Minimum Edit Distance

Definition of Minimum Edit Distance
How similar are two strings?

• Spell correction
 • The user typed “graffe”
 Which is closest?
 • graf
 • graft
 • grail
 • giraffe

• Computational Biology
 • Align two sequences of nucleotides
 AGGCTATCACCTGACCTCCAGGCGATGCCC
 TAGCTATCACGACCGCGGTCGATTTGCCCCGAC
 • Resulting alignment:
 ─AGGCTATCACCTGACCTCCAGGCGA─TGCCC──
 TAG─CTATCAC─GACCGC─GGTCGATTGCCCAGAC

• Also for Machine Translation, Information Extraction, Speech Recognition
Edit Distance

• The minimum edit distance between two strings
• Is the minimum number of editing operations
 • Insertion
 • Deletion
 • Substitution
• Needed to transform one into the other
Minimum Edit Distance

- Two strings and their alignment:

```
INTEGRATION
| | | | | | | | | |
* EXECUTION
```
Minimum Edit Distance

INTE*NTION

*EXECUTION

dsssis

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8
Alignment in Computational Biology

- Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCCTAGCTATCACGACCAGCGGTCGATTTTGCCCCGAC

- An alignment:

 - AGGCTATCACCTGACCTCCAGGCCGATGCCCTAGCTATCACGACCAGCGGTCGATTTTGCCCCGAC

- Given two sequences, align each letter to a letter or gap
Other uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition
 Spokesman confirms senior government adviser was shot
 Spokesman said the senior adviser was shot dead

• Named Entity Extraction and Entity Coreference
 • IBM Inc. announced today
 • IBM profits
 • Stanford President John Hennessy announced yesterday
 • for Stanford University President John Hennessy
How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - **Initial state**: the word we’re transforming
 - **Operators**: insert, delete, substitute
 - **Goal state**: the word we’re trying to get to
 - **Path cost**: what we want to minimize: the number of edits
Minimum Edit as Search

• But the space of all edit sequences is huge!
 • We can’t afford to navigate naïvely
 • Lots of distinct paths wind up at the same state.
 • We don’t have to keep track of all of them
 • Just the shortest path to each of those revisted states.
Defining Min Edit Distance

• For two strings
 • X of length n
 • Y of length m

• We define $D(i,j)$
 • the edit distance between $X[1..i]$ and $Y[1..j]$
 • i.e., the first i characters of X and the first j characters of Y
 • The edit distance between X and Y is thus $D(n,m)$
Minimum Edit Distance

Definition of Minimum Edit Distance
Minimum Edit Distance

Computing Minimum Edit Distance
Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of $D(n,m)$
- Solving problems by combining solutions to subproblems.
- **Bottom-up**
 - We compute $D(i,j)$ for small i,j
 - And compute larger $D(i,j)$ based on previously computed smaller values
 - i.e., compute $D(i,j)$ for all i ($0 < i < n$) and j ($0 < j < m$)
Defining Min Edit Distance (Levenshtein)

• Initialization
 \[D(i,0) = i \]
 \[D(0,j) = j \]

• Recurrence Relation:
 For each \(i = 1 \ldots M \)
 For each \(j = 1 \ldots N \)
 \[
 D(i,j) = \begin{cases}
 D(i-1,j) + 1 & \text{if } X(i) \neq Y(j) \\
 D(i,j-1) + 1 & \text{if } X(i) = Y(j) \\
 D(i-1,j-1) + 2 & \text{if } X(i) \neq Y(j) \\
 0 & \text{if } X(i) = Y(j)
 \end{cases}
 \]

• Termination:
 \[D(N,M) \text{ is distance} \]
The Edit Distance Table

<table>
<thead>
<tr>
<th>N</th>
<th>O</th>
<th>I</th>
<th>T</th>
<th>N</th>
<th>E</th>
<th>T</th>
<th>N</th>
<th>I</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N
The Edit Distance Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| # | E | X | E | C | U | T | I | O | N | |

\[D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases} \end{cases} \]
Edit Distance

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
#	E	X	E	C	U	T	I	O	N	
The Edit Distance Table

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>O</th>
<th>I</th>
<th>T</th>
<th>N</th>
<th>E</th>
<th>T</th>
<th>N</th>
<th>I</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>#</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>#</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>C</td>
<td>U</td>
<td>T</td>
<td>I</td>
<td>O</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimum Edit Distance

Computing Minimum Edit Distance
Minimum Edit Distance

Backtrace for Computing Alignments
Computing alignments

- Edit distance isn’t sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a “backtrace”
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment
Edit Distance

\[
D(i,j) = \min \begin{cases}
D(i-1,j) + 1 \\
D(i,j-1) + 1 \\
D(i-1,j-1) + \begin{cases}
2; & \text{if } S_1(i) \neq S_2(j) \\
0; & \text{if } S_1(i) = S_2(j)
\end{cases}
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>0</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>C</td>
<td>U</td>
<td>T</td>
<td>I</td>
<td>O</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
MinEdit with Backtrace

<table>
<thead>
<tr>
<th>n</th>
<th>9</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>9</th>
<th>10</th>
<th>8</th>
<th>8</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>8</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>i</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>t</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>#</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>#</td>
<td>e</td>
<td>x</td>
<td>e</td>
<td>c</td>
<td>u</td>
<td>t</td>
<td>i</td>
<td>o</td>
<td>n</td>
</tr>
</tbody>
</table>
Adding Backtrace to Minimum Edit Distance

- Base conditions:
 \[D(i,0) = i \quad D(0,j) = j \]
 \[D(N,M) \text{ is distance} \]

- Recurrence Relation:
 For each \(i = 1 \ldots M \)
 For each \(j = 1 \ldots N \)
 \[D(i,j) = \min \begin{cases}
 D(i-1,j) + 1 & \text{deletion} \\
 D(i,j-1) + 1 & \text{insertion} \\
 D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\
 0; & \text{if } X(i) = Y(j)
\end{cases} \]

 \[\text{ptr}(i,j) = \begin{cases}
 \text{LEFT} & \text{insertion} \\
 \text{DOWN} & \text{deletion} \\
 \text{DIAG} & \text{substitution}
\end{cases} \]
The Distance Matrix

Every non-decreasing path from (0,0) to (M, N) corresponds to an alignment of the two sequences.

An optimal alignment is composed of optimal subalignments.

Slide adapted from Serafim Batzoglou
Result of Backtrace

- Two strings and their alignment:
Performance

- **Time:** $O(nm)$
- **Space:** $O(nm)$
- **Backtrace:** $O(n+m)$
Minimum Edit Distance

Backtrace for Computing Alignments
Minimum Edit Distance

Weighted Minimum Edit Distance
Weighted Edit Distance

• Why would we add weights to the computation?
 • Spell Correction: some letters are more likely to be mistyped than others
 • Biology: certain kinds of deletions or insertions are more likely than others
Confusion matrix for spelling errors

\[
\text{sub}[X, Y] = \text{Substitution of } X \text{ (incorrect) for } Y \text{ (correct)}
\]

X	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0	
b	0	0	9	9	2	2	3	1	0	0	0	5	1	1	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	0	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	10	43	30	22	0	0	4	0	2	0	
e	388	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0		
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	6	4	12	0	0	2	0	0	0		
g	4	1	11	11	9	2	0	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0		
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0	
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0		
k	1	2	8	4	1	1	2	5	0	0	0	5	0	2	0	0	0	6	0	0	0	4	0	0	3		
l	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0		
m	1	3	7	8	0	2	0	6	0	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
o	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0	
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0		
q	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
r	0	14	0	30	12	2	2	8	2	0	5	8	5	20	1	14	0	0	12	22	4	0	0	1	0		
s	11	8	27	33	35	4	0	1	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1		
t	3	4	9	42	7	5	19	5	0	1	0	14	9	6	5	6	0	11	37	0	0	2	19	0	7	6	
u	20	0	0	0	44	0	0	0	64	0	0	0	0	0	2	43	0	0	4	0	0	0	2	0	8	0	
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0		
w	2	2	1	0	0	2	0	0	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0			
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0			
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0		
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	2	21	3	0	0	0	0	3	0		
Weighted Min Edit Distance

- Initialization:
 \[D(0,0) = 0 \]
 \[D(i,0) = D(i-1,0) + \text{del}[x(i)]; \quad 1 < i \leq N \]
 \[D(0,j) = D(0,j-1) + \text{ins}[y(j)]; \quad 1 < j \leq M \]

- Recurrence Relation:
 \[
 D(i,j) = \min \begin{cases}
 D(i-1,j) + \text{del}[x(i)] \\
 D(i,j-1) + \text{ins}[y(j)] \\
 D(i-1,j-1) + \text{sub}[x(i),y(j)]
 \end{cases}
 \]

- Termination:
 \[D(N,M) \text{ is distance} \]
Where did the name, dynamic programming, come from?

…The 1950s were not good years for mathematical research. [the] Secretary of Defense …had a pathological fear and hatred of the word, research…

I decided therefore to use the word, “programming”.

I wanted to get across the idea that this was dynamic, this was multistage… I thought, let’s … take a word that has an absolutely precise meaning, namely dynamic… it’s impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to.”

Minimum Edit Distance

Weighted Minimum Edit Distance
Minimum Edit Distance

Minimum Edit Distance in Computational Biology
Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCCGGGTCGATTTTGCCCAGAC

AGGCTATCACCTGACCTCACCAGGGCGA---TGCCC---
TAG-CTATCAC---GACCGC---GGTCTGATTTGCCCAGAC
Why sequence alignment?

- Comparing genes or regions from different species
 - to find important regions
 - determine function
 - uncover evolutionary forces
- Assembling fragments to sequence DNA
- Compare individuals to looking for mutations
Alignments in two fields

• In Natural Language Processing
 • We generally talk about distance (minimized)
 • And weights

• In Computational Biology
 • We generally talk about similarity (maximized)
 • And scores
The Needleman-Wunsch Algorithm

- **Initialization:**
 \[D(i,0) = -i \times d \]
 \[D(0,j) = -j \times d \]

- **Recurrence Relation:**
 \[
 D(i,j) = \min \left\{ D(i-1,j) - d, D(i,j-1) - d, D(i-1,j-1) + s[x(i),y(j)] \right\}
 \]

- **Termination:**
 \[D(N,M) \] is distance
The Needleman-Wunschch Matrix

(Note that the origin is at the upper left.)
A variant of the basic algorithm:

- Maybe it is OK to have an unlimited # of gaps in the beginning and end:

```
- - - - - - - - - CTATCACCTGACCTCCTCAAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC---GACCAGC---GGTCG
```

- If so, we don’t want to penalize gaps at the ends
Different types of overlaps

Example:
2 overlapping “reads” from a sequencing project

Example:
Search for a mouse gene within a human chromosome
The Overlap Detection variant

Changes:

1. **Initialization**
 - For all i, j,
 - $F(i, 0) = 0$
 - $F(0, j) = 0$

2. **Termination**
 - $F_{OPT} = \max_{i} F(i, N)$
 - $F_{OPT} = \max_{j} F(M, j)$

Slide from Serafim Batzoglou
The Local Alignment Problem

Given two strings

\[x = x_1 \ldots x_M, \]
\[y = y_1 \ldots y_N. \]

Find substrings \(x', y' \) whose similarity (optimal global alignment value) is maximum

\[x = \text{aaaacccccggggtta} \]
\[y = \text{ttcccgggaaccaacc} \]
The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: \(F(0, j) = 0 \)
\(F(i, 0) = 0 \)

Iteration: \(F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases} \)
The Smith-Waterman algorithm

Termination:
1. If we want the best local alignment...

\[F_{\text{OPT}} = \max_{i,j} F(i, j) \]

Find \(F_{\text{OPT}} \) and trace back

2. If we want all local alignments scoring > t

?? For all \(i, j \) find \(F(i, j) > t \), and trace back?

Complicated by overlapping local alignments
Local alignment example

\[X = \text{ATCAT} \]
\[Y = \text{ATTATC} \]

Let:
\[m = 1 \text{ (1 point for match)} \]
\[d = 1 \text{ (-1 point for del/ins/sub)} \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local alignment example

\[X = \text{ATCAT} \]
\[Y = \text{ATTATC} \]
Local alignment example

\[X = \textcolor{red}{\text{ATCAT}} \]
\[Y = \textcolor{red}{\text{ATTATC}} \]
Local alignment example

\[X = \textbf{ATCAT} \]
\[Y = \textbf{ATTATC} \]

\[
\begin{array}{cccccccc}
A & T & T & A & T & C \\
\hline
A & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
T & 0 & 0 & 2 & 1 & 0 & 2 & 0 \\
C & 0 & 0 & 1 & 1 & 0 & 1 & 3 \\
A & 0 & 1 & 0 & 0 & 2 & 1 & 2 \\
T & 0 & 0 & 2 & 0 & 1 & 3 & 2 \\
\end{array}
\]
Minimum Edit Distance

Minimum Edit Distance in Computational Biology