. For example, the glosses and example sentences for the target sense in WordNet could be used to compute the supervised bag-of-words features in addition to the words in the SemCor context sentence for the sense (Yuret, 2004).

17.6.2 Graph-based Methods

Another way to use a thesaurus like WordNet is to make use of the fact that WordNet can be construed as a graph, with senses as nodes and relations between senses as edges. In addition to the hypernymy and other relations, it’s possible to create links between senses and those words in the gloss that are unambiguous (have only one sense). Often the relations are treated as undirected edges, creating a large undirected WordNet graph. Fig. 17.7 shows a portion of the graph around the word \( \text{drink}_v \).

There are various ways to use the graph for disambiguation, some using the whole graph, some using only a subpart. For example the target word and the words in its sentential context sentence can all be inserted as nodes in the graph via a directed edge to each of its senses. If we consider the sentence She drank some milk,
Fig. 17.8 shows a portion of the WordNet graph between the senses for between drink\textsuperscript{1} and milk\textsuperscript{1}.

The correct sense is then the one which is the most important or central in some way in this graph. There are many different methods for deciding centrality. The simplest is degree, the number of edges into the node, which tends to correlate with the most frequent sense. Another algorithm for assigning probabilities across nodes is personalized page rank, a version of the well-known pagerank algorithm which uses some seed nodes. By inserting a uniform probability across the word nodes (drink and milk in the example) and computing the personalized page rank of the graph, the result will be a pagerank value for each node in the graph, and the sense with the maximum pagerank can then be chosen. See Agirre et al. (2014) andNavigli and Lapata (2010) for details.

17.7 Semi-Supervised WSD: Bootstrapping

Both the supervised approach and the dictionary-based approaches to WSD require large hand-built resources: supervised training sets in one case, large dictionaries in the other. We can instead use bootstrapping or semi-supervised learning, which needs only a very small hand-labeled training set.

A classic bootstrapping algorithm for WSD is the Yarowsky algorithm for learning a classifier for a target word (in a lexical-sample task) (Yarowsky, 1995). The algorithm is given a small seedset \( \Lambda_0 \) of labeled instances of each sense and a much larger unlabeled corpus \( V_0 \). The algorithm first trains an initial classifier on the seedset \( \Lambda_0 \). It then uses this classifier to label the unlabeled corpus \( V_0 \). The algorithm then selects the examples in \( V_0 \) that it is most confident about, removes them, and adds them to the training set (call it now \( \Lambda_1 \)). The algorithm then trains a new classifier (a new set of rules) on \( \Lambda_1 \), and iterates by applying the classifier to the now-smaller unlabeled set \( V_1 \), extracting a new training set \( \Lambda_2 \), and so on. With each iteration of this process, the training corpus grows and the untagged corpus shrinks. The process is repeated until some sufficiently low error-rate on the training set is reached or until no further examples from the untagged corpus are above threshold.

Initial seeds can be selected by hand-labeling a small set of examples (Hearst, 1991), or by using the help of a heuristic. Yarowsky (1995) used the one sense per collocation heuristic, which relies on the intuition that certain words or phrases...
17.7 • SEMI-SUPERVISED WSD: BOOTSTRAPPING

Figure 17.9 The Yarowsky algorithm disambiguating “plant” at two stages; “?” indicates an unlabeled observation, A and B are observations labeled as SENSE-A or SENSE-B. The initial stage (a) shows only seed sentences $A_0$ labeled by collocates (“life” and “manufacturing”). An intermediate stage is shown in (b) where more collocates have been discovered (“equipment”, “microscopic”, etc.) and more instances in $V_0$ have been moved into $A_1$, leaving a smaller unlabeled set $V_1$. Figure adapted from Yarowsky (1995).

<table>
<thead>
<tr>
<th>We need more good teachers – right now, there are only a half a dozen who can play the free bass with ease. An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps. The researchers said the worms spend part of their life cycle in such fish as Pacific salmon and striped bass and Pacific rockfish or snapper. And it all started when fishermen decided the striped bass in Lake Mead were too skinny.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 17.10 Samples of bass sentences extracted from the WSJ by using the simple correlates play and fish.</td>
</tr>
</tbody>
</table>

strongly associated with the target senses tend not to occur with the other sense. Yarowsky defines his seedset by choosing a single collocation for each sense.

For example, to generate seed sentences for the fish and musical musical senses of bass, we might come up with fish as a reasonable indicator of bass¹ and play as a reasonable indicator of bass². Figure 17.10 shows a partial result of such a search for the strings “fish” and “play” in a corpus of bass examples drawn from the WSJ.

The original Yarowsky algorithm also makes use of a second heuristic, called one sense per discourse, based on the work of Gale et al. (1992b), who noticed that a particular word appearing multiple times in a text or discourse often appeared with the same sense. This heuristic seems to hold better for coarse-grained senses and particularly for cases of homonymy rather than polysemy (Krovetz, 1998).

Nonetheless, it is still useful in a number of sense disambiguation situations. In fact, the one sense per discourse heuristic is an important one throughout language processing as it seems that many disambiguation tasks may be improved by a bias toward resolving an ambiguity the same way inside a discourse segment.
17.8 Unsupervised Word Sense Induction

It is expensive and difficult to build large corpora in which each word is labeled for its word sense. For this reason, an unsupervised approach to sense disambiguation, often called word sense induction or WSI, is an exciting and important research area. In unsupervised approaches, we don’t use human-defined word senses. Instead, the set of “senses” of each word is created automatically from the instances of each word in the training set.

Most algorithms for word sense induction use some sort of clustering. For example, the early algorithm of Schütze (Schütze 1992b, Schütze 1998) represented each word as a context vector of bag-of-words features \( \vec{c} \). (See Chapter 15 for a more complete introduction to such vector models of meaning.) Then in training, we use three steps.

1. For each token \( w \) of word \( w \) in a corpus, compute a context vector \( \vec{c} \).
2. Use a clustering algorithm to cluster these word-token context vectors \( \vec{c} \) into a predefined number of groups or clusters. Each cluster defines a sense of \( w \).
3. Compute the vector centroid of each cluster. Each vector centroid \( \vec{s}_j \) is a sense vector representing that sense of \( w \).

Since this is an unsupervised algorithm, we don’t have names for each of these “senses” of \( w \); we just refer to the \( j \)th sense of \( w \).

Now how do we disambiguate a particular token \( t \) of \( w \)? Again, we have three steps:

1. Compute a context vector \( \vec{c} \) for \( t \).
2. Retrieve all sense vectors \( \vec{s}_j \) for \( w \).
3. Assign \( t \) to the sense represented by the sense vector \( \vec{s}_j \) that is closest to \( t \).

All we need is a clustering algorithm and a distance metric between vectors. Clustering is a well-studied problem with a wide number of standard algorithms that can be applied to inputs structured as vectors of numerical values (Duda and Hart, 1973). A frequently used technique in language applications is known as agglomerative clustering. In this technique, each of the \( N \) training instances is initially assigned to its own cluster. New clusters are then formed in a bottom-up fashion by the successive merging of the two clusters that are most similar. This process continues until either a specified number of clusters is reached, or some global goodness measure among the clusters is achieved. In cases in which the number of training instances makes this method too expensive, random sampling can be used on the original training set to achieve similar results.

Recent algorithms have also used topic modeling algorithms like Latent Dirichlet Allocation (LDA), another way to learn clusters of words based on their distributions (Lau et al., 2012).

How can we evaluate unsupervised sense disambiguation approaches? As usual, the best way is to do extrinsic evaluation embedded in some end-to-end system; one example used in a SemEval bakeoff is to improve search result clustering and diversification (Navigli and Vannella, 2013). Intrinsic evaluation requires a way to map the automatically derived sense classes into a hand-labeled gold-standard set so that we can compare a hand-labeled test set with a set labeled by our unsupervised classifier. Various such metrics have been tested, for example in the SemEval tasks (Manandhar et al. 2010, Navigli and Vannella 2013, Jurgens and Klapaftis 2013),...
including cluster overlap metrics, or methods that map each sense cluster to a pre-defined sense by choosing the sense that (in some training set) has the most overlap with the cluster. However it is fair to say that no evaluation metric for this task has yet become standard.

17.9 Word Similarity: Thesaurus Methods

We turn now to the computation of various semantic relations that hold between words. We saw in Section 17.2 that such relations include synonymy, antonymy, hyponymy, hypernymy, and meronymy. Of these, the one that has been most computationally developed and has the greatest number of applications is the idea of word synonymy and similarity.

Synonymy is a binary relation between words; two words are either synonyms or not. For most computational purposes, we use instead a looser metric of word similarity or semantic distance. Two words are more similar if they share more features of meaning or are near-synonyms. Two words are less similar or have greater semantic distance, if they have fewer common meaning elements. Although we have described them as relations between words, synonymy, similarity, and distance are actually relations between word senses. For example, of the two senses of bank, we might say that the financial sense is similar to one of the senses of fund and the riparian sense is more similar to one of the senses of slope. In the next few sections of this chapter, we will compute these relations over both words and senses.

The ability to compute word similarity is a useful part of many language understanding applications. In information retrieval or question answering, we might want to retrieve documents whose words have meanings similar to the query words. In summarization, generation, and machine translation, we need to know whether two words are similar to know if we can substitute one for the other in particular contexts. In language modeling, we can use semantic similarity to cluster words for class-based models. One interesting class of applications for word similarity is automatic grading of student responses. For example, algorithms for automatic essay grading use word similarity to determine if an essay is similar in meaning to a correct answer. We can also use word similarity as part of an algorithm to take an exam, such as a multiple-choice vocabulary test. Automatically taking exams is useful in test designs in order to see how easy or hard a particular multiple-choice question or exam is.

Two classes of algorithms can be used to measure word similarity. This chapter focuses on thesaurus-based algorithms, in which we measure the distance between two senses in an on-line thesaurus like WordNet or MeSH. The next chapter focuses on distributional algorithms, in which we estimate word similarity by finding words that have similar distributions in a corpus.

The thesaurus-based algorithms use the structure of the thesaurus to define word similarity. In principle, we could measure similarity by using any information available in a thesaurus (meronymy, glosses, etc.). In practice, however, thesaurus-based word similarity algorithms generally use only the hypernym/hyponym (is-a or subsumption) hierarchy. In WordNet, verbs and nouns are in separate hypernym hierarchies, so a thesaurus-based algorithm for WordNet can thus compute only noun-noun similarity, or verb-verb similarity; we can’t compare nouns to verbs or do anything with adjectives or other parts of speech.

We can distinguish word similarity from word relatedness. Two words are
similar if they are near-synonyms or roughly substitutable in context. Word relatedness characterizes a larger set of potential relationships between words; antonyms, for example, have high relatedness but low similarity. The words car and gasoline are closely related but not similar, while car and bicycle are similar. Word similarity is thus a subcase of word relatedness. In general, the five algorithms we describe in this section do not attempt to distinguish between similarity and semantic relatedness; for convenience, we will call them similarity measures, although some would be more appropriately described as relatedness measures; we return to this question in Section ??.

Figure 17.11 A fragment of the WordNet hyponym hierarchy, showing path lengths (number of edges plus 1) from nickel to coin (2), dime (3), money (6), and Richter scale (8).

The simplest thesaurus-based algorithms are based on the intuition that words or senses are more similar if there is a shorter path between them in the thesaurus graph, an intuition dating back to Quillian (1969). A word/sense is most similar to itself, then to its parents or siblings, and least similar to words that are far away. We make this notion operational by measuring the number of edges between the two concept nodes in the thesaurus graph and adding one. Figure 17.11 shows an intuition; the concept dime is most similar to nickel and coin, less similar to money, and even less similar to Richter scale. A formal definition:

\[
\text{pathlen}(c_1, c_2) = 1 + \text{the number of edges in the shortest path in the thesaurus graph between the sense nodes } c_1 \text{ and } c_2
\]

Path-based similarity can be defined as just the path length, transformed either by log (Leacock and Chodorow, 1998) or, more often, by an inverse, resulting in the following common definition of path-length based similarity:

\[
\text{sim}_{\text{path}}(c_1, c_2) = \frac{1}{\text{pathlen}(c_1, c_2)}
\]  
\[(17.21)\]

For most applications, we don’t have sense-tagged data, and thus we need our algorithm to give us the similarity between words rather than between senses or concepts. For any of the thesaurus-based algorithms, following Resnik (1995), we can approximate the correct similarity (which would require sense disambiguation) by just using the pair of senses for the two words that results in maximum sense similarity. Thus, based on sense similarity, we can define word similarity as follows:

\[
\text{wordsim}(w_1, w_2) = \max_{c_1 \in \text{senses}(w_1)} \max_{c_2 \in \text{senses}(w_2)} \text{sim}(c_1, c_2)
\]  
\[(17.22)\]
The basic path-length algorithm makes the implicit assumption that each link in the network represents a uniform distance. In practice, this assumption is not appropriate. Some links (e.g., those that are deep in the WordNet hierarchy) often seem to represent an intuitively narrow distance, while other links (e.g., higher up in the WordNet hierarchy) represent an intuitively wider distance. For example, in Fig. 17.11, the distance from *nickel* to *money* (5) seems intuitively much shorter than the distance from *nickel* to an abstract word *standard*; the link between *medium of exchange* and *standard* seems wider than that between, say, *coin* and *coinage*.

It is possible to refine path-based algorithms with normalizations based on depth in the hierarchy (Wu and Palmer, 1994), but in general we’d like an approach that lets us independently represent the distance associated with each edge.

A second class of thesaurus-based similarity algorithms attempts to offer just such a fine-grained metric. These *information-content word-similarity* algorithms still rely on the structure of the thesaurus but also add probabilistic information derived from a corpus.

Following Resnik (1995) we’ll define $P(c)$ as the probability that a randomly selected word in a corpus is an instance of concept $c$ (i.e., a separate random variable, ranging over words, associated with each concept). This implies that $P(root) = 1$ since any word is subsumed by the root concept. Intuitively, the lower a concept in the hierarchy, the lower its probability. We train these probabilities by counting in a corpus; each word in the corpus counts as an occurrence of each concept that contains it. For example, in Fig. 17.11 above, an occurrence of the word *dime* would count toward the frequency of *coin, currency, standard*, etc. More formally, Resnik computes $P(c)$ as follows:

$$P(c) = \frac{\sum_{w \in \text{words}(c)} \text{count}(w)}{N}$$  \hspace{1cm} (17.23)

where $\text{words}(c)$ is the set of words subsumed by concept $c$, and $N$ is the total number of words in the corpus that are also present in the thesaurus.

Figure 17.12, from Lin (1998b), shows a fragment of the WordNet concept hierarchy augmented with the probabilities $P(c)$.

We now need two additional definitions. First, following basic information the-
ory, we define the information content (IC) of a concept $c$ as

$$IC(c) = - \log P(c)$$  \hspace{1cm} (17.24)

Second, we define the lowest common subsumer or LCS of two concepts:

$$\text{LCS}(c_1, c_2) = \text{the lowest common subsumer, that is, the lowest node in the hierarchy that subsumes (is a hypernym of) both } c_1 \text{ and } c_2$$

There are now a number of ways to use the information content of a node in a word similarity metric. The simplest way was first proposed by Resnik (1995). We think of the similarity between two words as related to their common information; the more two words have in common, the more similar they are. Resnik proposes to estimate the common amount of information by the information content of the lowest common subsumer of the two nodes. More formally, the Resnik similarity measure is

$$\text{sim}_{\text{Resnik}}(c_1, c_2) = - \log P(\text{LCS}(c_1, c_2))$$  \hspace{1cm} (17.25)

Lin (1998b) extended the Resnik intuition by pointing out that a similarity metric between objects A and B needs to do more than measure the amount of information in common between A and B. For example, he additionally pointed out that the more differences between A and B, the less similar they are. In summary:

- **Commonality**: the more information A and B have in common, the more similar they are.
- **Difference**: the more differences between the information in A and B, the less similar they are.

Lin measures the commonality between A and B as the information content of the proposition that states the commonality between A and B:

$$\text{IC}(\text{common}(A, B))$$  \hspace{1cm} (17.26)

He measures the difference between A and B as

$$\text{IC}(\text{description}(A, B)) - \text{IC}(\text{common}(A, B))$$  \hspace{1cm} (17.27)

where description(A,B) describes A and B. Given a few additional assumptions about similarity, Lin proves the following theorem:

**Similarity Theorem**: The similarity between A and B is measured by the ratio between the amount of information needed to state the commonality of A and B and the information needed to fully describe what A and B are.

$$\text{sim}_{\text{Lin}}(A, B) = \frac{\text{common}(A, B)}{\text{description}(A, B)}$$  \hspace{1cm} (17.28)

Applying this idea to the thesaurus domain, Lin shows (in a slight modification of Resnik’s assumption) that the information in common between two concepts is twice the information in the lowest common subsumer LCS($c_1, c_2$). Adding in the above definitions of the information content of thesaurus concepts, the final Lin similarity function is

$$\text{sim}_{\text{Lin}}(c_1, c_2) = \frac{2 \times \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$  \hspace{1cm} (17.29)
For example, using \( \text{sim}_{\text{Lin}} \), Lin (1998b) shows that the similarity between the concepts of hill and coast from Fig. 17.12 is

\[
\text{sim}_{\text{Lin}}(\text{hill}, \text{coast}) = \frac{2 \times \log P(\text{geological-formation})}{\log P(\text{hill}) + \log P(\text{coast})} = 0.59 \quad (17.30)
\]

A similar formula, Jiang-Conrath distance (Jiang and Conrath, 1997), although derived in a completely different way from Lin and expressed as a distance rather than similarity function, has been shown to work as well as or better than all the other thesaurus-based methods:

\[
\text{dist}_{\text{JC}}(c_1, c_2) = 2 \times \log P(\text{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2)) \quad (17.31)
\]

We can transform \( \text{dist}_{\text{JC}} \) into a similarity by taking the reciprocal.

Finally, we describe a dictionary-based method, an extension of the Lesk algorithm for word sense disambiguation described in Section 17.6.1. We call this a dictionary rather than a thesaurus method because it makes use of glosses, which are, in general, a property of dictionaries rather than thesauruses (although WordNet does have glosses). Like the Lesk algorithm, the intuition of this extended gloss overlap, or Extended Lesk measure (Banerjee and Pedersen, 2003) is that two concepts/senses in a thesaurus are similar if their glosses contain overlapping words. We’ll begin by sketching an overlap function for two glosses. Consider these two concepts, with their glosses:

- **drawing paper**: paper that is specially prepared for use in drafting
- **decal**: the art of transferring designs from specially prepared paper to a wood or glass or metal surface.

For each \( n \)-word phrase that occurs in both glosses, Extended Lesk adds in a score of \( n^2 \) (the relation is non-linear because of the Zipfian relationship between lengths of phrases and their corpus frequencies; longer overlaps are rare, so they should be weighted more heavily). Here, the overlapping phrases are paper and specially prepared, for a total similarity score of \( 1^2 + 2^2 = 5 \).

Given such an overlap function, when comparing two concepts (synsets), Extended Lesk not only looks for overlap between their glosses but also between the glosses of the senses that are hypernyms, hyponyms, meronyms, and other relations of the two concepts. For example, if we just considered hyponyms and defined \( \text{gloss}(\text{hypo}(A)) \) as the concatenation of all the glosses of all the hyponym senses of \( A \), the total relatedness between two concepts \( A \) and \( B \) might be

\[
\text{sim}_{\text{eLesk}}(c_1, c_2) = \sum_{r,q \in \text{RELS}} \text{overlap}(\text{gloss}(r(c_1)), \text{gloss}(q(c_2))) \quad (17.32)
\]
Figure 17.13 summarizes the five similarity measures we have described in this section.

**Evaluating Thesaurus-Based Similarity**

Which of these similarity measures is best? Word similarity measures have been evaluated in two ways. The most common intrinsic evaluation metric computes the correlation coefficient between an algorithm’s word similarity scores and word similarity ratings assigned by humans. There are a variety of such human-labeled datasets: the RG-65 dataset of human similarity ratings on 65 word pairs (Rubenstein and Goodenough, 1965), the MC-30 dataset of 30 word pairs (Miller and Charles, 1991). The WordSim-353 (Finkelstein et al., 2002) is a commonly used set of of ratings from 0 to 10 for 353 noun pairs; for example \((plane, car)\) had an average score of 5.77. SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies similarity \((cup, mug)\) rather than relatedness \((cup, coffee)\), and including both concrete and abstract adjective, noun and verb pairs. Another common intrinsic similarity measure is the TOEFL dataset, a set of 80 questions, each consisting of a target word with 4 additional word choices; the task is to choose which is the correct synonym, as in the example: \(\text{Levied is closest in meaning to: imposed, believed, requested, correlated (Landauer and Dumais, 1997).}\)

Alternatively, the similarity measure can be embedded in some end-application, such as question answering (Surdeanu et al., 2011), spell-checking (Jones and Martin 1997, Budanitsky and Hirst 2006, Hirst and Budanitsky 2005), web search result clustering (Di Marco andNavigli, 2013), or text simplification (Biran et al., 2011), and different measures can be evaluated by how much they improve the end application.

We’ll return to evaluation metrics in the next chapter when we consider distributional semantics and similarity.
17.10 Summary

This chapter has covered a wide range of issues concerning the meanings associated with lexical items. The following are among the highlights:

- **Lexical semantics** is the study of the meaning of words and the systematic meaning-related connections between words.
- A **word sense** is the locus of word meaning; definitions and meaning relations are defined at the level of the word sense rather than wordforms.
- **Homonymy** is the relation between unrelated senses that share a form, and **polysemy** is the relation between related senses that share a form.
- **Synonymy** holds between different words with the same meaning.
- **Hyponymy** and **hypernymy** relations hold between words that are in a class-inclusion relationship.
- **WordNet** is a large database of lexical relations for English.
- **Word-sense disambiguation (WSD)** is the task of determining the correct sense of a word in context. Supervised approaches make use of sentences in which individual words (lexical sample task) or all words (all-words task) are hand-labeled with senses from a resource like WordNet. Classifiers for supervised WSD are generally trained on collocational and bag-of-words features that describe the surrounding words.
- An important baseline for WSD is the **most frequent sense**, equivalent, in WordNet, to **take the first sense**.
- The **Lesk algorithm** chooses the sense whose dictionary definition shares the most words with the target word’s neighborhood.
- Graph-based algorithms view the thesaurus as a graph and choose the sense that is most central in some way.
- **Word similarity** can be computed by measuring the link distance in a thesaurus or by various measure of the **information content** of the two nodes.

**Bibliographical and Historical Notes**

Word sense disambiguation traces its roots to some of the earliest applications of digital computers. We saw above Warren Weaver’s (1955) suggestion to disambiguate a word by looking at a small window around it, in the context of machine translation. Other notions first proposed in this early period include the use of a thesaurus for disambiguation (Masterman, 1957), supervised training of Bayesian models for disambiguation (Madhu and Lytel, 1965), and the use of clustering in word sense analysis (Sparck Jones, 1986).

An enormous amount of work on disambiguation was conducted within the context of early AI-oriented natural language processing systems. Quillian (1968) and Quillian (1969) proposed a graph-based approach to language understanding, in which the dictionary definition of words was represented by a network of word nodes connected by syntactic and semantic relations. He then proposed to do sense disambiguation by finding the shortest path between senses in the conceptual graph. Simmons (1973) is another influential early semantic network approach. Wilks proposed...
one of the earliest non-discrete models with his Preference Semantics (Wilks 1975c, Wilks 1975b, Wilks 1975a), and Small and Rieger (1982) and Riesbeck (1975) proposed understanding systems based on modeling rich procedural information for each word. Hirst’s ABSITY system (Hirst and Charniak 1982, Hirst 1987, Hirst 1988), which used a technique called marker passing based on semantic networks, represents the most advanced system of this type. As with these largely symbolic approaches, early neural network (often called ‘connectionist’) approaches to word sense disambiguation relied on small lexicons with hand-coded representations (Cottrill 1985, Kawamoto 1988).

Considerable work on sense disambiguation has been conducted in the areas of cognitive science and psycholinguistics. Appropriately enough, this work is generally described by a different name: lexical ambiguity resolution. Small et al. (1988) present a variety of papers from this perspective.

The earliest implementation of a robust empirical approach to sense disambiguation is due to Kelly and Stone (1975), who directed a team that hand-crafted a set of disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the first to use a machine-readable dictionary for word sense disambiguation. The problem of dictionary senses being too fine-grained or lacking an appropriate organization has been addressed with models of clustering word senses (Dolan 1994, Chen and Chang 1998, Mihalcea and Moldovan 2001, Agirre and de Lacalle 2003, Chklovski and Mihalcea 2003, Palmer et al. 2004,Navigli 2006, Snow et al. 2007). Clustered senses are often called coarse senses. Corpora with clustered word senses for training clustering algorithms include Palmer et al. (2006) and OntoNotes (Hovy et al., 2006).

Modern interest in supervised machine learning approaches to disambiguation began with Black (1988), who applied decision tree learning to the task. The need for large amounts of annotated text in these methods led to investigations into the use of bootstrapping methods (Hearst 1991, Yarowsky 1995).

Diab and Resnik (2002) give a semi-supervised algorithm for sense disambiguation based on aligned parallel corpora in two languages. For example, the fact that the French word catastrophe might be translated as English disaster in one instance and tragedy in another instance can be used to disambiguate the senses of the two English words (i.e., to choose senses of disaster and tragedy that are similar). Abney (2002) and Abney (2004) explore the mathematical foundations of the Yarowsky algorithm and its relation to co-training. The most-frequent-sense heuristic is an extremely powerful one but requires large amounts of supervised training data.

The earliest use of clustering in the study of word senses was by Sparck Jones (1986). Zernik (1991) applied a standard information retrieval clustering algorithm to the problem and evaluated it according to improvements in retrieval performance and Pedersen and Bruce (1997), Schütze (1997b), and Schütze (1998) applied distributional methods. Recent work on word sense induction has applied Latent Dirichelet Allocation (LDA) (Boyd-Graber et al. 2007, Brody and Lapata 2009, Lau et al. 2012), and large co-occurrence graphs (Di Marco andNavigli, 2013).

Cruse (2004) is a useful introductory linguistic text on lexical semantics. A collection of work concerning WordNet can be found in Fellbaum (1998). Many efforts have been made to use existing dictionaries as lexical resources. One of the earliest was Amsler’s (1981) use of the Merriam Webster dictionary. The machine-readable version of Longman’s Dictionary of Contemporary English has also been used (Boguraev and Briscoe, 1989).

Navigli (2009) is a comprehensive survey article on WSD. Agirre and Edmonds

See Pustejovsky (1995), Pustejovsky and Boguraev (1996), Martin (1986), and Copestake and Briscoe (1995), inter alia, for computational approaches to the representation of polysemy. Pustejovsky’s theory of the generative lexicon, and in particular his theory of the qualia structure of words, is another way of accounting for the dynamic systematic polysemy of words in context.

Another important recent direction is the addition of sentiment and connotation to knowledge bases (Wiebe et al. 2005, Qiu et al. 2009, Velikovich et al. 2010) including SentiWordNet (Baccianella et al., 2010) and ConnotationWordNet (Kang et al., 2014).

Exercises

17.1 Collect a small corpus of example sentences of varying lengths from any newspaper or magazine. Using WordNet or any standard dictionary, determine how many senses there are for each of the open-class words in each sentence. How many distinct combinations of senses are there for each sentence? How does this number seem to vary with sentence length?

17.2 Using WordNet or a standard reference dictionary, tag each open-class word in your corpus with its correct tag. Was choosing the correct sense always a straightforward task? Report on any difficulties you encountered.

17.3 Using your favorite dictionary, simulate the original Lesk word overlap disambiguation algorithm described on page 312 on the phrase *Time flies like an arrow*. Assume that the words are to be disambiguated one at a time, from left to right, and that the results from earlier decisions are used later in the process.

17.4 Build an implementation of your solution to the previous exercise. Using WordNet, implement the original Lesk word overlap disambiguation algorithm described on page 312 on the phrase *Time flies like an arrow*.
Lexicons for Sentiment and Affect Extraction

“In [W]e write, not with the fingers, but with the whole person. The nerve which controls the pen winds itself about every fibre of our being, threads the heart, pierces the liver.”

Virginia Woolf, Orlando

“She runs the gamut of emotions from A to B.”

Dorothy Parker, reviewing Hepburn’s performance in Little Women

In this chapter we turn to tools for interpreting affective meaning, extending our study of sentiment analysis in Chapter 6. We use the word ‘affective’, following the tradition in affective computing (Picard, 1995) to mean emotion, sentiment, personality, mood, and attitudes. Affective meaning is closely related to subjectivity, the study of a speaker or writer’s evaluations, opinions, emotions, and speculations (Wiebe et al., 1999).

How should affective meaning be defined? One influential typology of affective states comes from Scherer (2000), who defines each class of affective states by factors like its cognition realization and time course:

- **Emotion**: Relatively brief episode of response to the evaluation of an external or internal event as being of major significance. (angry, sad, joyful, fearful, ashamed, proud, elated, desperate)
- **Mood**: Diffuse affect state, most pronounced as change in subjective feeling, of low intensity but relatively long duration, often without apparent cause. (cheerful, gloomy, irritable, listless, depressed, buoyant)
- **Interpersonal stance**: Affective stance taken toward another person in a specific interaction, colouring the interpersonal exchange in that situation. (distant, cold, warm, supportive, contemptuous, friendly)
- **Attitude**: Relatively enduring, affectively colored beliefs, preferences, and predispositions towards objects or persons. (liking, loving, hating, valuing, desiring)
- **Personality traits**: Emotionally laden, stable personality dispositions and behavior tendencies, typical for a person. (nervous, anxious, reckless, morose, hostile, jealous)

Figure 18.1 The Scherer typology of affective states, with descriptions from Scherer (2000).
We can design extractors for each of these kinds of affective states. Chapter 6 already introduced sentiment analysis, the task of extracting the positive or negative orientation that a writer expresses toward some object. This corresponds in Scherer’s typology to the extraction of attitudes: figuring out what people like or dislike, whether from consumer reviews of books or movies, newspaper editorials, or public sentiment from blogs or tweets.

Detecting emotion and moods is useful for detecting whether a student is confused, engaged, or certain when interacting with a tutorial system, whether a caller to a help line is frustrated, whether someone’s blog posts or tweets indicated depression. Detecting emotions like fear in novels, for example, could help us trace what groups or situations are feared and how that changes over time.

Detecting different interpersonal stances can be useful when extracting information from human-human conversations. The goal here is to detect stances like friendliness or awkwardness in interviews or friendly conversations, or even to detect flirtation in dating. For the task of automatically summarizing meetings, we’d like to be able to automatically understand the social relations between people, who is friendly or antagonistic to whom. A related task is finding parts of a conversation where people are especially excited or engaged, conversational hot spots that can help a summarizer focus on the correct region.

Detecting the personality of a user—such as whether the user is an extrovert or the extent to which they are open to experience—can help improve conversational agents, which seem to work better if they match users’ personality expectations (Mairesse and Walker, 2008).

Affect is important for generation as well as recognition; synthesizing affect is important for conversational agents in various domains, including literacy tutors such as children’s storybooks, or computer games.

In Chapter 6 we introduced the use of Naive Bayes classification to classify a document’s sentiment, an approach that has been successfully applied to many of these tasks. In that approach, all the words in the training set are used as features for classifying sentiment.

In this chapter we focus on an alternative model, in which instead of using every word as a feature, we focus only on certain words, ones that carry particularly strong cues to sentiment or affect. We call these lists of words sentiment or affective lexicons. In the next sections we introduce lexicons for sentiment, semi-supervised algorithms for inducing them, and simple algorithms for using lexicons to perform sentiment analysis.

We then turn to the extraction of other kinds of affective meaning, beginning with emotion, and the use of on-line tools for crowdsourcing emotion lexicons, and then proceeding to other kinds of affective meaning like interpersonal stance and personality.

### 18.1 Available Sentiment Lexicons

The most basic lexicons label words along one dimension of semantic variability, called “sentiment”, “valence”, or “semantic orientation”.

In the simplest lexicons this dimension is represented in a binary fashion, with a wordlist for positive words and a wordlist for negative words. The oldest is the General Inquirer (Stone et al., 1966), which drew on early work in the cognition psychology of word meaning (Osgood et al., 1957) and on work in content analysis.
The General Inquirer is a freely available web resource with lexicons of 1915 positive words and 2291 negative words (and also includes other lexicons we’ll discuss in the next section).

The MPQA Subjectivity lexicon (Wilson et al., 2005) has 2718 positive and 4912 negative words drawn from a combination of sources, including the General Inquirer lists, the output of the Hatzivassiloglou and McKeown (1997) system described below, and a bootstrapped list of subjective words and phrases (Riloff and Wiebe, 2003) that was then hand-labeled for sentiment. Each phrase in the lexicon is also labeled for reliability (strongly subjective or weakly subjective). The polarity lexicon of (Hu and Liu, 2004b) gives 2006 positive and 4783 negative words, drawn from product reviews, labeled using a bootstrapping method from WordNet described in the next section.

| Positive         | admire, amazing, assure, celebration, charm, eager, enthusiastic, excellent, fancy, fantastic, frolic, graceful, happy, joy, luck, majesty, mercy, nice, patience, perfect, proud, rejoice, relief, respect, satisfactorily, sensational, super, terrific, thank, vivid, wise, wonderful, zest |
| Negative         | abominable, anger, anxious, bad, catastrophe, cheap, complaint, condescending, deceit, defective, disappointment, embarrass, fake, fear, filthy, fool, guilt, hate, idiot, inflict, lazy, miserable, mourn, nervous, objection, pest, plot, reject, scream, silly, terrible, unfriendly, vile, wicked |

Figure 18.2 Some samples of words with consistent sentiment across three sentiment lexicons: the General Inquirer (Stone et al., 1966), the MPQA Subjectivity lexicon (Wilson et al., 2005), and the polarity lexicon of Hu and Liu (2004b).

18.2 Semi-supervised induction of sentiment lexicons

Some affective lexicons are built by having humans assign ratings to words; this was the technique for building the General Inquirer starting in the 1960s (Stone et al., 1966), and for modern lexicons based on crowd-sourcing to be described in Section 18.5.1. But one of the most powerful ways to learn lexicons is to use semi-supervised learning.

In this section we introduce three methods for semi-supervised lexicon extraction. The three methods all share the same intuitive algorithm which is sketched in Fig. 18.3.

```plaintext
function BUILDSENTIMENTLEXICON(posseeds, negseeds) returns poslex, neglex
    poslex ← posseeds
    neglex ← negseeds
    Until done
        poslex ← poslex + FINDSIMILARWORDS(poslex)
        neglex ← neglex + FINDSIMILARWORDS(neglex)
        poslex, neglex ← POSTPROCESS(poslex, neglex)
```

Figure 18.3 Schematic for semi-supervised sentiment lexicon induction. Different algorithms differ in the how words of similar polarity are found, in the stopping criterion, and in the post-processing.
As we will see, the methods differ in the intuitions they use for finding words with similar polarity, and in steps they take to use machine learning to improve the quality of the lexicons.

### 18.2.1 Using seed words and adjective coordination

The Hatzivassiloglou and McKeown (1997) algorithm for labeling the polarity of adjectives is the same semi-supervised architecture described above. Their algorithm has four steps.

**Step 1: Create seed lexicon:** Hand-label a seed set of 1336 adjectives (all words that occurred more than 20 times in the 21 million word WSJ corpus). They labeled 657 positive adjectives (e.g., adequate, central, clever, famous, intelligent, remarkable, reputed, sensitive, slender, thriving) and 679 negative adjectives (e.g., contagious, drunken, ignorant, lanky, listless, primitive, strident, troublesome, unresolved, unsuspecting).

**Step 2: Find cues to candidate similar words:** Choose words that are similar or different to the seed words, using the intuition that adjectives conjoined by the words *and* tend to have the same polarity. Thus we might expect to see instances of positive adjectives coordinated with positive, or negative with negative:

- fair and legitimate, corrupt and brutal

but less likely to see positive adjectives coordinated with negative:

- *fair and brutal, *corrupt and legitimate

By contrast, adjectives conjoined by *but* are likely to be of opposite polarity:

- fair but brutal

The idea that simple patterns like coordination via *and* and *but* are good tools for finding lexical relations like same-polarity and opposite-polarity is an application of the pattern-based approach to relation extraction described in Chapter 20.

Another cue to opposite polarity comes from morphological negation (*un-, im-, -less*). Adjectives with the same root but differing in a morphological negative (*adequate/inadequate, thoughtful/thoughtless*) tend to be of opposite polarity.

**Step 3: Build a polarity graph**

These cues are integrated by building a graph with nodes for words and links representing how likely the two words are to have the same polarity, as shown in Fig. 18.4.

A simple way to build a graph would predict an opposite-polarity link if the two adjectives are connected by at least one *but*, and a same-polarity link otherwise (for any two adjectives connected by at least one conjunction). The more sophisticated method used by Hatzivassiloglou and McKeown (1997) is to build a supervised classifier that predicts whether two words are of the same or different polarity, by using these 3 features (occurrence with *and*, occurrence with *but*, and morphological negations).

The classifier is trained on a subset of the hand-labeled seed words, and returns a probability that each pair of words is of the same or opposite polarity. This ‘polarity similarity’ of each word pair can be viewed as the strength of the positive or negative links between them in a graph.

**Step 4: Clustering the graph** Finally, any of various graph clustering algorithms can be used to divide the graph into two subsets with the same polarity; a graphical intuition is shown in Fig. 18.5.
Figure 18.4 A graph of polarity similarity between all pairs of words; words are notes and links represent polarity association between words. Continuous lines are same-polarity and dotted lines are opposite-polarity; the width of lines represents the strength of the polarity.

Figure 18.5 The graph from Fig. 18.4 clustered into two groups, using the polarity similarity between two words (visually represented as the edge line strength and continuity) as a distance metric for clustering.

Some sample output from the Hatzivassiloglou and McKeown (1997) algorithm is shown below, showing system errors in red.

Positive: bold decisive disturbing generous good honest important large mature patient peaceful positive proud sound stimulating straightforward strange talented vigorous witty

Negative: ambiguous cautious cynical evasive harmful hypocritical inefficient insecure irrational irresponsible minor outspoken pleasant reckless risky selfish tedious unsupported vulnerable wasteful

18.2.2 Pointwise mutual information

Where the first method for finding words with similar polarity relied on patterns of conjunction, we turn now to a second method that uses neighborhood co-occurrence as proxy for polarity similarity. This algorithm assumes that words with similar polarity tend to occur nearby each other, using the pointwise mutual information (PMI) algorithm defined in Chapter 15.

The method of Turney (2002) uses this method to assign polarity to both words and two-word phrases.

In a prior step, two-word phrases are extracted based on simple part-of-speech regular expressions. The expressions select nouns with preceding adjectives, verbs with preceding adverbs, and adjectival heads (adjectives with no following noun) preceded by adverbs, adjectives or nouns:
To measure the polarity of each extracted phrase, we start by choosing positive and negative seed words. For example we might choose a single positive seed word *excellent* and a single negative seed word *poor*. We then make use of the intuition that positive phrases will in general tend to co-occur more with *excellent*. Negative phrases co-occur more with *poor*.

The PMI measure can be used to measure this co-occurrence. Recall from Chapter 15 that the pointwise mutual information (Fano, 1961) is a measure of how often two events $x$ and $y$ occur, compared with what we would expect if they were independent:

$$PMI(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

(18.1)

This intuition can be applied to measure the co-occurrence of two words by defining the pointwise mutual information association between a seed word $s$ and another word $w$ as:

$$PMI(w,s) = \log_2 \frac{P(w,s)}{P(w)P(s)}$$

(18.2)

Turney (2002) estimated the probabilities needed by Eq. 18.2 using a search engine with a *NEAR* operator, specifying that a word has to be *near* another word. The probabilities are then estimated as follows:

$$P(w) = \frac{\text{hits}(w)}{N}$$

(18.3)

$$P(w1,w2) = \frac{\text{hits}(w1 \text{ NEAR } w2)}{kN}$$

(18.4)

That is, we estimate the probability of a word as the count returned from the search engine, normalized by the total number of words in the entire web corpus $N$. (It doesn’t matter that we don’t know what $N$ is, since it turns out it will cancel out nicely). The bigram probability is the number of bigram hits normalized by $kN$—although there are $N$ unigrams and also approximately $N$ bigrams in a corpus of length $N$, there are $kN$ “NEAR” bigrams in which the two words are separated by a distance of up to $k$.

The PMI between two words $w$ and $s$ is then:

$$PMI(w,s) = \log_2 \frac{\frac{1}{kN} \text{hits}(w \text{ NEAR } s)}{\frac{1}{N} \text{hits}(w) \frac{1}{N} \text{hits}(s)}$$

(18.5)

The insight of Turney (2002) is then to define the polarity of a word by how much it occurs with the positive seeds and doesn’t occur with the negative seeds:
Polarity\( (w) = PMI(w; \text{“excellent”}) - PMI(w; \text{“poor”}) \)
\[
= \log_2 \frac{1}{N} \frac{\text{hits}(w \text{ NEAR “excellent”})}{\text{hits} (“excellent”)} \frac{1}{N} \frac{\text{hits}(w \text{ NEAR “poor”})}{\text{hits} (“poor”)} \\
= \log_2 \left( \frac{\text{hits}(w \text{ NEAR “excellent”}) \text{hits}(w \text{ (“poor”)}}{\text{hits}(w \text{ (“excellent”}) \text{hits}(w \text{ NEAR “poor”})} \right) \\
= \log_2 \left( \frac{\text{hits}(w \text{ NEAR “excellent”}) \text{hits}(w \text{ NEAR “poor”})}{\text{hits}(w \text{ (“excellent”}) \text{hits}(w \text{ NEAR “poor”})} \right)
\]

The table below from Turney (2002) shows sample examples of phrases learned by the PMI method (from reviews of banking services), showing those with both positive and negative polarity:

<table>
<thead>
<tr>
<th>Extracted Phrase</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>online experience</td>
<td>2.3</td>
</tr>
<tr>
<td>very handy</td>
<td>1.4</td>
</tr>
<tr>
<td>low fees</td>
<td>0.3</td>
</tr>
<tr>
<td>inconveniently located</td>
<td>-1.5</td>
</tr>
<tr>
<td>other problems</td>
<td>-2.8</td>
</tr>
<tr>
<td>unethical practices</td>
<td>-8.5</td>
</tr>
</tbody>
</table>

### 18.2.3 Using WordNet synonyms and antonyms

A third method for finding words that have a similar polarity to seed words is to make use of word synonymy and antonymy. The intuition is that a word’s synonyms probably share its polarity while a word’s antonyms probably have the opposite polarity.

Since WordNet has these relations, it is often used (Kim and Hovy 2004, Hu and Liu 2004b). After a seed lexicon is built, each lexicon is updated as follows, possibly iterated.

\( \text{Lex}^+: \) Add synonyms of positive words (\textit{well}) and antonyms (like \textit{fine}) of negative words
\( \text{Lex}^-: \) Add synonyms of negative words (\textit{awful}) and antonyms (like \textit{evil}) of positive words

An extension of this algorithm has been applied to assign polarity to WordNet senses, called SentiWordNet (Baccianella et al., 2010). Fig. 18.6 shows some examples.

In this algorithm, polarity is assigned to entire synsets rather than words. A positive lexicon is built from all the synsets associated with 7 positive words, and a negative lexicon from synsets associated with 7 negative words. Both are expanded by drawing in synsets related by WordNet relations like antonymy or see-also. A classifier is then trained from this data to take a WordNet gloss and decide if the sense being defined is positive, negative, or neutral. A further step (involving a random-walk algorithm) assigns a score to each WordNet synset for its degree of positivity, negativity, and neutrality.

In summary, we’ve seen three distinct ways to use semisupervised learning to induce a sentiment lexicon. All begin with a seed set of positive and negative words, as small as 2 words (Turney, 2002) or as large as a thousand (Hatzivassiloglou and
McKeown, 1997). More words of similar polarity are then added, using pattern-based methods, PMI-weighted document co-occurrence, or WordNet synonyms and antonyms. Classifiers can also be used to combine various cues to the polarity of new words, by training on the seed training sets, or early iterations.

18.3 Supervised learning of word sentiment

The previous section showed semi-supervised ways to learn sentiment when there is no supervision signal, by expanding a hand-built seed set using cues to polarity similarity. An alternative to semi-supervision is to do supervised learning, making direct use of a powerful source of supervision for word sentiment: on-line reviews.

The web contains an enormous number of on-line reviews for restaurants, movies, books, or other products, each of which have the text of the review along with an associated review score: a value that may range from 1 star to 5 stars, or scoring 1 to 10. Fig. 18.7 shows samples extracted from restaurant, book, and movie reviews.

We can use this review score as supervision: positive words are more likely to appear in 5-star reviews; negative words in 1-star reviews. And instead of just a binary polarity, this kind of supervision allows us to assign a word a more complex representation of its polarity: its distribution over stars (or other scores).

Thus in a ten-star system we could represent the sentiment of each word as a 10-tuple, each number a score representing the word’s association with that polarity level. This association can be a raw count, or a likelihood \( P(c|w) \), or some other function of the count, for each class \( c \) from 1 to 10.

For example, we could compute the IMDB likelihood of a word like disappointing occurring in a 1 star review by dividing the number of times disappointing occurs in 1-star reviews in the IMDB dataset (8,557) by the total number of words occurring in 1-star reviews (25,395,214), so the IMDB estimate of \( P(\text{disappointing}|1) \) is .0003.

A slight modification of this weighting, the normalized likelihood, can be used as an illuminating visualization (Potts, 2011):\(^1\)

\(^1\) Potts shows that the normalized likelihood is an estimate of the posterior \( P(c|w) \) if we make the incorrect but simplifying assumption that all categories \( c \) have equal probability.
Chapter 18 • Lexicons for Sentiment and Affect Extraction

Movie review excerpts (IMDB)
10 A great movie. This film is just a wonderful experience. It’s surreal, zany, witty and slapstick all at the same time. And terrific performances too.
1 This was probably the worst movie I have ever seen. The story went nowhere even though they could have done some interesting stuff with it.

Restaurant review excerpts (Yelp)
5 The service was impeccable. The food was cooked and seasoned perfectly... The watermelon was perfectly square ... The grilled octopus was ... mouthwatering...
2 ...it took a while to get our waters, we got our entree before our starter, and we never received silverware or napkins until we requested them...

Book review excerpts (GoodReads)
1 I am going to try and stop being deceived by eye-catching titles. I so wanted to like this book and was so disappointed by it.
5 This book is hilarious. I would recommend it to anyone looking for a satirical read with a romantic twist and a narrator that keeps butting in

Product review excerpts (Amazon)
5 The lid on this blender though is probably what I like the best about it... enables you to pour into something without even taking the lid off! ... the perfect pitcher! ... works fantastic.
1 I hate this blender... It is nearly impossible to get frozen fruit and ice to turn into a smoothie... You have to add a TON of liquid. I also wish it had a spout ...

Figure 18.7 Excerpts from some reviews from various review websites, all on a scale of 1 to 5 stars except IMDB, which is on a scale of 1 to 10 stars.

\[ P(w|c) = \frac{\text{count}(w,c)}{\sum_{w\in C} \text{count}(w,c)} \]

\[ \text{PottsScore}(w) = \frac{P(w|c)}{\sum_c P(w|c)} \] (18.7)

Dividing the IMDB estimate \( P(\text{disappointing}|1) \) of .0003 by the sum of the likelihood \( P(w|c) \) over all categories gives a Potts score of 0.10. The word disappointing thus is associated with the vector [.10, .12, .14, .13, .11, .08, .06, .06, .05]. The Potts diagram (Potts, 2011) is a visualization of these word scores, representing the prior sentiment of a word as a distribution over the rating categories.

Fig. 18.8 shows the Potts diagrams for 3 positive and 3 negative scalar adjectives. Note that the curve for strongly positive scalars have the shape of the letter J, while strongly negative scalars look like a reverse J. By contrast, weakly positive and negative scalars have a hump-shape, with the maximum either below the mean (weakly negative words like disappointing) or above the mean (weakly positive words like good). These shapes offer an illuminating typology of affective word meaning.

Fig. 18.9 shows the Potts diagrams for emphasizing and attenuating adverbs. Again we see generalizations in the characteristic curves associated with words of particular meanings. Note that emphatics tend to have a J-shape (most likely to occur in the most positive reviews) or a U-shape (most likely to occur in the strongly positive and negative). Attenuators all have the hump-shape, emphasizing the middle of the scale and downplaying both extremes.

The diagrams can be used both as a typology of lexical sentiment, and also play a role in modeling sentiment compositionality.

In addition to functions like posterior \( P(c|w) \), likelihood \( P(w|c) \), or normalized
18.3  * Supervised Learning of Word Sentiment

Figure 18.8  Potts diagrams (Potts, 2011) for positive and negative scalar adjectives, showing the J-shape and reverse J-shape for strongly positive and negative adjectives, and the hump-shape for more weakly polarized adjectives.

Figure 18.9  Potts diagrams (Potts, 2011) for emphatic and attenuating adverbs.

likelihood (Eq. 18.7) many other functions of the count of a word occurring with a sentiment label have been used. We’ll introduce some of these on page 343, including ideas like normalizing the counts per writer in Eq. 18.13.

18.3.1 Log odds ratio informative Dirichlet prior

One thing we often want to do with word polarity is to distinguish between words that are more likely to be used in one category of texts than in another. We may, for example, want to know the words most associated with 1 star reviews versus those associated with 5 star reviews. These differences may not be just related to sentiment. We might want to find words used more often by Democratic than Republican
members of Congress, or words used more often in menus of expensive restaurants than cheap restaurants.

Given two classes of documents, to find words more associated with one category than another, we might choose to just compute the difference in frequencies (is a word \( w \) more frequent in class \( A \) or class \( B \)?). Or instead of the difference in frequencies we might want to compute the ratio of frequencies, or the log-odds ratio (the log of the ratio between the odds of the two words). Then we can sort words by whichever of these associations with the category we use, (sorting from words overrepresented in category \( A \) to words overrepresented in category \( B \)).

Many such metrics have been studied; in this section we walk through the details of one of them, the “log odds ratio informative Dirichlet prior” method of Monroe et al. (2008) that is a particularly useful method for finding words that are statistically overrepresented in one particular category of texts compared to another.

The method estimates the difference between the frequency of word \( w \) in two corpora \( i \) and \( j \) via the log-odds-ratio for \( w \), \( \delta^{(i-j)}_w \), which is estimated as:

\[
\delta^{(i-j)}_w = \log \left( \frac{y^i_w + \alpha_w}{n^i + \alpha_0 - y^i_w + \alpha_w} \right) - \log \left( \frac{y^j_w + \alpha_w}{n^j + \alpha_0 - y^j_w + \alpha_w} \right) \tag{18.8}
\]

(where \( n^i \) is the size of corpus \( i \), \( n^j \) is the size of corpus \( j \), \( y^i_w \) is the count of word \( w \) in corpus \( i \), \( y^j_w \) is the count of word \( w \) in corpus \( j \), \( \alpha_0 \) is the size of the background corpus, and \( \alpha_w \) is the count of word \( w \) in the background corpus.)

In addition, Monroe et al. (2008) make use of an estimate for the variance of the log–odds–ratio:

\[
\sigma^2 \left( \delta^{(i-j)}_w \right) \approx \frac{1}{y^i_w + \alpha_w} + \frac{1}{y^j_w + \alpha_w} \tag{18.9}
\]

The final statistic for a word is then the z–score of its log–odds–ratio:

\[
\frac{\delta^{(i-j)}_w}{\sqrt{\sigma^2 \left( \delta^{(i-j)}_w \right)}} \tag{18.10}
\]

The Monroe et al. (2008) method thus modifies the commonly used log-odds ratio in two ways: it uses the z-scores of the log-odds ratio, which controls for the amount of variance in a words frequency, and it uses counts from a background corpus to provide a prior count for words, essentially shrinking the counts toward to the prior frequency in a large background corpus.

Fig. 18.10 shows the method applied to a dataset of restaurant reviews from Yelp, comparing the words used in 1-star reviews to the words used in 5-star reviews (Jurafsky et al., 2014). The largest difference is in obvious sentiment words, with the 1-star reviews using negative sentiment words like \( \text{worse, bad, awful} \) and the 5-star reviews using positive sentiment words like \( \text{great, best, amazing} \). But there are other illuminating differences. 1-star reviews use logical negation (\( \text{no, not} \)), while 5-star reviews use emphatics and emphasize universality (\( \text{very, highly, every, always} \)). 1-star reviews use first person plurals (\( \text{we, us, our} \)) while 5 star reviews use the second person. 1-star reviews talk about people (\( \text{manager, waiter, customer} \)) while 5-star reviews talk about dessert and properties of expensive restaurants like courses and atmosphere. See Jurafsky et al. (2014) for more details.
### Using Lexicons for Sentiment Recognition

In Chapter 6 we introduced the naive Bayes algorithm for sentiment analysis. The lexicons we have focused on throughout the chapter so far can be used in a number of ways to improve sentiment detection.

In the simplest case, lexicons can be used when we don’t have sufficient training data to build a supervised sentiment analyzer; it can often be expensive to have a human assign sentiment to each document to train the supervised classifier.

In such situations, lexicons can be used in a simple rule-based algorithm for classification. The simplest version is just to use the ratio of positive to negative words: if a document has more positive than negative words (using the lexicon to decide the polarity of each word in the document), it is classified as positive. Often a threshold \( \lambda \) is used, in which a document is classified as positive only if the ratio is greater than \( \lambda \). If the sentiment lexicon includes positive and negative weights for each word, \( \theta_w^+ \) and \( \theta_w^- \), these can be used as well. Here’s a simple such sentiment algorithm:

\[
\begin{align*}
  f^+ &= \sum_{w \text{ s.t. } w \in \text{positivelexicon}} \theta_w^+ \text{count}(w) \\
  f^- &= \sum_{w \text{ s.t. } w \in \text{negativelexicon}} \theta_w^- \text{count}(w) \\
  \text{sentiment} &= \begin{cases} 
    + & \text{if } \frac{f^+}{f^-} > \lambda \\
    - & \text{if } \frac{f^-}{f^+} > \lambda \\
    0 & \text{otherwise.}
  \end{cases}
\end{align*}
\]

If supervised training data is available, these counts computed from sentiment lexicons, sometimes weighted or normalized in various ways, can also be used as

<table>
<thead>
<tr>
<th>Class</th>
<th>Words in 1-star reviews</th>
<th>Class</th>
<th>Words in 5-star reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>worst, rude, terrible, horrible, bad, awful, disgusting, bland, tasteless, gross, mediocre, overpriced, worse, poor</td>
<td>Positive</td>
<td>great, best, love(d), delicious, amazing, favorite, perfect, excellent, awesome, friendly, fantastic, fresh, wonderful, incredible, sweet, yum(my)</td>
</tr>
<tr>
<td>Negation</td>
<td>no, not</td>
<td>Emphatics/universals</td>
<td>very, highly, perfectly, definitely, absolutely, every, always</td>
</tr>
<tr>
<td>1Pl pro</td>
<td>we, us, our</td>
<td>2 pro</td>
<td>you</td>
</tr>
<tr>
<td>3 pro</td>
<td>she, he, her, him</td>
<td>Articles</td>
<td>a, the</td>
</tr>
<tr>
<td>Past verb</td>
<td>was, were, asked, told, said, did, charged, waited, left, took</td>
<td>Advice</td>
<td>try, recommend</td>
</tr>
<tr>
<td>Sequencers</td>
<td>after, then</td>
<td>Conjunct</td>
<td>also, as, well, with, and</td>
</tr>
<tr>
<td>Nouns</td>
<td>manager, waitress, waiter, customer, customers, attitude, waste, poisoning, money, bill, minutes</td>
<td>Nouns</td>
<td>atmosphere, dessert, chocolate, wine, course, menu</td>
</tr>
<tr>
<td>Irrealis modals</td>
<td>would, should</td>
<td>Auxiliaries</td>
<td>is’s, can, ’ve, are</td>
</tr>
<tr>
<td>Comp</td>
<td>to, that</td>
<td>Prep, other</td>
<td>in, of, die, city, mouth</td>
</tr>
</tbody>
</table>

Figure 18.10 The top 50 words associated with one–star and five–star restaurant reviews in a Yelp dataset of 900,000 reviews, using the Monroe et al. (2008) method (Jurafsky et al., 2014).
features in a classifier along with other lexical or non-lexical features. We return to such algorithms in Section 18.7.

18.5 Emotion and other classes

One of the most important affective classes is emotion, which Scherer (2000) defines as a “relatively brief episode of response to the evaluation of an external or internal event as being of major significance”.

Detecting emotion has the potential to improve a number of language processing tasks. Automatically detecting emotions in reviews or customer responses (anger, dissatisfaction, trust) could help businesses recognize specific problem areas or ones that are going well. Emotion recognition could help dialog systems like tutoring systems detect that a student was unhappy, bored, hesitant, confident, and so on. Emotion can play a role in medical informatics tasks like detecting depression or suicidal intent. Detecting emotions expressed toward characters in novels might play a role in understanding how different social groups were viewed by society at different times.

There are two widely-held families of theories of emotion. In one family, emotions are viewed as fixed atomic units, limited in number, and from which others are generated, often called basic emotions (Tomkins 1962, Plutchik 1962). Perhaps most well-known of this family of theories are the 6 emotions proposed by (Ekman, 1999) as a set of emotions that is likely to be universally present in all cultures: surprise, happiness, anger, fear, disgust, sadness. Another atomic theory is the (Plutchik, 1980) wheel of emotion, consisting of 8 basic emotions in four opposing pairs: joy–sadness, anger–fear, trust–disgust, and anticipation–surprise, together with the emotions derived from them, shown in Fig. 18.11.
The second class of emotion theories views emotion as a space in 2 or 3 dimensions (Russell, 1980). Most models include the two dimensions valence and arousal, and many add a third, dominance. These can be defined as:

- **valence**: the pleasantness of the stimulus
- **arousal**: the intensity of emotion provoked by the stimulus
- **dominance**: the degree of control exerted by the stimulus

Practical lexicons have been built for both kinds of theories of emotion.

### 18.5.1 Lexicons for emotion and other affective states

While semi-supervised algorithms are the norm in sentiment and polarity, the most common way to build emotional lexicons is to have humans label the words. This is most commonly done using **crowdsourcing**: breaking the task into small pieces and distributing them to a large number of annotators. Let’s take a look at one crowdsourced emotion lexicon from each of the two common theoretical models of emotion.

The NRC Word-Emotion Association Lexicon, also called **EmoLex** (Mohammad and Turney, 2013), uses the Plutchik (1980) 8 basic emotions defined above. The lexicon includes around 14,000 words chosen partly from the prior lexicons (the General Inquirer and WordNet Affect Lexicons) and partly from the Macquarie Thesaurus, from which the 200 most frequent words were chosen from four parts of speech: nouns, verbs, adverbs, and adjectives (using frequencies from the Google n-gram count).

In order to ensure that the annotators were judging the correct sense of the word, they first answered a multiple-choice synonym question that primed the correct sense of the word (without requiring the annotator to read a potentially confusing sense definition). These were created automatically using the headwords associated with the thesaurus category of the sense in question in the Macquarie dictionary and the headwords of 3 random distractor categories. An example:

Which word is closest in meaning (most related) to startle?

- automobile
- shake
- honesty
- entertain

For each word (e.g. startle), the annotator was asked to rate how associated that word is with each of the 8 emotions (joy, fear, anger, etc.). The associations were rated on a scale of not, weakly, moderately, and strongly associated. Outlier ratings were removed, and then each term was assigned the class chosen by the majority of the annotators, with ties broken by choosing the stronger intensity, and then the 4 levels were mapped into a binary label for each word (no and weak mapped to 0, moderate and strong mapped to 1). Values from the lexicon for some sample words:
A second lexicon, also built using crowdsourcing, assigns values on three dimensions (valence/arousal/dominance) to 14,000 words (Warriner et al., 2013). The annotators marked each word with a value from 1-9 on each of the dimensions, with the scale defined for them as follows:

- **Valence** (the pleasantness of the stimulus)
  - 9: happy, pleased, satisfied, contented, hopeful
  - 1: unhappy, annoyed, unsatisfied, melancholic, despaired, or bored

- **Arousal** (the intensity of emotion provoked by the stimulus)
  - 9: stimulated, excited, frenzied, jittery, wide-awake, or aroused
  - 1: relaxed, calm, sluggish, dull, sleepy, or unaroused;

- **Dominance** (the degree of control exerted by the stimulus)
  - 9: in control, influential, important, dominant, autonomous, or controlling
  - 1: controlled, influenced, cared-for, awed, submissive, or guided

Some examples are shown in Fig. 18.12

<table>
<thead>
<tr>
<th>Word</th>
<th>anger</th>
<th>anticipation</th>
<th>disgust</th>
<th>fear</th>
<th>joy</th>
<th>sadness</th>
<th>surprise</th>
<th>trust</th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>reward</td>
<td>0 1 0 0 1 0 1 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>worry</td>
<td>0 1 0 1 0 1 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tenderness</td>
<td>0 0 0 0 1 0 0 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sweetheart</td>
<td>0 1 0 0 1 1 0 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suddenly</td>
<td>0 0 0 0 0 1 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thirst</td>
<td>0 1 0 0 0 1 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>garbage</td>
<td>0 0 1 0 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 18.12. Samples of the values of selected words on the three emotional dimensions from Warriner et al. (2013).

There are various other hand-built lexicons of words related in various ways to the emotions. The General Inquirer includes lexicons like strong vs. weak, active vs. passive, overstated vs. understated, as well as lexicons for categories like pleasure, pain, virtue, vice, motivation, and cognitive orientation.

Another useful feature for various tasks is the distinction between **concrete** words like banana or bathrobe and **abstract** words like belief and although. The lexicon in (Brysbaert et al., 2014) used crowdsourcing to assign a rating from 1 to 5 of the concreteness of 40,000 words, thus assigning banana, bathrobe, and bagel 5, belief 1.19, although 1.07, and in between words like brisk a 2.5.

**LIWC**, **Linguistic Inquiry and Word Count**, is another set of 73 lexicons containing over 2300 words (Pennebaker et al., 2007), designed to capture aspects of lexical meaning relevant for social psychological tasks. In addition to sentiment-related lexicons like ones for negative emotion (bad, weird, hate, problem, tough) and positive emotion (love, nice, sweet), LIWC includes lexicons for categories like
anger, sadness, cognitive mechanisms, perception, tentative, and inhibition, shown in Fig. 18.13.

<table>
<thead>
<tr>
<th>Emotion</th>
<th>Emotion</th>
<th>Insight</th>
<th>Inhibition</th>
<th>Family</th>
<th>Negate</th>
</tr>
</thead>
<tbody>
<tr>
<td>appreciat*</td>
<td>anger*</td>
<td>aware*</td>
<td>avoid*</td>
<td>brother*</td>
<td>aren’t</td>
</tr>
<tr>
<td>comfort*</td>
<td>bore*</td>
<td>believe</td>
<td>careful*</td>
<td>cousin*</td>
<td>cannot</td>
</tr>
<tr>
<td>great</td>
<td>cry</td>
<td>decidi*</td>
<td>hesitat*</td>
<td>daughter*</td>
<td>didn’t</td>
</tr>
<tr>
<td>happy</td>
<td>despair*</td>
<td>feel</td>
<td>limit*</td>
<td>family</td>
<td>neither</td>
</tr>
<tr>
<td>interest</td>
<td>fail*</td>
<td>figur*</td>
<td>oppos*</td>
<td>father*</td>
<td>never</td>
</tr>
<tr>
<td>joy*</td>
<td>fear</td>
<td>know</td>
<td>prevent*</td>
<td>grandf*</td>
<td>no</td>
</tr>
<tr>
<td>perfect*</td>
<td>griev*</td>
<td>knew</td>
<td>reluctant*</td>
<td>grandm*</td>
<td>nobod*</td>
</tr>
<tr>
<td>please*</td>
<td>hate*</td>
<td>means</td>
<td>safe*</td>
<td>husband</td>
<td>none</td>
</tr>
<tr>
<td>safe*</td>
<td>panic*</td>
<td>notice*</td>
<td>stop</td>
<td>mom</td>
<td>nor</td>
</tr>
<tr>
<td>terrific</td>
<td>suffers</td>
<td>recogni*</td>
<td>stubborn*</td>
<td>mother</td>
<td>nothing</td>
</tr>
<tr>
<td>value</td>
<td>terrify</td>
<td>sense</td>
<td>wait</td>
<td>niece*</td>
<td>nowhere</td>
</tr>
<tr>
<td>wow*</td>
<td>violent*</td>
<td>think</td>
<td>wary</td>
<td>wife</td>
<td>without</td>
</tr>
</tbody>
</table>

Figure 18.13  Samples from 5 of the 73 lexical categories in LIWC (Pennebaker et al., 2007). The * means the previous letters are a word prefix and all words with that prefix are included in the category.

18.6 Other tasks: Personality

Many other kinds of affective meaning can be extracted from text and speech. For example detecting a person’s personality from their language can be useful for dialog systems (users tend to prefer agents that match their personality), and can play a useful role in computational social science questions like understanding how personality is related to other kinds of behavior.

Many theories of human personality are based around a small number of dimensions, such as various versions of the “Big Five” dimensions (Digman, 1990):

- **Extroversion vs. Introversion**: sociable, assertive, playful vs. aloof, reserved, shy
- **Emotional stability vs. Neuroticism**: calm, unemotional vs. insecure, anxious
- **Agreeableness vs. Disagreeableness**: friendly, cooperative vs. antagonistic, fault-finding
- **Conscientiousness vs. Unconscientiousness**: self-disciplined, organized vs. inefficient, careless
- **Openness to experience**: intellectual, insightful vs. shallow, unimaginative

A few corpora of text and speech have been labeled for the personality of their author by having the authors take a standard personality test. The essay corpus of Pennebaker and King (1999) consists of 2,479 essays (1.9 million words) from psychology students who were asked to “write whatever comes into your mind” for 20 minutes. The EAR (Electronically Activated Recorder) corpus of Mehl et al. (2006) was created by having volunteers wear a recorder throughout the day, which randomly recorded short snippets of conversation throughout the day, which were then transcribed. The Facebook corpus of (Schwartz et al., 2013) includes 309 million words of Facebook posts from 75,000 volunteers.
For example, here are samples from Pennebaker and King (1999) from an essay written by someone on the neurotic end of the neurotic/emotionally stable scale,

One of my friends just barged in, and I jumped in my seat. This is crazy. I should tell him not to do that again. I’m not that fastidious actually. But certain things annoy me. The things that would annoy me would actually annoy any normal human being, so I know I’m not a freak.

and someone on the emotionally stable end of the scale:

I should excel in this sport because I know how to push my body harder than anyone I know, no matter what the test I always push my body harder than everyone else. I want to be the best no matter what the sport or event. I should also be good at this because I love to ride my bike.

Another kind of affective meaning is what Scherer (2000) calls interpersonal stance, the ‘affective stance taken toward another person in a specific interaction coloring the interpersonal exchange’. Extracting this kind of meaning means automatically labeling participants for whether they are friendly, supportive, distant. For example Ranganath et al. (2013) studied a corpus of speed-dates, in which participants went on a series of 4-minute romantic dates, wearing microphones. Each participant labeled each other for how flirtatious, friendly, awkward, or assertive they were. Ranganath et al. (2013) then used a combination of lexicons and other features to detect these interpersonal stances from text.

### 18.7 Affect Recognition

Detection of emotion, personality, interactional stance, and the other kinds of affective meaning described by Scherer (2000) can be done by generalizing the algorithms described above for detecting sentiment.

The most common algorithms involve supervised classification: a training set is labeled for the affective meaning to be detected, and a classifier is built using features extracted from the training set. As with sentiment analysis, if the training set is large enough, and the test set is sufficiently similar to the training set, simply using all the words or all the bigrams as features in a powerful classifier like SVM or logistic regression, as described in Fig. 6.2 in Chapter 6, is an excellent algorithm whose performance is hard to beat. Thus we can treat affective meaning classification of a text sample as simple document classification.

Some modifications are nonetheless often necessary for very large datasets. For example, the Schwartz et al. (2013) study of personality, gender, and age using 700 million words of Facebook posts used only a subset of the n-grams of lengths 1-3. Only words and phrases used by at least 1% of the subjects were included as features, and 2-grams and 3-grams were only kept if they had sufficiently high PMI (PMI greater than $2 \times \text{length}$, where length is the number of words):

$$\text{pmi(phrase)} = \log \frac{p(\text{phrase})}{\prod_{w \in \text{phrase}} p(w)}$$

Various weights can be used for the features, including the raw count in the training set, or some normalized probability or log probability. Schwartz et al. (2013), for
example, turn feature counts into phrase likelihoods by normalizing them by each subject’s total word use.

\[ p(\text{phrase}|\text{subject}) = \frac{\text{freq}(\text{phrase}, \text{subject})}{\sum_{\text{phrase} \in \text{vocab}(\text{subject})} \text{freq}(\text{phrase}', \text{subject})} \tag{18.13} \]

If the training data is sparser, or not as similar to the test set, any of the lexicons we’ve discussed can play a helpful role, either alone or in combination with all the words and n-grams.

Many possible values can be used for lexicon features. The simplest is just an indicator function, in which the value of a feature \( f_L \) takes the value 1 if a particular text has any word from the relevant lexicon \( L \). Using the notation of Chapter 6, in which a feature value is defined for a particular output class \( c \) and document \( x \).

\[ f_L(c,x) = \begin{cases} 
1 & \text{if } \exists w : w \in L \text{ and } w \in x \text{ and class } = c \\
0 & \text{otherwise}
\end{cases} \tag{18.14} \]

Alternatively the value of a feature \( f_L \) for a particular lexicon \( L \) can be the total number of word tokens in the document that occur in \( L \):

\[ f_L = \sum_{w \in L} \text{count}(w) \]

For lexica in which each word is associated with a score or weight, the count can be multiplied by a weight \( \theta_{Lw} \):

\[ f_L = \sum_{w \in L} \theta_{Lw} \text{count}(w) \]

Counts can alternatively be logged or normalized per writer as in Eq. 18.13. However they are defined, these lexicon features are then used in a supervised classifier to predict the desired affective category for the text or document. Once a classifier is trained, we can examine which lexicon features are associated with which classes. For a classifier like logistic regression the feature weight gives an indication of how associated the feature is with the class.

Thus, for example, (Mairesse and Walker, 2008) found that for classifying personality, for the dimension Agreeable, the LIWC lexicons Family and Home were positively associated while the LIWC lexicons anger and swear were negatively associated. By contrast, Extroversion was positively associated with the Friend, Religion and Self lexicons, and Emotional Stability was positively associated with Sports and negatively associated with Negative Emotion.

In the situation in which we use all the words and phrases in the document as potential features, we can use the resulting weights from the learned regression classifier as the basis of an affective lexicon. Thus, for example, in the Extroversion/Introversion classifier of Schwartz et al. (2013), ordinary least-squares regression is used to predict the value of a personality dimension from all the words and phrases. The resulting regression coefficient for each word or phrase can be used as an association value with the predicted dimension. The word clouds in Fig. 18.14 show an example of words associated with introversion (a) and extroversion (b).
Figure 18.14  Word clouds from Schwartz et al. (2013), showing words highly associated with introversion (left) or extroversion (right). The size of the word represents the association strength (the regression coefficient), while the color (ranging from cold to hot) represents the relative frequency of the word/phrase (from low to high).

18.8 Summary

- Many kinds of affective states can be distinguished, including emotions, moods, attitudes (which include sentiment), interpersonal stance, and personality.
- Words have connotational aspects related to these affective states, and this connotational aspect of word meaning can be represented in lexicons.
- Affective lexicons can be built by hand, using crowd sourcing to label the affective content of each word.
- Lexicons can be built semi-supervised, bootstrapping from seed words using similarity metrics like the frequency two words are conjoined by and or but, the two words' pointwise mutual information, or their association via WordNet synonymy or antonymy relations.
- Lexicons can be learned in a fully supervised manner, when a convenient training signal can be found in the world, such as ratings assigned by users on a review site.
- Words can be assigned weights in a lexicon by using various functions of word counts in training texts, and ratio metrics like log odds ratio informative Dirichlet prior.
- Emotion can be represented by fixed atomic units often called basic emotions, or as points in space defined by dimensions like valence and arousal.
- Personality is often represented as a point in 5-dimensional space.
- Affect can be detected, just like sentiment, by using standard supervised text classification techniques, using all the words or bigrams in a text as features. Additional features can be drawn from counts of words in lexicons.
- Lexicons can also be used to detect affect in a rule-based classifier by picking the simple majority sentiment based on counts of words in each lexicon.

Bibliographical and Historical Notes

The idea of formally representing the subjective meaning of words began with Osgood et al. (1957), the same pioneering study that first proposed the vector space
Osgood et al. (1957) had participants rate words on various scales, and ran factor analysis on the ratings. The most significant factor they uncovered was the evaluative dimension, which distinguished between pairs like good/bad, valuable/worthless, pleasant/unpleasant. This work influenced the development of early dictionaries of sentiment and affective meaning in the field of content analysis (Stone et al., 1966).

Wiebe (1994) began an influential line of work on detecting subjectivity in text, beginning with the task of identifying subjective sentences and the subjective characters who are described in the text as holding private states, beliefs or attitudes. Learned sentiment lexicons such as the polarity lexicons of (Hatzivassiloglou and McKeown, 1997) were shown to be a useful feature in subjectivity detection (Hatzivassiloglou and Wiebe 2000, Wiebe 2000).

The term sentiment seems to have been introduced in 2001 by Das and Chen (2001), to describe the task of measuring market sentiment by looking at the words in stock trading message boards. In the same paper Das and Chen (2001) also proposed the use of a sentiment lexicon. The list of words in the lexicon was created by hand, but each word was assigned weights according to how much it discriminated a particular class (say buy versus sell) by maximizing across-class variation and minimizing within-class variation. The term sentiment, and the use of lexicons, caught on quite quickly (e.g., inter alia, Turney 2002). Pang et al. (2002) first showed the power of using all the words without a sentiment lexicon; see also Wang and Manning (2012).

The semi-supervised methods we describe for extending sentiment dictionaries all drew on the early idea that synonyms and antonyms tend to co-occur in the same sentence. (Miller and Charles 1991, Justeson and Katz 1991). Other semi-supervised methods for learning cues to affective meaning rely on information extraction techniques, like the AutoSlog pattern extractors (Riloff and Wiebe, 2003).

For further information on sentiment analysis, including discussion of lexicons, see the useful surveys of Pang and Lee (2008) and Liu (2015).
CHAPTER 19
The Representation of Sentence Meaning

Placeholder
Imagine that you are an analyst with an investment firm that tracks airline stocks. You’re given the task of determining the relationship (if any) between airline announcements of fare increases and the behavior of their stocks the next day. Historical data about stock prices is easy to come by, but what about the airline announcements? You will need to know at least the name of the airline, the nature of the proposed fare hike, the dates of the announcement, and possibly the response of other airlines. Fortunately, these can be all found in news articles like this one:

> Citing high fuel prices, United Airlines said Friday it has increased fares by $6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR Corp., immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL Corp., said the increase took effect Thursday and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Denver to San Francisco.

This chapter presents techniques for extracting limited kinds of semantic content from text. This process of information extraction (IE), turns the unstructured information embedded in texts into structured data, for example for populating a relational database to enable further processing.

The first step in most IE tasks is to find the proper names or named entities mentioned in a text. The task of named entity recognition (NER) is to find each mention of a named entity in the text and label its type. What constitutes a named entity type is application specific; these commonly include people, places, and organizations but also more specific entities from the names of genes and proteins (Cohen and Demner-Fushman, 2014) to the names of college courses (McCallum, 2005).

Having located all of the mentions of named entities in a text, it is useful to link, or cluster, these mentions into sets that correspond to the entities behind the mentions, for example inferring that mentions of United Airlines and United in the sample text refer to the same real-world entity. We’ll defer discussion of this task of coreference resolution until Chapter 23.

The task of relation extraction is to find and classify semantic relations among the text entities, often binary relations like spouse-of, child-of, employment, part-whole, membership, and geospatial relations. Relation extraction has close links to populating a relational database.
The task of event extraction is to find events in which these entities participate, like, in our sample text, the fare increases by United and American and the reporting events said and cite. We’ll also need to perform event coreference to figure out which of the many event mentions in a text refer to the same event; in our running example the two instances of increase and the phrase the move all refer to the same event.

To figure out when the events in a text happened we’ll do recognition of temporal expressions like days of the week (Friday and Thursday), months, holidays, etc., relative expressions like two days from now or next year and times such as 3:30 P.M. or noon. The problem of temporal expression normalization is to map these temporal expressions onto specific calendar dates or times of day to situate events in time. In our sample task, this will allow us to link Friday to the time of United’s announcement, and Thursday to the previous day’s fare increase, and produce a timeline in which United’s announcement follows the fare increase and American’s announcement follows both of those events.

Finally, many texts describe recurring stereotypical situations. The task of template filling is to find such situations in documents and fill the template slots with appropriate material. These slot-fillers may consist of text segments extracted directly from the text, or concepts like times, amounts, or ontology entities that have been inferred from text elements through additional processing.

Our airline text is an example of this kind of stereotypical situation since airlines often raise fares and then wait to see if competitors follow along. In this situation, we can identify United as a lead airline that initially raised its fares, $6 as the amount, Thursday as the increase date, and American as an airline that followed along, leading to a filled template like the following.

<table>
<thead>
<tr>
<th>FARE-RAISE ATTEMPT:</th>
<th>LEAD AIRLINE: United Airlines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMOUNT: $6</td>
</tr>
<tr>
<td></td>
<td>EFFECTIVE DATE: 2006-10-26</td>
</tr>
<tr>
<td>FOLLOWER: American Airlines</td>
<td></td>
</tr>
</tbody>
</table>

The following sections review current approaches to each of these problems.

## 21.1 Named Entity Recognition

The first step in information extraction is to detect the entities in the text. A named entity is, roughly speaking, anything that can be referred to with a proper name: a person, a location, an organization. The term is commonly extended to include things that aren’t entities per se, including dates, times, and other kinds of temporal expressions, and even numerical expressions like prices. Here’s the sample text introduced earlier with the named entities marked:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY $6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].
The text contains 13 mentions of named entities including 5 organizations, 4 locations, 2 times, 1 person, and 1 mention of money.

In addition to their use in extracting events and the relationship between participants, named entities are useful for many other language processing tasks. In sentiment analysis we might want to know a consumer’s sentiment toward a particular entity. Entities are a useful first stage in question answering, or for linking text to information in structured knowledge sources like wikipedia.

Figure 21.1 shows typical generic named entity types. Many applications will also need to use specific entity types like proteins, genes, commercial products, or works of art.

<table>
<thead>
<tr>
<th>Type</th>
<th>Tag</th>
<th>Sample Categories</th>
<th>Example sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>PER</td>
<td>people, characters</td>
<td>Turing is a giant of computer science.</td>
</tr>
<tr>
<td>Organization</td>
<td>ORG</td>
<td>companies, sports teams</td>
<td>The IPCC warned about the cyclone.</td>
</tr>
<tr>
<td>Location</td>
<td>LOC</td>
<td>regions, mountains, seas</td>
<td>The Mt. Sanitas loop is in Sunshine Canyon.</td>
</tr>
<tr>
<td>Geo-Political Entity</td>
<td></td>
<td>countries, states, provinces</td>
<td>Palo Alto is raising the fees for parking.</td>
</tr>
<tr>
<td>Facility</td>
<td>FAC</td>
<td>bridges, buildings, airports</td>
<td>Consider the Tappan Zee Bridge.</td>
</tr>
<tr>
<td>Vehicles</td>
<td>VEH</td>
<td>planes, trains, automobiles</td>
<td>It was a classic Ford Falcon.</td>
</tr>
</tbody>
</table>

Named entity recognition means finding spans of text that constitute proper names and then classifying the type of the entity. Recognition is difficult partly because of the ambiguity of segmentation: we need to decide what’s an entity and what isn’t, and where the boundaries are. Another difficulty is caused by type ambiguity. The mention JFK can refer to a person, the airport in New York, or any number of schools, bridges, and streets around the United States. Some examples of this kind of cross-type confusion are given in Figures 21.2 and 21.3.

21.1.1 NER as Sequence Labeling

The standard algorithm for named entity recognition is as a word-by-word sequence labeling task, in which the assigned tags capture both the boundary and the type. A sequence classifier like an MEMM or CRF is trained to label the tokens in a text with tags that indicate the presence of particular kinds of named entities. Consider the following simplified excerpt from our running example.
American Airlines, a unit of AMR Corp., immediately matched the move, spokesman Tim Wagner said.

Figure 21.4 shows the same excerpt represented with IOB tagging. In IOB tagging we introduce a tag for the beginning (B) and inside (I) of each entity type, and one for tokens outside (O) any entity. The number of tags is thus $2n + 1$ tags, where $n$ is the number of entity types. IOB tagging can represent exactly the same information as the bracketed notation.

<table>
<thead>
<tr>
<th>Words</th>
<th>IOB Label</th>
<th>IO Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>B-ORG</td>
<td>I-ORG</td>
</tr>
<tr>
<td>Airlines</td>
<td>I-ORG</td>
<td>I-ORG</td>
</tr>
<tr>
<td>,</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>a</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>unit</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>of</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>AMR</td>
<td>B-ORG</td>
<td>I-ORG</td>
</tr>
<tr>
<td>Corp.</td>
<td>I-ORG</td>
<td>I-ORG</td>
</tr>
<tr>
<td>,</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>immediately</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>matched</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>the</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>move</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>,</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>spokesman</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Tim</td>
<td>B-PER</td>
<td>I-PER</td>
</tr>
<tr>
<td>Wagner</td>
<td>I-PER</td>
<td>I-PER</td>
</tr>
<tr>
<td>said</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>.</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Figure 21.4  Named entity tagging as a sequence model, showing IOB and IO encodings.

We’ve also shown IO tagging, which loses some information by eliminating the B tag. Without the B tag IO tagging is unable to distinguish between two entities of the same type that are right next to each other. Since this situation doesn’t arise very often (usually there is at least some punctuation or other delimiter), IO tagging may be sufficient, and has the advantage of using only $n + 1$ tags.

Having encoded our training data with IOB tags, the next step is to select a set of features to associate with each input word token. Figure 21.5 lists standard features used in state-of-the-art systems.

We’ve seen many of these features before in the context of part-of-speech tagging, particularly for tagging unknown words. This is not surprising, as many unknown words are in fact named entities. Word shape features are thus particularly important in the context of NER. Recall that word shape features are used to represent the abstract letter pattern of the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ‘d’, and retaining punctuation. Thus for example I.M.F would map to X.X.X, and DC10-30 would map to XXdd-dd. A second class of shorter word shape features is also used. In these features consecutive character types are removed, so DC10-30 would be mapped to Xd-d but I.M.F would still map to X.X.X. It turns out that this feature by itself accounts for a considerable part of the success of NER systems for English news text. Shape features are also particularly important in recognizing names of proteins and genes in biological texts.
identity of \( w_i \)
identity of neighboring words
part of speech of \( w_i \)
part of speech of neighboring words
base-phrase syntactic chunk label of \( w_i \) and neighboring words
presence of \( w_i \) in a gazetteer
\( w_i \) contains a particular prefix (from all prefixes of length \( \leq 4 \))
\( w_i \) contains a particular suffix (from all suffixes of length \( \leq 4 \))
\( w_i \) is all upper case
word shape of \( w_i \)
word shape of neighboring words
short word shape of \( w_i \)
short word shape of neighboring words
presence of hyphen

Figure 21.5  Features commonly used in training named entity recognition systems.

For example the named entity token *L’Occitane* would generate the following non-zero valued feature values:

\[
\begin{align*}
\text{prefix}(w_i) &= L \\
\text{prefix}(w_i) &= L' \\
\text{prefix}(w_i) &= L'0 \\
\text{prefix}(w_i) &= L'0c \\
\text{suffix}(w_i) &= tane \\
\text{suffix}(w_i) &= ane \\
\text{suffix}(w_i) &= ne \\
\text{suffix}(w_i) &= e \\
\text{word-shape}(w_i) &= X'Xxxxxxxx \\
\text{short-word-shape}(w_i) &= X'Xx
\end{align*}
\]

A gazetteer is a list of place names, and they can offer millions of entries for all manner of locations along with detailed geographical, geologic, and political information.\(^1\) In addition to gazeteers, the United States Census Bureau provides extensive lists of first names and surnames derived from its decadal census in the U.S.\(^2\) Similar lists of corporations, commercial products, and all manner of things biological and mineral are also available from a variety of sources. Gazetteer features are typically implemented as a binary feature for each name list. Unfortunately, such lists can be difficult to create and maintain, and their usefulness varies considerably depending on the named entity class. It appears that gazetteers can be quite effective, while extensive lists of persons and organizations are not nearly as beneficial (Mikheev et al., 1999).

The relative usefulness of any of these features or combination of features depends to a great extent on the application, genre, media, language, and text encoding. For example, shape features, which are critical for English newswire texts, are of little use with materials transcribed from spoken text by automatic speech recognition, materials gleaned from informally edited sources such as blogs and discussion forums, and for character-based languages like Chinese where case information isn’t available. The set of features given in Fig. 21.5 should therefore be thought of as only a starting point for any given application.

\(^1\) [www.geonames.org](http://www.geonames.org)

\(^2\) [www.census.gov](http://www.census.gov)
Figure 21.6 illustrates the result of adding part-of-speech tags, syntactic base-phrase chunk tags, and some shape information to our earlier example.

Given such a training set, a sequence classifier like an MEMM can be trained to label new sentences. Figure 21.7 illustrates the operation of such a sequence labeler at the point where the token Corp. is next to be labeled. If we assume a context window that includes the two preceding and following words, then the features available to the classifier are those shown in the boxed area.

21.1.2 Evaluation of Named Entity Recognition

The familiar metrics of recall, precision, and $F_1$ measure are used to evaluate NER systems. Remember that recall is the ratio of the number of correctly labeled responses to the total that should have been labeled; precision is the ratio of the number of correctly labeled responses to the total labeled; and $F$-measure is the harmonic
mean of the two. For named entities, the entity rather than the word is the unit of response. Thus in the example in Fig. 21.6, the two entities Tim Wagner and AMR Corp. and the non-entity said would each count as a single response.

The fact that named entity tagging has a segmentation component which is not present in tasks like text categorization or part-of-speech tagging causes some problems with evaluation. For example, a system that labeled American but not American Airlines as an organization would cause two errors, a false positive for O and a false negative for I-ORG. In addition, using entities as the unit of response but words as the unit of training means that there is a mismatch between the training and test conditions.

### 21.1.3 Practical NER Architectures

While pure statistical sequence models are the norm in academic research, commercial approaches to NER are often based on pragmatic combinations of lists, rules, and supervised machine learning (Chiticariu et al., 2013). One common approach is to make repeated passes over a text, allowing the results of one pass to influence the next. The stages typically first involve the use of rules that have extremely high precision but low recall. Subsequent stages employ more error-prone statistical methods that take the output of the first pass into account.

1. First, use high-precision rules to tag unambiguous entity mentions.
2. Then, search for substring matches of the previously detected names.
3. Consult application-specific name lists to identify likely name entity mentions from the given domain.
4. Finally, apply probabilistic sequence labeling techniques that make use of the tags from previous stages as additional features.

The intuition behind this staged approach is twofold. First, some of the entity mentions in a text will be more clearly indicative of a given entity’s class than others. Second, once an unambiguous entity mention is introduced into a text, it is likely that subsequent shortened versions will refer to the same entity (and thus the same type of entity).

### 21.2 Relation Extraction

Next on our list of tasks is to discern the relationships that exist among the detected entities. Let’s return to our sample airline text:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY $6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR. These binary relations are instances of more generic relations such as part-of or
employed that are fairly frequent in news-style texts. Figure 21.8 lists the 17 relations used in the ACE relation extraction evaluations and Fig. 21.9 shows some sample relations. We might also extract more domain-specific relation such as the notion of an airline route. For example from this text we can conclude that United has routes to Chicago, Dallas, Denver, and San Francisco.

These relations correspond nicely to the model-theoretic notions we introduced in Chapter 19 to ground the meanings of the logical forms. That is, a relation consists of a set of ordered tuples over elements of a domain. In most standard information-extraction applications, the domain elements correspond to the named entities that occur in the text, to the underlying entities that result from co-reference resolution, or to entities selected from a domain ontology. Figure 21.10 shows a model-based view of the set of entities and relations that can be extracted from our running example. Notice how this model-theoretic view subsumes the NER task as well; named entity recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example UMLS, the Unified Medical Language System from the US National Library of Medicine has a network that defines 134 broad subject categories, entity types, and 54 relations between the entities, such as the following:

<table>
<thead>
<tr>
<th>Entity</th>
<th>Relation</th>
<th>Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury</td>
<td>disrupts</td>
<td>Physiological Function</td>
</tr>
<tr>
<td>Bodily Location</td>
<td>location-of</td>
<td>Biologic Function</td>
</tr>
<tr>
<td>Anatomical Structure</td>
<td>part-of</td>
<td>Organism</td>
</tr>
<tr>
<td>Pharmacologic Substance</td>
<td>causes</td>
<td>Pathological Function</td>
</tr>
<tr>
<td>Pharmacologic Substance</td>
<td>treats</td>
<td>Pathologic Function</td>
</tr>
</tbody>
</table>

Given a medical sentence like this one:

(21.1) Doppler echocardiography can be used to diagnose left anterior descending artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:
<table>
<thead>
<tr>
<th>Domain</th>
<th>( \mathcal{D} = {a, b, c, d, e, f, g, h, i} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>United, UAL, American Airlines, AMR</td>
<td>( a, b, c, d )</td>
</tr>
<tr>
<td>Tim Wagner</td>
<td>( e )</td>
</tr>
<tr>
<td>Chicago, Dallas, Denver, and San Francisco</td>
<td>( f, g, h, i )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classes</th>
<th>( \mathcal{Org} = {a, b, c, d} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>United, UAL, American, and AMR are organizations</td>
<td></td>
</tr>
<tr>
<td>Tim Wagner is a person</td>
<td>( \mathcal{Pers} = {e} )</td>
</tr>
<tr>
<td>Chicago, Dallas, Denver, and San Francisco</td>
<td>( \mathcal{Loc} = {f, g, h, i} )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relations</th>
<th>( \mathcal{PartOf} = {(a, b), (c, d)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>United is a unit of UAL</td>
<td></td>
</tr>
<tr>
<td>American is a unit of AMR</td>
<td></td>
</tr>
<tr>
<td>Tim Wagner works for American Airlines</td>
<td>( \mathcal{OrgAff} = {(c, e)} )</td>
</tr>
<tr>
<td>United serves Chicago, Dallas, Denver, and San Francisco</td>
<td>( \mathcal{Serves} = {(a, f), (a, g), (a, h), (a, i)} )</td>
</tr>
</tbody>
</table>

**Figure 21.10** A model-based view of the relations and entities in our sample text.

**Echocardiography, Doppler**

Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, structured tables associated with certain Wikipedia articles. For example, the Wikipedia infobox for Stanford includes structured facts like state = "California" or president = "John L. Hennessy". These facts can be turned into relations like president-of or located-in, or into relations in a metalanguage called RDF (Resource Description Framework). An RDF triple is a tuple of entity-relation-entity, called a subject-predicate-object expression. Here's a sample RDF triple:

\[
\text{subject} \quad \text{predicate} \quad \text{object}
\]

Golden Gate Park location San Francisco

For example the crowdsourced DBpedia (Bizer et al., 2009) is an ontology derived from Wikipedia containing over 2 billion RDF triples. Another dataset from Wikipedia infoboxes, Freebase (Bollacker et al., 2008), has relations like

- people/person/nationality
- location/location/contains
- people/person/place-of-birth
- biology/organism_classification

WordNet or other ontologies offer useful ontological relations that express hierarchical relations between words or concepts. For example WordNet has the is-a or hypernym relation between classes,

Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate is-a animal...

WordNet also has Instance-of relation between individuals and classes, so that for example San Francisco is in the Instance-of relation with city. Extracting these relations is an important step in extending ontologies or building them for new languages or domains.

There are four main classes of algorithms for relation extraction: hand-written patterns, supervised machine learning, semi-supervised, and unsupervised. We'll introduce each of these in the next four sections.
21.2.1 Using Patterns to Extract Relations

The earliest and still a common algorithm for relation extraction is the use of lexico-syntactic patterns, first developed by Hearst (1992a). Consider the following sentence:

Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.

Hearst points out that most human readers will not know what Gelidium is, but that they can readily infer that it is a kind of (a hyponym of) red algae, whatever that is. She suggests that the following lexico-syntactic pattern

\[ NP \text{ such as } NP_1\{,NP_2\ldots,(and|or)NP_i\},i \geq 1 \quad (21.2) \]

implies the following semantics

\[ \forall NP_i,i \geq 1, \text{hyponym}(NP_i,NP_0) \quad (21.3) \]

allowing us to infer

\[ \text{hyponym}(\text{Gelidium, red algae}) \quad (21.4) \]

Figure 21.11 shows five patterns Hearst (1992a, 1998) suggested for inferring the hyponym relation; we’ve shown NP\_H as the parent/hyponym.

Modern versions of the pattern-based approach extend it by adding named entity constraints. For example if our goal is to answer questions about “Who holds what office in which organization?”, we can use patterns like the following:

**PER, POSITION of ORG:**
George Marshall, Secretary of State of the United States

**PER (named|appointed|chose|etc.) PER Prep? POSITION**
Truman appointed Marshall Secretary of State

**PER [be]? (named|appointed|etc.) Prep? ORG POSITION**
George Marshall was named US Secretary of State

Hand-built patterns have the advantage of high-precision and they can be tailored to specific domains. On the other hand, they are often low-recall, and it’s a lot of work to create them for all possible patterns.

21.2.2 Relation Extraction via Supervised Learning

Supervised machine learning approaches to relation extraction follow a scheme that should be familiar by now. A fixed set of relations and entities is chosen, a training corpus is hand-annotated with the relations and entities, and the annotated texts are then used to train classifiers to annotate an unseen test set.
The most straightforward approach has three steps, illustrated in Fig. 21.12. Step one is to find pairs of named entities (usually in the same sentence). In step two, a filtering classifier is trained to make a binary decision as to whether a given pair of named entities are related (by any relation). Positive examples are extracted directly from all relations in the annotated corpus, and negative examples are generated from within-sentence entity pairs that are not annotated with a relation. In step 3, a classifier is trained to assign a label to the relations that were found by step 2. The use of the filtering classifier can speed up the final classification and also allows the use of distinct feature-sets appropriate for each task. For each of the two classifiers, we can use any of the standard classification techniques (logistic regression, SVM, naive bayes, random forest, neural network, etc.).

function \text{FindRelations}(\text{words}) \text{ returns } \text{relations} \\
\hspace{1cm} \text{relations} \leftarrow \text{nil} \\
\hspace{1cm} \text{entities} \leftarrow \text{FindEntities}(\text{words}) \\
\hspace{1cm} \text{forall entity pairs } \langle e_1, e_2 \rangle \text{ in entities do} \\
\hspace{2cm} \text{if } \text{Related?}(e_1, e_2) \text{ then} \\
\hspace{3cm} \text{relations} \leftarrow \text{relations} + \text{ClassifyRelation}(e_1, e_2) \\

Figure 21.12 Finding and classifying the relations among entities in a text.

As with named entity recognition, the most important step in this process is to identify useful surface features that will be useful for relation classification. Let’s look at some common features in the context of classifying the relationship between \textit{American Airlines} (Mention 1, or M1) and \textit{Tim Wagner} (Mention 2, M2) from this sentence:

(21.5) \textbf{American Airlines}, a unit of AMR, immediately matched the move, \\
spokesman \textbf{Tim Wagner} said

Useful word features include

- The headwords of M1 and M2 and their concatenation \\
  \textit{Airlines Wagner Airlines-Wagner} \\
- Bag-of-words and bigrams in M1 and M2 \\
  \textit{American, Airlines, Tim, Wagner, American Airlines, Tim Wagner} \\
- Words or bigrams in particular positions \\
  \textit{M2: -1 spokesman} \\
  \textit{M2: +1 said} \\
- Bag of words or bigrams between M1 and M2: \\
  \textit{a, AMR, of, immediately, matched, move, spokesman, the, unit} \\
- Stemmed versions of the same

Useful named entity features include

- Named-entity types and their concatenation \\
  (M1: ORG, M2: PER, M1M2: ORG-PER) \\
- Entity Level of M1 and M2 (from the set NAME, NOMINAL, PRONOUN) \\
  M1: \textit{NAME [it or he would be PRONOUN]} \\
  M2: \textit{NAME [the company would be NOMINAL]} \\
- Number of entities between the arguments (in this case 1, for AMR)
Finally, the **syntactic structure** of a sentence can signal many of the relationships among its entities. One simple and effective way to featurize a structure is to use strings representing **syntactic paths**: the path traversed through the tree in getting from one to the other. Constituency or dependency paths can both be helpful.

- Base syntactic chunk sequence from M1 to M2
  \[
  \text{NP NP PP VP NP NP}
  \]
- Constituent paths between M1 and M2
  \[
  \text{NP} \uparrow \text{NP} \uparrow \text{S} \uparrow \text{S} \downarrow \text{NP}
  \]
- Dependency-tree paths
  \[
  \text{Airlines} \leftarrow_{\text{subj}} \text{matched} \leftarrow_{\text{comp}} \text{said} \rightarrow_{\text{subj}} \text{Wagner}
  \]

Figure 21.13 summarizes many of the features we have discussed that could be used for classifying the relationship between *American Airlines* and *Tim Wagner* from our example text.

Supervised systems can get high accuracies with enough hand-labeled training data, if the test set is similar enough to the training set. But labeling a large training set is extremely expensive and supervised models are brittle: they don’t generalize well to different genres.

### 21.2.3 Semisupervised Relation Extraction via Bootstrapping

Supervised machine learning assumes that we have a large collection of previously annotated material with which to train classifiers. Unfortunately, such collections are hard to come by. But suppose we just have a few high-precision **seed patterns**, like those in Section 21.2.1, or perhaps a few **seed tuples**. That’s enough to bootstrap a classifier! **Bootstrapping** proceeds by taking the entities in the seed pair, and then finding sentences (on the web, or whatever dataset we are using) that contain both entities. From all such sentences, we extract and generalize the context around the entities to learn new patterns. Fig. 21.14 sketches a basic algorithm.

Suppose, for example, that we need to create a list of airline/hub pairs, and we know only that Ryanair has a hub at Charleroi. We can use this seed fact to discover new patterns by finding other mentions of this relation in our corpus. We search for the terms *Ryanair*, *Charleroi* and *hub* in some proximity. Perhaps we find the following set of sentences:
function Bootstrap(Relation R) returns new relation tuples

  tuples ← Gather a set of seed tuples that have relation R

  iterate
  sentences ← find sentences that contain entities in seeds
  patterns ← generalize the context between and around entities in sentences
  newpairs ← use patterns to grep for more tuples
  newpairs ← newpairs with high confidence
  tuples ← tuples + newpairs

  return tuples

Figure 21.14 Bootstrapping from seed entity pairs to learn relations.

(21.6) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all weekend flights out of the airport.

(21.7) All flights in and out of Ryanair’s Belgian hub at Charleroi airport were grounded on Friday...

(21.8) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000 passengers had already been affected.

From these results, we can use the context of words between the entity mentions, the words before mention one, the word after mention two, and the named entity types of the two mentions, and perhaps other features, to extract general patterns such as the following:

/ [ORG], which uses [LOC] as a hub /
/ [ORG]’s hub at [LOC] /
/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.

Bootstrapping systems also assign confidence values to new tuples to avoid semantic drift. In semantic drift, an erroneous pattern leads to the introduction of erroneous tuples, which, in turn, lead to the creation of problematic patterns and the meaning of the extracted relations ‘drifts’. Consider the following example:

(21.9) Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the incorrect introduction of the tuple (Sydney, Circular Quay). Patterns based on this tuple could propagate further errors into the database.

Confidence values for patterns are based on balancing two factors: the pattern’s performance with respect to the current set of tuples and the pattern’s productivity in terms of the number of matches it produces in the document collection. More formally, given a document collection D, a current set of tuples T, and a proposed pattern p, we need to track two factors:

- hits: the set of tuples in T that p matches while looking in D
- finds: The total set of tuples that p finds in D

The following equation balances these considerations (Riloff and Jones, 1999).

\[
Conf_{RilogF}(p) = \frac{\text{hits}_p}{\text{finds}_p} \times \log(\text{finds}_p) \tag{21.10}
\]

This metric is generally normalized to produce a probability.
We can assess the confidence in a proposed new tuple by combining the evidence supporting it from all the patterns \( P' \) that match that tuple in \( \mathcal{D} \) (Agichtein and Gravano, 2000). One way to combine such evidence is the noisy-or technique. Assume that a given tuple is supported by a subset of the patterns in \( P \), each with its own confidence assessed as above. In the noisy-or model, we make two basic assumptions. First, that for a proposed tuple to be false, all of its supporting patterns must have been in error, and second, that the sources of their individual failures are all independent. If we loosely treat our confidence measures as probabilities, then the probability of any individual pattern \( p \) failing is \( 1 - \text{Conf}(p) \); the probability of all of the supporting patterns for a tuple being wrong is the product of their individual failure probabilities, leaving us with the following equation for our confidence in a new tuple.

\[
\text{Conf}(t) = 1 - \prod_{p \in P'} (1 - \text{Conf}(p))
\]

(21.11)

Setting conservative confidence thresholds for the acceptance of new patterns and tuples during the bootstrapping process helps prevent the system from drifting away from the targeted relation.

### 21.2.4 Distant Supervision for Relation Extraction

Although text that has been hand-labeled with relation labels is extremely expensive to produce, there are ways to find indirect sources of training data.

The distant supervision (Mintz et al., 2009) method combines the advantages of bootstrapping with supervised learning. Instead of just a handful of seeds, distant supervision uses a large database to acquire a huge number of seed examples, creates lots of noisy pattern features from all these examples and then combines them in a supervised classifier.

For example suppose we are trying to learn the place-of-birth relationship between people and their birth cities. In the seed-based approach, we might have only 5 examples to start with. But Wikipedia-based databases like DBPedia or Freebase have tens of thousands of examples of many relations; including over 100,000 examples of place-of-birth, \(<\text{Edwin Hubble, Marshfield}, \text{Albert Einstein, Ulm}>\), etc.,). The next step is to run named entity taggers on large amounts of text—Mintz et al. (2009) used 800,000 articles from Wikipedia—and extract all sentences that have two named entities that match the tuple, like the following:

...Hubble was born in Marshfield...
...Einstein, born (1879), Ulm...
...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance for each identical tuple \(<\text{relation, entity1, entity2}>\). Thus there will be one training instance for each of:

\(<\text{born-in, Edwin Hubble, Marshfield}>\)
\(<\text{born-in, Albert Einstein, Ulm}>\)
\(<\text{born-year, Albert Einstein, 1879}>\)

and so on. As with supervised relation extraction, we use features like the named entity labels of the two mentions, the words and dependency paths in between the mentions, and neighboring words. Each tuple will have features collected from many training instances; the feature vector for a single training instance like \(<\text{born-in, Albert}...\rangle\).
Einstein, Ulm> will have lexical and syntactic features from many different sentences that mention Einstein and Ulm.

Because distant supervision has very large training sets, it is also able to use very rich features that are conjunctions of these individual features. So we will extract thousands of patterns that conjoin the entity types with the intervening words or dependency paths like these:

- PER was born in LOC
- PER, born (XXXX), LOC
- PER’s birthplace in LOC

To return to our running example, for this sentence:

(21.12) **American Airlines**, a unit of AMR, immediately matched the move, spokesman **Tim Wagner** said

we would learn rich conjunction features like this one:

\[ M_1 = \text{ORG} \land M_2 = \text{PER} \land \text{nextword} = \text{“said”} \land \text{path} = NP \uparrow NP \uparrow S \uparrow S \downarrow NP \]

The result is a supervised classifier that has a huge rich set of features to use in detecting relations. Since not every test sentence will have one of the training relations, the classifier will also need to be able to label an example as no-relation. This label is trained by randomly selecting entity pairs that do not appear in any Freebase relation, extracting features for them, and building a feature vector for each such tuple. The final algorithm is sketched in Fig. 21.15.

```
function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C
    foreach relation R
        foreach tuple \((e_1, e_2)\) of entities with relation \(R\) in \(D\)
            sentences ← Sentences in \(T\) that contain \(e_1\) and \(e_2\)
            \(f\) ← Frequent features in \(sentences\)
            observations ← observations + new training tuple \((e_1, e_2, f, R)\)
        \(C\) ← Train supervised classifier on \(observations\)
    return \(C\)
```

**Figure 21.15** The distant supervision algorithm for relation extraction.

Distant supervision shares advantages with each of the methods we’ve examined. Like supervised classification, distant supervision uses a classifier with lots of features, and supervised by detailed hand-created knowledge. Like pattern-based classifiers, it can make use of high-precision evidence for the relation between entities. Indeed, distance supervision systems learn patterns just like the hand-built patterns of early relation extractors. For example the is-a or hypernym extraction system of Snow et al. (2005) used hypernym/hyponym NP pairs from WordNet as distant supervision, and then learned new patterns from large amounts of text. Their system induced exactly the original 5 template patterns of Hearst (1992a), but also 70,000 additional patterns including these four:

- NP\(_H\) like NP \hspace{1em} Many hormones like leptin...
- NP\(_H\) called NP \hspace{1em}...using a markup language called XHTML
- NP is a NP\(_H\) \hspace{1em} Ruby is a programming language...
- NP, a NP\(_H\) \hspace{1em} IBM, a company with a long...
This ability to use a large number of features simultaneously means that, unlike the iterative expansion of patterns in seed-based systems, there’s no semantic drift. Like unsupervised classification, it doesn’t use a labeled training corpus of texts, so it isn’t sensitive to genre issues in the training corpus, and relies on very large amounts of unlabeled data.

But distant supervision can only help in extracting relations for which a large enough database already exists. To extract new relations without datasets, or relations for new domains, purely unsupervised methods must be used.

### 21.2.5 Unsupervised Relation Extraction

The goal of unsupervised relation extraction is to extract relations from the web when we have no labeled training data, and not even any list of relations. This task is often called **Open Information Extraction** or **Open IE**. In Open IE, the relations are simply strings of words (usually beginning with a verb).

For example, the ReVerb system (Fader et al., 2011) extracts a relation from a sentence $s$ in 4 steps:

1. Run a part-of-speech tagger and entity chunker over $s$
2. For each verb in $s$, find the longest sequence of words $w$ that start with a verb and satisfy syntactic and lexical constraints, merging adjacent matches.
3. For each phrase $w$, find the nearest noun phrase $x$ to the left which is not a relative pronoun, wh-word or existential “there”. Find the nearest noun phrase $y$ to the right.
4. Assign confidence $c$ to the relation $r = (x, w, y)$ using a confidence classifier and return it.

A relation is only accepted if it meets syntactic and lexical constraints. The syntactic constraints ensure that it is a verb-initial sequence that might also include nouns (relations that begin with light verbs like *make*, *have*, or *do* often express the core of the relation with a noun, like *have a hub in*):

$$
V \mid VP \mid VW*P \\
V = \text{verb particle? adv?} \\
W = (\text{noun} \mid \text{adj} \mid \text{adv} \mid \text{pron} \mid \text{det}) \\
P = (\text{prep} \mid \text{particle} \mid \text{inf. marker})
$$

The lexical constraints are based on a dictionary $D$ that is used to prune very rare, long relation strings. The intuition is to eliminate candidate relations that don’t occur with sufficient number of distinct argument types and so are likely to be bad examples. The system first runs the above relation extraction algorithm offline on 500 million web sentences and extracts a list of all the relations that occur after normalizing them (removing inflection, auxiliary verbs, adjectives, and adverbs). Each relation $r$ is added to the dictionary if it occurs with at least 20 different arguments. Fader et al. (2011) used a dictionary of 1.7 million normalized relations.

Finally, a confidence value is computed for each relation using a logistic regression classifier. The classifier is trained by taking 1000 random web sentences, running the extractor, and hand labelling each extracted relation as correct or incorrect. A confidence classifier is then trained on this hand-labeled data, using features of the relation and the surrounding words. Fig. 21.16 shows some sample features used in the classification.

For example the following sentence:
Figure 21.16 Features for the classifier that assigns confidence to relations extracted by the Open Information Extraction system REVERB (Fader et al., 2011).

(21.13) United has a hub in Chicago, which is the headquarters of United Continental Holdings.

has the relation phrases has a hub in and is the headquarters of (it also has has and is, but longer phrases are preferred). Step 3 finds United to the left and Chicago to the right of has a hub in, and skips over which to find Chicago to the left of is the headquarters of. The final output is:

r1: <United, has a hub in, Chicago>
r2: <Chicago, is the headquarters of, United Continental Holdings>

The great advantage of unsupervised relation extraction is its ability to handle a huge number of relations without having to specify them in advance. The disadvantage is the need to map these large sets of strings into some canonical form for adding to databases or other knowledge sources. Current methods focus heavily on relations expressed with verbs, and so will miss many relations that are expressed nominally.

21.2.6 Evaluation of Relation Extraction

Supervised relation extraction systems are evaluated by using test sets with human-annotated, gold-standard relations and computing precision, recall, and F-measure. Labeled precision and recall require the system to classify the relation correctly, whereas unlabeled methods simply measure a system’s ability to detect entities that are related.

Semi-supervised and unsupervised methods are much more difficult to evaluate, since they extract totally new relations from the web or a large text. Because these methods use very large amounts of text, it is generally not possible to run them solely on a small labeled test set, and as a result it’s not possible to pre-annotate a gold set of correct instances of relations.

For these methods it’s possible to approximate (only) precision by drawing a random sample of relations from the output, and having a human check the accuracy of each of these relations. Usually this approach focuses on the tuples to be extracted from a body of text rather than on the relation mentions; systems need not detect every mention of a relation to be scored correctly. Instead, the evaluation is based on the set of tuples occupying the database when the system is finished. That is, we want to know if the system can discover that Ryanair has a hub at Charleroi; we don’t really care how many times it discovers it. The estimated precision $\hat{P}$ is then

$$\hat{P} = \frac{\text{# of correctly extracted relation tuples in the sample}}{\text{total # of extracted relation tuples in the sample}}$$

(21.14)

Another approach that gives us a little bit of information about recall is to compute precision at different levels of recall. Assuming that our system is able to
rank the relations it produces (by probability, or confidence) we can separately compute precision for the top 1000 new relations, the top 10,000 new relations, the top 100,000, and so on. In each case we take a random sample of that set. This will show us how the precision curve behaves as we extract more and more tuples. But there is no way to directly evaluate recall.

21.3 Extracting Times

Times and dates are a particularly important kind of named entity that play a role in question answering, in calendar and personal assistant applications. In order to reason about times and dates, after we extract these temporal expressions they must be normalized—converted to a standard format so we can reason about them. In this section we consider both the extraction and normalization of temporal expressions.

21.3.1 Temporal Expression Extraction

Temporal expressions are those that refer to absolute points in time, relative times, durations, and sets of these. Absolute temporal expressions are those that can be mapped directly to calendar dates, times of day, or both. Relative temporal expressions map to particular times through some other reference point (as in a week from last Tuesday). Finally, durations denote spans of time at varying levels of granularity (seconds, minutes, days, weeks, centuries etc.). Figure 21.17 lists some sample temporal expressions in each of these categories.

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Relative</th>
<th>Durations</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 24, 1916</td>
<td>yesterday</td>
<td>four hours</td>
</tr>
<tr>
<td>The summer of ’77</td>
<td>next semester</td>
<td>three weeks</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>two weeks from yesterday</td>
<td>six days</td>
</tr>
<tr>
<td>The 3rd quarter of 2006</td>
<td>last quarter</td>
<td>the last three quarters</td>
</tr>
</tbody>
</table>

**Figure 21.17** Examples of absolute, relational and durational temporal expressions.

Temporal expressions are grammatical constructions that have temporal lexical triggers as their heads. Lexical triggers might be nouns, proper nouns, adjectives, and adverbs; full temporal expression consist of their phrasal projections: noun phrases, adjective phrases, and adverbial phrases. Figure 21.18 provides examples.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>morning, noon, night, winter, dusk, dawn</td>
</tr>
<tr>
<td>Proper Noun</td>
<td>January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet</td>
</tr>
<tr>
<td>Adjective</td>
<td>recent, past, annual, former</td>
</tr>
<tr>
<td>Adverb</td>
<td>hourly, daily, monthly, yearly</td>
</tr>
</tbody>
</table>

**Figure 21.18** Examples of temporal lexical triggers.

Let’s look at the TimeML annotation scheme, in which temporal expressions are annotated with an XML tag, TIMEX3, and various attributes to that tag (Pustejovsky et al. 2005, Ferro et al. 2005). The following example illustrates the basic use of this scheme (we defer discussion of the attributes until Section 21.3.2).

A fare increase initiated \(<\text{TIMEX3}>\text{last week}</\text{TIMEX3}>\) by UAL Corp’s United Airlines was matched by competitors over \(<\text{TIMEX3}>the\)
weekend</TIMEX3>, marking the second successful fare increase in <TIMEX3>two weeks</TIMEX3>.

The temporal expression recognition task consists of finding the start and end of all of the text spans that correspond to such temporal expressions. **Rule-based approaches** to temporal expression recognition use cascades of automata to recognize patterns at increasing levels of complexity. Tokens are first part-of-speech tagged, and then larger and larger chunks are recognized from the results from previous stages, based on patterns containing trigger words (e.g., *February*) or classes (e.g., *MONTH*). Figure 21.19 gives a small representative fragment from a rule-based system written in Perl.

```
# yesterday/today/tomorrow
$string = ~s/(($OT+(early|earlier|later?)$CT+)?($OT+the$CT+)?($OT+day$CT+)?($OT+week$CT+)?<TIMEX2 TYPE="DATE"/>$1</TIMEX2>/gio;

# this/that (morning/afternoon/evening/night)
$string = ~s/(($OT+(early|earlier|later?)$CT+)?($OT+(this|that|every$CT+)?($OT+(next|previous|following))$CT+?$OT+(morning|afternoon|evening|night)$CT+)?<TIMEX2 TYPE="DATE"/>$1</TIMEX2>/gosi;
```

Figure 21.19 Fragment of Perl code from MITRE’s TempEx temporal tagging system.

**Sequence-labeling approaches** follow the same IOB scheme used for named-entity tags, marking words that are either inside, outside or at the beginning of a TIMEX3-delimited temporal expression with the B, I, and O tags as follows:

*A fare increase initiated last week by UAL Corp’s...*

O O O O B I O O O

Features are extracted from the token and its context, and a statistical sequence labeler is trained (any sequence model can be used). Figure 21.20 lists standard features used in temporal tagging.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>The target token to be labeled</td>
</tr>
<tr>
<td>Tokens in window</td>
<td>Bag of tokens in the window around a target</td>
</tr>
<tr>
<td>Shape</td>
<td>Character shape features</td>
</tr>
<tr>
<td>POS</td>
<td>Parts of speech of target and window words</td>
</tr>
<tr>
<td>Lexical triggers</td>
<td>Base-phrase chunk tag for target and words in a window</td>
</tr>
<tr>
<td>Chunk tags</td>
<td>Presence in a list of temporal terms</td>
</tr>
</tbody>
</table>

Figure 21.20 Typical features used to train IOB-style temporal expression taggers.

Temporal expression recognizers are evaluated with the usual recall, precision, and *F*-measures. A major difficulty for all of these very lexicalized approaches is avoiding expressions that trigger false positives:

(21.15) *1984* tells the story of Winston Smith...

(21.16) ...U2’s classic *Sunday Bloody Sunday*

### 21.3.2 Temporal Normalization

**Temporal normalization** is the process of mapping a temporal expression to either
a specific point in time or to a duration. Points in time correspond to calendar dates, to times of day, or both. Durations primarily consist of lengths of time but may also include information about start and end points. Normalized times are represented with the `VALUE` attribute from the ISO 8601 standard for encoding temporal values (ISO8601, 2004). Fig. 21.21 reproduces our earlier example with the value attributes added in.

```xml
<TIMEX3 id='t1' type='DATE' value='2007-07-02' functionInDocument='CREATION_TIME'>
  July 2, 2007
</TIMEX3>
A fare increase initiated <TIMEX3 id='t2' type='DATE' value='2007-W26' anchorTimeID='t1'>last week</TIMEX3> by UAL Corp’s United Airlines was matched by competitors over <TIMEX3 id='t3' type='DURATION' value='P1WE' anchorTimeID='t1'>the weekend</TIMEX3>, marking the second successful fare increase in <TIMEX3 id='t4' type='DURATION' value='P2W' anchorTimeID='t1'>two weeks</TIMEX3>.
```

Figure 21.21  TimeML markup including normalized values for temporal expressions.

The dateline, or document date, for this text was July 2, 2007. The ISO representation for this kind of expression is YYYY-MM-DD, or in this case, 2007-07-02. The encodings for the temporal expressions in our sample text all follow from this date, and are shown here as values for the `VALUE` attribute.

The first temporal expression in the text proper refers to a particular week of the year. In the ISO standard, weeks are numbered from 01 to 53, with the first week of the year being the one that has the first Thursday of the year. These weeks are represented with the template YYYY-Wnn. The ISO week for our document date is week 27; thus the value for last week is represented as “2007-W26”.

The next temporal expression is the weekend. ISO weeks begin on Monday; thus, weekends occur at the end of a week and are fully contained within a single week. Weekends are treated as durations, so the value of the `VALUE` attribute has to be a length. Durations are represented according to the pattern Pnx, where n is an integer denoting the length and x represents the unit, as in P3Y for three years or P2D for two days. In this example, one weekend is captured as P1WE. In this case, there is also sufficient information to anchor this particular weekend as part of a particular week. Such information is encoded in the `ANCHORTIMEID` attribute.

Finally, the phrase two weeks also denotes a duration captured as P2W.

There is a lot more to the various temporal annotation standards—far too much to cover here. Figure 21.22 describes some of the basic ways that other times and durations are represented. Consult ISO8601 (2004), Ferro et al. (2005), and Pustejovsky et al. (2005) for more details.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Pattern</th>
<th>Sample Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully specified dates</td>
<td>YYYY-MM-DD</td>
<td>1991-09-28</td>
</tr>
<tr>
<td>Weeks</td>
<td>YYYY-Wnn</td>
<td>2007-W27</td>
</tr>
<tr>
<td>Weekends</td>
<td>PnWE</td>
<td>P1WE</td>
</tr>
<tr>
<td>24-hour clock times</td>
<td>HH:MM:SS</td>
<td>11:13:45</td>
</tr>
<tr>
<td>Dates and times</td>
<td>YYYY-MM-DDTHH:MM:SS</td>
<td>1991-09-28T11:00:00</td>
</tr>
<tr>
<td>Financial quarters</td>
<td>Qn</td>
<td>1999-Q3</td>
</tr>
</tbody>
</table>

Figure 21.22  Sample ISO patterns for representing various times and durations.

Most current approaches to temporal normalization are rule-based (Chang and Manning 2012, Strötgen and Gertz 2013). Patterns that match temporal expressions are associated with semantic analysis procedures. As in the compositional rule-to-rule approach introduced in Chapter 20, the meaning of a constituent is computed from the meaning of its parts using a method specific to the constituent, al-
though here the semantic composition rules involve temporal arithmetic rather than $\lambda$-calculus attachments.

**Fully qualified date expressions** contain a year, month, and day in some conventional form. The units in the expression must be detected and then placed in the correct place in the corresponding ISO pattern. The following pattern normalizes expressions like April 24, 1916.

$$FQTE \rightarrow \text{Month Date , Year } \{\text{Year.val } - \text{Month.val } - \text{Date.val}\}$$

The non-terminals *Month*, *Date*, and *Year* represent constituents that have already been recognized and assigned semantic values, accessed through the *.val* notation. The value of this *FQE* constituent can, in turn, be accessed as *FQTE.val* during further processing.

Fully qualified temporal expressions are fairly rare in real texts. Most temporal expressions in news articles are incomplete and are only implicitly anchored, often with respect to the dateline of the article, which we refer to as the document’s **temporal anchor**. The values of temporal expressions such as *today*, *yesterday*, or *tomorrow* can all be computed with respect to this temporal anchor. The semantic procedure for *today* simply assigns the anchor, and the attachments for *tomorrow* and *yesterday* add a day and subtract a day from the anchor, respectively. Of course, given the cyclic nature of our representations for months, weeks, days, and times of day, our temporal arithmetic procedures must use modulo arithmetic appropriate to the time unit being used.

Unfortunately, even simple expressions such as *the weekend* or *Wednesday* introduce a fair amount of complexity. In our current example, *the weekend* clearly refers to the weekend of the week that immediately precedes the document date. But this won’t always be the case, as is illustrated in the following example.

(21.17) Random security checks that began yesterday at Sky Harbor will continue at least through the weekend.

In this case, the expression *the weekend* refers to the weekend of the week that the anchoring date is part of (i.e., the coming weekend). The information that signals this meaning comes from the tense of *continue*, the verb governing *the weekend*.

Relative temporal expressions are handled with temporal arithmetic similar to that used for *today* and *yesterday*. The document date indicates that our example article is ISO week 27, so the expression *last week* normalizes to the current week minus 1. To resolve ambiguous *next* and *last* expressions we consider the distance from the anchoring date to the nearest unit. *Next Friday* can refer either to the immediately next Friday or to the Friday following that, but the closer the document date is to a Friday, the more likely it is that the phrase will skip the nearest one. Such ambiguities are handled by encoding language and domain-specific heuristics into the temporal attachments.

### 21.4 Extracting Events and their Times

The task of **event extraction** is to identify mentions of events in texts. For the purposes of this task, an event mention is any expression denoting an event or state that can be assigned to a particular point, or interval, in time. The following markup of the sample text on page 365 shows all the events in this text.
Citing high fuel prices, United Airlines said Friday it has increased fares by $6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR Corp., immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL Corp., said the increase took effect Thursday and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Denver to San Francisco.

In English, most event mentions correspond to verbs, and most verbs introduce events. However, as we can see from our example, this is not always the case. Events can be introduced by noun phrases, as in the move and the increase, and some verbs fail to introduce events, as in the phrasal verb took effect, which refers to when the event began rather than to the event itself. Similarly, light verbs such as make, take, and have often fail to denote events. In these cases, the verb is simply providing a syntactic structure for the arguments to an event expressed by the direct object as in took a flight.

Various versions of the event extraction task exist, depending on the goal. For example in the TempEval shared tasks (Verhagen et al. 2009) the goal is to extract events and aspects like their aspectual and temporal properties. Events are to be classified as actions, states, reporting events (say, report, tell, explain), perception events, and so on. The aspect, tense, and modality of each event also needs to be extracted. Thus for example the various said events in the sample text would be annotated as (class=REPORTING, tense=PAST, aspect=PERFECTIVE).

Event extraction is generally modeled via machine learning, detecting events via sequence models with IOB tagging, and assigning event classes and attributes with multi-class classifiers. Common features include surface information like parts of speech, lexical items, and verb tense information; see Fig. 21.23.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character affixes</td>
<td>Character-level prefixes and suffixes of target word</td>
</tr>
<tr>
<td>Nominalization suffix</td>
<td>Character level suffixes for nominalizations (e.g., -tion)</td>
</tr>
<tr>
<td>Part of speech</td>
<td>Part of speech of the target word</td>
</tr>
<tr>
<td>Light verb</td>
<td>Binary feature indicating that the target is governed by a light verb</td>
</tr>
<tr>
<td>Subject syntactic category</td>
<td>Syntactic category of the subject of the sentence</td>
</tr>
<tr>
<td>Morphological stem</td>
<td>Stemmed version of the target word</td>
</tr>
<tr>
<td>Verb root</td>
<td>Root form of the verb basis for a nominalization</td>
</tr>
<tr>
<td>WordNet hypernym</td>
<td>Hypernym set for the target</td>
</tr>
</tbody>
</table>

Figure 21.23 Features commonly used in both rule-based and statistical approaches to event detection.

### 21.4.1 Temporal Ordering of Events

With both the events and the temporal expressions in a text having been detected, the next logical task is to use this information to fit the events into a complete timeline. Such a timeline would be useful for applications such as question answering and summarization. This ambitious task is the subject of considerable current research but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on the events and temporal expressions mentioned in a text. Such an ordering can provide many of the same benefits as a true timeline. An example of such a partial ordering is the determination that the fare increase by American Airlines came after the fare
increase by United in our sample text. Determining such an ordering can be viewed as a binary relation detection and classification task similar to those described earlier in Section 21.2. One common approach to this problem is to operationalize it by attempting to identify which of Allen’s temporal relations shown in Fig. 21.24 hold between events. Most systems employ statistical classifiers of the kind discussed earlier in Section 21.2, trained on the TimeBank corpus and using features like words, parse paths, tense and aspect.

The TimeBank corpus consists of text annotated with much of the information we’ve been discussing throughout this section (Pustejovsky et al., 2003b). TimeBank 1.2 consists of 183 news articles selected from a variety of sources, including the Penn TreeBank and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and event mentions in them explicitly annotated in the TimeML annotation (Pustejovsky et al., 2003a). In addition to temporal expressions and events, the TimeML annotation provides temporal links between events and temporal expressions that specify the
Delta Air Lines earnings \(<\text{EVENT id="e1" class="OCCURRENCE"> soared \</\text{EVENT}>\) 33% to a record in \(<\text{TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the fiscal first quarter</\text{TIMEX3}>\), \(<\text{EVENT id="e3" class="OCCURRENCE"> bucking</\text{EVENT}>\) the industry trend toward \(<\text{EVENT id="e4" class="OCCURRENCE"> declining</\text{EVENT}>\) profits.

As annotated, this text includes three events and two temporal expressions. The events are all in the occurrence class and are given unique identifiers for use in further annotations. The temporal expressions include the creation time of the article, which serves as the document time, and a single temporal expression within the text.

In addition to these annotations, TimeBank provides four links that capture the temporal relations between the events and times in the text, using the Allen relations from Fig. 21.24. The following are the within-sentence temporal relations annotated for this example.

- \(\text{Soaring}_{e1}\) is \textit{included} in the fiscal first quarter, \(t_{58}\)
- \(\text{Soaring}_{e1}\) is \textit{before} 1989-10-26, \(t_{57}\)
- \(\text{Soaring}_{e1}\) is \textit{ simultaneous} with the bucking, \(e_{3}\)
- \(\text{Declining}_{e4}\) includes \textit{soaring}, \(e_{1}\)

21.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often correspond to fairly common, stereotypical situations in the world. These abstract situations or stories, related to what have been called \textit{scripts} (Schank and Abelson, 1977), consist of prototypical sequences of sub-events, participants, and their roles. The strong expectations provided by these scripts can facilitate the proper classification of entities, the assignment of entities into roles and relations, and most critically, the drawing of inferences that fill in things that have been left unsaid. In their simplest form, such scripts can be represented as \textit{templates} consisting of fixed sets of \textit{slots} that take as values \textit{slot-fillers} belonging to particular classes. The task of \textit{template filling} is to find documents that invoke particular scripts and then fill the slots in the associated templates with fillers extracted from the text. These slot-fillers may consist of text segments extracted directly from the text, or they may consist of concepts that have been inferred from text elements through some additional processing.

A filled template from our original airline story might look like the following.
This template has four slots (LEAD AIRLINE, AMOUNT, EFFECTIVE DATE, FOLLOWER). The next section describes a standard sequence-labeling approach to filling slots. Section 21.5.2 then describes an older system based on the use of cascades of finite-state transducers and designed to address a more complex template-filling task that current learning-based systems don’t yet address.

### 21.5.1 Statistical Approaches to Template Filling

The standard paradigm for template filling assumes we are trying to fill fixed known templates with known slots, and also assumes we are given training documents labeled with examples of each template, with the fillers of each slot marked in the text. The template filling task is then creation of one template for each event in the input documents, with the slots filled with text from the document.

The task is generally modeled by training two separate supervised systems. The first system decides whether the template is present in a particular sentence. This task is called template recognition or sometimes, in a perhaps confusing bit of terminology, event recognition. Template recognition can be treated as a text classification task, with features extracted from every sequence of words that was labeled in training documents as filling any slot from the template being detected. The usual set of features can be used: tokens, word shapes, part-of-speech tags, syntactic chunk tags, and named entity tags.

The second system has the job of role-filler extraction. A separate classifier is trained to detect each role (LEAD AIRLINE, AMOUNT, and so on). This can be a binary classifier that is run on every noun-phrase in the parsed input sentence, or a sequence model run over sequences of words. Each role classifier is trained on the labeled data in the training set. Again, the usual set of features can be used, but now trained only on an individual noun phrase or the fillers of a single slot.

Multiple non-identical text segments might be labeled with the same slot label. For example in our sample text, the strings United or United Airlines might be labeled as the LEAD AIRLINE. These are not incompatible choices and the coreference resolution techniques introduced in Chapter 23 can provide a path to a solution.

A variety of annotated collections have been used to evaluate this style of approach to template filling, including sets of job announcements, conference calls for papers, restaurant guides, and biological texts.

Recent work focuses on extracting templates in cases where there is no training data or even predefined templates, by inducing templates as sets of linked events (Chambers and Jurafsky, 2011).

### 21.5.2 Earlier Finite-State Template-Filling Systems

The templates above are relatively simple. But consider the task of producing a template that contained all the information in a text like this one (Grishman and Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern and a Japanese trading house to produce golf clubs to be
The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production in January 1990 with production of 20,000 iron and "metal wood" clubs a month.

The MUC-5 'joint venture' task (the Message Understanding Conferences were a series of U.S. government-organized information-extraction evaluations) was to produce hierarchically linked templates describing joint ventures. Figure 21.26 shows a structure produced by the FASTUS system (Hobbs et al., 1997). Note how the filler of the ACTIVITY slot of the TIE-UP template is itself a template with slots.

<table>
<thead>
<tr>
<th>Tie-up-1</th>
<th>Activity-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELATIONSHIP</td>
<td>tie-up</td>
</tr>
<tr>
<td>ENTITIES</td>
<td>Bridgestone Sports Co.</td>
</tr>
<tr>
<td>a local concern</td>
<td></td>
</tr>
<tr>
<td>a Japanese trading house</td>
<td></td>
</tr>
<tr>
<td>JOINT VENTURE</td>
<td>Bridgestone Sports Taiwan Co.</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>Activity-1</td>
</tr>
<tr>
<td>AMOUNT</td>
<td>NTS20000000</td>
</tr>
<tr>
<td>COMPANY</td>
<td>Bridgestone Sports Taiwan Co.</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>iron and “metal wood” clubs</td>
</tr>
<tr>
<td>START DATE</td>
<td>DURING: January 1990</td>
</tr>
</tbody>
</table>

Figure 21.26 The templates produced by FASTUS given the input text on page 372.

Early systems for dealing with these complex templates were based on cascades of transducers based on hand-written rules, as sketched in Fig. 21.27.

<table>
<thead>
<tr>
<th>No.</th>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tokens</td>
<td>Tokenize input stream of characters</td>
</tr>
<tr>
<td>2</td>
<td>Complex Words</td>
<td>Multiword phrases, numbers, and proper names.</td>
</tr>
<tr>
<td>3</td>
<td>Basic phrases</td>
<td>Segment sentences into noun and verb groups</td>
</tr>
<tr>
<td>4</td>
<td>Complex phrases</td>
<td>Identify complex noun groups and verb groups</td>
</tr>
<tr>
<td>5</td>
<td>Semantic Patterns</td>
<td>Identify entities and events, insert into templates.</td>
</tr>
<tr>
<td>6</td>
<td>Merging</td>
<td>Merge references to the same entity or event</td>
</tr>
</tbody>
</table>

Figure 21.27 Levels of processing in FASTUS (Hobbs et al., 1997). Each level extracts a specific type of information which is then passed on to the next higher level.

The first four stages use hand-written regular expression and grammar rules to do basic tokenization, chunking, and parsing. Stage 5 then recognizes entities and events with a FST-based recognizer and inserts the recognized objects into the appropriate slots in templates. This FST recognizer is based on hand-built regular expressions like the following (NG indicates Noun-Group and VG Verb-Group), which matches the first sentence of the news story above.

NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies) VG(Produce) NG(Product)

The result of processing these two sentences is the five draft templates (Fig. 21.28) that must then be merged into the single hierarchical structure shown in Fig. 21.26. The merging algorithm, after performing coreference resolution, merges two activities that are likely to be describing the same events.

21.6 Summary

This chapter has explored a series of techniques for extracting limited forms of semantic content from texts. Most techniques can be characterized as problems in
Figure 21.28  The five partial templates produced by Stage 5 of the FASTUS system. These templates will be merged by the Stage 6 merging algorithm to produce the final template shown in Fig. 21.26 on page 373.

detection followed by classification.

- **Named entities** can be recognized and classified by sequence labeling techniques.
- **Relations among entities** can be extracted by pattern-based approaches, supervised learning methods when annotated training data is available, lightly supervised bootstrapping methods when small numbers of seed tuples or seed patterns are available, distant supervision when a database of relations is available, and unsupervised or Open IE methods.
- Reasoning about time can be facilitated by detection and normalization of temporal expressions through a combination of statistical learning and rule-based methods.
- **Events** can be detected and ordered in time using sequence models and classifiers trained on temporally- and event-labeled data like the TimeBank corpus.
- **Template-filling** applications can recognize stereotypical situations in texts and assign elements from the text to roles represented as fixed sets of slots.

### Bibliographical and Historical Notes

The earliest work on information extraction addressed the template-filling task and was performed in the context of the Frump system (DeJong, 1982). Later work was stimulated by the U.S. government-sponsored MUC conferences (Sundheim, 1991, 1992, 1993, 1995). Early MUC systems like CIRCUS system (Lehnert et al., 1991) and SCISOR (Jacobs and Rau, 1990) were quite influential and inspired later systems like FASTUS (Hobbs et al., 1997). Chinchor et al. (1993) describe the MUC evaluation techniques.

Due to the difficulty of reusing or porting systems from one domain to another, attention shifted to automatic knowledge acquisition. The earliest supervised learning approaches to IE are described in Cardie (1993), Cardie (1994), Riloff (1993), Soderland et al. (1995), Huffman (1996), and Freitag (1998). These early learning
efforts focused on automating the knowledge acquisition process for mostly finite-state rule-based systems. Their success, and the earlier success of HMM-based methods for automatic speech recognition, led to the development of statistical systems based on sequence labeling. Early efforts applying HMMs to IE problems include Bikel et al. (1997, 1999) and Freitag and McCallum (1999). Subsequent efforts demonstrated the effectiveness of a range of statistical methods including MEMMs (McCallum et al., 2000), CRFs (Lafferty et al., 2001), and SVMs (Sasano and Utsuro, 2000; McNamee and Mayfield, 2002). Zhou et al. (2005) explored different features for relation extraction. Progress in this area continues to be stimulated by formal evaluations with shared benchmark datasets. In the US, after the MUC evaluations of the mid-1990s the Automatic Content Extraction (ACE) evaluations of 2000-2007 focused on named entity recognition, relation extraction, and temporal expression extraction and normalization. These were followed by the KBP (Knowledge Base Population) evaluations (Ji et al. 2010b, Ji et al. 2010a, Surdeanu 2013) which included relation extraction tasks like slot filling (extracting values of attributes (‘slots’) like age, birthplace, and spouse for a given entity from text corpora). In addition, a new task was defined, entity linking, linking mentions of entities to their unique records in a database like Wikipedia; we return to entity linking in Chapter 23.

Semisupervised relation extraction was first proposed by Hearst (1992b). Important extensions included systems like DIPRE (Brin, 1998), and SNOWBALL (Agichtein and Gravano, 2000). The distant supervision algorithm we describe was drawn from Mintz et al. (2009), where the term ‘distant supervision’ was first defined, but similar ideas occurred in earlier systems like Craven and Kumlien (1999) and Morgan et al. (2004) under the name weakly labeled data, as well as in Snow et al. (2005) and Wu and Weld (2007). Among the many extensions are Wu and Weld (2010), Riedel et al. (2010), and Ritter et al. (2013). Open IE systems include KNOWITALL Etzioni et al. (2005), TextRunner (Banko et al., 2007), and REVERB (Fader et al., 2011). See Riedel et al. (2013) for a universal schema that combines the advantages of distant supervision and Open IE.

HeidelTime (Strögen and Gertz, 2013) and SUTime (Chang and Manning, 2012) are downloadable temporal extraction and normalization systems. The 2013 TempEval challenge is described in UzZaman et al. (2013); Chambers (2013) and Bethard (2013) give typical approaches.

Exercises

21.1 Develop a set of regular expressions to recognize the character shape features described in Fig. ??.

21.2 The IOB labeling scheme given in this chapter isn’t the only possible one. For example, an E tag might be added to mark the end of entities, or the B tag can be reserved only for those situations where an ambiguity exists between adjacent entities. Propose a new set of IOB tags for use with your NER system. Experiment with it and compare its performance with the scheme presented in this chapter.

---

3 www.nist.gov/speech/tests/ace/
21.3 Names of works of art (books, movies, video games, etc.) are quite different from the kinds of named entities we’ve discussed in this chapter. Collect a list of names of works of art from a particular category from a Web-based source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list and give examples of ways that the names in it are likely to be problematic for the techniques described in this chapter.

21.4 Develop an NER system specific to the category of names that you collected in the last exercise. Evaluate your system on a collection of text likely to contain instances of these named entities.

21.5 Acronym expansion, the process of associating a phrase with an acronym, can be accomplished by a simple form of relational analysis. Develop a system based on the relation analysis approaches described in this chapter to populate a database of acronym expansions. If you focus on English Three Letter Acronyms (TLAs) you can evaluate your system’s performance by comparing it to Wikipedia’s TLA page.

21.6 A useful functionality in newer email and calendar applications is the ability to associate temporal expressions connected with events in email (doctor’s appointments, meeting planning, party invitations, etc.) with specific calendar entries. Collect a corpus of email containing temporal expressions related to event planning. How do these expressions compare to the kinds of expressions commonly found in news text that we’ve been discussing in this chapter?

21.7 Acquire the CMU seminar corpus and develop a template-filling system by using any of the techniques mentioned in Section 21.5. Analyze how well your system performs as compared with state-of-the-art results on this corpus.
Understanding events and their participants is a key part of understanding natural language. At a high level, understanding an event means being able to answer the question “Who did what to whom” (and perhaps also “when and where”). The answers to this question may be expressed in many different ways in the sentence. For example, if we want to process sentences to help us answer question about a purchase of stock by XYZ Corporation, we need to understand this event despite many different surface forms. The event could be described by a verb (sold, bought) or a noun (purchase), and XYZ Corp can be the syntactic subject (of bought) the indirect object (of sold), or in a genitive or noun compound relation (with the noun purchase), in the following sentences, despite having notationally the same role in all of them:

- XYZ corporation bought the stock.
- They sold the stock to XYZ corporation.
- The stock was bought by XYZ corporation.
- The purchase of the stock by XYZ corporation...
- The stock purchase by XYZ corporation...

In this chapter we introduce a level of representation that lets us capture the commonality between these sentences. We will be able to represent the fact that there was a purchase event, that the participants in this event were XYZ Corp and some stock, and that XYZ Corp played a specific role, the role of acquiring the stock.

We call this shallow semantic representation level semantic roles. Semantic roles are representations that express the abstract role that arguments of a predicate can take in the event; these can be very specific, like the BUYER, abstract like the AGENT, or super-abstract (the PROTO-AGENT). These roles can both represent general semantic properties of the arguments and also express their likely relationship to the syntactic role of the argument in the sentence. AGENTS tend to be the subject of an active sentence, THEMES the direct object, and so on. These relations are codified in databases like PropBank and FrameNet. We’ll introduce semantic role labeling, the task of assigning roles to the constituents or phrases in sentences. We’ll also discuss selectional restrictions, the semantic sortal restrictions or preferences that each individual predicate can express about its potential arguments, such as the fact that the theme of the verb eat is generally something edible. Along the way, we’ll describe the various ways these representations can help in language understanding tasks like question answering and machine translation.

22.1 Semantic Roles

Consider how in Chapter 19 we represented the meaning of arguments for sentences like these:
Thematic Role | Definition
---|---
AGENT | The volitional causer of an event
EXPERIENCER | The experiencer of an event
FORCE | The non-volitional causer of the event
THEME | The participant most directly affected by an event
RESULT | The end product of an event
CONTENT | The proposition or content of a propositional event
INSTRUMENT | An instrument used in an event
BENEFICIARY | The beneficiary of an event
SOURCE | The origin of the object of a transfer event
GOAL | The destination of an object of a transfer event

Figure 22.1 Some commonly used thematic roles with their definitions.

(22.1) Sasha broke the window.

(22.2) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be

$$ \exists e, x, y \, \text{Breaking}(e) \land \text{Breaker}(e, \text{Sasha}) $$
$$ \land \text{BrokenThing}(e, y) \land \text{Window}(y) $$
$$ \exists e, x, y \, \text{Opening}(e) \land \text{Opener}(e, \text{Pat}) $$
$$ \land \text{OpenedThing}(e, y) \land \text{Door}(y) $$

In this representation, the roles of the subjects of the verbs break and open are Breaker and Opener respectively. These **deep roles** are specific to each event; Breaking events have Breakers, Opening events have Openers, and so on.

If we are going to be able to answer questions, perform inferences, or do any further kinds of natural language understanding of these events, we’ll need to know a little more about the semantics of these arguments. Breakers and Openers have something in common. They are both volitional actors, often animate, and they have direct causal responsibility for their events.

**Thematic roles** are a way to capture this semantic commonality between Breakers and Eaters. We say that the subjects of both these verbs are **agents**. Thus, **AGENT** is the thematic role that represents an abstract idea such as volitional causation. Similarly, the direct objects of both these verbs, the BrokenThing and OpenedThing, are both prototypically inanimate objects that are affected in some way by the action. The semantic role for these participants is **theme**.

Thematic roles are one of the oldest linguistic models, proposed first by the Indian grammarian Panini sometime between the 7th and 4th centuries BCE. Their modern formulation is due to Fillmore (1968) and Gruber (1965). Although there is no universally agreed-upon set of roles, Figs. 22.1 and 22.2 list some thematic roles that have been used in various computational papers, together with rough definitions and examples. Most thematic role sets have about a dozen roles, but we’ll see sets with smaller numbers of roles with even more abstract meanings, and sets with very large numbers of roles that are specific to situations. We’ll use the general term **semantic roles** for all sets of roles, whether small or large.
22.2 Diathesis Alternations

The main reason computational systems use semantic roles is to act as a shallow meaning representation that can let us make simple inferences that aren’t possible from the pure surface string of words, or even from the parse tree. To extend the earlier examples, if a document says that Company A acquired Company B, we’d like to know that this answers the query Was Company B acquired? despite the fact that the two sentences have very different surface syntax. Similarly, this shallow semantics might act as a useful intermediate language in machine translation.

Semantic roles thus help generalize over different surface realizations of predicate arguments. For example, while the AGENT is often realized as the subject of the sentence, in other cases the THEME can be the subject. Consider these possible realizations of the thematic arguments of the verb break:

\[(22.3)\quad \text{John} \quad \text{broke the window.}\]
\[\text{AGENT} \quad \text{THEME}\]

\[(22.4)\quad \text{John} \quad \text{broke the window with a rock.}\]
\[\text{AGENT} \quad \text{THEME} \quad \text{INSTRUMENT}\]

\[(22.5)\quad \text{The rock} \quad \text{broke the window.}\]
\[\text{INSTRUMENT} \quad \text{THEME}\]

\[(22.6)\quad \text{The window broke.}\]
\[\text{THEME}\]

\[(22.7)\quad \text{The window was broken by John.}\]
\[\text{THEME} \quad \text{AGENT}\]

These examples suggest that break has (at least) the possible arguments AGENT, THEME, and INSTRUMENT. The set of thematic role arguments taken by a verb is often called the thematic grid, θ-grid, or case frame. We can see that there are (among others) the following possibilities for the realization of these arguments of break:

\[\text{AGENT/Subject, THEME/Object}\]
\[\text{AGENT/Subject, THEME/Object, INSTRUMENT/PP}_{\text{with}}\]
\[\text{INSTRUMENT/Subject, THEME/Object}\]
\[\text{THEME/Subject}\]

It turns out that many verbs allow their thematic roles to be realized in various syntactic positions. For example, verbs like give can realize the THEME and GOAL arguments in two different ways:
These multiple argument structure realizations (the fact that *break* can take *AGENT*, *INSTRUMENT*, or *THEME* as subject, and *give* can realize its *THEME* and *GOAL* in either order) are called *verb alternations* or *diathesis alternations*. The alternation we showed above for *give*, the *dative alternation*, seems to occur with particular semantic classes of verbs, including “verbs of future having” (*advance*, *allocate*, *offer*, *owe*), “send verbs” (*forward*, *hand*, *mail*), “verbs of throwing” (*kick*, *pass*, *throw*), and so on. *Levin* (1993) lists for 3100 English verbs the semantic classes to which they belong (47 high-level classes, divided into 193 more specific classes) and the various alternations in which they participate. These lists of verb classes have been incorporated into the online resource VerbNet (*Kipper* et al., 2000), which links each verb to both WordNet and FrameNet entries.

### 22.3 Semantic Roles: Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in dealing with complications like diathesis alternations. Yet it has proved quite difficult to come up with a standard set of roles, and equally difficult to produce a formal definition of roles like *AGENT*, *THEME*, or *INSTRUMENT*.

For example, researchers attempting to define role sets often find they need to fragment a role like *AGENT* or *THEME* into many specific roles. *Levin and Rappaport Hovav* (2005) summarize a number of such cases, such as the fact there seem to be at least two kinds of *INSTRUMENTS*, *intermediary* instruments that can appear as subjects and *enabling* instruments that cannot:

(22.9) a. The cook opened the jar with the new gadget.

   b. The new gadget opened the jar.

(22.10) a. Shelly ate the sliced banana with a fork.

   b. *The fork ate the sliced banana.*

In addition to the fragmentation problem, there are cases in which we’d like to reason about and generalize across semantic roles, but the finite discrete lists of roles don’t let us do this.

Finally, it has proved difficult to formally define the thematic roles. Consider the *AGENT* role; most cases of *AGENTS* are animate, volitional, sentient, causal, but any individual noun phrase might not exhibit all of these properties.

These problems have led to alternative *semantic role* models that use either many fewer or many more roles.

The first of these options is to define *generalized semantic roles* that abstract over the specific thematic roles. For example, *PROTO-AGENT* and *PROTO-PATIENT* are generalized roles that express roughly agent-like and roughly patient-like meanings. These roles are defined, not by necessary and sufficient conditions, but rather by a set of heuristic features that accompany more agent-like or more patient-like meanings. Thus, the more an argument displays agent-like properties (being volitionally involved in the event, causing an event or a change of state in another participant, being sentient or intentionally involved, moving) the greater the likelihood
that the argument can be labeled a PROTO-AGENT. The more patient-like the properties (undergoing change of state, causally affected by another participant, stationary relative to other participants, etc.), the greater the likelihood that the argument can be labeled a PROTO-PATIENT.

The second direction is instead to define semantic roles that are specific to a particular verb or a particular group of semantically related verbs or nouns.

In the next two sections we describe two commonly used lexical resources that make use of these alternative versions of semantic roles. PropBank uses both proto-roles and verb-specific semantic roles. FrameNet uses semantic roles that are specific to a general semantic idea called a frame.

22.4 The Proposition Bank

The Proposition Bank, generally referred to as PropBank, is a resource of sentences annotated with semantic roles. The English PropBank labels all the sentences in the Penn TreeBank; the Chinese PropBank labels sentences in the Penn Chinese TreeBank. Because of the difficulty of defining a universal set of thematic roles, the semantic roles in PropBank are defined with respect to an individual verb sense. Each sense of each verb thus has a specific set of roles, which are given only numbers rather than names: Arg0, Arg1, Arg2, and so on. In general, Arg0 represents the PROTO-AGENT, and Arg1, the PROTO-PATIENT. The semantics of the other roles are less consistent, often being defined specifically for each verb. Nonetheless there are some generalization; the Arg2 is often the benefactive, instrument, attribute, or end state, the Arg3 the start point, benefactive, instrument, or attribute, and the Arg4 the end point.

Here are some slightly simplified PropBank entries for one sense each of the verbs agree and fall. Such PropBank entries are called frame files; note that the definitions in the frame file for each role (“Other entity agreeing”, “Extent, amount fallen”) are informal glosses intended to be read by humans, rather than being formal definitions.

(22.11) agree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]
[Arg1 on everything].

(22.12) fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1

Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

Note that there is no Arg0 role for fall, because the normal subject of fall is a PROTO-PATIENT.
The PropBank semantic roles can be useful in recovering shallow semantic information about verbal arguments. Consider the verb *increase*:

(22.13) **increase.01** “go up incrementally”

- **Arg0**: causer of increase
- **Arg1**: thing increasing
- **Arg2**: amount increased by, EXT, or MNR
- **Arg3**: start point
- **Arg4**: end point

A PropBank semantic role labeling would allow us to infer the commonality in the event structures of the following three examples, that is, that in each case *Big Fruit Co.* is the **AGENT** and *the price of bananas* is the **THEME**, despite the differing surface forms.

(22.14) \[Arg0 \text{ Big Fruit Co. } \] increased \[Arg1 \text{ the price of bananas} \].
(22.15) \[Arg1 \text{ The price of bananas} \] was increased again \[Arg0 \text{ by Big Fruit Co. } \].
(22.16) \[Arg1 \text{ The price of bananas} \] increased \[Arg2 \text{ 5%} \].

PropBank also has a number of non-numbered arguments called **ArgMs** (ArgM-TMP, ArgM-LOC, etc) which represent modification or adjunct meanings. These are relatively stable across predicates, so aren’t listed with each frame file. Data labeled with these modifiers can be helpful in training systems to detect temporal, location, or directional modification across predicates. Some of the ArgM’s include:

- **TMP** when? yesterday evening, now
- **LOC** where? at the museum, in San Francisco
- **DIR** where to/from? down, to Bangkok
- **MNR** how? clearly, with much enthusiasm
- **PRP/CAU** why? because ..., in response to the ruling
- **REC** themselves, each other
- **ADV** miscellaneous
- **PRD** secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al., 2004) adds annotations to noun predicates. For example the noun *agreement* in *Apple’s agreement with IBM* would be labeled with Apple as the **Arg0** and IBM as the **Arg2**. This allows semantic role labelers to assign labels to arguments of both verbal and nominal predicates.

### 22.5 FrameNet

While making inferences about the semantic commonalities across different sentences with *increase* is useful, it would be even more useful if we could make such inferences in many more situations, across different verbs, and also between verbs and nouns. For example, we’d like to extract the similarity among these three sentences:

(22.17) \[Arg1 \text{ The price of bananas} \] increased \[Arg2 \text{ 5%} \].
(22.18) \[Arg1 \text{ The price of bananas} \] rose \[Arg2 \text{ 5%} \].
(22.19) There has been a \[Arg2 \text{ 5%} \] rise \[Arg1 \text{ in the price of bananas} \].

Note that the second example uses the different verb *rise*, and the third example uses the noun rather than the verb *rise*. We’d like a system to recognize that *the*
price of bananas is what went up, and that 5% is the amount it went up, no matter whether the 5% appears as the object of the verb increased or as a nominal modifier of the noun rise.

The FrameNet project is another semantic-role-labeling project that attempts to address just these kinds of problems (Baker et al. 1998, Fillmore et al. 2003, Fillmore and Baker 2009, Ruppenhofer et al. 2010). Whereas roles in the PropBank project are specific to an individual verb, roles in the FrameNet project are specific to a frame.

What is a frame? Consider the following set of words:

reservation, flight, travel, buy, price, cost, fare, rates, meal, plane

There are many individual lexical relations of hyponymy, synonymy, and so on between many of the words in this list. The resulting set of relations does not, however, add up to a complete account of how these words are related. They are clearly all defined with respect to a coherent chunk of common-sense background information concerning air travel.

We call the holistic background knowledge that unites these words a frame (Fillmore, 1985). The idea that groups of words are defined with respect to some background information is widespread in artificial intelligence and cognitive science, where besides frame we see related works like a model (Johnson-Laird, 1983), or even script (Schank and Abelson, 1977).

A frame in FrameNet is a background knowledge structure that defines a set of frame-specific semantic roles, called frame elements, and includes a set of predicates that use these roles. Each word evokes a frame and profiles some aspect of the frame and its elements. The FrameNet dataset includes a set of frames and frame elements, the lexical units associated with each frame, and a set of labeled example sentences.

For example, the change position on a scale frame is defined as follows:

This frame consists of words that indicate the change of an Item’s position on a scale (the Attribute) from a starting point (Initial_value) to an end point (Final_value).

Some of the semantic roles (frame elements) in the frame are defined as in Fig. 22.3. Note that these are separated into core roles, which are frame specific, and non-core roles, which are more like the Arg-M arguments in PropBank, expressed more general properties of time, location, and so on.

Here are some example sentences:

(22.20) [ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].
(22.21) [ITEM It] has increased [FINAL_STATE to having them 1 day a month].
(22.22) [ITEM Microsoft shares] fell [FINAL_VALUE to 7 5/8].
(22.23) [ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among men].
(22.24) a steady increase [INITIAL_VALUE from 9.5] [FINAL_VALUE to 14.3] [ITEM in dividends]
(22.25) a [DIFFERENCE 5%] [ITEM dividend] increase...

Note from these example sentences that the frame includes target words like rise, fall, and increase. In fact, the complete frame consists of the following words:
22.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automatically finding the semantic roles of each argument of each predicate in a sentence. Current approaches to semantic role labeling are based on supervised machine learning, often using the FrameNet and PropBank resources to specify what counts as a predicate, define the set of roles used in the task, and provide training and test sets.
Recall that the difference between these two models of semantic roles is that FrameNet (22.27) employs many frame-specific frame elements as roles, while PropBank (22.28) uses a smaller number of numbered argument labels that can be interpreted as verb-specific labels, along with the more general ARG labels. Some examples:

(22.27) \[\text{You} \text{ can't blame the program for being unable to identify it}\]

COGNIZER TARGET EVALUEE REASON

(22.28) \[\text{The San Francisco Examiner} \text{ issued a special edition yesterday}\]

ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched in Fig. 22.4. While there are a large number of algorithms, many of them use some version of the steps in this algorithm.

Most algorithms, beginning with the very earliest semantic role analyzers (Simmons, 1973), begin by parsing, using broad-coverage parsers to assign a parse to the input string. Figure 22.5 shows a parse of (22.28) above. The parse is then traversed to find all words that are predicates.

For each of these predicates, the algorithm examines each node in the parse tree and decides the semantic role (if any) it plays for this predicate.

This is generally done by supervised classification. Given a labeled training set such as PropBank or FrameNet, a feature vector is extracted for each node, using feature templates described in the next subsection.

A 1-of-N classifier is then trained to predict a semantic role for each constituent given these features, where N is the number of potential semantic roles plus an extra NONE role for non-role constituents. Most standard classification algorithms have been used (logistic regression, SVM, etc). Finally, for each test sentence to be labeled, the classifier is run on each relevant constituent. We give more details of the algorithm after we discuss features.

```
function SEMANTICROLELABEL(words) returns labeled tree
    parse ← PARSE(words)
    for each predicate in parse do
        for each node in parse do
            featurevector ← EXTRACTFEATURES(node, predicate, parse)
            CLASSIFYNODE(node, featurevector, parse)
```

**Figure 22.4** A generic semantic role-labeling algorithm. CLASSIFYNODE is a 1-of-N classifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data such as FrameNet or PropBank.

**Features for Semantic Role Labeling**

A wide variety of features can be used for semantic role labeling. Most systems use some generalization of the core set of features introduced by Gildea and Jurafsky (2000). A typical set of basic features are based on the following feature templates (demonstrated on the NP-SBJ constituent *The San Francisco Examiner* in Fig. 22.5):

- The governing **predicate**, in this case the verb *issued*. The predicate is a crucial feature since labels are defined only with respect to a particular predicate.
- The **phrase type** of the constituent, in this case, *NP* (or *NP-SBJ*). Some semantic roles tend to appear as *NPs*, others as *S* or *PP*, and so on.
• The **headword** of the constituent, *Examiner*. The headword of a constituent can be computed with standard head rules, such as those given in Chapter 11 in Fig. 11.12. Certain headwords (e.g., pronouns) place strong constraints on the possible semantic roles they are likely to fill.

• The **headword part of speech** of the constituent, *NNP*.

• The **path** in the parse tree from the constituent to the predicate. This path is marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000), we can use a simple linear representation of the path, \( \text{NP} \uparrow \text{S} \downarrow \text{VP} \downarrow \text{VBD} \). \( \uparrow \) and \( \downarrow \) represent upward and downward movement in the tree, respectively. The path is very useful as a compact representation of many kinds of grammatical function relationships between the constituent and the predicate.

• The **voice** of the clause in which the constituent appears, in this case, *active* (as contrasted with *passive*). Passive sentences tend to have strongly different linkings of semantic roles to surface form than do active ones.

• The **binary linear position** of the constituent with respect to the predicate, either *before* or *after*.

• The **subcategorization** of the predicate, the set of expected arguments that appear in the verb phrase. We can extract this information by using the phrase-structure rule that expands the immediate parent of the predicate; \( \text{VP} \rightarrow \text{VBD} \text{NP PP} \) for the predicate in Fig. 22.5.

• The named entity type of the constituent.

• The first words and the last word of the constituent.

The following feature vector thus represents the first NP in our example (recall that most observations will have the value NONE rather than, for example, \( \text{ARG}0 \), since most constituents in the parse tree will not bear a semantic role):

\[
\text{ARG}0: [\text{issued}, \text{NP}, \text{Examiner}, \text{NNP}, \text{NP} \uparrow \text{S} \downarrow \text{VP} \downarrow \text{VBD}, \text{active}, \text{before}, \text{VP} \rightarrow \text{NP PP}, \text{ORG}, \text{The}, \text{Examiner}]
\]

Other features are often used in addition, such as sets of n-grams inside the constituent, or more complex versions of the path features (the upward or downward halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the basis of features, for example using dependency parse paths instead of constituency paths.
Further Issues in Semantic Role Labeling

Instead of training a single-stage classifier, some role-labeling algorithms break down the classification task for the arguments of a predicate into multiple steps:

1. **Pruning:** Since only a small number of the constituents in a sentence are arguments of any given predicate, many systems use simple heuristics to prune unlikely constituents.

2. **Identification:** a binary classification of each node as an argument to be labeled or a NONE.

3. **Classification:** a 1-of-N classification of all the constituents that were labeled as arguments by the previous stage

The separation of identification and classification may lead to better use of features (different features may be useful for the two tasks) or to computational efficiency.

The classification algorithm described above classifies each argument separately (‘locally’), making the simplifying assumption that each argument of a predicate can be labeled independently. But this is of course not true; there are many kinds of interactions between arguments that require a more ‘global’ assignment of labels to constituents. For example, constituents in FrameNet and PropBank are required to be non-overlapping. Thus a system may incorrectly label two overlapping constituents as arguments. At the very least it needs to decide which of the two is correct; better would be to use a global criterion to avoid making this mistake. More significantly, the semantic roles of constituents are not independent; since PropBank does not allow multiple identical arguments, labeling one constituent as an ARG0 should greatly increase the probability of another constituent being labeled ARG1.

For this reason, many role labeling systems add a fourth step to deal with global consistency across the labels in a sentence. This fourth step can be implemented in many ways. The local classifiers can return a list of possible labels associated with probabilities for each constituent, and a second-pass re-ranking approach can be used to choose the best consensus label. Integer linear programming (ILP) is another common way to choose a solution that conforms best to multiple constraints.

The standard evaluation for semantic role labeling is to require that each argument label must be assigned to the exactly correct word sequence or parse constituent, and then compute precision, recall, and F-measure. Identification and classification can also be evaluated separately.

Systems for performing automatic semantic role labeling have been applied widely to improve the state-of-the-art in tasks across NLP like question answering (Shen and Lapata 2007, Surdeanu et al. 2011) and machine translation (Liu and Gildea 2010, Lo et al. 2013).

### 22.7 Selectional Restrictions

We turn in this section to another way to represent facts about the relationship between predicates and arguments. A **selectional restriction** is a semantic type constraint that a verb imposes on the kind of concepts that are allowed to fill its argument roles. Consider the two meanings associated with the following example:

(22.29) I want to eat someplace nearby.
There are two possible parses and semantic interpretations for this sentence. In the sensible interpretation, *eat* is intransitive and the phrase *someplace nearby* is an adjunct that gives the location of the eating event. In the nonsensical speaker-as-Godzilla interpretation, *eat* is transitive and the phrase *someplace nearby* is the direct object and the THEME of the eating, like the NP *Malaysian food* in the following sentences:

(22.30) I want to eat Malaysian food.

How do we know that *someplace nearby* isn’t the direct object in this sentence? One useful cue is the semantic fact that the THEME of EATING events tends to be something that is *edible*. This restriction placed by the verb *eat* on the filler of its THEME argument is a selectional restriction.

Selectional restrictions are associated with senses, not entire lexemes. We can see this in the following examples of the lexeme *serve*:

(22.31) The restaurant serves green-lipped mussels.

(22.32) Which airlines serve Denver?

Example (22.31) illustrates the offering-food sense of *serve*, which ordinarily restricts its THEME to be some kind of food Example (22.32) illustrates the provides a commercial service to sense of *serve*, which constrains its THEME to be some type of appropriate location.

Selectional restrictions vary widely in their specificity. The verb *imagine*, for example, imposes strict requirements on its AGENT role (restricting it to humans and other animate entities) but places very few semantic requirements on its THEME role. A verb like *diagonalize*, on the other hand, places a very specific constraint on the filler of its THEME role: it has to be a matrix, while the arguments of the adjectives *odorless* are restricted to concepts that could possess an odor:

(22.33) In rehearsal, I often ask the musicians to *imagine* a tennis game.

(22.34) Radon is an *odorless* gas that can’t be detected by human senses.

(22.35) To *diagonalize* a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need to represent selectional restrictions (being a matrix, being able to possess an odor, etc) is quite open ended. This distinguishes selectional restrictions from other features for representing lexical knowledge, like parts-of-speech, which are quite limited in number.

### 22.7.1 Representing Selectional Restrictions

One way to capture the semantics of selectional restrictions is to use and extend the event representation of Chapter 19. Recall that the neo-Davidsonian representation of an event consists of a single variable that stands for the event, a predicate denoting the kind of event, and variables and relations for the event roles. Ignoring the issue of the $\lambda$-structures and using thematic roles rather than deep event roles, the semantic contribution of a verb like *eat* might look like the following:

$$ \exists e, x, y \text{Eating}(e) \land \text{Agent}(e, x) \land \text{Theme}(e, y) $$

With this representation, all we know about $y$, the filler of the THEME role, is that it is associated with an *Eating* event through the *Theme* relation. To stipulate the selectional restriction that $y$ must be something edible, we simply add a new term to that effect:

$$ \exists e, x, y \text{Eating}(e) \land \text{Agent}(e, x) \land \text{Theme}(e, y) \land \text{EdibleThing}(y) $$
When a phrase like *ate a hamburger* is encountered, a semantic analyzer can form the following kind of representation:

\[\exists e, x, y \, \text{Eating}(e) \land \text{Eater}(e, x) \land \text{Theme}(e, y) \land \text{EdibleThing}(y) \land \text{Hamburger}(y)\]

This representation is perfectly reasonable since the membership of \(y\) in the category *Hamburger* is consistent with its membership in the category *EdibleThing*, assuming a reasonable set of facts in the knowledge base. Correspondingly, the representation for a phrase such as *ate a takeoff* would be ill-formed because membership in an event-like category such as *Takeoff* would be inconsistent with membership in the category *EdibleThing*.

While this approach adequately captures the semantics of selectional restrictions, there are two problems with its direct use. First, using FOL to perform the simple task of enforcing selectional restrictions is overkill. Other, far simpler, formalisms can do the job with far less computational cost. The second problem is that this approach presupposes a large, logical knowledge base of facts about the concepts that make up selectional restrictions. Unfortunately, although such common-sense knowledge bases are being developed, none currently have the kind of coverage necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet synsets rather than as logical concepts. Each predicate simply specifies a WordNet synset as the selectional restriction on each of its arguments. A meaning representation is well-formed if the role filler word is a hyponym (subordinate) of this synset.

For our *ate a hamburger* example, for instance, we could set the selectional restriction on the THEME role of the verb *eat* to the synset \{food, nutrient\}, glossed as any substance that can be metabolized by an animal to give energy and build tissue. Luckily, the chain of hypernyms for *hamburger* shown in Fig. 22.6 reveals that hamburgers are indeed food. Again, the filler of a role need not match the restriction synset exactly; it just needs to have the synset as one of its superordinates.

We can apply this approach to the THEME roles of the verbs *imagine, lift,* and *diagonalize,* discussed earlier. Let us restrict *imagine*’s THEME to the synset \{entity\}, *lift*’s THEME to \{physical entity\}, and *diagonalize* to \{matrix\}. This arrangement correctly permits *imagine a hamburger* and *lift a hamburger,* while also correctly ruling out *diagonalize a hamburger.*
22.7.2 Selectional Preferences

In the earliest implementations, selectional restrictions were considered strict constraints on the kind of arguments a predicate could take (Katz and Fodor 1963, Hirst 1987). For example, the verb *eat* might require that its THEME argument be [+FOOD]. Early word sense disambiguation systems used this idea to rule out senses that violated the selectional restrictions of their governing predicates.

Very quickly, however, it became clear that these selectional restrictions were better represented as preferences rather than strict constraints (Wilks 1975c, Wilks 1975b). For example, selectional restriction violations (like inedible arguments of *eat*) often occur in well-formed sentences, for example because they are negated (22.36), or because selectional restrictions are overstated (22.37):

(22.36) But it fell apart in 1931, perhaps because people realized you can’t *eat* gold for lunch if you’re hungry.

(22.37) In his two championship trials, Mr. Kulkarni *ate* glass on an empty stomach, accompanied only by water and tea.

Modern systems for selectional preferences therefore specify the relation between a predicate and its possible arguments with soft constraints of some kind.

Selectional Association

One of the most influential has been the selectional association model of Resnik (1993). Resnik defines the idea of selectional preference strength as the general amount of information that a predicate tells us about the semantic class of its arguments. For example, the verb *eat* tells us a lot about the semantic class of its direct objects, since they tend to be edible. The verb *be*, by contrast, tells us less about its direct objects. The selectional preference strength can be defined by the difference in information between two distributions: the distribution of expected semantic classes \( P(c) \) (how likely is it that a direct object will fall into class \( c \)) and the distribution of expected semantic classes for the particular verb \( P(c|v) \) (how likely is it that the direct object of the specific verb \( v \) will fall into semantic class \( c \)). The greater the difference between these distributions, the more information the verb is giving us about possible objects. The difference between these two distributions can be quantified by relative entropy, or the Kullback-Leibler divergence (Kullback and Leibler, 1951). The Kullback-Leibler or KL divergence \( D(P||Q) \) expresses the difference between two probability distributions \( P \) and \( Q \) (we’ll return to this when we discuss distributional models of meaning in Chapter 15).

\[
D(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}
\]  

(22.38)

The selectional preference \( S_R(v) \) uses the KL divergence to express how much information, in bits, the verb \( v \) expresses about the possible semantic class of its argument.

\[
S_R(v) = D(P(c|v)||P(c)) = \sum_c P(c|v) \log \frac{P(c|v)}{P(c)}
\]  

(22.39)
as the relative contribution of that class to the general selectional preference of the verb:

\[ A_R(v,c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)} \]  

The selectional association is thus a probabilistic measure of the strength of association between a predicate and a class dominating the argument to the predicate. Resnik estimates the probabilities for these associations by parsing a corpus, counting all the times each predicate occurs with each argument word, and assuming that each word is a partial observation of all the WordNet concepts containing the word. The following table from Resnik (1996) shows some sample high and low selectional associations for verbs and some WordNet semantic classes of their direct objects.

<table>
<thead>
<tr>
<th>Verb</th>
<th>Direct Object</th>
<th>Semantic Class</th>
<th>Assoc</th>
<th>Direct Object</th>
<th>Semantic Class</th>
<th>Assoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>WRITING</td>
<td>6.80</td>
<td>ACTIVITY</td>
<td>.20</td>
<td>COMMERCE</td>
<td>0</td>
</tr>
<tr>
<td>write</td>
<td>WRITING</td>
<td>7.26</td>
<td>COMMERC</td>
<td>0</td>
<td>ENTITY</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

**Selectional Preference via Conditional Probability**

An alternative to using selectional association between a verb and the WordNet class of its arguments, is to simply use the conditional probability of an argument word given a predicate verb. This simple model of selectional preferences can be used to directly model the strength of association of one verb (predicate) with one noun (argument).

The conditional probability model can be computed by parsing a very large corpus (billions of words), and computing co-occurrence counts: how often a given verb occurs with a given noun in a given relation. The conditional probability of an argument noun given a verb for a particular relation \( P(n|v,r) \) can then be used as a selectional preference metric for that pair of words (Brockmann and Lapata, 2003):

\[ P(n|v,r) = \begin{cases} 
\frac{C(n,v,r)}{C(v,r)} & \text{if } C(n,v,r) > 0 \\
0 & \text{otherwise} 
\end{cases} \]

The inverse probability \( P(v|n,r) \) was found to have better performance in some cases (Brockmann and Lapata, 2003):

\[ P(v|n,r) = \begin{cases} 
\frac{C(n,v,r)}{C(n,r)} & \text{if } C(n,v,r) > 0 \\
0 & \text{otherwise} 
\end{cases} \]

In cases where it’s not possible to get large amounts of parsed data, another option, at least for direct objects, is to get the counts from simple part-of-speech based approximations. For example pairs can be extracted using the pattern “V Det N”, where V is any form of the verb, Det is the—a—ε and N is the singular or plural form of the noun (Keller and Lapata, 2003).

An even simpler approach is to use the simple log co-occurrence frequency of the predicate with the argument log count \( (v,n,r) \) instead of conditional probability; this seems to do better for extracting preferences for syntactic subjects rather than objects (Brockmann and Lapata, 2003).
Chapter 22 • Semantic Role Labeling

Evaluating Selectional Preferences

One way to evaluate models of selectional preferences is to use pseudowords (Gale et al. 1992c, Schütze 1992a). A pseudoword is an artificial word created by concatenating a test word in some context (say banana) with a confounder word (say door) to create banana-door. The task of the system is to identify which of the two words is the original word. To evaluate a selectional preference model (for example on the relationship between a verb and a direct object) we take a test corpus and select all verb tokens. For each verb token (say drive) we select the direct object (e.g., car), concatenated with a confounder word that is its nearest neighbor, the noun with the frequency closest to the original (say house), to make car/house. We then use the selectional preference model to choose which of car and house are more preferred objects of drive, and compute how often the model chooses the correct original object (e.g., car) (Chambers and Jurafsky, 2010).

Another evaluation metric is to get human preferences for a test set of verb-argument pairs, and have them rate their degree of plausibility. This is usually done by using magnitude estimation, a technique from psychophysics, in which subjects rate the plausibility of an argument proportional to a modulus item. A selectional preference model can then be evaluated by its correlation with the human preferences (Keller and Lapata, 2003).

22.8 Primitive Decomposition of Predicates

One way of thinking about the semantic roles we have discussed through the chapter is that they help us define the roles that arguments play in a decompositional way, based on finite lists of thematic roles (agent, patient, instrument, proto-agent, proto-patient, etc.) This idea of decomposing meaning into sets of primitive semantics elements or features, called primitive decomposition or componential analysis, has been taken even further, and focused particularly on predicates.

Consider these examples of the verb kill:

(22.41) Jim killed his philodendron.
(22.42) Jim did something to cause his philodendron to become not alive.

There is a truth-conditional (‘propositional semantics’) perspective from which these two sentences have the same meaning. Assuming this equivalence, we could represent the meaning of kill as:

(22.43) KILL(x,y) ⇔ CAUSE(x, BECOME(NOT(ALIVE(y))))

thus using semantic primitives like do, cause, become not, and alive.

Indeed, one such set of potential semantic primitives has been used to account for some of the verbal alternations discussed in Section 22.2 (Lakoff, 1965; Dowty, 1979). Consider the following examples.

(22.44) John opened the door. ⇒ CAUSE(John(BECOME(OPEN(doors))))
(22.45) The door opened. ⇒ BECOME(OPEN(doors))
(22.46) The door is open. ⇒ OPEN(doors)

The decompositional approach asserts that a single state-like predicate associated with open underlies all of these examples. The differences among the meanings of these examples arises from the combination of this single predicate with the primitives cause and become.
While this approach to primitive decomposition can explain the similarity between states and actions or causative and non-causative predicates, it still relies on having a large number of predicates like open. More radical approaches choose to break down these predicates as well. One such approach to verbal predicate decomposition that played a role in early natural language understanding systems is conceptual dependency (CD), a set of ten primitive predicates, shown in Fig. 22.7.

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRANS</td>
<td>The abstract transfer of possession or control from one entity to another</td>
</tr>
<tr>
<td>PTRANS</td>
<td>The physical transfer of an object from one location to another</td>
</tr>
<tr>
<td>MTRANS</td>
<td>The transfer of mental concepts between entities or within an entity</td>
</tr>
<tr>
<td>MBUILD</td>
<td>The creation of new information within an entity</td>
</tr>
<tr>
<td>PROPEL</td>
<td>The application of physical force to move an object</td>
</tr>
<tr>
<td>MOVE</td>
<td>The integral movement of a body part by an animal</td>
</tr>
<tr>
<td>INGEST</td>
<td>The taking in of a substance by an animal</td>
</tr>
<tr>
<td>EXPEL</td>
<td>The expulsion of something from an animal</td>
</tr>
<tr>
<td>SPEAK</td>
<td>The action of producing a sound</td>
</tr>
<tr>
<td>ATTEND</td>
<td>The action of focusing a sense organ</td>
</tr>
</tbody>
</table>

Figure 22.7 A set of conceptual dependency primitives.

Below is an example sentence along with its CD representation. The verb brought is translated into the two primitives ATRANS and PTRANS to indicate that the waiter both physically conveyed the check to Mary and passed control of it to her. Note that CD also associates a fixed set of thematic roles with each primitive to represent the various participants in the action.

(22.47) The waiter brought Mary the check.

\[
\exists x, y \ ATRANS(x) \land Actor(x, Waiter) \land Object(x, Check) \land To(x, Mary) \\
\land PTRANS(y) \land Actor(y, Waiter) \land Object(y, Check) \land To(y, Mary)
\]

22.9 AMR

To be written

22.10 Summary

- **Semantic roles** are abstract models of the role an argument plays in the event described by the predicate.
- **Thematic roles** are a model of semantic roles based on a single finite list of roles. Other semantic role models include per-verb semantic role lists and proto-agent/proto-patient, both of which are implemented in PropBank, and per-frame role lists, implemented in FrameNet.
Semantic role labeling is the task of assigning semantic role labels to the constituents of a sentence. The task is generally treated as a supervised machine learning task, with models trained on PropBank or FrameNet. Algorithms generally start by parsing a sentence and then automatically tag each parse tree node with a semantic role.

Semantic selectional restrictions allow words (particularly predicates) to post constraints on the semantic properties of their argument words. Selectional preference models (like selectional association or simple conditional probability) allow a weight or probability to be assigned to the association between a predicate and an argument word or class.

Bibliographical and Historical Notes

Although the idea of semantic roles dates back to Panini, they were re-introduced into modern linguistics by (Gruber, 1965) and (Fillmore, 1966) and (Fillmore, 1968). Fillmore, interestingly, had become interested in argument structure by studying Lucien Tesnière’s groundbreaking *Éléments de Syntaxe Structurale* (Tesnière, 1959) in which the term ‘dependency’ was introduced and the foundations were laid for dependency grammar. Following Tesnière’s terminology, Fillmore first referred to argument roles as *actants* (Fillmore, 1966) but quickly switched to the term *case*, (see Fillmore (2003)) and proposed a universal list of semantic roles or cases (Agent, Patient, Instrument, etc.), that could be taken on by the arguments of predicates. Verbs would be listed in the lexicon with their ‘case frame’, the list of obligatory (or optional) case arguments.

The idea that semantic roles could provide an intermediate level of semantic representation that could help map from syntactic parse structures to deeper, more fully-specified representations of meaning was quickly adopted in natural language processing, and systems for extracting case frames were created for machine translation (Wilks, 1973), question-answering (Hendrix et al., 1973), spoken-language understanding (Nash-Webber, 1975), and dialogue systems (Bobrow et al., 1977). General-purpose semantic role labelers were developed. The earliest ones (Simmons, 1973) first parsed a sentence by means of an ATN parser. Each verb then had a set of rules specifying how the parse should be mapped to semantic roles. These rules mainly made reference to grammatical functions (subject, object, complement of specific prepositions) but also checked constituent internal features such as the animacy of head nouns. Later systems assigned roles from pre-built parse trees, again by using dictionaries with verb-specific case frames (Levin 1977, Marcus 1980).

By 1977 case representation was widely used and taught in natural language processing and artificial intelligence, and was described as a standard component of natural language understanding in the first edition of Winston’s (1977) textbook *Artificial Intelligence*.

In the 1980s Fillmore proposed his model of *frame semantics*, later describing the intuition as follows:

“The idea behind frame semantics is that speakers are aware of possibly quite complex situation types, packages of connected expectations, that go by various names—frames, schemas, scenarios, scripts, cultural narratives, memes—and the words in our language are understood with such frames as their presupposed background.” (Fillmore, 2012, p. 712)
The word *frame* seemed to be in the air for a suite of related notions proposed at about the same time by Minsky (1974), Hymes (1974), and Goffman (1974), as well as related notions with other names like *scripts* (Schank and Abelson, 1975) and *schemata* (Bobrow and Norman, 1975) (see Tannen (1979) for a comparison). Fillmore was also influenced by the semantic field theorists and by a visit to the Yale AI lab where he took notice of the lists of slots and fillers used by early information extraction systems like DeJong (1982) and Schank and Abelson (1977). In the 1990s Fillmore drew on these insights to begin the FrameNet corpus annotation project.

At the same time, Beth Levin drew on her early case frame dictionaries (Levin, 1977) to develop her book which summarized sets of verb classes defined by shared argument realizations (Levin, 1993). The VerbNet project built on this work (Kipper et al., 2000), leading soon afterwards to the PropBank semantic-role-labeled corpus created by Martha Palmer and colleagues (Palmer et al., 2005). The combination of rich linguistic annotation and corpus-based approach instantiated in FrameNet and PropBank led to a revival of automatic approaches to semantic role labeling, first on FrameNet (Gildea and Jurafsky, 2000) and then on PropBank data (Gildea and Palmer, 2002, inter alia). The problem first addressed in the 1970s by hand-written rules was thus now generally recast as one of supervised machine learning enabled by large and consistent databases. Many popular features used for role labeling are defined in Gildea and Jurafsky (2002), Surdeanu et al. (2003), Xue and Palmer (2004), Pradhan et al. (2005), Che et al. (2009), and Zhao et al. (2009).

The use of dependency rather than constituency parses was introduced in the CoNLL-2008 shared task (Surdeanu et al., 2008b). For surveys see Palmer et al. (2010) and Márquez et al. (2008).

To avoid the need for huge labeled training sets, unsupervised approaches for semantic role labeling attempt to induce the set of semantic roles by generalizing over syntactic features of arguments (Swier and Stevenson 2004, Grenager and Manning 2006, Titov and Klementiev 2012, Lang and Lapata 2014).

The most recent work in semantic role labeling focuses on the use of deep neural networks (Collobert et al. 2011, Foland Jr and Martin 2015).

Selectional preference has been widely studied beyond the selectional association models of Resnik (1993) and Resnik (1996). Methods have included clustering (Rooth et al., 1999), discriminative learning (Bergsma et al., 2008), and topic models (Séaghdha 2010, Ritter et al. 2010), and constraints can be expressed at the level of words or classes (Agirre and Martínez, 2001). Selectional preferences have also been successfully integrated into semantic role labeling (Erk 2007, Zapirain et al. 2013).

**Exercises**
CHAPTER 24

Discourse Coherence
CHAPTER 25

Machine Translation and Seq2Seq Models
CHAPTER 26

Summarization
The quest for knowledge is deeply human, and so it is not surprising that practically as soon as there were computers, and certainly as soon as there was natural language processing, we were trying to use computers to answer textual questions. By the early 1960s, there were systems implementing the two major modern paradigms of question answering—IR-based question answering and knowledge-based question answering—to answer questions about baseball statistics or scientific facts. Even imaginary computers got into the act. Deep Thought, the computer that Douglas Adams invented in *The Hitchhiker’s Guide to the Galaxy*, managed to answer “the Great Question Of Life The Universe and Everything” (the answer was 42, but unfortunately the details of the question were never revealed).

More recently, IBM’s Watson question-answering system won the TV game-show *Jeopardy!* in 2011, beating humans at the task of answering questions like

WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA’ INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL.”

Although the goal of quiz shows is entertainment, the technology used to answer these questions both draws on and extends the state of the art in practical question answering, as we will see.

Most current question answering systems focus on factoid questions. Factoid questions are questions that can be answered with simple facts expressed in short text answers. The following factoid questions, for example, can be answered with a short string expressing a personal name, temporal expression, or location:

(27.1) Who founded Virgin Airlines?
(27.2) What is the average age of the onset of autism?
(27.3) Where is Apple Computer based?

In this chapter we describe the two major modern paradigms to question answering, focusing on their application to factoid questions.

The first paradigm is called **IR-based question answering** or sometimes **text-based question answering**, and relies on the enormous amounts of information available as text on the Web or in specialized collections such as PubMed. Given a user question, information retrieval techniques extract passages directly from these documents, guided by the text of the question.

The method processes the question to determine the likely **answer type** (often a named entity like a person, location, or time), and formulates queries to send to a search engine. The search engine returns ranked documents which are broken up into suitable passages and reranked. Finally candidate answer strings are extracted from the passages and ranked.

---

1 The answer, of course, is Bram Stoker, and the novel was the fantastically Gothic *Dracula*.
In the second paradigm, **knowledge-based question answering**, we instead build a semantic representation of the query. The meaning of a query can be a full predicate calculus statement. So the question *What states border Texas?*—taken from the GeoQuery database of questions on U.S. Geography (Zelle and Mooney, 1996)—might have the representation:

$$\lambda x. \text{state}(x) \land \text{borders}(x, \text{texas})$$

Alternatively the meaning of a question could be a single relation between a known and an unknown entity. Thus the representation of the question *When was Ada Lovelace born?* could be *birth-year (Ada Lovelace, ?x)*.

Whatever meaning representation we choose, we’ll be using it to query databases of facts. These might be complex databases, perhaps of scientific facts or geospatial information, that need powerful logical or SQL queries. Or these might be databases of simple relations, **triple stores** like Freebase or DBpedia introduced in Chapter 20.

Large practical systems like the DeepQA system in IBM’s Watson generally are hybrid systems, using both text datasets and structured knowledge bases to answer questions. DeepQA extracts a wide variety of meanings from the question (parses, relations, named entities, ontological information), and then finds large numbers of candidate answers in both knowledge bases and in textual sources like Wikipedia or newspapers. Each candidate answer is then scored using a wide variety of knowledge sources, such as geospatial databases, temporal reasoning, taxonomical classification, and various textual sources.

We’ll explore all three of these approaches: IR-based, knowledge-based, and the Watson DeepQA system, in the next three sections.

### 27.1 IR-based Factoid Question Answering

The goal of IR-based question answering is to answer a user’s question by finding short text segments on the Web or some other collection of documents. Figure 27.1 shows some sample factoid questions and their answers.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where is the Louvre Museum located?</td>
<td>in Paris, France</td>
</tr>
<tr>
<td>What’s the abbreviation for limited partnership?</td>
<td>L.P.</td>
</tr>
<tr>
<td>What are the names of Odin’s ravens?</td>
<td>Huginn and Muninn</td>
</tr>
<tr>
<td>What currency is used in China?</td>
<td>the yuan</td>
</tr>
<tr>
<td>What kind of nuts are used in marzipan?</td>
<td>almonds</td>
</tr>
<tr>
<td>What instrument does Max Roach play?</td>
<td>drums</td>
</tr>
<tr>
<td>What’s the official language of Algeria?</td>
<td>Arabic</td>
</tr>
<tr>
<td>How many pounds are there in a stone?</td>
<td>14</td>
</tr>
</tbody>
</table>

**Figure 27.1** Some sample factoid questions and their answers.

Figure 27.2 shows the three phases of an IR-based factoid question-answering system: question processing, passage retrieval and ranking, and answer processing.

### 27.1.1 Question Processing

The goal of the question-processing phase is to extract a number of pieces of information from the question. The **answer type** specifies the kind of entity the answer consists of (person, location, time, etc.). The **query** specifies the keywords that should be used for the IR system to use in searching for documents. Some systems
also extract a focus, which is the string of words in the question that are likely to be replaced by the answer in any answer string found. Some systems also classify the question type: is this a definition question, a math question, a list question? For example, for the following question:

Which US state capital has the largest population?

The query processing should produce results like the following:

**Answer Type:** city
**Query:** US state capital, largest, population
**Focus:** state capital

In the next two sections we summarize the two most commonly used tasks, answer type detection and query formulation.

### 27.1.2 Answer Type Detection (Question Classification)

The task of question classification or answer type recognition is to determine the answer type, the named-entity or similar class categorizing the answer. A question like “Who founded Virgin Airlines” expects an answer of type PERSON. A question like “What Canadian city has the largest population?” expects an answer of type CITY. If we know the answer type for a question, we can avoid looking at every sentence or noun phrase in the entire suite of documents for the answer, instead focusing on, for example, just people or cities.

As some of the above examples suggest, we might draw the set of possible answer types for a question classifier from a set of named entities like PERSON, LOCATION, and ORGANIZATION described in Chapter 20. Usually, however, a richer, often hierarchical set of answer types is used, an answer type taxonomy. Such taxonomies can be built semi-automatically and dynamically, for example, from WordNet (Harabagiu et al. 2000, Pasca 2003), or they can be designed by hand.

Figure 27.4 shows one such hand-built ontology, the Li and Roth (2005) tagset; a subset is shown graphically in Fig. 27.3. In this hierarchical tagset, each question can be labeled with a coarse-grained tag like HUMAN or a fine-grained tag like HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on. Similar tags are used in other systems; the HUMAN:DESCRIPTION type is often called a BIOGRAPHY question because the answer is required to give a brief biography of the person rather than just a name.

Question classifiers can be built by hand-writing rules, by supervised machine learning, or with some combination. The Webclopedia QA Typology, for example,
contains 276 hand-written rules associated with the approximately 180 answer types
in the typology (Hovy et al., 2002). A regular expression rule for detecting an answer

type like BIOGRAPHY (which assumes the question has been named-entity-tagged)

might be

(27.4) who \{is \, was \, are \, were\} PERSON

Most modern question classifiers, however, are based on supervised machine

learning, and are trained on databases of questions that have been hand-labeled with

an answer type (Li and Roth, 2002). Typical features used for classification include

the words in the questions, the part-of-speech of each word, and named entities in

the questions.

Often, a single word in the question gives extra information about the answer

type, and its identity is used as a feature. This word is sometimes called the answer

type word or question headword, and may be defined as the headword of the first NP

after the question’s wh-word; headwords are indicated in boldface in the following examples:

(27.5) Which city in China has the largest number of foreign financial companies?

(27.6) What is the state flower of California?

Finally, it often helps to use semantic information about the words in the questions.
The WordNet synset ID of the word can be used as a feature, as can the IDs of the hypernym
and hyponyms of each word in the question.

In general, question classification accuracies are relatively high on easy question
types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

27.1.3 Query Formulation

Query formulation is the task of creating from the question a list of keywords

that form a query that can be sent to an information retrieval system. Exactly what

query to form depends on the application. If question answering is applied to the

Web, we might simply create a keyword from every word in the question, letting

the Web search engine automatically remove any stopwords. Often, we leave out

the question word (where, when, etc.). Alternatively, keywords can be formed from

only the terms found in the noun phrases in the question, applying stopword lists to

ignore function words and high-frequency, low-content verbs.
<table>
<thead>
<tr>
<th>Tag</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATION</td>
<td></td>
</tr>
<tr>
<td>abb</td>
<td>What’s the abbreviation for limited partnership?</td>
</tr>
<tr>
<td>exp</td>
<td>What does the “c” stand for in the equation E=mc^2?</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>What are tannins?</td>
</tr>
<tr>
<td>description</td>
<td>What are the words to the CanadianNational anthem?</td>
</tr>
<tr>
<td>manner</td>
<td>How can you get rust stains out of clothing?</td>
</tr>
<tr>
<td>reason</td>
<td>What caused the Titanic to sink?</td>
</tr>
<tr>
<td>ENTITY</td>
<td></td>
</tr>
<tr>
<td>animal</td>
<td>What are the names of Odin’s ravens?</td>
</tr>
<tr>
<td>body</td>
<td>What part of your body contains the corpus callosum?</td>
</tr>
<tr>
<td>color</td>
<td>What colors make up a rainbow?</td>
</tr>
<tr>
<td>creative</td>
<td>In what book can I find the story of Aladdin?</td>
</tr>
<tr>
<td>currency</td>
<td>What currency is used in China?</td>
</tr>
<tr>
<td>disease/medicine</td>
<td>What does Salk vaccine prevent?</td>
</tr>
<tr>
<td>event</td>
<td>What war involved the battle of Chapultepec?</td>
</tr>
<tr>
<td>food</td>
<td>What kind of nuts are used in marzipan?</td>
</tr>
<tr>
<td>instrument</td>
<td>What instrument does Max Roach play?</td>
</tr>
<tr>
<td>lang</td>
<td>What’s the official language of Algeria?</td>
</tr>
<tr>
<td>letter</td>
<td>What letter appears on the cold-water tap in Spain?</td>
</tr>
<tr>
<td>other</td>
<td>What is the name of King Arthur’s sword?</td>
</tr>
<tr>
<td>plant</td>
<td>What are some fragrant white climbing roses?</td>
</tr>
<tr>
<td>product</td>
<td>What is the fastest computer?</td>
</tr>
<tr>
<td>religion</td>
<td>What religion has the most members?</td>
</tr>
<tr>
<td>sport</td>
<td>What was the name of the ball game played by the Mayans?</td>
</tr>
<tr>
<td>substance</td>
<td>What fuel do airplanes use?</td>
</tr>
<tr>
<td>symbol</td>
<td>What is the chemical symbol for nitrogen?</td>
</tr>
<tr>
<td>technique</td>
<td>What is the best way to remove wallpaper?</td>
</tr>
<tr>
<td>term</td>
<td>How do you say “Grandma” in Irish?</td>
</tr>
<tr>
<td>vehicle</td>
<td>What was the name of Captain Bligh’s ship?</td>
</tr>
<tr>
<td>word</td>
<td>What’s the singular of dice?</td>
</tr>
<tr>
<td>HUMAN</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>Who was Confucius?</td>
</tr>
<tr>
<td>group</td>
<td>What are the major companies that are part of Dow Jones?</td>
</tr>
<tr>
<td>ind</td>
<td>Who was the first Russian astronaut to do a spacewalk?</td>
</tr>
<tr>
<td>title</td>
<td>What was Queen Victoria’s title regarding India?</td>
</tr>
<tr>
<td>LOCATION</td>
<td></td>
</tr>
<tr>
<td>city</td>
<td>What’s the oldest capital city in the Americas?</td>
</tr>
<tr>
<td>country</td>
<td>What country borders the most others?</td>
</tr>
<tr>
<td>mountain</td>
<td>What is the highest peak in Africa?</td>
</tr>
<tr>
<td>other</td>
<td>What river runs through Liverpool?</td>
</tr>
<tr>
<td>state</td>
<td>What states do not have state income tax?</td>
</tr>
<tr>
<td>NUMERIC</td>
<td></td>
</tr>
<tr>
<td>code</td>
<td>What is the telephone number for the University of Colorado?</td>
</tr>
<tr>
<td>count</td>
<td>About how many soldiers died in World War II?</td>
</tr>
<tr>
<td>date</td>
<td>What is the date of Boxing Day?</td>
</tr>
<tr>
<td>distance</td>
<td>How long was Mao’s 1930s Long March?</td>
</tr>
<tr>
<td>money</td>
<td>How much did a McDonald’s hamburger cost in 1963?</td>
</tr>
<tr>
<td>order</td>
<td>Where does Shanghai rank among world cities in population?</td>
</tr>
<tr>
<td>other</td>
<td>What is the population of Mexico?</td>
</tr>
<tr>
<td>period</td>
<td>What was the average life expectancy during the Stone Age?</td>
</tr>
<tr>
<td>percent</td>
<td>What fraction of a beaver’s life is spent swimming?</td>
</tr>
<tr>
<td>temp</td>
<td>How hot should the oven be when making Peachy Oat Muffins?</td>
</tr>
<tr>
<td>speed</td>
<td>How fast must a spacecraft travel to escape Earth’s gravity?</td>
</tr>
<tr>
<td>size</td>
<td>What is the size of Argentina?</td>
</tr>
<tr>
<td>weight</td>
<td>How many pounds are there in a stone?</td>
</tr>
</tbody>
</table>

Figure 27.4 Question typology from Li and Roth (2002), (2005). Example sentences are from their corpus of 5500 labeled questions. A question can be labeled either with a coarse-grained tag like HUMAN or NUMERIC or with a fine-grained tag like HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on.
When question answering is applied to smaller sets of documents, for example, to answer questions about corporate information pages, we still use an IR engine to search our documents for us. But for this smaller set of documents, we generally need to apply query expansion. On the Web the answer to a question might appear in many different forms, so if we search with words from the question we’ll probably find an answer written in the same form. In smaller sets of corporate pages, by contrast, an answer might appear only once, and the exact wording might look nothing like the question. Thus, query expansion methods can add query terms in hopes of matching the particular form of the answer as it appears. These might include all morphological variants of the content words in the question, or synonyms from a thesaurus.

A query formulation approach that is sometimes used for questioning the Web is to apply query reformulation rules to the query. The rules rephrase the question to make it look like a substring of possible declarative answers. The question “when was the laser invented?” might be reformulated as “the laser was invented”; the question “where is the Valley of the Kings?” as “the Valley of the Kings is located in”. Here are some sample hand-written reformulation rules from Lin (2007):

(27.7) \textit{wh-word} \textit{did} A \textit{verb} B \rightarrow \ldots A \textit{verb}+ed B
(27.8) Where is A \rightarrow A is located in

27.1.4 Passage Retrieval

The query that was created in the question-processing phase is next used to query an information-retrieval system, either a general IR engine over a proprietary set of indexed documents or a Web search engine. The result of this document retrieval stage is a set of documents.

Although the set of documents is generally ranked by relevance, the top-ranked document is probably not the answer to the question. This is because documents are not an appropriate unit to rank with respect to the goals of a question-answering system. A highly relevant and large document that does not prominently answer a question is not an ideal candidate for further processing.

Therefore, the next stage is to extract a set of potential answer passages from the retrieved set of documents. The definition of a passage is necessarily system dependent, but the typical units include sections, paragraphs, and sentences. We might run a paragraph segmentation algorithm on all the returned documents and treat each paragraph as a segment.

We next perform passage retrieval. In this stage, we first filter out passages in the returned documents that don’t contain potential answers and then rank the rest according to how likely they are to contain an answer to the question. The first step in this process is to run a named entity or answer type classification on the retrieved passages. The answer type that we determined from the question tells us the possible answer types we expect to see in the answer. We can therefore filter out documents that don’t contain any entities of the right type.

The remaining passages are then ranked, usually by supervised machine learning, relying on a small set of features that can be easily extracted from a potentially large number of answer passages, such as:

- The number of \textit{named entities} of the right type in the passage
- The number of \textit{question keywords} in the passage
- The longest exact sequence of question keywords that occurs in the passage
- The rank of the document from which the passage was extracted
The proximity of the keywords from the original query to each other
For each passage identify the shortest span that covers the keywords contained in that passage. Prefer smaller spans that include more keywords (Pasca 2003, Monz 2004).

The N-gram overlap between the passage and the question
Count the N-grams in the question and the N-grams in the answer passages. Prefer the passages with higher N-gram overlap with the question (Brill et al., 2002).

For question answering from the Web, instead of extracting passages from all returned documents, we can rely on the Web search to do passage extraction for us. We do this by using snippets produced by the Web search engine as the returned passages. For example, Fig. 27.5 shows snippets for the first five documents returned from Google for the query When was movable type metal printing invented in Korea?

![Figure 27.5](image-url) Five snippets from Google in response to the query When was movable type metal printing invented in Korea?

27.1.5 Answer Processing

The final stage of question answering is to extract a specific answer from the passage so as to be able to present the user with an answer like 29,029 feet to the question “How tall is Mt. Everest?”
Two classes of algorithms have been applied to the answer-extraction task, one based on **answer-type pattern extraction** and one based on **N-gram tiling**.

In the **pattern-extraction** methods for answer processing, we use information about the expected answer type together with regular expression patterns. For example, for questions with a **HUMAN** answer type, we run the answer type or named entity tagger on the candidate passage or sentence and return whatever entity is labeled with type **HUMAN**. Thus, in the following examples, the underlined named entities are extracted from the candidate answer passages as the answer to the **HUMAN** and **DISTANCE-QUANTITY** questions:

**“Who is the prime minister of India”**  
Mannohsan Singh, Prime Minister of India, had told left leaders that the deal would not be renegotiated.

**“How tall is Mt. Everest?”**  
The official height of Mount Everest is 29029 feet

Unfortunately, the answers to some questions, such as **DEFINITION** questions, don’t tend to be of a particular named entity type. For some questions, then, instead of using answer types, we use hand-written regular expression patterns to help extract the answer. These patterns are also useful in cases in which a passage contains multiple examples of the same named entity type. Figure 27.6 shows some patterns from Pasca (2003) for the question phrase (QP) and answer phrase (AP) of definition questions.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;AP&gt; such as &lt;QP&gt;</td>
<td>What is autism?</td>
<td>“, developmental disorders such as autism”</td>
</tr>
<tr>
<td>&lt;QP&gt;, a &lt;AP&gt;</td>
<td>What is a caldera?</td>
<td>“the Long Valley caldera, a volcanic crater 19 miles long”</td>
</tr>
</tbody>
</table>

Figure 27.6 Some answer-extraction patterns for definition questions (Pasca, 2003).

The patterns are specific to each question type and can either be written by hand or learned automatically using relation extraction methods. Patterns can then be used together with other information as features in a classifier that ranks candidate answers. We extract potential answers by using named entities or patterns or even just by looking at every sentence returned from passage retrieval and rank them using a classifier with features like the following.

**Answer type match**: True if the candidate answer contains a phrase with the correct answer type.

**Pattern match**: The identity of a pattern that matches the candidate answer.

**Number of matched question keywords**: How many question keywords are contained in the candidate answer.

**Keyword distance**: The distance between the candidate answer and query keywords (measured in average number of words or as the number of keywords that occur in the same syntactic phrase as the candidate answer).

**Novelty factor**: True if at least one word in the candidate answer is novel, that is, not in the query.

**Apposition features**: True if the candidate answer is an appositive to a phrase containing many question terms. Can be approximated by the number of question terms separated from the candidate answer through at most three words and one comma (Pasca, 2003).
An alternative approach to answer extraction, used solely in Web search, is based on N-gram tiling, sometimes called the redundancy-based approach (Brill et al. 2002, Lin 2007). This simplified method begins with the snippets returned from the Web search engine, produced by a reformulated query. In the first step, N-gram mining, every unigram, bigram, and trigram occurring in the snippet is extracted and weighted. The weight is a function of the number of snippets in which the N-gram occurred, and the weight of the query reformulation pattern that returned it. In the N-gram filtering step, N-grams are scored by how well they match the predicted answer type. These scores are computed by hand-written filters built for each answer type. Finally, an N-gram tiling algorithm concatenates overlapping N-gram fragments into longer answers. A standard greedy method is to start with the highest-scoring candidate and try to tile each other candidate with this candidate. The best-scoring concatenation is added to the set of candidates, the lower-scoring candidate is removed, and the process continues until a single answer is built.

For any of these answer-extraction methods, the exact answer phrase can just be presented to the user by itself, or, more helpfully, accompanied by enough passage information to provide helpful context.

27.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text on the web, information obviously also exists in more structured forms. We use the term knowledge-based question answering for the idea of answering a natural language question by mapping it to a query over a structured database. Like the text-based paradigm for question answering, this approach dates back to the earliest days of natural language processing, with systems like BASEBALL (Green et al., 1961) that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called semantic parsers (??). Semantic parsers for question answering usually map either to some version of predicate calculus or a query language like SQL or SPARQL, as in the examples in Fig. 27.7.

<table>
<thead>
<tr>
<th>Question</th>
<th>Logical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>When was Ada Lovelace born?</td>
<td>birth-year (Ada Lovelace, ?x)</td>
</tr>
<tr>
<td>What states border Texas?</td>
<td>( \lambda x. \text{state}(x) \land \text{borders}(x, \text{texas}) )</td>
</tr>
<tr>
<td>What is the largest state</td>
<td>( \text{argmax}(\lambda x. \text{state}(x), \lambda x. \text{size}(x)) )</td>
</tr>
<tr>
<td>How many people survived the sinking of the Titanic</td>
<td>( \text{count} ([!\text{fb:en.sinking_of_the_titanic}]) )</td>
</tr>
</tbody>
</table>

Figure 27.7 Sample logical forms produced by a semantic parser for question answering. These range from simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily be converted into one. The database can be a full relational database, or simpler structured databases like sets of RDF triples. Recall from Chapter 20 that an RDF triple is a 3-tuple, a predicate with two arguments, expressing some simple relation...
or proposition. Popular ontologies like Freebase (Bollacker et al., 2008) or DBpedia (Bizer et al., 2009) have large numbers of triples derived from Wikipedia infoboxes, the structured tables associated with certain Wikipedia articles.

The simplest formation of the knowledge-based question answering task is to answer factoid questions that ask about one of the missing arguments in a triple. Consider an RDF triple like the following:

\[
\text{subject} \quad \text{predicate} \quad \text{object}
\]

Ada Lovelace birth-year 1815

This triple can be used to answer text questions like ‘When was Ada Lovelace born?’ or ‘Who was born in 1815?’. Question answering in this paradigm requires mapping from textual strings like “When was ... born” to canonical relations in the knowledge base like birth-year. We might sketch this task as:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)
“What is the capital of England?” → capital-city(?x, England)

27.2.1 Rule-based Methods

For relations that are very frequent, it may be worthwhile to write hand-written rules to extract relations from the question, just as we saw in Section 21.2. For example, to extract the birth-year relation, we could write patterns that search for the question word When, a main verb like born, and that extract the named entity argument of the verb.

27.2.2 Supervised Methods

In some cases we have supervised data, consisting of a set of questions paired with their correct logical form like the examples in Fig. 27.7. The task is then to take those pairs of training tuples and produce a system that maps from new questions to their logical forms.

Most supervised algorithms for learning to answer these simple questions about relations first parse the questions and then align the parse trees to the logical form. Generally these systems bootstrap by having a small set of rules for building this mapping, and an initial lexicon as well. For example, a system might have built-in strings for each of the entities in the system (Texas, Ada Lovelace), and then have simple default rules mapping fragments of the question parse tree to particular relations:

\[
\text{Who V ENTITY} \rightarrow \text{relation( ?x, entity)}
\]

\[
\text{When V ENTITY} \rightarrow \text{relation( ?x, entity)}
\]

Then given these rules and the lexicon, a training tuple like the following:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

would first be parsed, resulting in the following mapping.
When was Ada Lovelace born \(\rightarrow\) birth-year(Ada Lovelace, ?x)

From many pairs like this, we could induce mappings between pieces of parse fragment, such as the mapping between the parse fragment on the left and the relation on the right:

\[
\text{When \ was \ born} \rightarrow \text{birth-year(} , \ ?x)\]

A supervised system would thus parse each tuple in the training set and induce a bigger set of such specific rules, allowing it to map unseen examples of “When was X born?” questions to the birth-year relation. Rules can furthermore be associated with counts based on the number of times the rule is used to parse the training data. Like rule counts for probabilistic grammars, these can be normalized into probabilities. The probabilities can then be used to choose the highest probability parse for sentences with multiple semantic interpretations.

The supervised approach can be extended to deal with more complex questions that are not just about single relations. Consider the question “What is the biggest state bordering Texas?” from the GEOQUERY (Zelle and Mooney, 1996) dataset, with the semantic form:

\[
\text{argmax} (\lambda x. \text{state}(x) \land \text{borders}(x, \text{texas}), \lambda x. \text{size}(x))
\]

This question has much more complex structures than the simple single-relation questions we considered above, such as the argmax function, the mapping of the word biggest to size and so on. Zettlemoyer and Collins (2005) shows how more complex default rules (along with richer syntactic structures) can be used to learn to map from text sentences to more complex logical forms. The rules take the training set’s pairings of sentence and meaning as above and use the complex rules to break each training example down into smaller tuples that can then be recombined to parse new sentences.

### 27.2.3 Dealing with Variation: Semi-Supervised Methods

Because it is difficult to create training sets with questions labeled with their meaning representation, supervised datasets can’t cover the wide variety of forms that even simple factoid questions can take. For this reason most techniques for mapping factoid questions to the canonical relations or other structures in knowledge bases find some way to make use of textual redundancy.

The most common source of redundancy, of course, is the web, which contains vast number of textual variants expressing any relation. For this reason, most methods make some use of web text, either via semi-supervised methods like distant supervision or unsupervised methods like open information extraction, both introduced in Chapter 20. For example the REVERB open information extractor (Fader et al., 2011) extracts billions of (subject, relation, object) triples of strings from the web, such as (“Ada Lovelace”, “was born in”, “1815”). By aligning these strings with a canonical knowledge source like Wikipedia, we create new relations that can be queried while simultaneously learning to map between the words in question and
canonical relations.

To align a REVERB triple with a canonical knowledge source we first align the arguments and then the predicate. Recall from Chapter 23 that linking a string like “Ada Lovelace” with a Wikipedia page is called entity linking; we thus represent the concept ‘Ada Lovelace’ by a unique identifier of a Wikipedia page. If this subject string is not associated with a unique page on Wikipedia, we can disambiguate which page is being sought, for example by using the cosine distance between the triple string (‘Ada Lovelace was born in 1815’) and each candidate Wikipedia page. Date strings like ‘1815’ can be turned into a normalized form using standard tools for temporal normalization like SUTime (Chang and Manning, 2012). Once we’ve aligned the arguments, we align the predicates. Given the Freebase relation `people.person.birthdate(ada lovelace,1815)` and the string ‘Ada Lovelace was born in 1815’, having linked Ada Lovelace and normalized 1815, we learn the mapping between the string ‘was born in’ and the relation `people.person.birthdate`. In the simplest case, this can be done by aligning the relation with the string of words in between the arguments; more complex alignment algorithms like IBM Model 1 (Chapter 25) can be used. Then if a phrase aligns with a predicate across many entities, it can be extracted into a lexicon for mapping questions to relations.

Here are some examples from such a resulting lexicon, produced by Berant et al. (2013), giving many variants of phrases that align with the Freebase relation `country.capital` between a country and its capital city:

<table>
<thead>
<tr>
<th>capital of</th>
<th>capital city of</th>
<th>become capital of</th>
</tr>
</thead>
<tbody>
<tr>
<td>capitol of</td>
<td>national capital of</td>
<td>official capital of</td>
</tr>
<tr>
<td>political capital of</td>
<td>administrative capital of</td>
<td>beautiful capital of</td>
</tr>
<tr>
<td>capitl city of</td>
<td>remain capital of</td>
<td>make capital of</td>
</tr>
<tr>
<td>political center of</td>
<td>bustling capital of</td>
<td>capital city in</td>
</tr>
<tr>
<td>cosmopolitan capital of</td>
<td>move its capital to</td>
<td>modern capital of</td>
</tr>
<tr>
<td>federal capital of</td>
<td>beautiful capital city of</td>
<td>administrative capital city of</td>
</tr>
</tbody>
</table>

Another useful source of linguistic redundancy are paraphrase databases. For example the site wikianswers.com contains millions of pairs of questions that users have tagged as having the same meaning, 18 million of which have been collected in the PARALEX corpus (Fader et al., 2013). Here’s an example:

**Q: What are the green blobs in plant cells?**

**Lemmatized synonyms from PARALEX:**

- what be the green blob in plant cell?
- what be green part in plant cell?
- what be the green part of a plant cell?
- what be the green substance in plant cell?
- what be the part of plant cell that give it green color?
- what cell part do plant have that enable the plant to be give a green color?
- what part of the plant cell turn it green?
- part of the plant cell where the cell get it green color?
- the green part in a plant be call?
- the part of the plant cell that make the plant green be call?

The resulting millions of pairs of question paraphrases can be aligned to each other using MT alignment approaches (such as IBM Model 1) to create an MT-style
The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation, (3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring. Figure 27.9 shows the 4 stages of the DeepQA system that is the question answering component of Watson.

The first stage is question processing. The DeepQA system runs parsing, named entity tagging, and relation extraction on the question. Then, like the text-based systems in Section 27.1, the DeepQA system extracts the focus, the answer type (also called the lexical answer type or LAT), and performs question classification and question sectioning.

Consider these Jeopardy! examples, with a category followed by a question:

Poets and Poetry: He was a bank clerk in the Yukon before he published “Songs of a Sourdough” in 1907.


The questions are parsed, named entities are extracted (Sir Arthur Conan Doyle identified as a PERSON, Yukon as a GEOGRAPHICAL ENTITY, “Songs of a Sourdough” as a COMPOSITION), coreference is run (he is linked with clerk) and relations like the following are extracted:

\[ \text{authorof(focus,“Songs of a sourdough”) publish (e1, he, “Songs of a sourdough”)} \]
Next DeepQA extracts the question focus, shown in bold in both examples. The focus is the part of the question that co-refers with the answer, used for example to align with a supporting passage. The focus is extracted by hand-written rules—made possible by the relatively stylized syntax of Jeopardy! questions—such as a rule extracting any noun phrase with determiner “this” as in the Conan Doyle example, and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which tell us something about the semantic type of the answer. Because of the wide variety of questions in Jeopardy!, Jeopardy! uses a far larger set of answer types than the sets for standard factoid algorithms like the one shown in Fig. 27.4. Even a large set of named entity tags is insufficient to define a set of answer types. The DeepQA team investigated a set of 20,000 questions and found that a named entity tagger with over 100 named entity types covered less than half the types in these questions. Thus DeepQA extracts a wide variety of words to be answer types; roughly 5,000 lexical answer types occurred in the 20,000 questions they investigated, often with multiple answer types in each question.

These lexical answer types are again extracted by rules: the default rule is to choose the syntactic headword of the focus. Other rules improve this default choice. For example additional lexical answer types can be words in the question that are coreferent with or have a particular syntactic relation with the focus, such as head-words of appositives or predicative nominatives of the focus. In some cases even the Jeopardy! category can act as a lexical answer type, if it refers to a type of entity that is compatible with the other lexical answer types. Thus in the first case above, he, poet, and clerk are all lexical answer types. In addition to using the rules directly as a classifier, they can instead be used as features in a logistic regression classifier that can return a probability as well as a lexical answer type.

Note that answer types function quite differently in DeepQA than the purely IR-based factoid question answerers. In the algorithm described in Section 27.1, we determine the answer type, and then use a strict filtering algorithm only considering text strings that have exactly that type. In DeepQA, by contrast, we extract lots of answers, unconstrained by answer type, and a set of answer types, and then in the later ‘candidate answer scoring’ phase, we simply score how well each answer fits the answer types as one of many sources of evidence.

Finally the question is classified by type (definition question, multiple-choice, puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular expressions over words or parse trees.

In the second candidate answer generation stage, we combine the processed question with external documents and other knowledge sources to suggest many candidate answers. These candidate answers can either be extracted from text documents or from structured knowledge bases.

For structured resources like DBpedia, IMDB, or the triples produced by Open Information Extraction, we can just query these stores with the relation and the known entity, just as we saw in Section 27.2. Thus if we have extracted the relation authorof(focus, "Songs of a sourdough"), we can query a triple store with authorof(?x,"Songs of a sourdough") to return the correct author.

The method for extracting answers from text depends on the type of text documents. To extract answers from normal text documents we can do passage search
just as we did in Section 27.1. As we did in that section, we need to generate a query from the question; for DeepQA this is generally done by eliminating stop words, and then upweighting any terms which occur in any relation with the focus. For example from this query:

**MOVIE-“ING”**: Robert Redford and Paul Newman starred in this depression-era grifter flick.  
*Answer: “The Sting”*

the following weighted query might be extracted:

(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

The query can now be passed to a standard IR system. Some systems are already set up to allow retrieval of short passages, and the system can just return the ten 1-2 sentence passages that are needed for the next stage. Alternatively the query can be passed to a standard document retrieval engine, and then from each returned document passages are selected that are longer, toward the front, and have more named entities.

DeepQA also makes use of the convenient fact that the vast majority of Jeopardy! answers are the title of a Wikipedia document. To find these titles, we can do a second text retrieval pass specifically on Wikipedia documents. Then instead of extracting passages from the retrieved Wikipedia document, we directly return the titles of the highly ranked retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. As we just said, if the document is a Wikipedia page, we can just take the title, but for other texts, like news documents, we need other approaches. Two common approaches are to extract all anchor texts in the document (anchor text is the text between `<a>` and `</a>` used to point to a URL in an HTML page), or to extract all noun phrases in the passage that are Wikipedia document titles.

The third candidate answer scoring stage uses many sources of evidence to score the candidates. One of the most important is the lexical answer type. DeepQA includes a system that takes a candidate answer and a lexical answer type and returns a score indicating whether the candidate answer can be interpreted as a subclass or instance of the answer type. Consider the candidate “difficulty swallowing” and the lexical answer type “manifestation”. DeepQA first matches each of these words with possible entities in ontologies like DBpedia and WordNet. Thus the candidate “difficulty swallowing” is matched with the DBpedia entity “Dysphagia”, and then that instance is mapped to the WordNet type “Symptom”. The answer type “manifestation” is mapped to the WordNet type “Condition”. The system looks for a link of hyponymy, instance-of or synonymy between these two types; in this case a hyponymy relation is found between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpedia or other structured databases. For example, we can extract temporal properties of the entity (when was a person born, when died) and then compare to time expressions in the question. If a time expression in the question occurs chronologically before a person was born, that would be evidence against this person being the answer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate answer. We can retrieve passages with terms matching the question, then replace the focus in the question with the candidate answer and measure the overlapping words or ordering of the passage with the modified question.

The output of this stage is a set of candidate answers, each with a vector of scoring features.
In the final answer merging and scoring step, we first merge candidate answers that are equivalent. Thus if we had extracted two candidate answers J.F.K. and John F. Kennedy, this stage would merge the two into a single candidate. For proper nouns, automatically generated name dictionaries can help in this task. One useful kind of resource is the large synonym dictionaries that are created by listing all anchor text strings that point to the same Wikipedia page; such dictionaries give large numbers of synonyms for each Wikipedia title — e.g., JFK, John F. Kennedy, John Fitzgerald Kennedy, Senator John F. Kennedy, President Kennedy, Jack Kennedy, etc. (Spitkovsky and Chang, 2012). For common nouns, we can use morphological parsing to merge candidates which are morphological variants.

We then merge the evidence for each variant, combining the scoring feature vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A regularized logistic regression classifier is used to take each feature vector and assign a single confidence value to this candidate answer. The classifier is trained on thousands of candidate answers, each labeled for whether it is correct or incorrect, together with their feature vectors, and learning to predict a probability of being a correct answer. Since, in training, there are far more incorrect answers than correct answers, we need to use one of the standard techniques for dealing with very imbalanced data. DeepQA uses instance weighting, assigning an instance weight of .5 for each incorrect answer example in training. The candidate answers are then sorted by this confidence value, resulting in a single best answer.

The merging and ranking is actually run iteratively; first the candidates are ranked by the classifier, giving a rough first value for each candidate answer, then that value is used to decide which of the variants of a name to select as the merged answer, then the merged answers are re-ranked.

In summary, we’ve seen in the four stages of DeepQA that it draws on the intuitions of both the IR-based and knowledge-based paradigms. Indeed, Watson’s architectural innovation is its reliance on proposing a very large number of candidate answers from both text-based and knowledge-based sources and then developing a wide variety of evidence features for scoring these candidates — again both text-based and knowledge-based. Of course the Watson system has many more components for dealing with rare and complex questions, and for strategic decisions in playing Jeopardy!; see the papers mentioned at the end of the chapter for many more details.

### 27.4 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC Q/A track in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set of questions that have been human-labeled with correct answers. MRR also assumes that systems are returning a short ranked list of answers or passages containing answers. Each question is then scored according to the reciprocal of the rank of the first correct answer. For example if the system returned five answers but the first three are wrong and hence the highest-ranked correct answer is ranked fourth, the reciprocal rank score for that question would be \( \frac{1}{4} \). Questions with return sets that do not contain any correct answers are assigned a zero. The score of a system is then the average of the score for each question in the set. More formally, for an evaluation of a system returning a set of ranked answers for a test set consisting of...
\( N \) questions, the MRR is defined as

\[
\text{MRR} = \frac{1}{N} \sum_{i=1 \text{ s.t. } \text{rank}_i \neq 0}^{N} \frac{1}{\text{rank}_i} \quad (27.9)
\]

A number of test sets are available for question answering. Early systems used the TREC QA dataset; questions and hand-written answers for TREC competitions from 1999 to 2004 are publicly available. **FREE917** (Cai and Yates, 2013) has 917 questions manually created by annotators, each paired with a meaning representation; example questions include:

- How many people survived the sinking of the Titanic?
- What is the average temperature in Sydney in August?
- When did Mount Fuji last erupt?

**WEBQUESTIONS** (Berant et al., 2013) contains 5,810 questions asked by web users, each beginning with a wh-word and containing exactly one entity. Questions are paired with hand-written answers drawn from the Freebase page of the question’s entity, and were extracted from Google Suggest by breadth-first search (start with a seed question, remove some words, use Google Suggest to suggest likely alternative question candidates, remove some words, etc.). Some examples:

- What character did Natalie Portman play in Star Wars?
- What airport is closest to Palm Springs?
- Which countries share land border with Vietnam?
- What present-day countries use English as their national language?

**Bibliographical and Historical Notes**

Question answering was one of the earliest NLP tasks, and early versions of the text-based and knowledge-based paradigms were developed by the very early 1960s. The text-based algorithms generally relied on simple parsing of the question and of the sentences in the document, and then looking for matches. This approach was used very early on (Phillips, 1960) but perhaps the most complete early system, and one that strikingly prefigures modern relation-based systems, was the Protosynthex system of Simmons et al. (1964). Given a question, Protosynthex first formed a query from the content words in the question, and then retrieved candidate answer sentences in the document, ranked by their frequency-weighted term overlap with the question. The query and each retrieved sentence were then parsed with dependency parsers, and the sentence whose structure best matches the question structure selected. Thus the question **What do worms eat?** would match **worms eat grass**: both have the subject **worms** as a dependent of **eat**, in the version of dependency grammar used at the time, while **birds eat worms** has **birds** as the subject:
The alternative knowledge-based paradigm was implemented in the BASEBALL system (Green et al., 1961). This system answered questions about baseball games like “Where did the Red Sox play on July 7” by querying a structured database of game information. The database was stored as a kind of attribute-value matrix with values for attributes of each game:

Month = July
Place = Boston
Day = 7
Game Serial No. = 96
(Team = Red Sox, Score = 5)
(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s TDAP project at the University of Pennsylvania, essentially a cascade of finite-state transducers (see the historical discussion in Joshi and Hopely 1999 and Karttunen 1999). Then a content analysis phase each word or phrase was associated with a program that computed parts of its meaning. Thus the phrase ‘Where’ had code to assign the semantics Place = ?, with the result that the question “Where did the Red Sox play on July 7” was assigned the meaning

Place = ?
Team = Red Sox
Month = July
Day = 7

The question is then matched against the database to return to the answer. Simmons (1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-answering is work that used predicate calculus as the meaning representation language. The LUNAR system (Woods et al. 1972,Woods 1978) was designed to be a natural language interface to a database of chemical facts about lunar geology. It could answer questions like Do any samples have greater than 13 percent aluminum by parsing them into a logical form

\[(\text{TEST} \ (\text{FOR SOME X16} / \ (\text{SEQ SAMPLES}) : \ T ; \ (\text{CONTAIN'} X16
\ (\text{NPR* X17} / \ (\text{QUOTE AL203})) \ (\text{GREATERTHAN} \ 13\text{PCT})))))\]

The rise of the web brought the information-retrieval paradigm for question-answering to the forefront with the TREC QA track beginning in 1999, leading to a wide variety of factoid and non-factoid systems competing in annual evaluations. The DeepQA component of the Watson system that won the Jeopardy! challenge is described in a series of papers in volume 56 of the IBM Journal of Research and Development; see for example Ferrucci (2012), Lally et al. (2012), Chu-Carroll et al. (2012), Murdock et al. (2012b), Murdock et al. (2012a), Kalyanpur et al. (2012), and Gondek et al. (2012).

Question answering is also an important function of modern personal assistant dialog systems; see Chapter 29 for more.

Exercises
The literature of the fantastic abounds in inanimate objects magically endowed with sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s Frankenstein, there is something deeply touching about creating something and then having a chat with it. Legend has it that after finishing his sculpture of Moses, Michelangelo thought it so lifelike that he tapped it on the knee and commanded it to speak. Perhaps this shouldn’t be surprising. Language is the mark of humanity and sentience, and conversation or dialog is the most fundamental and specially privileged arena of language. It is the first kind of language we learn as children, and for most of us, it is the kind of language we most commonly indulge in, whether we are ordering curry for lunch or buying spinach, participating in business meetings or talking with our families, booking airline flights or complaining about the weather.

This chapter introduces the fundamental algorithms of conversational agents, or dialog systems. These programs communicate with users in natural language (text, speech, or even both), and generally fall into two classes.

Task-oriented dialog agents are designed for a particular task and set up to have short conversations (from as little as a single interaction to perhaps half-a-dozen interactions) to get information from the user to help complete the task. These include the digital assistants that are now on every cellphone or on home controllers (Siri, Cortana, Alexa, Google Now/Home, etc.) whose dialog agents can give travel directions, control home appliances, find restaurants, or help make phone calls or send texts. Companies deploy goal-based conversational agents on their websites to help customers answer questions or address problems. Conversational agents play an important role as an interface to robots. And they even have applications for social good. DoNotPay is a “robot lawyer” that helps people challenge incorrect parking fines, apply for emergency housing, or claim asylum if they are refugees.

Chatbots are systems designed for extended conversations, set up to mimic the unstructured conversational or ‘chats’ characteristic of human-human interaction, rather than focused on a particular task like booking plane flights. These systems often have an entertainment value, such as Microsoft’s ‘Xiaolce’ (Little Bing 小冰) system, which chats with people on text messaging platforms. Chatbots are
also often attempts to pass various forms of the Turing test (introduced in Chapter 1). Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots have also been used for practical purposes, such as testing theories of psychological counseling.

Note that the word ‘chatbot’ is often used in the media and in industry as a synonym for conversational agent. In this chapter we will follow the common usage in the natural language processing community, limiting the designation chatbot to this second subclass of systems designed for extended, casual conversation.

Let’s see some examples of dialog systems. One dimension of difference across systems is how many turns they can deal with. A dialog consists of multiple turns, each a single contribution to the dialog (the terminology is as if dialog is a game in which I take a turn, then you take a turn, then me, and so on). A turn can consist of a sentence, although it might be as short as a single word or as long as multiple sentences. The simplest such systems generally handle a single turn from the user, acting more like question-answering or command-and-control systems. This is especially common with digital assistants. For example Fig. 28.1 shows screen captures from an early version of Apple’s Siri personal assistant from 2014, demonstrating this kind of single-query behavior.

![Figure 28.1](image_url)

**Figure 28.1** Two sets of interactions with Siri in 2014. (a) A question (“Find restaurants near me”) returns restaurants, but the system was unable to interpret a follow-up question (“Are any of them Italian?”). (b) An alternative follow-up (“Tell me more about the second one”) similarly fails. This early system’s confusion at follow-up questions suggests that it is mainly designed for a single interaction.

By contrast, Fig. 28.2 shows that a 2017 version of the Siri digital assistant can handle slightly longer dialogs, handling a second turn with a follow-up question.

While spoken dialogs with mobile phone digital assistants tend to be short, some tasks do require longer dialogs. One such task is travel planning and management, a key concern of dialog systems since the very influential GUS system for planning airline travel (Bobrow et al., 1977); we’ll see an example in the next section.

Dialogue systems can even be used for much more complex domains like automatic tutoring. Figure 28.3 shows part of a dialog from the adaptive ITSPOKE dialog system (Forbes-Riley and Litman, 2011). In this example the system detects the hesitancy of the student’s first response (“Is it 19.6 m/s?”), and, even though the answer is correct, decides to explain the answer and ask a follow-up question before moving on.

Finally, conversational agents can be purely for fun, like the agents designed for simple chit-chat like Cleverbot, an IR-based chatbot capable of carrying on the kinds
We begin in the next section with chatbots, introducing the three major chatbot architectures: rule-based systems, information retrieval systems, and transduction models. We then turn to task-oriented dialog, introducing the frame-based architecture (the GUS architecture) that underlies most modern task-based dialog systems, the VoiceXML system that is a simple industrial instantiation of the architecture,
28.1 Chatbots

Chatbots are systems that can carry on extended conversations with the goal of mimicking the unstructured conversational or ‘chats’ characteristic of human-human interaction.

These systems often have an entertainment value, such as Microsoft’s ‘XiaoAlce’ (Little Bing 小冰) system, which chats with people on text messaging platforms. Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots have also been used for practical purposes, such as testing theories of psychological counseling.

Like practically everything else in language processing, chatbot architectures fall into two classes: rule-based systems and corpus-based systems. Rule-based systems include the early influential ELIZA and PARRY systems. Corpus-based systems mine large datasets of human-human conversations, which can be done by using information retrieval (IR-based systems simply copy a human’s response from a previous conversation) or by using a machine translation paradigm such as neural network sequence-to-sequence systems, to learn to map from a user utterance to a system response.

28.1.1 Rule-based chatbots: ELIZA and PARRY

ELIZA (Weizenbaum, 1966) is the most important chatbot dialog system in the history of the field, and so we take some time here to describe its algorithm in detail. ELIZA was designed to simulate a Rogerian psychologist, based on a branch of clinical psychology whose methods involve drawing the patient out by reflecting patient’s statements back at them. Rogerian psychology is the rare type of conversation in which, as Weizenbaum points out, one can “assume the pose of knowing almost nothing of the real world”. If a patient says “I went for a long boat ride” and the psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what a boat is, but rather assume she had some conversational goal. Most chatbots trying to pass Turing test choose a domain with similar properties.

Let’s look at the most famous ELIZA conversation, excerpted (deleting some material with ...) from a full interaction given in the original paper:

Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
...
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform rules like the following one:

\[(0 \text{ YOU } 0 \text{ ME}) \text{ [pattern]} \rightarrow (\text{WHAT MAKES YOU THINK I } 3 \text{ YOU}) \text{ [transform]}\]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers are the index of the constituent in the pattern. Thus the number 3 refers to the second 0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sentence.

The architecture is summarized in Fig. 28.5.

![Figure 28.5](image_url)

A simplified sketch of the ELIZA algorithm. The power of the algorithm comes from the particular transforms associated with each keyword.

Keywords are associated with a rank, with specific words being more highly ranked, and more general words ranking lower. Consider the following user sentence:

I know everybody laughed at me
Because it has the word “I”, this sentence could match the following rule whose keyword is I:

\[(I \ast) \rightarrow \text{(You say you 2)}\]

producing:

\[\text{YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU}\]

But as Weizenbaum points out, “I” is a very general word and its keywords lead to very general responses. Instead the keyword “everybody” is much more interesting, since someone using universals like everybody or always is probably “referring to some quite specific event or person”. Therefore, ELIZA prefers to respond with the pattern associated with the more specific keyword everybody (implementing by just assigning “everybody” rank 5 and ”I” rank 0 in the lexicon), whose rule thus transforms the sentence to:

\[\text{WHO IN PARTICULAR ARE YOU THINKING OF?}\]

If no keyword matches, ELIZA chooses a non-commital response like “PLEASE GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sentence of the conversation above. Whenever the word “my” is the highest ranked keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to the sentence, and store it on the stack:

\[(\text{MEMORY MY})\]

\[\begin{align*}
\text{(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)} \\
\text{(0 MY 0 = EARLIER YOU SAID YOUR 3)} \\
\text{(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)}
\end{align*}\]

Later, if no keyword matches a sentence, ELIZA will return the top of the MEMORY queue instead. ¹

People became deeply emotionally involved with the program. Weizenbaum tells the story of one of his staff who would ask Weizenbaum to leave the room when she talked with ELIZA. When Weizenbaum suggested that he might want to store all the ELIZA conversations for later analysis, people immediately pointed out the privacy implications, which suggested that they were having quite private conversations with ELIZA, despite knowing that it was just software.

Eliza’s framework is still used today; modern chatbot system tools like ALICE are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus, PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-like regular expressions, the PARRY system including a model of its own mental state, with affect variables for the agent’s levels of fear and anger; certain topics of conversation might lead PARRY to become more angry or mistrustful. If PARRY’s anger variable is high, he will choose from a set of “hostile” outputs. If the input mentions his delusion topic, he will increase the value of his fear variable and then begin to express the sequence of statements related to his delusion. Parry was the first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distinguish text transcripts of interviews with PARRY from transcripts of interviews with real paranoids (Colby et al., 1972).

¹ Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical model of discourse in natural language processing.
28.1.2 Corpus-based chatbots

Corpus-based chatbots, instead of using hand-built rules, mine conversations of human-human conversations, or sometimes mine the human responses from human-machine conversations. Serban et al. (2017) summarizes some such available corpora, such as conversations on chat platforms, on Twitter, or in movie dialog, which is available in great quantities and has been shown to resemble natural conversation (Forchini, 2013). Chatbot responses can even be extracted from sentences in corpora of non-dialog text.

There are two types of corpus-based chatbots: systems based on information retrieval, and systems based on supervised machine learning based on sequence transduction.

Like rule-based chatbots (but unlike frame-based dialog systems), most corpus-based chatbots tend to do very little modeling of the conversational context. Instead they tend to focus on generating a single response turn that is appropriate given the user’s immediately previous utterance. For this reason they are often called response generation systems. Corpus-based chatbots thus have some similarity to question answering systems, which focus on single responses while ignoring context or larger conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s turn X by repeating some appropriate turn Y from a corpus of natural (human) text. The differences across such systems lie in how they choose the corpus, and how they decide what counts as an human appropriate turn to copy.

A common choice of corpus is to collect databases of human conversations. These can come from microblogging platforms like Twitter or Sina Weibo (微博). Another approach is to use corpora of movie dialog. Once a chatbot has been put into practice, the turns that humans use to respond to the chatbot can be used as additional conversational data for training.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval algorithm to choose an appropriate response from the corpus. The two simplest methods are the following:

1. **Return the response to the most similar turn**: Given user query $q$ and a conversational corpus $C$, find the turn $t$ in $C$ that is most similar to $q$ (for example has the highest cosine with $q$) and return the following turn, i.e. the human response to $t$ in $C$:

   $$ r = \text{response}\left(\frac{\max_{t \in C} q^T t}{||q||} \||t||\right) $$

   (28.1)

   The idea is that we should look for a turn that most resembles the user’s turn, and return the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).

2. **Return the most similar turn**: Given user query $q$ and a conversational corpus $C$, return the turn $t$ in $C$ that is most similar to $q$ (for example has the highest cosine with $q$):

   $$ r = \max_{t \in C} \frac{q^T t}{||q||} ||t|| $$

   (28.2)

   The idea here is to directly match the users query $q$ with turns from $C$, since a good response will often share words or semantics with the prior turn.
In each case, any similarity function can be used, most commonly cosines computed either over words (using tf-idf) or over embeddings.

Although returning the response to the most similar turn seems like a more intuitive algorithm, returning the most similar turn seems to work better in practice, perhaps because selecting the response adds another layer of indirection that can allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the words in the $q$ (such as words in prior turns, or information about the user), and using any full IR ranking approach. Commercial implementations of the IR-based approach include Cleverbot (Carpenter, 2017) and Microsoft’s ’XiaoIce’ (Little Bing 小冰) system (Microsoft,).

Instead of just using corpora of conversation, the IR-based approach can be used to draw responses from narrative (non-dialog) text. For example, the pioneering COBOT chatbot (Isbell et al., 2000) generated responses by selecting sentences from a corpus that combined the Unabomber Manifesto by Theodore Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”. Chatbots that want to generate informative turns such as answers to user questions can use texts like Wikipedia to draw on sentences that might contain those answers (Yan et al., 2016).

**Sequence to sequence chatbots**

An alternate way to use a corpus to generate dialog is to think of response generation as a task of transducing from the user’s prior turn to the system’s turn. This is basically the machine learning version of Eliza; machine learning from a corpus to transduce a question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter et al., 2011) to translate a user turn to a system response. It quickly became clear, however, that the task of response generation was too different from machine translation. In machine translation words or phrases in the source and target sentences tend to align well with each other; but in conversation, a user utterance may share no words or phrases with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015, and Sordoni et al. 2015) transduction models for response generation were modeled instead using sequence to sequence (seq2seq) models (Chapter 25), as shown in Fig. 28.6.

A number of modifications are required to the basic seq2seq model to adapt it for the task of response generation. For example basic seq2seq models have a tendency to produce predictable but repetitive and therefore dull responses like “I’m OK” or “I don’t know” that shut down the conversation. This can be addressed by changing the objective function for seq2seq model training to a mutual information objective,
or by modifying a beam decoder to keep more diverse responses in the beam (Li et al., 2016a).

Another problem with the simple SEQ2SEQ response generation architecture is its inability to model the longer prior context of the conversation. This can be done by allowing the model to see prior turns, such as by using a hierarchical model that summarizes information over multiple prior turns (Lowe et al., 2017b).

Finally, SEQ2SEQ response generators focus on generating single responses, and so don’t tend to do a good job of continuously generating responses that cohere across multiple turns. This can be addressed by using reinforcement learning, as well as techniques like adversarial networks, to learn to choose responses that make the overall conversation more natural (Li et al. 2016b, Li et al. 2017).

Fig. 28.7 shows some sample responses generated by a vanilla SEQ2SEQ model, and from a model trained by an adversarial algorithm to produce responses that are harder to distinguish from human responses (Li et al., 2017).

<table>
<thead>
<tr>
<th>Input</th>
<th>Vanilla-SEQ2SEQ</th>
<th>Adversarial</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell me ... how long have you had this falling sickness?</td>
<td>i’m not a doctor.</td>
<td>a few months, i guess.</td>
</tr>
<tr>
<td>so i had the doctors test sammy’s response to conditioning.</td>
<td>sammy wrote the test sammy wrote the test.</td>
<td>so he took the pills.</td>
</tr>
<tr>
<td>they didn’t have much success with this problem commander.</td>
<td>they’re not the only ones who have been in the system.</td>
<td>can we find someone else?</td>
</tr>
</tbody>
</table>

**Figure 28.7** Sample responses generated by a SEQ2SEQ model trained either with a vanilla maximum likelihood objective, or adversarially trained to produce responses that are harder to distinguish from human responses (Li et al., 2017).

### Evaluating Chatbots

Chatbots are generally evaluated by humans. The slot-filling evaluations used for task-based dialogue (Section 28.2.3) aren’t appropriate for this task (Artstein et al., 2009), and word-overlap metrics like BLEU for comparing a chatbot’s response to a human response turn out to correlate very poorly with human judgments (Liu et al., 2016). BLEU performs poorly because there are so many possible responses to any given turn; word-overlap metrics work best when the space of responses is small and lexically overlapping, as is the case in machine translation.

While human evaluation is therefore required for evaluating chatbots, there are beginning to be models for automatic evaluation. The ADEM (Lowe et al., 2017a) classifier is trained on a set of responses labeled by humans with how appropriate they are, and learns to predict this label from the dialogue context and the words in the system response.

Another paradigm is adversarial evaluation (Bowman et al. 2016, Kannan and Vinyals 2016, Li et al. 2017), inspired by the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish between human-generated responses and machine-generated responses. The more successful a response generation system is at fooling this evaluator, the better the system.
28.2 Frame Based Dialog Agents

Modern task-based dialog systems are based on a domain ontology, a knowledge structure representing the kinds of intentions the system can extract from user sentences. The ontology defines one or more frames, each a collection of slots, and defines the values that each slot can take. This frame-based architecture was first introduced in 1977 in the influential GUS system for travel planning (Bobrow et al., 1977), and has been astonishingly long-lived, underlying most modern commercial digital assistants. Figure 28.8 shows a conversation with the original GUS system.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN CITY</td>
<td>city</td>
</tr>
<tr>
<td>DESTINATION CITY</td>
<td>city</td>
</tr>
<tr>
<td>DEPARTURE TIME</td>
<td>time</td>
</tr>
<tr>
<td>DEPARTURE DATE</td>
<td>date</td>
</tr>
<tr>
<td>ARRIVAL TIME</td>
<td>time</td>
</tr>
<tr>
<td>ARRIVAL DATE</td>
<td>date</td>
</tr>
</tbody>
</table>

Types in GUS, as in modern frame-based dialog agents, may have hierarchical structure; for example the date type in GUS is itself a frame with slots with types like integer or members of sets of weekday names:

```
DATE
  MONTH NAME
  DAY (BOUNDDED-INTEGER 1 31)
```

Figure 28.8 The travel domain: A transcript of an actual dialog with the GUS system of Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.
28.2.1 Control structure for frame-based dialog

The control architecture of frame-based dialog systems is designed around the frame. The goal is to fill the slots in the frame with the fillers the user intends, and then perform the relevant action for the user (answering a question, or booking a flight). Most frame-based dialog systems are based on finite-state automata that are hand-designed for the task by a dialog designer.

Consider the very simple finite-state control architecture shown in Fig. 28.9, implementing a trivial airline travel system whose job is to ask the user for the information for 4 slots: departure city, a destination city, a time, and whether the trip is one-way or round-trip. Let’s first associate with each slot a question to ask the user:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN CITY</td>
<td>“From what city are you leaving?”</td>
</tr>
<tr>
<td>DESTINATION CITY</td>
<td>“Where are you going?”</td>
</tr>
<tr>
<td>DEPARTURE TIME</td>
<td>“When would you like to leave?”</td>
</tr>
<tr>
<td>ARRIVAL TIME</td>
<td>“When do you want to arrive?”</td>
</tr>
</tbody>
</table>

Figure 28.9 shows a sample dialog manager for such a system. The states of the FSA correspond to the slot questions, user, and the arcs correspond to actions to take depending on what the user responds. This system completely controls the conversation with the user. It asks the user a series of questions, ignoring (or misinterpreting) anything that is not a direct answer to the question and then going on to the next question.

The speaker in control of any conversation is said to have the **initiative** in the conversation. Systems that completely control the conversation in this way are thus called **system-initiative**. By contrast, in normal human-human dialog, initiative shifts back and forth between the participants (Bobrow et al. 1977, Walker and Whittaker 1990).
The single-initiative finite-state dialog architecture has the advantage that the system always knows what question the user is answering. This means the system can prepare the speech recognizer with a language model tuned to answers for this question, and also makes natural language understanding easier. Most finite-state systems also allow universal commands that can be said anywhere in the dialog, like help, to give a help message, and start over (or main menu), which returns the user to some specified main start state. Nonetheless such a simplistic finite-state architecture is generally applied only to simple tasks such as entering a credit card number, or a name and password.

For most applications, users need a bit more flexibility. In a travel-planning situation, for example, a user may say a sentence that fills multiple slots at once:

(28.3) I want a flight from San Francisco to Denver one way leaving after five p.m. on Tuesday.

Or in cases where there are multiple frames, a user may say something to shift frames, for example from airline reservations to reserving a rental car:

(28.4) I’d like to book a rental car when I arrive at the airport.

The standard GUS architecture for frame-based dialog systems, used in various forms in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, therefore follows the frame in a more flexible way. The system asks questions of the user, filling any slot that the user specifies, even if a user’s response fills multiple slots or doesn’t answer the question asked. The system simply skips questions associated with slots that are already filled. Slots may thus be filled out of sequence. The GUS architecture is thus a kind of mixed initiative, since the user can take at least a bit of conversational initiative in choosing what to talk about.

The GUS architecture also has condition-action rules attached to slots. For example, a rule attached to the DESTINATION slot for the plane booking frame, once the user has specified the destination, might automatically enter that city as the default StayLocation for the related hotel booking frame.

Once the system has enough information it performs the necessary action (like querying a database of flights) and returns the result to the user.

We mentioned in passing the linked airplane and travel frames. Many domains, of which travel is one, require the ability to deal with multiple frames. Besides frames for car or hotel reservations, we might need frames with general route information (for questions like Which airlines fly from Boston to San Francisco?), information about airfare practices (for questions like Do I have to stay a specific number of days to get a decent airfare?).

In addition, once we have given the user a options (such as a list of restaurants), we can even have a special frame for ‘asking questions about this list’, whose slot is the particular restaurant the user is asking for more information about, allowing the user to say ‘the second one’ or ‘the Italian one’.

Since users may switch from frame to frame, the system must be able to disambiguate which slot of which frame a given input is supposed to fill and then switch dialog control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a production rule system. Different types of inputs cause different productions to fire, each of which can flexibly fill in different frames. The production rules can then switch control according to factors such as the user’s input and some simple dialog history like the last question that the system asked.

Commercial dialog systems provide convenient interfaces or libraries to make it easy to build systems with these kinds of finite-state or production rule systems,
for example providing graphical interfaces to allow dialog modules to be chained together.

28.2.2 Natural language understanding for filling slots

The goal of the natural language understanding component is to extract three things from the user’s utterance. The first task is **domain classification**: is this user for example talking about airlines, programming an alarm clocks, or dealing with their calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain systems that are focused on, say, only calendar management, but multi-domain dialog systems are the modern standard. The second is user **intent determination**: what general task or goal is the user trying to accomplish? For example the task could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment. Finally, we need to do **slot filling**: extract the particular slots and fillers that the user intends the system to understand from their utterance with respect to their intent. From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

- **DOMAIN**: AIR-TRAVEL
- **INTENT**: SHOW-FLIGHTS
- **ORIGIN-CITY**: Boston
- **ORIGIN-DATE**: Tuesday
- **ORIGIN-TIME**: morning
- **DEST-CITY**: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

- **DOMAIN**: ALARM-CLOCK
- **INTENT**: SET-ALARM
- **TIME**: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification, are special cases of the task of semantic parsing discussed in Chapter ??.

Dialogue agents can thus extract slots, domains, and intents from user utterances by applying any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in industrial applications, is to use hand-written rules, often as part of the condition-action rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings that map to the SET-ALARM intent:

\[ \text{wake me (up)} | \text{set (the|an) alarm} | \text{get me up} \]

We can build more complex automata that instantiate sets of rules like those discussed in Chapter 20, for example extracting a slot filler by turning a string like Monday at 2pm into an object of type date with parameters (DAY, MONTH, YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research systems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed semantic grammars with thousands of rules. A semantic grammar is a context-free
grammar in which the left-hand side of each rule corresponds to the semantic entities being expressed (i.e., the slot names) as in the following fragment:

- **SHOW** → show me | i want | can i see...
- **DEPART_TIME_RANGE** → (after|around|before) HOUR | morning | afternoon | evening
- **HOUR** → one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve (AMPM)
- **FLIGHTS** → (a) flight | flights
- **AMPM** → am | pm
- **ORIGIN** → from CITY
- **DESTINATION** → to CITY
- **CITY** → Boston | San Francisco | Denver | Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chapter 12), resulting in a hierarchical labeling of the input string with semantic node labels, as shown in Fig. 28.10.

![Figure 28.10](image)

A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

Whether regular expressions or parsers are used, it remains only to put the fillers into some sort of canonical form, for example by normalizing dates as discussed in Chapter 20.

A number of tricky issues have to be dealt with. One important issue is negation; if a user specifies that they “can’t fly Tuesday morning”, or want a meeting ”any time except Tuesday morning”, a simple system will often incorrectly extract “Tuesday morning” as a user goal, rather than as a negative constraint.

Speech recognition errors must also be dealt with. One common trick is to make use of the fact that speech recognizers often return a ranked \textbf{N-best list} of hypothesized transcriptions rather than just a single candidate transcription. The regular expressions or parsers can simply be run on every sentence in the N-best list, and any patterns extracted from any hypothesis can be used.

As we saw earlier in discussing information extraction, the rule-based approach is very common in industrial applications. It has the advantage of high precision, and if the domain is narrow enough and experts are available, can provide sufficient coverage as well. On the other hand, the hand-written rules or grammars can be both expensive and slow to create, and hand-written rules can suffer from recall problems.

A common alternative is to use supervised machine learning. Assuming a training set is available which associates each sentence with the correct semantics, we can train a classifier to map from sentences to intents and domains, and a sequence model to map from sentences to slot fillers.

For example given the sentence:

\textbf{I want to fly to San Francisco on Monday afternoon please}\n
we might first apply a simple 1-of-N classifier (logistic regression, neural network, etc.) that uses features of the sentence like word N-grams to determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.
Next to do slot filling we might first apply a classifier that uses similar features of the sentence to predict which slot the user wants to fill. Here in addition to word unigram, bigram, and trigram features we might use named entity features or features indicating that a word is in a particular lexicon (such as a list of cities, or airports, or days of the week) and the classifier would return a slot name (in this case \textsc{destination}, \textsc{departure-day}, and \textsc{departure-time}). A second classifier can then be used to determine the filler of the named slot, for example a city classifier that uses N-grams and lexicon features to determine that the filler of the \textsc{destination} slot is \textsc{san francisco}.

An alternative model is to use a sequence model (MEMMs, CRFs, RNNs) to directly assign a slot label to each word in the sequence, following the method used for other information extraction models in Chapter 20 \cite{pieraccini1991raymond, mesnil2015hakkani}. Once again we would need a supervised training test, with sentences paired with \textsc{iob} (Inside/Outside/Begin) labels like the following:

\begin{verbatim}
0 0 0 0 B-DES I-DES 0 B-DEPTIME I-DEPTIME 0
\end{verbatim}

I want to fly to San Francisco on Monday afternoon please

In \textsc{iob} tagging we introduce a tag for the beginning (B) and inside (I) of each slot label, and one for tokens outside (O) any slot label. The number of tags is thus $2n+1$ tags, where $n$ is the number of slots.

Any \textsc{iob} tagger sequence model can then be trained on a training set of such labels. Traditional sequence models (MEMM, CRF) make use of features like word embeddings, word unigrams and bigrams, lexicons (for example lists of city names), and slot transition features (perhaps \textsc{destination} is more likely to follow \textsc{origin} than the other way around) to map a user’s utterance to the slots. An MEMM (Chapter 10) for example, combines these features of the input word $w_i$, its neighbors within $l$ words $w_{i-l}^{i+l}$, and the previous $k$ slot tags $s_{i-k}$ to compute the most likely slot label sequence $\hat{S}$ from the word sequence $W$ as follows:

$$\hat{S} = \arg\max_{S} P(S|W) = \arg\max_{S} \prod_{i} P(s_i|w_{i-l}^{i+l}, s_{i-k})$$

$$= \arg\max_{S} \prod_{i} \frac{\exp \left( \sum_{i} w_{i} f_i(s_i, w_{i-l}^{i+l}, s_{i-k}) \right)}{\sum_{s' \in \text{slotset}} \exp \left( \sum_{i} w_{i} f_i(s', w_{i-l}^{i+l}, s_{i-k}) \right)}$$

Current neural network architectures, by contrast, don’t generally make use of an explicit feature extraction step. A typical LSTM-style architecture is shown in Fig. 28.11. Here the input is a series of words $w_1...w_n$ (represented as embeddings or as 1-hot vectors) and the output is a series of \textsc{iob} tags $s_1...s_n$ plus the domain and intent. Neural systems can combine the domain-classification and intent-extraction tasks with slot-filling simply by adding a domain concatenated with an intent as the desired output for the final EOS token.

One the sequence labeler has tagged the user utterance, a filler string can be extracted for each slot from the tags (e.g., "San Francisco"), and these word strings can then be normalized to the correct form in the ontology (perhaps the airport
28.2  •  FRAME BASED DIALOG AGENTS  433

code ‘SFO’). This normalization can take place by using homonym dictionaries (specifying, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are often bootstrapped from rule-based systems in a semi-supervised learning manner. A rule-based system is first built for the domain, and a test-set is carefully labeled. As new user utterances come in, they are paired with the labeling provided by the rule-based system to create training tuples. A classifier can then be trained on these tuples, using the test-set to test the performance of the classifier against the rule-based system. Some heuristics can be used to eliminate errorful training tuples, with the goal of increasing precision. As sufficient training samples become available the resulting classifier can often outperform the original rule-based system (Suendermann et al., 2009), although rule-based systems may still remain higher-precision for dealing with complex cases like negation.

28.2.3  Evaluating Slot Filling

An intrinsic error metric for natural language understanding systems for slot filling is the Slot Error Rate for each sentence:

\[
\text{Slot Error Rate for a Sentence} = \frac{\# \text{ of inserted/deleted/substituted slots}}{\# \text{ of total reference slots for sentence}} \tag{28.6}
\]

Consider a system faced with the following sentence:

(28.7) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>Chris</td>
</tr>
<tr>
<td>TIME</td>
<td>11:30 a.m.</td>
</tr>
<tr>
<td>ROOM</td>
<td>Gates 104</td>
</tr>
</tbody>
</table>

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot precision, recall, and F-score can also be used.

A perhaps more important, although less fine-grained, measure of success is an extrinsic metric like task error rate. In this case, the task error rate would quantify how often the correct meeting was added to the calendar at the end of the interaction.
28.2.4 Other components of frame-based dialog

We’ve focused on the natural language understanding component that is the core of frame-based systems, but here we also briefly mention other modules.

The ASR (automatic speech recognition) component takes audio input from a phone or other device and outputs a transcribed string of words, as discussed in Chapter 31. Various aspects of the ASR system may be optimized specifically for use in conversational agents.

Because what the user says to the system is related to what the system has just said, language models in conversational agent depend on the dialog state. For example, if the system has just asked the user “What city are you departing from?”, the ASR language model can be constrained to just model answers to that one question. This can be done by training an N-gram language model on answers to this question. Alternatively a finite-state or context-free grammar can be hand written to recognize only answers to this question, perhaps consisting only of city names or perhaps sentences of the form ‘I want to (leave|depart) from [CITYNAME]’. Indeed, many simple commercial dialog systems use only non-probabilistic language models based on hand-written finite-state grammars that specify all possible responses that the system understands. We give an example of such a hand-written grammar for a VoiceXML system in Section 28.3.

A language model that is completely dependent on dialog state is called a restrictive grammar, and can be used to constrain the user to only respond to the system’s last utterance. When the system wants to allow the user more options, it might mix this state-specific language model with a more general language model.

The language generation module of any dialog system produces the utterances that the system says to the user. Frame-based systems tend to use template-based generation, in which all or most of the words in the sentence to be uttered to the user are prespecified by the dialog designer. Sentences created by these templates are often called prompts. Templates might be completely fixed (like ‘Hello, how can I help you?’), or can include some variables that are filled in by the generator, as in the following:

What time do you want to leave CITY-ORIGINAL?
Will you return to CITY-ORIGINAL from CITY-DEST?

These sentences are then passed to the TTS (text-to-speech) component (see Chapter 32).

More sophisticated statistical generation strategies will be discussed in Section 29.5 of Chapter 30.

28.3 VoiceXML

There are a wide variety of commercial systems that allow developers to implement frame-based dialog systems, such as the user-definable skills in Amazon Alexa or the actions in Google Assistant. Such industrial systems provide libraries for defining the rules for detecting a particular user intent and filling in slots, and for expressing the architecture for controlling which frames and actions the system should take at which times.

Instead of focusing on one of these commercial engines, we introduce here a simple declarative formalism that has similar capabilities to each of them: VoiceXML, the Voice Extensible Markup Language (http://www.voicexml.org/), an XML-
based dialog design language used to create simple frame-based dialogs. Although VoiceXML is simpler than a full commercial frame-based system (it’s deterministic, and hence only allows non-probabilistic grammar-based language models and rule-based semantic parsers), it’s still a handy way to get a hands-on grasp of frame-based dialog system design.

A VoiceXML document contains a set of dialogs, each a menu or a form. A form is a frame, whose slots are called fields. The VoiceXML document in Fig. 28.12 shows three fields for specifying a flight’s origin, destination, and date. Each field has a variable name (e.g., origin) that stores the user response, a prompt, (e.g., Which city do you want to leave from), and a grammar that is passed to the speech recognition engine to specify what is allowed to be recognized. The grammar for the first field in Fig. 28.12 allows the three phrases san francisco, barcelona, and new york.

The VoiceXML interpreter walks through a form in document order, repeatedly selecting each item in the form, and each field in order.

```xml
<noinput>
I'm sorry, I didn't hear you. <reprompt/>
</noinput>

<nomatch>
I'm sorry, I didn't understand that. <reprompt/>
</nomatch>

<form>
  <block> Welcome to the air travel consultant. </block>
  <field name="origin">
    <prompt> Which city do you want to leave from? </prompt>
    <grammar type="application/x=nuance-gsl">
      [[san francisco] barley (new york)]
    </grammar>
    <filled>
      <prompt> OK, from <value expr="origin"/> </prompt>
    </filled>
  </field>
  <field name="destination">
    <prompt> And which city do you want to go to? </prompt>
    <grammar type="application/x=nuance-gsl">
      [[san francisco] barley (new york)]
    </grammar>
    <filled>
      <prompt> OK, to <value expr="destination"/> </prompt>
    </filled>
  </field>
  <field name="departdate" type="date">
    <prompt> And what date do you want to leave? </prompt>
    <filled>
      <prompt> OK, on <value expr="departdate"/> </prompt>
    </filled>
  </field>
  <block>
    <prompt> OK, I have you are departing from <value expr="origin"/>
    to <value expr="destination"/> on <value expr="departdate"/>
    </prompt>
    <prompt> send the info to book a flight... </prompt>
  </block>
</form>
```

The prologue of the example shows two global defaults for error handling. If the user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the VoiceXML interpreter will play the <noinput> prompt. If the user says something that doesn’t match the grammar for that field, the VoiceXML interpreter will play the <nomatch> prompt. VoiceXML provides a <reprompt/> command, which repeats the prompt for whatever field caused the error.

The <filled> tag for a field is executed by the interpreter as soon as the field
has been filled by the user. Here, this feature is used to confirm the user’s input.

VoiceXML 2.0 specifies seven built-in grammar types: boolean, currency, date, digits, number, phone, and time. By specifying the departdate field as type date, a date-specific language model will be passed to the speech recognizer.

<noinput> I’m sorry, I didn’t hear you. </noinput>
<nomatch> I’m sorry, I didn’t understand that. </nomatch>
<form>
<grammar type="application/x-nuance-gsl">
<![](CDATA[
Flight { [?
(i wanna (want to) [fly go])
(i’d like to [fly go])
((i wanna)(i’d like a) flight)
]
[
(from leaving departing) City:x {<origin $x>}
((?going to)(arriving in) City:x) {<destination $x>}
(from leaving departing) City:x
[(?going to)(arriving in) City:y) {<origin $x> <destination $y>}
]
?please
}
City [ [(san francisco) (s f o)] {return( "san francisco, california")}
[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}
]
])</grammar>
<initial name="init">
<prompt> Welcome to the consultant. What are your travel plans? </prompt>
</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
</field>
</form>

Figure 28.13 gives a mixed initiative example, allowing the user to answer questions in any order or even fill in multiple slots at once. The VoiceXML interpreter has a guard condition on fields, a test that keeps a field from being visited; the default test skips a field if its variable is already set.

Figure 28.13 also shows a more complex CFG grammar with two rewrite rules, Flight and City. The Nuance GSL grammar formalism uses parentheses ( ) to mean concatenation and square brackets [ ] to mean disjunction. Thus, a rule like (28.8) means that Wantsentence can be expanded as i want to fly or i want to go, and Airports can be expanded as san francisco or denver.

(28.8) Wantsentence (i want to [fly go])
Airports [(san francisco) denver]

VoiceXML grammars allow semantic attachments, such as the text string ("denver, colorado") the return for the City rule, or a slot/filler, like the attachments for the
Flight rule which fills the slot (<origin> or <destination> or both) with the value passed up in the variable x from the City rule.

Because Fig. 28.13 is a mixed-initiative grammar, the grammar has to be applicable to any of the fields. This is done by making the expansion for Flight a disjunction; note that it allows the user to specify only the origin city, the destination city, or both.

### 28.4 Evaluating Dialogue Systems

Evaluation is crucial in dialog system design. If the task is unambiguous, we can simply measure absolute task success (did the system book the right plane flight, or put the right event on the calendar).

To get a more fine-grained idea of user happiness, we can compute a user satisfaction rating, having users interact with a dialog system to perform a task and then having them complete a questionnaire. For example, Fig. 28.14 shows multiple-choice questions of the sort used by Walker et al. (2001); responses are mapped into the range of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after every change in a system. For this reason, it is often useful to have performance evaluation heuristics that correlate well with human satisfaction. A number of such factors and heuristics have been studied. One method that has been used to classify these factors is based on the idea that an optimal dialog system is one that allows users to accomplish their goals (maximizing task success) with the least problems (minimizing costs). We can then study metrics that correlate with these two criteria.

**Task completion success:** Task success can be measured by evaluating the correctness of the total solution. For a frame-based architecture, this might be the percentage of slots that were filled with the correct values or the percentage of subtasks that were completed. Interestingly, sometimes the user’s perception of whether they completed the task is a better predictor of user satisfaction than the actual task completion success. (Walker et al., 2001).

**Efficiency cost:** Efficiency costs are measures of the system’s efficiency at helping users. This can be measured by the total elapsed time for the dialog in seconds, the number of total turns or of system turns, or the total number of queries (Polifroni et al., 1992). Other metrics include the number of system non-responses and the “turn correction ratio”: the number of system or user turns that were used solely to correct errors divided by the total number of turns (Danieli and Gerbino 1995, Hirschman and Pao 1993).
Quality cost: Quality cost measures other aspects of the interactions that affect users’ perception of the system. One such measure is the number of times the ASR system failed to return any sentence, or the number of ASR rejection prompts. Similar metrics include the number of times the user had to barge-in (interrupt the system), or the number of time-out prompts played when the user didn’t respond quickly enough. Other quality metrics focus on how well the system understood and responded to the user. The most important is the slot error rate described above, but other components include the inappropriateness (verbose or ambiguous) of the system’s questions, answers, and error messages or the correctness of each question, answer, or error message (Zue et al. 1989, Polifroni et al. 1992).

28.5 Dialogue System Design

The user plays a more important role in dialog systems than in most other areas of speech and language processing, and thus this area of language processing is the one that is most closely linked with the field of Human-Computer Interaction (HCI).

How does a dialog system developer choose dialog strategies, prompts, error messages, and so on? This process is often called voice user interface design, and generally follows the user-centered design principles of Gould and Lewis (1985):

1. Study the user and task: Understand the potential users and the nature of the task by interviews with users, investigation of similar systems, and study of related human-human dialogs.

2. Build simulations and prototypes: A crucial tool in building dialog systems is the Wizard-of-Oz system. In wizard system, the users interact with what they think is a software system but is in fact a human operator (“wizard”) behind some disguising interface software (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name comes from the children’s book The Wizard of Oz (Baum, 1900), in which the Wizard turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to test out an architecture before implementation; only the interface software and databases need to be in place. General the wizard gets input from the user, has a graphical interface to a database to run sample queries based on the user utterance, and then has a way to output sentences, either by typing them or by some combination of selecting from a menu and typing. The wizard’s linguistic output can be disguised by a text-to-speech system or, more frequently, by using text-only interactions.

The results of a wizard-of-oz system can also be used as training data to training a pilot dialog system. While wizard-of-oz systems are very commonly used, they are not a perfect simulation; it is difficult for the wizard to exactly simulate the errors, limitations, or time constraints of a real system; results
of wizard studies are thus somewhat idealized, but still can provide a useful first idea of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich et al. 1995, Landauer 1995). For example in a famous anecdote in dialog design history, an early dialog system required the user to press a key to interrupt the system Stifelman et al. (1993). But user testing showed users barged in, which led to a redesign of the system to recognize overlapped speech. The iterative method is also important for designing prompts that cause the user to respond in normative ways.

There are a number of good books on conversational interface design (Cohen et al. 2004, Harris 2005, Pearl 2017).

28.6 Summary

Conversational agents are a crucial speech and language processing application that are already widely used commercially.

- Chatbots are conversational agents designed to mimic the appearance of informal human conversation. Rule-based chatbots like ELIZA and its modern descendants use rules to map user sentences into system responses. Corpus-based chatbots mine logs of human conversation to learn to automatically map user sentences into system responses.
- For task-based dialogue, most commercial dialog systems use the GUS or frame-based architecture, in which the designer specifies a domain ontology, a set of frames of information that the system is designed to acquire from the user, each consisting of slots with typed fillers.
- A number of commercial systems allow developers to implement simple frame-based dialog systems, such as the user-definable skills in Amazon Alexa or the actions in Google Assistant. VoiceXML is a simple declarative language that has similar capabilities to each of them for specifying deterministic frame-based dialog systems.
- Dialog systems are a kind of human-computer interaction, and general HCI principles apply in their design, including the role of the user, simulations such as Wizard-of-Oz systems, and the importance of iterative design and testing on real users.

Bibliographical and Historical Notes

The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966) and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular perceptions of artificial intelligence, and brought up some of the first ethical questions in natural language processing —such as the issues of privacy we discussed above as well the role of algorithms in decision-making— leading its creator Joseph Weizenbaum to fight for social responsibility in AI and computer science in general.
Another early system, the GUS system (Bobrow et al., 1977) had by the late 1970s established the main frame-based paradigm that became the dominant industrial paradigm for dialog systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language understanding began to be applied to dialogue slot filling (Miller et al. 1994, Pieraccini et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commercially in phone-based dialogue systems like Apple’s Siri Bellegarda (2013) and other digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave rise to corpus-based chatbot architectures around the turn of the century, first using information retrieval models and then in the 2010s, after the rise of deep learning, with sequence-to-sequence models.

Exercises

28.1 Write a finite-state automaton for a dialogue manager for checking your bank balance and withdrawing money at an automated teller machine.

28.2 A dispreferred response is a response that has the potential to make a person uncomfortable or embarrassed in the conversational context; the most common example dispreferred responses is turning down a request. People signal their discomfort with having to say no with surface cues (like the word well), or via significant silence. Try to notice the next time you or someone else utters a dispreferred response, and write down the utterance. What are some other cues in the response that a system might use to detect a dispreferred response? Consider non-verbal cues like eye gaze and body gestures.

28.3 When asked a question to which they aren’t sure they know the answer, people display their lack of confidence by cues that resemble other dispreferred responses. Try to notice some unsure answers to questions. What are some of the cues? If you have trouble doing this, read Smith and Clark (1993) and listen specifically for the cues they mention.

28.4 Build a VoiceXML dialogue system for giving the current time around the world. The system should ask the user for a city and a time format (24 hour, etc) and should return the current time, properly dealing with time zones.

28.5 Implement a small air-travel help system based on text input. Your system should get constraints from users about a particular flight that they want to take, expressed in natural language, and display possible flights on a screen. Make simplifying assumptions. You may build in a simple flight database or you may use a flight information system on the Web as your backend.

28.6 Augment your previous system to work with speech input through VoiceXML. (Or alternatively, describe the user interface changes you would have to make for it to work via speech over the phone.) What were the major differences?

28.7 Design a simple dialogue system for checking your email over the telephone. Implement in VoiceXML.

28.8 Test your email-reading system on some potential users. Choose some of the metrics described in Section 28.4 and evaluate your system.
A famous burlesque routine from the turn of the last century plays on the difficulty of conversational understanding by inventing a baseball team whose members have confusing names:

C: I want you to tell me the names of the fellows on the St. Louis team.
A: I’m telling you. Who’s on first, What’s on second, I Don’t Know is on third.
C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’ me for?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First – Bud Abbott and Lou Costello’s version of an old burlesque standard.

Of course outrageous names of baseball players are not a normal source of difficulty in conversation. What this famous comic conversation is pointing out is that understanding and participating in dialog requires knowing whether the person you are talking to is making a statement or asking a question. Asking questions, giving orders, or making informational statements are things that people do in conversation, yet dealing with these kind of actions in dialogue—what we will call dialog acts—is something that the GUS-style frame-based dialog systems of Chapter 29 are completely incapable of.

In this chapter we describe the dialog-state architecture, also called the belief-state or information-state architecture. Like GUS systems, these agents fill slots, but they are also capable of understanding and generating such dialog acts, actions like asking a question, making a proposal, rejecting a suggestion, or acknowledging an utterance and they can incorporate this knowledge into a richer model of the state of the dialog at any point.

Like the GUS systems, the dialog-state architecture is based on filling in the slots of frames, and so dialog-state systems have an NLU component to determine the specific slots and fillers expressed in a user’s sentence. Systems must additionally determine what dialog act the user was making, for example to track whether a user is asking a question. And the system must take into account the dialog context (what the system just said, and all the constraints the user has made in the past).

Furthermore, the dialog-state architecture has a different way of deciding what to say next than the GUS systems. Simple frame-based systems often just continuously
ask questions corresponding to unfilled slots and then report back the results of some database query. But in natural dialogue users sometimes take the initiative, such as asking questions of the system; alternatively, the system may not understand what the user said, and may need to ask clarification questions. The system needs a dialog policy to decide what to say (when to answer the user’s questions, when to instead ask the user a clarification question, make a suggestion, and so on).

Figure 29.1 shows a typical architecture for a dialog-state system. It has six components. As with the GUS-style frame-based systems, the speech recognition and understanding components extract meaning from the input, and the generation and TTS components map from meaning to speech.

The parts that are different than the simple GUS system are the dialog state tracker which maintains the current state of the dialog (which include the user’s most recent dialog act, plus the entire set of slot-filler constraints the user has expressed so far) and the dialog policy, which decides what the system should do or say next.

As of the time of this writing, no commercial system uses a full dialog-state architecture, but some aspects of this architecture are beginning to appear in industrial systems, and there are a wide variety of these systems in research labs.

Let’s turn first to a discussion of dialog acts.

29.1 Dialog Acts

A key insight into conversation—due originally to the philosopher Wittgenstein (1953) but worked out more fully by Austin (1962)—is that each utterance in a dialog is a kind of action being performed by the speaker. These actions are commonly called speech acts; here’s one taxonomy consisting of 4 major classes (Bach
and Harnish, 1979):

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constatives:</td>
<td>committing the speaker to something’s being the case (answering, claiming,</td>
</tr>
<tr>
<td></td>
<td>confirming, denying, disagreeing, stating)</td>
</tr>
<tr>
<td>Directives:</td>
<td>attempts by the speaker to get the addressee to do something (advising, ask-</td>
</tr>
<tr>
<td></td>
<td>ing, forbidding, inviting, ordering, requesting)</td>
</tr>
<tr>
<td>Commissives:</td>
<td>committing the speaker to some future course of action (promising, planning,</td>
</tr>
<tr>
<td></td>
<td>vowing, betting, opposing)</td>
</tr>
<tr>
<td>Acknowledgments:</td>
<td>express the speaker’s attitude regarding the hearer with respect to some so-</td>
</tr>
<tr>
<td></td>
<td>cial action (apologizing, greeting, thanking, accepting an acknowledgment)</td>
</tr>
</tbody>
</table>

A user ordering a dialog system to do something (‘Turn up the music’) is issuing a DIRECTIVE. A user asking a question to which the system is expected to answer is also issuing a DIRECTIVE: in a sense the user is commanding the system to answer (‘What’s the address of the second restaurant’). By contrast, a user stating a constraint (‘I am flying on Tuesday’) is issuing an ASSERTIVE. A user thanking the system is issuing an ACKNOWLEDGMENT. The dialog act expresses an important component of the intention of the speaker (or writer) in saying what they said.

While this idea of speech acts is powerful, modern systems expand these early taxonomies of speech acts to better describe actual conversations. This is because a dialog is not a series of unrelated independent speech acts, but rather a collective act performed by the speaker and the hearer. In performing this joint action the speaker and hearer must constantly establish common ground (Stalnaker, 1978), the set of things that are mutually believed by both speakers.

The need to achieve common ground means that the hearer must ground the speaker’s utterances. To ground means to acknowledge, to make it clear that the hearer has understood the speaker’s meaning and intention. People need closure or grounding for non-linguistic actions as well. For example, why does a well-designed elevator button light up when it’s pressed? Because this indicates to the elevator traveler that she has successfully called the elevator. Clark (1996) phrases this need for closure as follows, after Norman (1988):

**Principle of closure.** Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it.

Grounding is also important when the hearer needs to indicate that the speaker has not succeeded. If the hearer has problems in understanding, she must indicate these problems to the speaker, again so that mutual understanding can eventually be achieved.

Clark and Schaefer (1989) point out a continuum of methods the hearer B can use to ground the speaker A’s utterance, ordered from weakest to strongest:

| Continued attention: | B shows she is continuing to attend and therefore remains satisfied with A’s presentation. |
| Next contribution:   | B starts in on the next relevant contribution.                                           |
| Acknowledgment:      | B nods or says a continuer like *uh-huh, yeah*, or the like, or an assessment like *that’s great*. |
| Demonstration:       | B demonstrates all or part of what she has understood A to mean, for example, by reformulating (paraphrasing) A’s utterance or by collaborative completion of A’s utterance. |
| Display:             | B displays verbatim all or part of A’s presentation.                                    |

Let’s look for examples of grounding in a conversation between a human travel agent and a human client in Fig. 29.2.
C₁: ...I need to travel in May.
A₁: And, what day in May did you want to travel?
C₂: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A₂: And you’re flying into what city?
C₃: Seattle.
A₃: And what time would you like to leave Pittsburgh?
C₄: Uh hmm I don’t think there’s many options for non-stop.
A₄: Right. There’s three non-stops today.
C₅: What are they?
A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
C₆: OK I’ll take the 5ish flight on the night before on the 11th.
C₇: OK.

Figure 29.2 Part of a conversation between a travel agent (A) and client (C).

Utterance A₁ shows the strongest form of grounding, in which the hearer displays understanding by repeating verbatim part of the speaker’s words: in May.

This particular fragment doesn’t have an example of an acknowledgment, but there’s an example in another fragment:

C: He wants to fly from Boston to Baltimore
A: Uh huh

The word uh-huh here is a backchannel, also called a continuer or an acknowledgment token. A backchannel is a (short) optional utterance that acknowledges the content of the utterance of the other and that doesn’t require an acknowledgment by the other (Yngve 1970, Jefferson 1984, Schegloff 1982, Ward and Tsukahara 2000).

The third grounding method is to start in on the relevant next contribution, for example in Fig. 29.2, where the speaker asks a question (A₂) and the hearer (C₃) answers it.

In a more subtle act of grounding, the speaker can combine this method with the previous one. For example, notice that whenever the client answers a question, the agent begins the next question with And. The And indicates to the client that the agent has successfully understood the answer to the last question:

Speech acts are important for practical dialog systems, which need to distinguish a statement from a directive, and which must distinguish (among the many kinds of directives) an order to do something from a question asking for information. Grounding is also crucial in dialog systems. Consider the unnaturalness of this example from Cohen et al. (2004):

(29.1) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has understand her ‘No’. The use of Okay below adds grounding, making (29.2) a much more natural response than (29.1):

(29.2) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

<table>
<thead>
<tr>
<th>Tag</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>THANK</td>
<td>Thanks</td>
</tr>
<tr>
<td>GREET</td>
<td>Hello Dan</td>
</tr>
<tr>
<td>INTRODUCE</td>
<td>It’s me again</td>
</tr>
<tr>
<td>BYE</td>
<td>Alright bye</td>
</tr>
<tr>
<td>REQUEST-COMMENT</td>
<td>How does that look?</td>
</tr>
<tr>
<td>SUGGEST</td>
<td>from thirteenth through seventeenth June</td>
</tr>
<tr>
<td>REJECT</td>
<td>No Friday I’m booked all day</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>Saturday sounds fine</td>
</tr>
<tr>
<td>REQUEST-SUGGEST</td>
<td>What is a good day of the week for you?</td>
</tr>
<tr>
<td>INIT</td>
<td>I wanted to make an appointment with you</td>
</tr>
<tr>
<td>GIVE_REASON</td>
<td>Because I have meetings all afternoon</td>
</tr>
<tr>
<td>FEEDBACK</td>
<td>Okay</td>
</tr>
<tr>
<td>DELIBERATE</td>
<td>Let me check my calendar here</td>
</tr>
<tr>
<td>CONFIRM</td>
<td>Okay, that would be wonderful</td>
</tr>
<tr>
<td>CLARIFY</td>
<td>Okay, do you mean Tuesday the 23rd?</td>
</tr>
<tr>
<td>DIGRESS</td>
<td>[we could meet for lunch] and eat lots of ice cream</td>
</tr>
<tr>
<td>MOTIVATE</td>
<td>We should go to visit our subsidiary in Munich</td>
</tr>
<tr>
<td>GARBAGE</td>
<td>Oops, I-</td>
</tr>
</tbody>
</table>

Figure 29.3 The 18 high-level dialog acts for a meeting scheduling task, from the VerbMobil-1 system (Jekat et al., 1995).

The ideas of speech acts and grounding are combined in a single kind of action called a **dialog act**, a tag which represents the interactive function of the sentence being tagged. Different types of dialog systems require labeling different kinds of acts, and so the tagset—defining what a dialog act is exactly—tends to be designed for particular tasks.

Figure 29.3 shows a domain-specific tagset for the task of two people scheduling meetings. It has tags specific to the domain of scheduling, such as SUGGEST, used for the proposal of a particular date to meet, and ACCEPT and REJECT, used for acceptance or rejection of a proposal for a date, but also tags that have more general function, like CLARIFY, used to request a user to clarify an ambiguous proposal.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Sys</th>
<th>User</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELLO(a = x, b = y,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Open a dialog and give info a = x, b = y,...</td>
</tr>
<tr>
<td>INFORM(a = x, b = y,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Give info a = x, b = y,...</td>
</tr>
<tr>
<td>REQUEST(a, b = x,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Request value for a given b = x,...</td>
</tr>
<tr>
<td>REQALTS(a = x,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Request alternative with a = x,...</td>
</tr>
<tr>
<td>CONFIRM(a = x, b = y,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Explicitly confirm a = x, b = y,...</td>
</tr>
<tr>
<td>CONFREQ(a = x,...,d)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Implicitly confirm a = x,... and request value of d</td>
</tr>
<tr>
<td>SELECT(a = x,a = y)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Implicitly confirm a = x,... and request value of d</td>
</tr>
<tr>
<td>AFFIRM(a = x, b = y,...)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Affirm and give further info a = x, b = y,...</td>
</tr>
<tr>
<td>NEGATE(a = x)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Negate and give corrected value a = x</td>
</tr>
<tr>
<td>DENY(a = x)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Deny that a = x</td>
</tr>
<tr>
<td>BYE()</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>Close a dialog</td>
</tr>
</tbody>
</table>

Figure 29.4 Dialogue acts used by the HIS restaurant recommendation system of Young et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and user inputs, respectively.

Figure 29.4 shows a tagset for a restaurant recommendation system, and Fig. 29.5 shows these tags labeling a sample dialog from the HIS system (Young et al., 2010). This example also shows the content of each dialog acts, which are the slot fillers being communicated.
### Dialogue acts don’t just appear discretely and independently; conversations have structure, and dialogue acts reflect some of that structure. One aspect of this structure comes from the field of **conversational analysis** or CA (Sacks et al., 1974) which focuses on interactional properties of human conversation. CA defines **adjacency pairs** (Schegloff, 1968) as a pairing of two dialog acts, like QUESTIONS and ANSWERS, PROPOSAL and ACCEPTANCE (or REJECTION), COMPLIMENTS and DOWNPLAYERS, GREETING and GREETING.

The structure, composed of a **first pair part** and a **second pair part**, can help dialog-state models decide what actions to take. However, dialogue acts aren’t always followed immediately by their second pair part. The two parts can be separated by a **side sequence** (Jefferson 1972, Schegloff 1972). One very common side sequence in dialog systems is the **clarification question**, which can form a **subdialogue** between a REQUEST and a RESPONSE as in the following example caused by speech recognition errors:

```
User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.
System: OK, here are some flights...
```

Another kind of dialogue structure is the **pre-sequence**, like the following example where a user starts with a question about the system’s capabilities (“Can you make train reservations”) before making a request.

```
User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.
```

A dialog-state model must be able to both recognize these kinds of structures and make use of them in interacting with users.
29.2 Dialog State: Interpreting Dialogue Acts

The job of the dialog-state tracker is to determine both the current state of the frame (the fillers of each slot), as well as the user’s most recent dialog act. Note that the dialog-state includes more than just the slot-fillers expressed in the current sentence; it includes the entire state of the frame at this point, summarizing all of the user’s constraints. The following example from Mrkšić et al. (2017) shows the required output of the dialog state tracker after each turn:

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown
inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?
inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

How can we interpret a dialog act, deciding whether a given input is a QUESTION, a STATEMENT, or a SUGGEST (directive)? Surface syntax seems like a useful cue, since yes-no questions in English have aux-inversion (the auxiliary verb precedes the subject), statements have declarative syntax (no aux-inversion), and commands have no syntactic subject:

(29.3) YES-NO QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch.
COMMAND Show me flights from Milwaukee to Orlando.

Alas, the mapping from surface form to dialog act is complex. For example, the following utterance looks grammatically like a YES-NO QUESTION meaning something like Are you capable of giving me a list of . . . ?:

(29.4) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system was capable of giving a list; this utterance was a polite form of a REQUEST, meaning something like Please give me a list of . . . . What looks on the surface like a QUESTION can really be a REQUEST.

Conversely, what looks on the surface like a STATEMENT can really be a QUESTION. The very common CHECK question (Carletta et al. 1997, Labov and Fanshel 1977) asks an interlocutor to confirm something that she has privileged knowledge about. CHECKS have declarative surface form:

| A | OPEN-OPTION | I was wanting to make some arrangements for a trip that I’m going to be taking uh to LA uh beginning of the week after next. |
| B | HOLD | OK uh let me pull up your profile and I’ll be right with you here. [pause] |
| B | CHECK | And you said you wanted to travel next week? |
| A | ACCEPT | Uh yes. |

Utterances that use a surface statement to ask a question or a surface question to issue a request are called indirect speech acts. These indirect speech acts have a
rich literature in philosophy, but viewed from the perspective of dialog understanding, indirect speech acts are merely one instance of the more general problem of determining the dialog act function of a sentence.

Many features can help in this task. To give just one example, in spoken-language systems, **prosody** or **intonation** (Chapter ??) is a helpful cue. Prosody or intonation is the name for a particular set of phonological aspects of the speech signal the **tune** and other changes in the pitch (which can be extracted from the fundamental frequency F0) the **accent**, stress, or loudness (which can be extracted from energy), and the changes in duration and **rate of speech**. So, for example, a rise in pitch at the end of the utterance is a good cue for a **YES-NO QUESTION**, while declarative utterances (like **STATEMENTS**) have **final lowering**: a drop in F0 at the end of the utterance.

### 29.2.1 Sketching an algorithm for dialog act interpretation

Since dialog acts places some constraints on the slots and values, the tasks of dialog-act detection and slot-filling are often performed jointly. Consider the task of determining that

I’d like Cantonese food near the Mission District

has the structure

`inform(food=cantonese,area=mission)`.

The joint dialog act interpretation/slot filling algorithm generally begins with a first pass classifier to decide on the dialog act for the sentence. In the case of the example above, this classifier would choosing `inform` from among the set of possible dialog acts in the tag set for this particular task. Dialog act interpretation is generally modeled as a supervised classification task, trained on a corpus in which each utterance is hand-labeled for its dialog act, and relying on a wide variety of features, including unigrams and bigrams (**show me** is a good cue for a **REQUEST**, **are there** for a **QUESTION**), parse features, punctuation, dialog context, and the prosodic features described above.

A second pass classifier might use any of the algorithms for slot-filler extraction discussed in Section 28.2.2 of Chapter 29, such as CRF or RNN-based IOB tagging. Alternatively, a multinominal classifier can be used to choose between all possible slot-value pairs, again using any of the feature functions defined in Chapter 29. This is possible since the domain ontology for the system is fixed, so there is a finite number of slot-value pairs.

Both classifiers can be built from any standard multinominal classifier (logistic regression, SVM), using the various features described above, or, if sufficient training data is available, can be built with end-to-end neural models.

### 29.2.2 A special case: detecting correction acts

Some dialog acts are important because of their implications for dialog control. If a dialog system misrecognizes or misunderstands an utterance, the user will generally correct the error by repeating or reformulating the utterance. Detecting these **user correction acts** is therefore quite important. Ironically, it turns out that corrections are actually **harder** to recognize than normal sentences! In fat, corrections in one early dialog system (the TOOT system) had double the ASR word error rate of non-corrections Swerts et al. (2000)! One reason for this is that speakers sometimes use a specific prosodic style for corrections called **hyperarticulation**, in which the
utterance contains some exaggerated energy, duration, or F0 contours, such as *I said BAL-TI-MORE, not Boston* (Wade et al. 1992, Levow 1998, Hirschberg et al. 2001). Even when they are not hyperarticulating, users who are frustrated seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be either exact repetitions or repetitions with one or more words omitted, although they may also be paraphrases of the original utterance. (Swerts et al., 2000). Detecting these reformulations or correction acts can be done by any classifier; some standard features used for this task are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko et al. 2005, Awadallah et al. 2015):

<table>
<thead>
<tr>
<th>feature type</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>lexical features</td>
<td>words like “no”, “correction”, “I don’t”, or even swear words, utterance length</td>
</tr>
<tr>
<td>semantic features</td>
<td>overlap between the candidate correction act and the user’s prior utterance (computed by word overlap or via cosines over embedding vectors)</td>
</tr>
<tr>
<td>phonetic features</td>
<td>phonetic overlap between the candidate correction act and the user’s prior utterance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)</td>
</tr>
<tr>
<td>prosodic features</td>
<td>hyperarticulation, increases in F0 range, pause duration, and word duration, generally normalized by the values for previous sentences</td>
</tr>
<tr>
<td>ASR features</td>
<td>ASR confidence, language model probability</td>
</tr>
</tbody>
</table>

### 29.3 Dialogue Policy

The goal of the **dialog policy** is to decide what action the system should take next, that is, what dialog act to generate. We begin in the next section by introducing one specific dialog policy decision, relating to confirmation: how we confirm to the user what we think she said. We then sketch a basic policy algorithm that could apply to all decisions. Finally, once a speech act has been generated, the natural language generation component needs to generate the text of a response to the user.

#### 29.3.1 Generating Dialogue Acts: Confirmation and Rejection

Modern dialog systems often make mistakes. It is therefore important for dialog systems to make sure that they have achieved the correct interpretation of the user’s input. This is generally done by two methods: confirming understandings with the user and rejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation with the user. When using the **explicit confirmation** strategy, a system asks the user a direct question to confirm the system’s understanding, like the two examples below in which the system asks a (boldface) yes-no confirmation questions:

| S: | Which city do you want to leave from? |
| U: | Baltimore. |
| S: | **Do you want to leave from Baltimore?** |
| U: | Yes. |
| U: | I’d like to fly from Denver Colorado to New York City on September twenty first in the morning on United Airlines |
| S: | Let’s see then. I have you going from Denver Colorado to New York on September twenty first. Is that correct? |
| U: | Yes |
When using the **implicit confirmation** strategy, a system instead uses the *demonstration* or *display* grounding strategies described above, repeating back the system’s understanding as part of asking the next question, as in the two examples below:

<table>
<thead>
<tr>
<th>U:</th>
<th>I want to travel to Berlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td><strong>When do you want to travel to Berlin?</strong></td>
</tr>
<tr>
<td>U2:</td>
<td>Hi I’d like to fly to Seattle Tuesday Morning</td>
</tr>
<tr>
<td>A3:</td>
<td><strong>Traveling to Seattle on Tuesday, August eleventh in the morning.</strong> Your full name?</td>
</tr>
</tbody>
</table>

Explicit and implicit confirmation have complementary strengths. Explicit confirmation makes it easier for users to correct the system’s misrecognitions since a user can just answer “no” to the confirmation question. But explicit confirmation is awkward and increases the length of the conversation (Danieli and Gerbino 1995, Walker et al. 1998). The explicit confirmation dialog fragments above sound non-natural and definitely non-human; implicit confirmation is much more conversationally natural.

Confirmation is just one kind of conversational action by which a system can express lack of understanding. Another option is rejection, in which a system gives the user a prompt like *I’m sorry, I didn’t understand that*. Sometimes utterances are rejected multiple times. This might mean that the user is using language that the system is unable to follow. Thus, when an utterance is rejected, systems often follow a strategy of *progressive prompting* or *escalating detail* (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example from Cohen et al. (2004):

<table>
<thead>
<tr>
<th>System:</th>
<th>When would you like to leave?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller:</td>
<td>Well, um, I need to be in New York in time for the first World Series game.</td>
</tr>
<tr>
<td>System:</td>
<td>&lt;reject&gt;. Sorry, I didn’t get that. Please say the month and day you’d like to leave.</td>
</tr>
</tbody>
</table>
| Caller: | I wanna go on October fifteenth.

In this example, instead of just repeating “When would you like to leave?”, the rejection prompt gives the caller more guidance about how to formulate an utterance the system will understand. These *you-can-say* help messages are important in helping improve systems’ understanding performance (Bohus and Rudnicky, 2005). If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is **rapid reprompting**, in which the system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only if the caller’s utterance is rejected a second time does the system start applying progressive prompting. Cohen et al. (2004) summarize experiments showing that users greatly prefer rapid reprompting as a first-level error prompt.

Various factors can be used as features to the dialog policy in deciding whether to use explicit confirmation, implicit confirmation, or rejection. For example, the **confidence** that the ASR system assigns to an utterance can be used by explicitly confirming low-confidence sentences. Recall from page ?? that confidence is a metric that the speech recognizer can assign to its transcription of a sentence to indicate how confident it is in that transcription. Confidence is often computed from the acoustic log-likelihood of the utterance (greater probability means higher confidence), but prosodic features can also be used in confidence prediction. For example,
utterances with large F0 excursions or longer durations, or those preceded by longer pauses, are likely to be misrecognized (Litman et al., 2000).

Another common feature in confirmation is the cost of making an error. For example, explicit confirmation is common before a flight is actually booked or money in an account is moved. Systems might have a four-tiered level of confidence with three thresholds $\alpha$, $\beta$, and $\gamma$:

- $< \alpha$: low confidence, reject
- $\geq \alpha$: above the threshold, confirm explicitly
- $\geq \beta$: high confidence, confirm implicitly
- $\geq \gamma$: very high confidence, don’t confirm at all

### 29.4 A simple policy based on local context

The goal of the dialog policy at turn $i$ in the conversation is to predict which action $A_i$ to take, based on the entire dialog state. The state could mean the entire sequence of dialog acts from the system ($A$) and from the user ($U$), in which case the task would be to compute:

$$\hat{A}_i = \arg\max_{A_i \in A} P(A_i|(A_1, U_1, \ldots, A_{i-1}, U_{i-1})$$  \hspace{1cm} (29.5)

We can simplify this by maintaining as the dialog state mainly just the set of slot-fillers that the user has expressed, collapsing across the many different conversational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current state of the frame $\text{Frame}_i$ (which slots are filled and with what) and the last turn by the system and user:

$$\hat{A}_i = \arg\max_{A_i \in A} P(A_i|\text{Frame}_{i-1}, A_{i-1}, U_{i-1})$$  \hspace{1cm} (29.6)

Given a large enough corpus of conversations, these probabilities can be estimated by a classifier. Getting such enormous amounts of data can be difficult, and often involves building user simulators to generate artificial conversations to train on.

### 29.5 Natural language generation in the dialog-state model

Once a dialog act has been decided, we need to generate the text of the response to the user. The task of natural language generation (NLG) in the information-state architecture is often modeled in two stages, content planning (what to say), and sentence realization (how to say it).

Here we’ll assume content planning has been done by the dialog policy, which has chosen the dialog act to generate, and perhaps also chosen some additional attributes (slots and values) that the planner wants to implicitly confirm to the user. Fig. 29.6 shows a sample input structure from the policy/content planner, and one example of a resulting sentence that the sentence realizer could generate from this structure.

Let’s walk through the sentence realization stage for the example in Fig. 29.6, which comes from the classic information state statistical NLG system of Oh and
Rudnicky (2000), part of the CMU Communicator travel planning dialog system. Notice first that the policy has decided to generate the dialog act QUERY with the argument DEPART.TIME. Fig. 29.7 lists the dialog acts in the Oh and Rudnicky (2000) system, each of which combines an act with a potential argument. The input frame in Fig. 29.6 also specifies some additional filled slots that should be included in the sentence to the user (depart_airport BOS, and the depart_date).

The sentence realizer acts in two steps. It will first generate a delexicalized string:

```
What time on [depart_date] would you like to leave [depart_airport]?
```

Delexicalization is the process of replacing specific words with a generic representation of their slot types. A delexicalized sentence is much easier to generate since we can train on many different source sentences from different specific dates and airports. Then once we’ve generating the delexicalized string, we can simply use the input frame from the content planner to relexicalize (fill in the exact departure date and airport).

To generate the delexicalized sentences, the sentence realizer uses a large corpus of human-human travel dialogs that were labeled with the dialog acts from Fig. 29.7 and the slots expressed in each turn, like the following:

<table>
<thead>
<tr>
<th>QUERY DEPART_TIME</th>
<th>And what time would you like to leave [depart_city Pittsburgh]?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY ARRIVE_CITY</td>
<td>And you’re flying into what city?</td>
</tr>
<tr>
<td>QUERY ARRIVE_TIME</td>
<td>What time on [arrive_date May 5]?</td>
</tr>
<tr>
<td>INFORM FLIGHT</td>
<td>The flight departs [depart_airport PGH] at [depart_time 10 am] and arrives [arrive_city Seattle] at [arrive_time 12:05 their time].</td>
</tr>
</tbody>
</table>

This corpus is then delexicalized, and divided up into separate corpora for each dialog act. Thus the delexicalized corpus for one dialog act, QUERY DEPART_TIME might be trained on examples like:
And what time would you like to leave depart_city?
When would you like to leave depart_city?
When would you like to leave?
What time do you want to leave on depart_date?
OK, on depart_date, what time do you want to leave?

A distinct N-gram grammar is then trained for each dialog act. Now, given the dialog act QUERY DEPART_TIME, the system samples random sentences from this language model. Recall from the the "Shannon" exercise of 44 that this works (assuming a bigram LM) by first selecting a bigram \((<s>,<w>)\) according to its bigram probability in the language model, then drawing a bigram starting with \(<w>\) according to its bigram probability, and so on until a full sentence is generated. The probability of each successive word \(w_i\) being generated from utterance class \(u\) is thus

\[
P(w_i) = P(w_i|w_{i-1},w_{i-2},...,w_{i-(n-1)},u)
\]  

(29.7)

Each of these randomly sampled sentences is then assigned a score based on heuristic rules that penalize sentences that are too short or too long, repeat slots, or lack some of the required slots from the input frame (in this case, depart_airport and depart_date). The best scoring sentence is then chosen. Let’s suppose in this case we produce the following (delexicalized) sentence:

What time on depart_date would you like to leave depart_airport?

This sentence is then relexicalized from the true values in the input frame, resulting in the final sentence:

What time on October fifth would you like to leave Boston?

More recent work has replaced the simplistic N-gram part of the generator with neural models, which similarly learn to map from an input frame to a resulting sentence (Wen et al. 2015a, Wen et al. 2015b).

It’s also possible to design NLG algorithms that are specific to a particular dialog act. For example, consider the task of generating clarification questions, in cases where the speech recognition fails to understand some part of the user’s utterance. While it is possible to use the generic dialog act REJECT (“Please repeat”, or “I don’t understand what you said”), studies of human conversations show that humans instead use targeted clarification questions that reprise elements of the misunderstanding (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the words “going” and “on the 5th” to make it clear which aspect of the user’s turn the system needs to be clarified:

User: What do you have going to UNKNOWN_WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “going to UNKNOWN_WORD” with “going where”) or by building classifiers to guess which slots might have been misrecognized in the sentence (Chu-Carroll and Carpenter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).
29.6 Advanced: Markov Decision Processes

The policy we described in Section 29.4, deciding what actions the system should take based just on the current filled slots and the users last utterance, has a problem: it looks only at the past of the dialog, completely ignoring whether the action we take is likely to lead to a successful outcome (a correctly booked flight or filled-in calendar).

But we can’t know whether the outcome is successful until long after the current utterance we are trying to plan. Reinforcement learning is the branch of machine learning that deals with models that learn to maximize future rewards.

This is an extremely active area of research, so we give here just the simplest intuition for this direction, based on an oversimplified model of dialog as a Markov decision process.

A Markov decision process or MDP is characterized by a set of states \( S \) an agent can be in, a set of actions \( A \) the agent can take, and a reward \( r(a, s) \) that the agent receives for taking an action in a state. Given these factors, we can compute a policy \( \pi \) that specifies which action \( a \) the agent should take when in a given state \( s \) so as to receive the best reward.

To understand each of these components, we need to look at a tutorial example in which the state space is extremely reduced. Let’s look at a trivial pedagogical frame-and-slot example from Levin et al. (2000), a “Day-and-Month” dialog system whose goal is to get correct values of day and month for a two-slot frame through the shortest possible interaction with the user.

In principle, a state of an MDP could include any possible information about the dialog, such as the complete dialog history so far. Using such a rich model of state would make the number of possible states extraordinarily large. So a model of state is usually chosen that encodes a much more limited set of information, such as the values of the slots in the current frame, the most recent question asked to the user, the user’s most recent answer, the ASR confidence, and so on. For the Day-and-Month example, let’s represent the state of the system as the values of the two slots day and month. There are 411 states (366 states with a day and month (counting leap year), 12 states with a month but no day \( (d=0, m=1, 2, ..., 12) \), 31 states with a day but no month \( (m=0, d=1, 2, ..., 31) \), and a special initial state \( s_i \) and final state \( s_f \).

Actions of an MDP dialog system might include generating particular speech acts, or performing a database query to find out information. For the Day-and-Month example, Levin et al. (2000) propose the following actions:

- \( a_d \): a question asking for the day
- \( a_m \): a question asking for the month
- \( a_dm \): a question asking for both the day and the month
- \( a_f \): a final action submitting the form and terminating the dialog

Since the goal of the system is to get the correct answer with the shortest interaction, one possible reward function for the system would integrate three terms:

\[
R = - (w_i n_i + w_e n_e + w_f n_f) \tag{29.8}
\]

The term \( n_i \) is the number of interactions with the user, \( n_e \) is the number of errors, \( n_f \) is the number of slots that are filled (0, 1, or 2), and the \( w \)s are weights.

Finally, a dialog policy \( \pi \) specifies which actions to apply in which state. Consider two possible policies: (1) asking for day and month separately, and (2) asking for them together. These might generate the two dialogs shown in Fig. 29.8.
In policy 1, the action specified for the no-date/no-month state is to ask for a day, and the action specified for any of the 31 states where we have a day but not a month is to ask for a month. In policy 2, the action specified for the no-date/no-month state is to ask an open-ended question (Which date) to get both a day and a month. The two policies have different advantages; an open prompt can lead to shorter dialogs but is likely to cause more errors, whereas a directive prompt is slower but less error-prone. Thus, the optimal policy depends on the values of the weights $w$ and also on the error rates of the ASR component. Let’s call $p_d$ the probability of the recognizer making an error interpreting a month or a day value after a directive prompt. The (presumably higher) probability of error interpreting a month or day value after an open prompt we’ll call $p_o$. The reward for the first dialog in Fig. 29.8 is thus $-3 \times w_i + 2 \times p_d \times w_e$. The reward for the second dialog in Fig. 29.8 is $-2 \times w_i + 2 \times p_o \times w_e$. The directive prompt policy, policy 1, is thus better than policy 2 when the improved error rate justifies the longer interaction, that is, when $p_d - p_o > \frac{w_i}{2w_e}$.

In the example we’ve seen so far, there were only two possible actions, and hence only a tiny number of possible policies. In general, the number of possible actions, states, and policies is quite large, and so the problem of finding the optimal policy $\pi^*$ is much harder.

Markov decision theory together with classical reinforcement learning gives us a way to think about this problem. First, generalizing from Fig. 29.8, we can think of any particular dialog as a trajectory in state space:

$$s_1 \rightarrow a_{1,1} \rightarrow s_2 \rightarrow a_{2,2} \rightarrow s_3 \rightarrow a_{3,3} \cdots$$  \hspace{1cm} (29.9)

The best policy $\pi^*$ is the one with the greatest expected reward over all trajectories. What is the expected reward for a given state sequence? The most common way to assign utilities or rewards to sequences is to use discounted rewards. Here we compute the expected cumulative reward $Q$ of a sequence as a discounted sum of the utilities of the individual states:

$$Q([s_0, a_0, s_1, a_1, s_2, a_2, \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots,$$  \hspace{1cm} (29.10)

The discount factor $\gamma$ is a number between 0 and 1. This makes the agent care more about current rewards than future rewards; the more future a reward, the more discounted its value.

Given this model, it is possible to show that the expected cumulative reward $Q(s, a)$ for taking a particular action from a particular state is the following recursive equation called the Bellman equation:
\begin{equation}
    Q(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')
\end{equation}

What the Bellman equation says is that the expected cumulative reward for a
given state/action pair is the immediate reward for the current state plus the expected
discounted utility of all possible next states $s'$, weighted by the probability of moving
to that state $s'$, and assuming that once there we take the optimal action $a'$.

Equation 29.11 makes use of two parameters. We need a model of $P(s'|s, a)$,
that is, how likely a given state/action pair $(s, a)$ is to lead to a new state $s'$. And
we also need a good estimate of $R(s, a)$. If we had lots of labeled training data, we
could simply compute both of these from labeled counts. For example, with labeled
dialogs, to estimate $P(s'|s, a)$ we could simply count how many times we were in
a given state $s$, and out of that how many times we took action $a$ to get to state $s'$. Similarly, if we had a hand-labeled reward for each dialog, we could build a model
of $R(s, a)$.

Given these parameters, there is an iterative algorithm for solving the Bellman
equation and determining proper $Q$ values, the value iteration algorithm (Sutton
and Barto 1998, Bellman 1957). See Russell and Norvig (2002) for the details of
the algorithm.

How do we get enough labeled training data to set these parameters? This is
especially worrisome since in real problems the number of states $s$ is extremely
large. The most common method is to build a simulated user. The user interacts with
the system millions of times, and the system learns the state transition and reward
probabilities from this corpus. For example Levin et al. (2000) build a generative
stochastic model that given the system’s current state and actions, produced a frame-
slot representation of a user response; the parameters of the simulated user were
estimated from a corpus of ATIS dialogs.

The MDP is only useful in small toy examples and is not used in practical dialog
systems. A more powerful model, the partially observable Markov decision process,
or POMDP, adds extra latent variables to represent our uncertainty about the true
state of the dialog. Both MDPs and POMDPs, however, have problems due to computa-
tional complexity and due to their reliance on simulations that don’t reflect true
user behavior.

Recent research has therefore focused on ways to build real task-based systems
that nonetheless make use of this reinforcement learning intuition, often by adding
reinforcement learning to deep neural networks. This is an exciting new area of
research, but a standard paradigm has yet to emerge.

29.7 Summary

- In dialog, speaking is a kind of action; these acts are referred to as speech
  acts. Speakers also attempt to achieve common ground by acknowledging
  that they have understand each other. The dialog act combines the intuition
  of speech acts and grounding acts.
- The dialog-state or information-state architecture augments the frame-and-
slot state architecture by keeping track of user’s dialog acts and includes a
  policy for generating its own dialog acts in return.
- Policies based on reinforcement learning architecture like the MDP and POMDP
offer ways for future dialog reward to be propagated back to influence policy earlier in the dialog manager.

Bibliographical and Historical Notes

The idea that utterances in a conversation are a kind of action being performed by the speaker was due originally to the philosopher Wittgenstein (1953) but worked out more fully by Austin (1962) and his student John Searle. Various sets of speech acts have been defined over the years, and a rich linguistic and philosophical literature developed, especially focused on explaining the use of indirect speech acts.

The idea of dialog acts draws also from a number of other sources, including the ideas of adjacency pairs, pre-sequences, and other aspects of the international properties of human conversation developed in the field of conversation analysis (see Levinson (1983) for an introduction to the field).

This idea that acts set up strong local dialogue expectations was also prefigured by Firth (1935, p. 70), in a famous quotation:

*Most of the give-and-take of conversation in our everyday life is stereotyped and very narrowly conditioned by our particular type of culture. It is a sort of roughly prescribed social ritual, in which you generally say what the other fellow expects you, one way or the other, to say.*

Another important research thread modeled dialog as a kind of collaborative behavior, including the ideas of common ground (Clark and Marshall, 1981), reference as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention (Levesque et al., 1990), and shared plans (Grosz and Sidner, 1980).


Two important lines of research focused on the computational properties of conversational structure. One line, first suggested at by Bruce (1975), suggested that since speech acts are actions, they should be planned like other actions, and drew on the AI planning literature (Fikes and Nilsson, 1971). An agent seeking to find out some information can come up with the plan of asking the interlocutor for the information. An agent hearing an utterance can interpret a speech act by running the planner “in reverse”, using inference rules to infer from what the interlocutor said what the plan might have been. Plan-based models of dialogue are referred to as BDI models because such planners model the beliefs, desires, and intentions (BDI) of the agent and interlocutor. BDI models of dialogue were first introduced by Allen, Cohen, Perrault, and their colleagues in a number of influential papers showing how speech acts could be generated (Cohen and Perrault, 1979) and interpreted (Perrault and Allen 1980, Allen and Perrault 1980). At the same time, Wilensky (1983) introduced plan-based models of understanding as part of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical structure of dialog. Grosz’s pioneering (1977) dissertation first showed that “task-oriented dialogs have a structure that closely parallels the structure of the task being performed” (p. 27), leading to her work with Sidner and others showing how to use
similar notions of intention and plans to model discourse structure and coherence in dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of intentional structure in dialog.

The idea of applying reinforcement learning to dialogue first came out of AT&T and Bell Laboratories around the turn of the century with work on MDP dialogue systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) and work on cue phrases, prosody, and rejection and confirmation. Reinforcement learning research turned quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon et al. 2006, Williams and Young 2007) applied to small slot-filling dialogue tasks.

More recent work has applied deep learning to many components of dialogue systems.
CHAPTER 30

Speech Recognition
CHAPTER 31
Speech Synthesis
Bibliography

Abbreviations:

AAAI Proceedings of the National Conference on Artificial Intelligence
ACL Proceedings of the Annual Conference of the Association for Computational Linguistics
ANLP Proceedings of the Conference on Applied Natural Language Processing
CLSL Papers from the Annual Regional Meeting of the Chicago Linguistics Society
COGSCI Proceedings of the Annual Conference of the Cognitive Science Society
COLING Proceedings of the International Conference on Computational Linguistics
CoNLL Proceedings of the Conference on Computational Natural Language Learning
EACL Proceedings of the Conference of the European Association for Computational Linguistics
EMNLP Proceedings of the Conference on Empirical Methods in Natural Language Processing
EUROSPEECH Proceedings of the European Conference on Speech Communication and Technology
ICASSP Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing
ICML International Conference on Machine Learning
ICPWS Proceedings of the International Congress of Phonetic Sciences
ICSLP Proceedings of the International Conference on Spoken Language Processing
IJCAI Proceedings of the International Joint Conference on Artificial Intelligence
INTERSPEECH Proceedings of the Annual INTERSPEECH Conference
IWPT Proceedings of the International Workshop on Parsing Technologies
JASA Journal of the Acoustical Society of America
LREC Conference on Language Resources and Evaluation
MUC Proceedings of the Message Understanding Conference
NAACL-HLT Proceedings of the North American Chapter of the ACL/Human Language Technology Conference
SIGIR Proceedings of the Conference on Information Retrieval


McNamee, P. and Mayfield, J. (2002). Entity extraction without language-specific resources. In CoNLL-02, Taipei, Taiwan.


Author Index

Ba, J., 120
Baayen, R. H., 32, 240
Ba, J., 120
Ba, J., 120
Baker, C. F., 383
Baker, J. K., 58, 220, 242
Baldwin, T., 316, 324
Ballard, D. H., 120
Balogh, J., 439, 440, 445
Banerjee, E., 266
Banerjee, S., 321
Bangalore, S., 243
Banko, M., 375, 406, 408
Bao, J.-W., 425
Bar-Hillel, Y., 188
Barham, P., 121
Barker, D. T., 450
Barrett, L., 225, 423
Barto, A. G., 456
Bates, R., 457
Bauer, F. L., 194
Baum, L. E., 135, 140
Baum, L. F., 438
Bays, T., 76
Bazell, C. E., 194
Bear, J., 373, 374
Becker, C., 356, 409
Beil, F., 395
Bejké, E., 249, 268
Bell, T. C., 59, 230
Bellegarda, I. R., 59, 298, 440
Bellman, R., 28, 32, 456
Belvin, R., 249
Bender, E. M., 457
Bengio, S., 426
Befuš, Š., 457
Berant, J., 411, 412, 416
Berg-Kirkpatrick, T., 88, 90, 166
Berger, A., 101
Bergsma, S., 70, 395
Bethard, S., 375
Bever, T. G., 240
Bhat, I., 260
Bhat, R. A., 260
Bhembé, D., 420
Biber, D., 195
Bies, A., 182, 184
Bikel, D. M., 230, 243, 375
Bills, S., 361, 375
Birn, O., 322
Bird, S., 31
Bishop, C. M., 90, 101
Bizer, C., 356, 409
Black, E., 238, 239, 243, 324
Blair, C. R., 72
Blair-Goldensohn, K., 325
Blei, D. M., 298, 324
Bloomfield, L., 185, 194
Bobrov, D. O., 394, 395, 419, 427, 428, 440
Bobrov, R. J., 440
Bod, R., 243
Boguraev, B., 324, 325
Boguraev, B. K., 417
Bolus, D., 450
Bollacker, K., 356, 409
Bontcheva, K., 166
Booth, R. J., 82, 340, 341
Booth, T. L., 213, 242
Borges, J. L., 74
Bosert, B., 120
Bosert, B. E., 120
Böttner, M., 420
Bottou, L., 115, 298, 395
Bouchard-Côté, A., 166
Bourlard, H., 120
Bowa, S. R., 426
Boyd-Graber, J., 324
Brants, T., 53, 54, 155–157, 165
Bresnan, J., 188, 194, 212
Brevdo, E., 121
Brill, E., 70, 71, 243, 406, 408
Brin, S., 375
Briscoe, T., 239, 243, 324
Broadhead, M., 375
Brockett, C., 425, 426
Brockmann, C., 391
Brody, S., 322, 324
Broschart, J., 144
Brown, P. F., 295–297
Bruce, B. C., 457
Bruce, R., 308, 324
Bruce, R. F., 326
Brysbaert, M., 340
Bu, J., 325
Buchholz, S., 269
Buck, C., 46
Budanitsky, A., 73, 322
Bullinaria, J. A., 298
Bulyko, I., 59, 440
Bunker, R. T., 309
Burcardt, A., 266
Burges, C., 424
Burget, L., 298
Burkett, D., 88, 90
Burnett, D., 439
Byrd, R. H., 97
Cafarella, M., 375
Cafarella, M. J., 375
Cai, Q., 416
Candido, M., 269
Canon, S., 243
Cardie, C., 284, 322, 325, 374
Cardie, J. L., 447
Catlett, A., 447
Carmel, D., 417
Carpenter, B., 453
Carpenter, R., 420, 425
Carpuat, M., 325
Carreras X., 395
Carreras Pérez, X., 296, 297
Carroll, G., 244, 395
Carroll, J., 239, 243
Carstensen, F. V., 165
Castillo, J., 365, 367, 370
Celičkýlmaz, A., 432
Cer, D., 284, 322
Černocký, J. H., 298
Chahuneau, V., 336, 337
Chambers, N., 372, 375, 392
Chan, Y. S., 325
Chanev, A., 268
Chang, A. X., 297, 367, 375, 411, 415
Chang, J. S., 324
Chang, P.-C., 31
Charles, W. G., 322, 345
Charlin, L., 424, 426
Charniak, E., 165, 185, 225, 243, 244, 324
Che, W., 395
Cheiba, C., 217
Chen, C., 325
Chen, D., 258
Chen, E., 425
Chen, J. N., 324
Chen, K., 277, 284, 290, 293, 295, 298
Chen, M. Y., 345
Chen, P., 425
Chen, S. F., 51, 53, 59, 101
Chen, W., 395
Chen, Y.-N., 432
Chen, Z., 121
Cherry, C., 425
Chi, Z., 243
Chiang, D., 243, 325
Chiba, S., 140
Chinchor, N., 90, 374
Chitaculur, L., 354
Chikovski, T., 324
Chodorow, M. S., 318
Choi, J., 269
Choi, J. D., 260, 269
Choi, Y., 325
Chomsky, C., 408, 417
Chomsky, N., 58, 170, 187, 194
Chou, A., 411, 416
Chow, Y.-L., 243
Christoudolopoulois, C., 166
Chu, Y.-J., 263
Chu-Carroll, J., 417, 453, 457
Chung, G. Y., 69, 70
Church, K. W., 21, 49, 51, 54, 59, 62, 64–66, 73, 165, 210, 275, 276, 311, 353, 392
Ciaramita, M., 269, 322, 387
Cinková, S., 374
CITE, 233
Citro, C., 121
Clark, A., 166, 244
Clark, H. H., 19, 440, 443
Clark, J. H., 53, 54, 59

485
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, S.</td>
<td>166, 239, 244, 258, 298</td>
</tr>
<tr>
<td>Coccaro, N.</td>
<td>298, 457</td>
</tr>
<tr>
<td>Cohen, D. N.</td>
<td>140</td>
</tr>
<tr>
<td>Cohen, K. B.</td>
<td>348</td>
</tr>
<tr>
<td>Cohen, M. H.</td>
<td>439, 444, 450</td>
</tr>
<tr>
<td>Cohen, P. R.</td>
<td>457</td>
</tr>
<tr>
<td>Colaresi, M. P.</td>
<td>336, 337</td>
</tr>
<tr>
<td>Colby, K. M.</td>
<td>423, 439</td>
</tr>
<tr>
<td>Cole, R. A.</td>
<td>439</td>
</tr>
<tr>
<td>Collobert, R.</td>
<td>298, 395</td>
</tr>
<tr>
<td>Colomb, J. B.</td>
<td>375</td>
</tr>
<tr>
<td>Colloiso, M.</td>
<td>375</td>
</tr>
<tr>
<td>Coll, E.</td>
<td>266</td>
</tr>
<tr>
<td>Conrad, S.</td>
<td>195</td>
</tr>
<tr>
<td>Conrath, D. W.</td>
<td>321</td>
</tr>
<tr>
<td>Conti, J.</td>
<td>438</td>
</tr>
<tr>
<td>Cook, P.</td>
<td>316, 324</td>
</tr>
<tr>
<td>Coppola, A.</td>
<td>325</td>
</tr>
<tr>
<td>Coppola, B.</td>
<td>417</td>
</tr>
<tr>
<td>Corrado, G.</td>
<td>284, 290, 293, 298</td>
</tr>
<tr>
<td>Corrado, G. S.</td>
<td>277, 290, 293, 295, 298</td>
</tr>
<tr>
<td>Cotton, S.</td>
<td>308, 309</td>
</tr>
<tr>
<td>Cottrell, G. W.</td>
<td>324</td>
</tr>
<tr>
<td>Courville, A.</td>
<td>107, 108, 120</td>
</tr>
<tr>
<td>Cover, T. M.</td>
<td>55, 56</td>
</tr>
<tr>
<td>Covington, M.</td>
<td>252, 268</td>
</tr>
<tr>
<td>Craven, M.</td>
<td>375</td>
</tr>
<tr>
<td>Crouch, R.</td>
<td>239, 243</td>
</tr>
<tr>
<td>Cruse, D. A.</td>
<td>324</td>
</tr>
<tr>
<td>Cucerzan, S.</td>
<td>70</td>
</tr>
<tr>
<td>Culicover, P. W.</td>
<td>195</td>
</tr>
<tr>
<td>Curran, J. R.</td>
<td>166, 239, 244, 279, 281, 298</td>
</tr>
<tr>
<td>Cyganiak, R.</td>
<td>356, 409</td>
</tr>
<tr>
<td>Daelemans, W.</td>
<td>243</td>
</tr>
<tr>
<td>Dagan, I.</td>
<td>210, 276, 277, 281, 285, 299, 298</td>
</tr>
<tr>
<td>Dai, A. M.</td>
<td>426</td>
</tr>
<tr>
<td>Damerau, F. J.</td>
<td>62, 67, 68, 72, 73</td>
</tr>
<tr>
<td>Dang, H. T.</td>
<td>89, 284, 286, 287, 289, 298, 322, 406, 408</td>
</tr>
<tr>
<td>Dunphy, D.</td>
<td>82, 327, 328, 345</td>
</tr>
<tr>
<td>Dzierszynski, L.</td>
<td>341–344</td>
</tr>
<tr>
<td>Eagon, J. A.</td>
<td>140</td>
</tr>
<tr>
<td>Earley, J. L.</td>
<td>200, 263</td>
</tr>
<tr>
<td>Eckert, W.</td>
<td>454–456, 458</td>
</tr>
<tr>
<td>Edmonds, J.</td>
<td>263</td>
</tr>
<tr>
<td>Edmonds, P.</td>
<td>324</td>
</tr>
<tr>
<td>Efron, B.</td>
<td>88</td>
</tr>
<tr>
<td>Egbe, E.</td>
<td>32</td>
</tr>
<tr>
<td>Eichstaedt, J. C.</td>
<td>341–344</td>
</tr>
<tr>
<td>Eisenstein, J.</td>
<td>166</td>
</tr>
<tr>
<td>Eisner, J.</td>
<td>125, 244, 268</td>
</tr>
<tr>
<td>Ejerhed, E. I.</td>
<td>210</td>
</tr>
<tr>
<td>Ekman, P.</td>
<td>338</td>
</tr>
<tr>
<td>El-Khayat, A.</td>
<td>266</td>
</tr>
<tr>
<td>Elhadad, N.</td>
<td>322</td>
</tr>
<tr>
<td>Elissieff, A.</td>
<td>99</td>
</tr>
<tr>
<td>Ellis, G.</td>
<td>69, 70</td>
</tr>
<tr>
<td>Ellis, J. J.</td>
<td>375</td>
</tr>
<tr>
<td>Ellisworth, M.</td>
<td>383, 384</td>
</tr>
<tr>
<td>Elman, J. L.</td>
<td>120</td>
</tr>
<tr>
<td>Elsner, M.</td>
<td>166</td>
</tr>
<tr>
<td>Erk, K.</td>
<td>395</td>
</tr>
<tr>
<td>Eryigit, G.</td>
<td>268</td>
</tr>
<tr>
<td>Esuli, A.</td>
<td>325, 332, 333</td>
</tr>
<tr>
<td>Ezioni, O.</td>
<td>363, 364, 375, 395, 410–412</td>
</tr>
<tr>
<td>et al.</td>
<td>247, 268, 269</td>
</tr>
<tr>
<td>Evani, N.</td>
<td>445</td>
</tr>
<tr>
<td>Gasić, M.</td>
<td>454, 455</td>
</tr>
<tr>
<td>Gauvain, J.-L.</td>
<td>59, 298</td>
</tr>
<tr>
<td>Gazer, G.</td>
<td>181</td>
</tr>
<tr>
<td>Gdaniec, C.</td>
<td>238, 239</td>
</tr>
<tr>
<td>Geman, S.</td>
<td>243</td>
</tr>
<tr>
<td>Georgila, K.</td>
<td>458</td>
</tr>
<tr>
<td>Gerber, L.</td>
<td>365, 367</td>
</tr>
<tr>
<td>Gerbino, E.</td>
<td>437, 450</td>
</tr>
<tr>
<td>Gerten, J.</td>
<td>426</td>
</tr>
<tr>
<td>Gertz, M.</td>
<td>367, 375</td>
</tr>
<tr>
<td>Ghesmat, S.</td>
<td>121</td>
</tr>
<tr>
<td>Giangola, J. P.</td>
<td>439, 444, 450</td>
</tr>
<tr>
<td>Gil, D.</td>
<td>144</td>
</tr>
<tr>
<td>Gilbert, G. N.</td>
<td>438</td>
</tr>
<tr>
<td>Gildea, D.</td>
<td>385–387, 395</td>
</tr>
<tr>
<td>Giménez, J.</td>
<td>162, 165</td>
</tr>
<tr>
<td>Ginter, F.</td>
<td>247, 266, 268, 269</td>
</tr>
<tr>
<td>Ginzburg, J.</td>
<td>453</td>
</tr>
<tr>
<td>Givón, T.</td>
<td>221</td>
</tr>
<tr>
<td>Glass, J.</td>
<td>438</td>
</tr>
<tr>
<td>Glennie, A.</td>
<td>210</td>
</tr>
<tr>
<td>Godfrey, J.</td>
<td>19, 168</td>
</tr>
<tr>
<td>Goebel, R.</td>
<td>70, 395</td>
</tr>
<tr>
<td>Goenaga, I.</td>
<td>269</td>
</tr>
<tr>
<td>Goffman, E.</td>
<td>395</td>
</tr>
<tr>
<td>Gojenola, K.</td>
<td>269</td>
</tr>
<tr>
<td>Gokirmak, M.</td>
<td>266</td>
</tr>
<tr>
<td>Goldberg, J.</td>
<td>449</td>
</tr>
<tr>
<td>Goldberg, Y.</td>
<td>115, 120, 247, 268, 297, 289, 294, 295, 298</td>
</tr>
<tr>
<td>Golding, A. R.</td>
<td>70</td>
</tr>
<tr>
<td>Goldwater, S.</td>
<td>166</td>
</tr>
<tr>
<td>Gondek, D.</td>
<td>417</td>
</tr>
<tr>
<td>Gonnerman, L. M.</td>
<td>280, 281</td>
</tr>
<tr>
<td>González-Agirre, A.</td>
<td>284, 322</td>
</tr>
<tr>
<td>Good, M. D.</td>
<td>438</td>
</tr>
<tr>
<td>Goodenough, J. B.</td>
<td>322</td>
</tr>
<tr>
<td>Goodfellow, I.</td>
<td>107, 108, 120, 121</td>
</tr>
<tr>
<td>Goodine, D.</td>
<td>438</td>
</tr>
<tr>
<td>Goodman, J.</td>
<td>51, 53, 59, 101, 243</td>
</tr>
<tr>
<td>Goodwin, C.</td>
<td>457</td>
</tr>
<tr>
<td>Gosling, S. D.</td>
<td>341</td>
</tr>
<tr>
<td>Gould, J. D.</td>
<td>438</td>
</tr>
<tr>
<td>Gould, S. J.</td>
<td>270</td>
</tr>
<tr>
<td>Gravano, A.</td>
<td>457</td>
</tr>
<tr>
<td>Gravano, L.</td>
<td>361, 375</td>
</tr>
<tr>
<td>Green, B. F.</td>
<td>408, 417</td>
</tr>
<tr>
<td>Green, J.</td>
<td>194</td>
</tr>
<tr>
<td>Greenbaum, S.</td>
<td>195</td>
</tr>
<tr>
<td>Greene, B. B.</td>
<td>164</td>
</tr>
<tr>
<td>Grefenstette, G.</td>
<td>281</td>
</tr>
<tr>
<td>Gregory, M. L.</td>
<td>221</td>
</tr>
<tr>
<td>Grenager, T.</td>
<td>395</td>
</tr>
<tr>
<td>Griffiths, T. L.</td>
<td>166</td>
</tr>
<tr>
<td>Griffith, K.</td>
<td>375</td>
</tr>
<tr>
<td>Grishman, R.</td>
<td>238, 239, 372, 375, 382</td>
</tr>
<tr>
<td>Grosz, B. J.</td>
<td>457, 458</td>
</tr>
<tr>
<td>Grover, C.</td>
<td>352</td>
</tr>
<tr>
<td>Gruber, E.</td>
<td>378, 394</td>
</tr>
<tr>
<td>Guo, Y.</td>
<td>395</td>
</tr>
</tbody>
</table>
All the authors mentioned in the list are not provided in the image.
<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang, J.</td>
<td>375</td>
</tr>
<tr>
<td>Zhang, L.</td>
<td>90, 417</td>
</tr>
<tr>
<td>Zhang, M.</td>
<td>375</td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>258</td>
</tr>
<tr>
<td>Zhao, H.</td>
<td>395</td>
</tr>
<tr>
<td>Zheng, X.</td>
<td>121</td>
</tr>
<tr>
<td>Zhong, Z.</td>
<td>309</td>
</tr>
<tr>
<td>Zhou, G.</td>
<td>375, 395</td>
</tr>
<tr>
<td>Zhou, J.</td>
<td>425</td>
</tr>
<tr>
<td>Zhou, M.</td>
<td>425</td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>324</td>
</tr>
<tr>
<td>Zielinska, V.</td>
<td>382</td>
</tr>
<tr>
<td>Zikánová, Š.</td>
<td>249, 268</td>
</tr>
<tr>
<td>Zimak, D.</td>
<td>210</td>
</tr>
<tr>
<td>Zue, V. W.</td>
<td>437, 438</td>
</tr>
<tr>
<td>Zweig, G.</td>
<td>284, 295, 432</td>
</tr>
</tbody>
</table>
Subject Index

**?, 15**

+?, 15

$F$-measure, 238

10-fold cross-validation, 86

$\rightarrow$ (derives), 170

`. ', 63, 76

*(RE Kleene *), 13

+(RE Kleene +), 13

. (RE any character), 13

$\$ (RE end-of-line), 13

( (RE precedence symbol), 14

[ (RE character disjunction), 12

\( \backslash b \) (RE non-word-boundary), 14

\( \backslash b \) (RE word-boundary), 14

) (RE character disjunction), 12

["] (single-char negation), 12

4-gram, 40

4-tuple, 172

5-gram, 40

ABITY, 324

absolute discounting, 51

absolute temporal expression, 365

abstract word, 340

accuracy

in WSD, 311

acknowledgment speech act, 443

activation, 103

adaptation language model, 59

add-k, 49

add-one smoothing, 47

adjacency pairs, 446

adjective, 144, 177

adjective phrase, 177

adjunction in TAG, 195

adverb, 144

days of the week coded as noun instead of, 144

degree, 144

directional, 144

locative, 144

manner, 144

syntactic position of, 177

temporal, 144

adversarial evaluation, 426

affective, 326

affective

agent, as thematic role, 378

agglomerative clustering, 316

ALKOL, 194

algorithm

Charniak parser, 225

Chatbots, 421

Chatbots, 10

Chinese

word segmentation, 24

Chomsky normal form, 187, 217

Chomsky-adjunction, 188

chunking, 205, 206

CIRCUS, 374

citation form, 300

CKY algorithm, 197

probabilistic, 218

clarification questions, 453

class-based language model, 296

class-based N-gram, 59

clause, 175

cletic, 23

origin of term, 142

closed class, 143

closed vocabulary, 46

any-of, 85

AP, 177

approximate

randomization, 88

arc eager, 259

arc standard, 252

argmax, 63

Aristotle, 142

article, as thematic role, 25

as noun instead of, 25

小额, 100

bias

bias term, 103

bias-variance tradeoff, 100

bigram, 37

binary branching, 187

binary NB, 81

binary tree, 187

bits for measuring entropy, 55

Bloom filters, 54

BNF (Backus-Naur Form), 169

bootstrap, 89

bootstrap algorithm, 89

bootstrap test, 88

bootstrapping, 314

for WSD, 314

Brown, 196

Brown clustering, 295

Brown corpus, 19

original tagging of, 164

tagging, 145

candidates, 62

capitalization

for unknown words, 157

capture group, 18

cardinal number, 177

cascade, 25

regular expression in

Eliza, 18

case

sensitivity in regular expression search, 12

case folding, 23

case frame, 379

categorial grammar, 188, 188

CBOW, 290, 292

CD (conceptual dependency), 393

CFG, see context-free grammar

channel model, 63, 64

Charniak parser, 225

Chatbots, 421

Chinese

word segmentation, 24

Chomsky normal form, 187, 217

Chomsky-adjunction, 188

chunking, 205, 206

CIRCUS, 374

citation form, 300

CKY algorithm, 197

probabilistic, 218

clarification questions, 453

class-based language model, 296

class-based N-gram, 59

clause, 175

cletic, 23

origin of term, 142

closed class, 143

closed vocabulary, 46

493
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>context-free grammar, context embedding</td>
<td>168, 291</td>
</tr>
<tr>
<td>conceptual dependency, concatenation</td>
<td>31</td>
</tr>
<tr>
<td>Computational Grammar, Coder (CGC)</td>
<td>164</td>
</tr>
<tr>
<td>Construction Grammar, constituent, syntax</td>
<td>194</td>
</tr>
<tr>
<td>constituent, constituency, evidence</td>
<td>169</td>
</tr>
<tr>
<td>constraint, Constraint Grammar, context</td>
<td>268</td>
</tr>
<tr>
<td>context embedding, context-free grammar</td>
<td>168, 169, 172, 193</td>
</tr>
<tr>
<td>Chomsky normal form, Chomsky normal form</td>
<td>187</td>
</tr>
<tr>
<td>invention of, multiplying probabilities</td>
<td>215, 242</td>
</tr>
<tr>
<td>non-terminal symbol, productions, rules</td>
<td>170, 170</td>
</tr>
<tr>
<td>weak and strong equivalence, contingency</td>
<td>187</td>
</tr>
<tr>
<td>table, continuer, continuous bag of words</td>
<td>83, 290, 292</td>
</tr>
<tr>
<td>conversation, conversational agents,</td>
<td>418</td>
</tr>
<tr>
<td>conversational analysis, coordinate noun</td>
<td>181</td>
</tr>
<tr>
<td>phrase, coordinating completion,</td>
<td>443</td>
</tr>
<tr>
<td>Collins parser, collocation, collocations</td>
<td>309</td>
</tr>
<tr>
<td>combinatory categorial grammar,</td>
<td>188</td>
</tr>
<tr>
<td>commissive speech act, common ground,</td>
<td>443</td>
</tr>
<tr>
<td>common noun, complement, complementizer,</td>
<td>180, 180</td>
</tr>
<tr>
<td>componential analysis, Computational</td>
<td>392</td>
</tr>
<tr>
<td>Grammar Coder (CGC), concatenation,</td>
<td>31</td>
</tr>
<tr>
<td>conceptual dependency, concordance,</td>
<td>393</td>
</tr>
<tr>
<td>semantic, concrete word, conditional</td>
<td>340</td>
</tr>
<tr>
<td>independence, conditional maximum</td>
<td>242</td>
</tr>
<tr>
<td>likelihood estimation, confidence</td>
<td>96</td>
</tr>
<tr>
<td>ASR, 450 in relation extraction, confidence values, 360</td>
<td></td>
</tr>
<tr>
<td>confusion matrix, confusion matrix in</td>
<td>250</td>
</tr>
<tr>
<td>spelling correction, confusion sets</td>
<td>70</td>
</tr>
<tr>
<td>conjointed phrase, conjunction,</td>
<td>145</td>
</tr>
<tr>
<td>conjunctions, as closed class, connectionist, consistent, constative speech act, constituency, evidence for, 169</td>
<td></td>
</tr>
<tr>
<td>constituent, Constraint Grammar, context</td>
<td>268</td>
</tr>
<tr>
<td>context embedding, context-free grammar</td>
<td>168, 169, 172, 193</td>
</tr>
<tr>
<td>Chomsky normal form, Chomsky normal form</td>
<td>187</td>
</tr>
<tr>
<td>invention of, multiplying probabilities,</td>
<td>215, 242</td>
</tr>
<tr>
<td>non-terminal symbol, productions, rules</td>
<td>170, 170</td>
</tr>
<tr>
<td>dense vectors, 286</td>
<td></td>
</tr>
<tr>
<td>dependency grammar, lexical,</td>
<td>223</td>
</tr>
<tr>
<td>derivation direct (in a formal language),</td>
<td>173</td>
</tr>
<tr>
<td>syntactic, 170, 170, 173, 173 Det, 170</td>
<td></td>
</tr>
<tr>
<td>determiner, 145, 170, 176</td>
<td></td>
</tr>
<tr>
<td>development test set, devset,</td>
<td>42</td>
</tr>
<tr>
<td>development test set (dev-test), dialog</td>
<td>418</td>
</tr>
<tr>
<td>dialog act, 442, 445</td>
<td></td>
</tr>
<tr>
<td>acknowledgment, 444</td>
<td></td>
</tr>
<tr>
<td>backchannel, 444</td>
<td></td>
</tr>
<tr>
<td>continue, 444</td>
<td></td>
</tr>
<tr>
<td>correction, 448</td>
<td></td>
</tr>
<tr>
<td>dialog manager design, 438</td>
<td></td>
</tr>
<tr>
<td>dialog policy, 449</td>
<td></td>
</tr>
<tr>
<td>dialog systems, 418</td>
<td></td>
</tr>
<tr>
<td>design, 438</td>
<td></td>
</tr>
<tr>
<td>evaluation, 437</td>
<td></td>
</tr>
<tr>
<td>diathesis alternation, 380</td>
<td></td>
</tr>
<tr>
<td>Dice similarity metric, 281</td>
<td></td>
</tr>
<tr>
<td>diff program, 32</td>
<td></td>
</tr>
<tr>
<td>dimension, 272</td>
<td></td>
</tr>
<tr>
<td>diphthong origin of term, 142</td>
<td></td>
</tr>
<tr>
<td>direct derivation (in a formal language),</td>
<td>173</td>
</tr>
<tr>
<td>directional adverb, 144</td>
<td></td>
</tr>
<tr>
<td>directive speech act, 443</td>
<td></td>
</tr>
<tr>
<td>disambiguation, PCFGs for, role of</td>
<td>214</td>
</tr>
<tr>
<td>probabilistic parsing, 212</td>
<td></td>
</tr>
<tr>
<td>syntactic, 199 via PCFG, 215</td>
<td></td>
</tr>
<tr>
<td>discount, 47, 48, 50</td>
<td></td>
</tr>
<tr>
<td>discounted rewards, 455</td>
<td></td>
</tr>
<tr>
<td>discounting, 46, 47</td>
<td></td>
</tr>
<tr>
<td>discovery procedure, 194</td>
<td></td>
</tr>
<tr>
<td>discriminative model, 92</td>
<td></td>
</tr>
<tr>
<td>disfluency, 19 disjunction, 31 pipe in</td>
<td></td>
</tr>
<tr>
<td>regular expressions as, 14</td>
<td></td>
</tr>
<tr>
<td>square braces in regular expression as, 12</td>
<td></td>
</tr>
<tr>
<td>dispreferred response, 440</td>
<td></td>
</tr>
<tr>
<td>distance, 229 cosine, 279</td>
<td></td>
</tr>
<tr>
<td>distant supervision, 361</td>
<td></td>
</tr>
<tr>
<td>distributional similarity, 194</td>
<td></td>
</tr>
<tr>
<td>domain classification, 430</td>
<td></td>
</tr>
<tr>
<td>domain ontology, extrinsic, 41, 310</td>
<td></td>
</tr>
<tr>
<td>duration temporal expression, 365</td>
<td></td>
</tr>
<tr>
<td>dynamic programming, 28 and parsing, 199</td>
<td></td>
</tr>
<tr>
<td>forward algorithm as, 129 history, 140</td>
<td></td>
</tr>
<tr>
<td>Viterbi as, 132</td>
<td></td>
</tr>
<tr>
<td>E-step (expectation step) in EM, 139</td>
<td></td>
</tr>
<tr>
<td>Earnest, The Importance of Being, 61</td>
<td></td>
</tr>
<tr>
<td>earnest, importance, 61 edge-factor, 262</td>
<td></td>
</tr>
<tr>
<td>edit distance minimum, 28</td>
<td></td>
</tr>
<tr>
<td>ELIZA, 10 implementation, 18, sample</td>
<td></td>
</tr>
</tbody>
</table>
| conversation, 18 EM Baum-Welch as, 135 E-step, 139 for deleted interpolation, 50 for spelling correction, 65 inside-outside in parsing, 220 M-step, 139 embedded verb, 178 embedding, 271 embeddings, 116 emission probabilities, 125 EmoLex, 339 emotion, 338 empty category, 175 English simplified grammar rules, 171 entity linking, 375, 411 entropy, 55 and perplexity, 55 cross-entropy, 56 per-word, 56 rate, 56 relative, 281, 390 ergodic HMM, 126 error backpropagation, 114 error model, 65 Euclidean distance in L2 regularization, 98 Eugene Onegin, 58, 122, 140 evalb, 239 evaluating parsers, 238 evaluation 10-fold cross-validation, 86 comparing models, 43 cross-validation, 86 development test set, 42, 86 devset, 86 devset or development test set, 42 dialog systems, 437 extrinsic, 41, 310
FORWARD ALGORITHM, 131
forward composition, 190
forward trellis, 129
forward-backward
algorithm, 135, 141
backward probability in, 135
relation to inside-outside, 220
FORWARD-BACKWARD
ALGORITHM, 139
Fosler, E., see
Fosler-Lussier, E.
frame of word, 19
frame
semantic, 383
frame elements, 383
FrameNet, 383
frames, 427
free word order, 245
FREE17, 416
Freebase, 356
Frump, 374
fully connected HMM, 126
fully qualified date
expressions, 368
fully-connected, 109
function word, 143, 164
functional grammar, 195

garden-path sentences, 240, 242
gussian
prior on weights, 99
gazetteer, 352
General Inquirer, 82, 327
generalized semantic role, 380
generation
of sentences to test a
CFG grammar, 171
template-based, 434
generative grammar, 172
generative lexicon, 325
generative model, 92
generative syntax, 195
generator, 170
genitive NP, 196
gerundive postmodifier, 177
Gilbert and Sullivan, 61, 348
gloss, 305
Godzilla, speaker as, 388
gold labels, 83
The Gondoliers, 61
Good-Turing, 50
government and binding, 194
gradient, 113
Grammar
Constraint, 268
Construction, 194
Government and
Binding, 194
Head-Driven Phrase
Structure (HPSG), 185, 194
Lexical-Functional
(LFG), 194
Link, 268
Probabilistic Tree
Adjoining, 243
Tree Adjoining, 195
grammar
binary branching, 187
categorial, 188, 188
CCG, 188
checking, 197
combinatory categorial, 188
equivalence, 187
generative, 172
strong equivalence, 187
weak equivalence, 187
Grammar Rock, 142
grammatical function, 246
grammatical relation, 246
grammatical sentences, 172
greedy, 160
greedy RE patterns, 15
greeting, 145
grep, 11, 11, 31
ground, 443
grounding
five kinds of, 443

Hamilton, Alexander, 89
hanzi, 23
hard clustering, 296
harmonic mean, 85, 209, 238
Hays, D., 268
head, 185, 246
finding, 185
in lexicalized grammar, 225
tag, 225
head tag, 225
Head-Driven Phrase
Structure Grammar
(HPSG), 185, 194
Heaps’ Law, 185, 246
Hearst, M. A., 241
HECTOR corpus, 308
held out, 41
held-out, 50
Herdan’s Law, 20
hidden layer, 109
as representation of
input, 110
hidden units, 109
HMM, 124
accepting states, 126
deleted interpolation, 155
ergodic, 126
formal definition of, 125
fully connected, 126
initial distribution, 126
observation likelihood, 125
observations, 125
simplifying assumptions
for POS tagging, 149
states, 125
transition probabilities, 125
trimgram POS tagging, 154
holonym, 304
homographs, 301
homonym, 301
homonymy, 301
homophones, 301
human parsing, 239
human sentence processing, 239, 239
Hungarian
part-of-speech tagging, 162
hyperarticulation, 448
hyponymy, 304, 356
and information content,
in Extended Lesk, 321
lexico-syntactic patterns
for, 357
hyponym, 304
IBM, 58
IBM Thomas J. Watson
Research Center, 58
ice cream, 125
IDF, 278, 278, 313
IDF term weighting, 278
immediately dominates,
170
imperative sentence
structure, 174
implicit confirmation, 450
indefinite article, 176
indicator function, 93
indirect speech acts, 447
inference-based learning,
266
infinitives, 180
infoboxes, 356
information extraction (IE),
348
bootstrapping, 359
partial parsing for, 205
information gain, 99
for feature selection, 99
Information retrieval, 273
information-content word
similarity, 319
initiative, 428
mixed, 429
corpus, 428
system, 428
inner product, 279
inside-outside algorithm,
220, 242
intent determination, 430
interjection, 145
internal rule in a CFG
dass, 226
interpersonal stance, 342
Interpolated Kneser-Ney
discounting, 51, 52
interpolation
in smoothing, 49
intonation, 448
intransitive verbs, 180
intrinsic document evaluation, 41
inverse document frequency, 313
IOB, 351, 432
IOB tagging, 207
Iolanthe, 61
IR
IDF term weighting, 278
vector space model, 271
IS-A, 304
is-a, 356
ISO 8601, 367
Jaccard similarity metric, 282
Jaro-Winkler, 72
Jay, John, 89
Jensen-Shannon divergence, 282
Jiang-Conrath distance, 27
Jensen-Shannon divergence, zero things, 13
Jenkin, 102
Katz backoff, 50
KBP, 375
KenLM, 54, 59
KL divergence, 281, 390
Kleene *, 13
Kleene +, 13
Kneser-Ney discounting, 51
Kullback-Leibler divergence, 390
L1 regularization, 98
L2 regularization, 98
label bias, 162
labeled precision, 238
labeled recall, 238
language acquisition, 434
language model, 36
adaptation, 59
PCFG, 216
Laplace smoothing, 47
Laplace smoothing: for PMI, 277
lasso regression, 98
Latent Semantic Analysis, 286
latent semantic analysis, 287, 298
LCS, 320
LDA, 316
LDC, 23, 218
learning rate, 113
lemma, 20, 300
versus wordform, 20
lemmatization, 11
Lek algorithm, 311
Corpus, 313
Extended, 321
Simplified, 311
letter-to-sound
for spell checking, 72
Levenshtein distance, 27
lexical
ambiguity resolution, 324
category, 170
database, 305
dependency, 212, 223
head, 242
semantics, 300
trigger, in IE, 365
lexical answer type, 413
lexical dependency, 223
lexical rule in a CFG parse, 226
lexical sample task in WSD, 307
Lexical-Functional Grammar (LFG), 194
lexicalized grammar, 225
lexico-syntactic pattern, 357
lexicon, 170
likelihood, 63, 77
Lin similarity, 320
linear classifiers, 78
linear interpolation for N-grams, 50
linearly separable, 106
Linguistic Data Consortium, 23, 218
Link Grammar, 268
LIWC, 82, 340
LM, 36
LOB corpus, 165
locative, 144
locative adv, 144
log
why used for probabilities, 41
log probabilities, 41, 41
log-linear, 92
log-linear classifiers, 92
logistic regression background, 92
conditional maximum likelihood estimation, 96
multinomial, 92
relation to neural networks, 111
long-distance dependency, 182
tables in the Penn Treebank, 182
wh-questions, 175
lookahead in RE, 19
loss, 111
lowest common subsumer, 320
LSA, 287
LSI, see latent semantic analysis, see latent semantic analysis
LUNAR, 417
M-step (maximization step) in EM, 139
machine learning for NER, 354
for question classification, 402
for WSD, 308
textbooks, 90, 101
macroaveraging, 85
Madison, James, 89
Manhattan distance in L1 regularization, 98
manner adverb, 144
marker passing for WSD, 324
Markov, 38
assumption, 38
decision process (MDP), 454
Markov assumption, 124
Markov chain, 58, 123
first order, 123
formal definition of, 123
initial distribution, 124
N-gram as, 123
start and end states, 123
transitions, 123
transition probabilities, 123
Markov decision process, 454
Markov model, 38
formal definition of, 123
history, 58
Marx, G., 197
mass nouns, 143
MaxEnt, 92
background, 92
Gaussian priors, 99
learning in, 96
normalization factor Z in, 93
regularization, 99
maximization step, 220
maximization step in EM, 139
maximum entropy modeling background, 92
maximum matching, 24
maximum spanning tree, 262
MaxMatch, 24
McNemar test, 209
MDP (Markov decision process), 454
mean reciprocal rank, 415
mean-squared error, 112
MEMM, 157
compared to HMM, 157
inference (decoding), 160
learning, 161
Viterbi decoding, 160
meronymy, 304
meronymy, 304
MeSH (Medical Subject Headings), 75, 307
Message Understanding Conference, 373
metarule, 181
metonymy, 302
microaveraging, 85
minibatch, 115
minimum edit distance, 26, 27, 28, 132
example of, 30
minimum edit distance, 29
mixed initiative, 429
MLE for N-grams, 38
for N-grams, intuition, 39
MLP, 108
modal verb, 145
modified Kneser-Ney, 53
morpheme, 25
Moses, Michelangelo statue of, 418
most frequent sense, 311
MRR, 415
MSE, 112
MUC, 373, 374
multi-label classification, 85
multi-layer perceptrons, 108
multinomial classification, 85
multinomial logistic regression
background, 92
multinomial naive Bayes, 76
multinomial naive Bayes classifier, 76
mutual information, 275
N-best list, 431
N-gram, 36, 38
absolute discounting, 51
adaptation, 59
add-one smoothing, 47
as approximation, 38
as generators, 44
equation for, 38
equation of, 40
filtering in QA, 408
for Shakespeare, 44
history of, 58
interpolation, 49
Katz backoff, 50
KenLM, 54, 59
Kneser-Ney discounting, 51
logprobs in, 41
mining in QA, 408
normalizing, 39
parameter estimation, 39
sensitivity to corpus, 43
smoothing, 46
SRILM, 59
test set, 41
tiling in QA, 408
training set, 41
unknown words, 46
N-gram as Markov chain, 123
N-gram
observation bias, 220
observation likelihood role in forward, 129
role in Viterbi, 133, 153
OCR, 73
old information, and word order, 221
one sense per collocation, 314
one-hot, 293
one-hot vector, 117
one-of, 85
OntoNotes, 324
OOV (out of vocabulary) words, 46
OOV rate, 46
open class, 143
Open Information Extraction, 363
open vocabulary system unknown words in, 46
operation list, 27
operator precedence, 14, 14
optical character recognition, 73
optionality of determiners, 176
use of ? in regular expressions for, 12
ordinal number, 177
overfitting, 97
parallel distributed processing, 120
parent annotation, 224
parse tree, 170, 173
parsed corpus, 242
parsing
ambiguity, 197
chunking, 205
CYK, see CKY evaluation, 238
history, 210
partial, 205
probabilistic CKY, 218
relation to grammars, 174
shallow, 205
syntactic, 197
well-formed substring table, 210
part-of-speech
adjective, 144
adverb, 144
as used in CFG, 170
closed class, 143
greeting, 144
greeting
interjection, 145
negative, 145
noun, 143
closed class, 143
greeting, 143
greeting
interjection, 145
negative, 145
noun, 143
closed class, 143
greeting, 143
greeting
interjection, 145
negative, 145
noun, 143
closed class, 143
phrasal verb, 144
phrase-structure grammar, 169, 194
pipe, 14
The Pirates of Penzance, 348
planning
and speech acts, 457
shared plans, 457
plural, 176
pointwise mutual information, 275
politeness marker, 145
polysemy, 301
POMDP, 456
Porter stemmer, 25
POS, 142
possessive NP, 196
possessive pronoun, 145
postdeterminer, 177
postmodifier, 177
postposed constructions, 169
Potts diagram, 334
PP, 171
PPMI, 276
pre-sequence, 446
precedence, 14
precedence, operator, 14
Precision, 84
precision, 208
in NER, 353
predeterminer, 178
predicate, 180
predicate-argument relations, 180
preference semantics, 324
preposed constructions, 169
prepositional phrase, 177
attachment, 221
constituency, 171
preposing, 169
prepositions, 144
as closed class, 144
pretraining, 117
primitive decomposition, 392
prior probability, 63, 77
probabilistic CKY algorithm, 217, 218
probabilistic parsing, 217
by humans, 230
productions, 170
progressive prompting, 450
projection layer, 118, 294
prompt, 435
prompts, 434
pronoun, 145
and old information, 221
as closed class, 144
personal, 145
possessive, 145
wh-, 145
PropBank, 381
proper noun, 143
propositional meaning, 303
prosody, 448
PROTO-AGENT, 380
PROTO-PATIENT, 380
pseudoword, 392
PTAG, 243
PTRANS, 393
punctuation
for numbers
cross-linguistically,
23
for sentence
segmentation, 26
part-of-speech tags, 146
striping before
part-of-speech
tagging, 147
tokenization, 22
treated as words, 19
reversed as words in LM, 45

qualia structure, 325
quantifier
as part of speech, 177
query
reformulation in QA, 405
question classification, 402
factoid, 490
question answering
evaluation, 415
factoid questions, 400
query reformulation in, 405

random forests, 100
range, regular expression,
12
rapid reprompting, 450
RDF triple, 356
RE
regular expression, 11
reading time, 239
real-word spelling errors, 61
Recall, 84
recall, 208
in NER, 353
reformulation, 443
register in RE, 18
regression
lasso, 98
ridge, 98
regular expression, 11, 31
substitutions, 17
regularization, 97
rejection
correction act, 450
relation extraction, 348
relative
temporal expression, 365
relative entropy, 390
relative frequency, 39
relative pronoun, 178
realize, 452
ReLU, 105
reporting events, 369
Resnik similarity, 320
resolve, 148
response generation, 424
restrictive grammar, 434
restrictive relative clause, 178
ReVerb, 363

sentiment
origin of term, 345
sentiment analysis, 74
sentiment lexicons, 82
SentiWordNet, 332
sequence model, 122
Shakespeare
N-gram approximations
to, 44
shallow parse, 205
shared plans, 457
shift-reduce parsing, 250
side sequence, 446
sigmoid, 103
significance test
MAPSSWE for
chunking, 209
McNemar, 209
Simplified Lesk, 311
skip-gram, 290
skip-gram with negative
sampling, 292
slot filling, 375, 430
slots, 427
smoothing, 46
absolute discounting, 51
add-one, 47
discounting, 47
for HMM POS tagging,
155
interpolation, 49
Katz backoff, 50
Kneser-Ney discounting,
51
Laplace, 47
linear interpolation, 50
softmax, 110
Soundex, 72
span detection, 74
sparse vectors, 286
speech acts, 442
spell checking
pronunciation, 72
spelling correction
use of N-grams in, 35
SPELLE CORRECTION
ALGORITHM, 64, 72
spelling errors
context-dependent, 61
correction, EM, 65
detection, real words, 67
noisy channel model for
correction, 64
non-word, 61
real word, 61
split, 223
split and merge, 225
SRILM, 59
Stanford tagger, 162
start symbol, 170
stationary stochastic
process, 56
statistical parsing, 217
statistical significance
MAPSSWE for
chunking, 209
McNemar test, 209
stem, 25

Stemming, 11
stemming, 25
stop words, 79
strong equivalence of
grammars, 187
structural ambiguity, 197
stupid backoff, 54
subcategorization and
probabilistic grammars, 212
tagsets for, 180
subcategorization frame,
180
examples, 180
subcategorize for, 180
subdialogue, 446
subject, syntactic
frequency of pronouns
as, 220
in wh-questions, 175
subjectivity, 326, 345
substitutability, 194
substitution in TAG, 195
substitution operator
(regular expressions), 17
superordinate, 304
Supertagging, 232
supertagging, 243
Support Vector Machine
(SVM), 100
SVD, 285
truncated, 289
SVM (Support Vector
Machine), 100
SVMs, 100
SVMTool, 162
Switchboard, 146
Switchboard Corpus, 19
synonyms, 303
synset, 305
syntactic categories, 142
syntactic disambiguation,
199
syntactic movement, 182
syntax, 168
origin of term, 142
system-initiative, 428

t-test, 278
for word similarity, 278
TAG, 195, 243
TAGGIT, 164
tagset, 142
difference between Penn
Treebank and
Brown, 147
history of Penn
Treebank, 147
Penn Treebank, 145, 146
table of Penn Treebank
tags, 146
tanh, 105
technai, 142
template filling, 349, 371
template recognition, 372
template, in IE, 371
template-based generation, 434
temporal adverb, 144
temporal anchor, 368
temporal expression
absolute, 365
relative, 365
temporal expressions, 349
temporal normalization, 366
term
clustering, 323, 324
term frequency, 278
term temporal normalization, 349
temporal expression
273
term-term matrix, 350
term-document matrix, 104
temporal anchor, 368
144
temporal adverb, 297
template-based generation, 10

text normalization, 74
text categorization, 79
text categorization, 74
text tokenization, 10
tokenization, 10
tokenization, 10
tokenization, 10
tokens, word, 20
topic (information structure), 221
topic modeling, 316
trace, 175, 182
training oracle, 255
training set, 41

cross-validation, 86
how to choose, 42
Transformations and Discourse Analysis Project (TDAP), 164
transition probability role in forward, 129
time in forward, 129
treebank, 182, 218
trellis, Viterbi, 153
trigram, 40
triple stores, 401
truncated SVD, 289
Turkish part-of-speech tagging, 162
turn correction ratio, 437
turns, 419
Twitter part-of-speech tagging, 166
type raising, 190
typed dependency structure, 245
types word, 20

ungrammatical sentences, 172
unique beginner, 306
unit production, 200
unit vector, 280
universal, 429
Universal Dependencies, 247
Unix, 11
<UNK>, 46
unknown words in N-grams, 46
in part-of-speech tagging, 156
in text categorization, 79
user-centered design, 438
utterance, 19
V (vocabulary), 63
value iteration, 456

variance tradeoff with bias in learning, 100
vector, 103, 271
vector length, 279
vector space, 271
vector space model, 271
term, 144
copula, 145
modal, 145
phrasal, 144
turbulence alternations, 380
type phrase, 171, 179
Viterbi trellis, 153
Viterbi algorithm, 28, 132
backtrace in, 133
decoding in MEMM, 160
time in, 140
VITERBI ALGORITHM, 133, 153
voice user interface, 438
VoiceXML, 434
VP attachment, 221

weak equivalence of grammars, 187
WEBQUESTIONS, 416
well-formed substring table, 210
WFST, 210
wh-non-subject-question, 175
wh-phrase, 175, 175
wh-pronoun, 145
wh-subject-questions, 175
wh-word, 175
wildcard, regular expression, 13
Wizard-of-Oz system, 438
word boundary, regular expression, 14
closed class, 143
definition of, 19
fragment, 19
function, 143, 164
open class, 143
punctuation as, 19
tokens, 20
types, 20
word embedding, 291

word error rate, 24
word normalization, 22
word relatedness, 317
word segmentation, 22
word sense, 301
word sense disambiguation, see WSD
word sense induction, 316
word shape, 159, 351
word similarity, 317
word tokenization, 22
word-word matrix, 273
word2vec, 290
wordform, 20
and lemma, 300
versus lemma, 20

WordNet, 305, 305
WSD, 307
AI-oriented efforts, 323
all-words task, 308
bootstrapping, 314, 324
decision tree approach, 324
evaluation of, 311
history, 323
history of, 325
lexical sample task, 307
neural network approaches, 324
robust approach, 324
supervised machine learning, 324
unsupervised machine learning, 316
use of bag-of-words features, 309
use of collocational features, 309
WSI, 316
WSJ, 146

X-bar schemata, 194
Yarowsky algorithm, 314
yes-no questions, 174, 447
yield, 215

Yonkers Racetrack, 55

Z. normalization factor in MaxEnt, 93
zero-width, 19
zeros, 45
zeugma, 302