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Probabilistic Language Models

Today’s goal: assign a probability to a sentence
> Machine Translation:
> P(high winds tonite) > P(large winds tonite)
> Spell Correction

Why? - The office is about fifteen minuets from my house
> P(about fifteen minutes from) > P(about fifteen minuets from)

> Speech Recognition
> P(l saw a van) >> P(eyes awe of an)

° 4+ Summarization, question-answering, etc., etc.!!



Probabilistic Language Modeling
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How to compute P(W)

How to compute this joint probability:

o P(its, water, is, so, transparent, that)

Intuition: let’s rely on the Chain Rule of Probability




Reminder: The Chain Rule

Recall the definition of conditional probabilities
"#$5%E& (") "Yo*#&+)"YofRewriting: )"%*#&'()"%&)"#$%&

More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

The Chain Rule in General

P(X1, X0, Xg,...,.Xg) = P(X) )P (X | %) )P (Xge| Xy, %) ... P(Xg | X1 -0 ) Xegope)
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I:)(W1W2E W, ) :# P(w. ‘W1W2E W,.,)

P(“its water is so transparent”) =
P(its) x P(water]|its) x P(is|its water)
x P(so|its water is) x P(transparent|its water is so)




How to estimate these probabilities

<"*$7&6,&=*3+&"*4+&#47&70>07,?

P(the|its water Is so transparent that

Counf{its water Is so transparent that)t
Coun{(its water Is so transparent tha

No! Too many possible sentences!
We’ll never see enough data for estimating these



Markov Assumption
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P(thelits water Is so transparent thatP(the|that)
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P(thelits water Is so transparent thatP(the|transparent tha




Markov Assumption

Pww,...w )= HP(Wi W oow )
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P(Wi |W1W2E Wi—l) = P(Wi |Wi—kE Wi—l)




Simplest case: Unigram model

P(W,w,E w,)" # P(w,)

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, Is,
mass

thrift, did, eighty, said, hard, 'm, july , bullish

that, or, limited, the




Bigram model

Condition on the previous word:
P(w, |[w,w,E w,..)#P(w, |w,.,)

texaco , rose, one, in, this, issue, Is, pursuing, growth, in,

a, boiler, house, said, mr., qgurria , mexico ,'s, motion,
control, proposal, without, permission, from, five, hundred,

fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november




N-gram models

We can extend to trigrams, 4-grams, 5-grams

In general this is an insufficient model of language
> because language has ,-./ A.2345.67'17!7.17.627:3

“The computer which | had just put into the machine room
on the fifth floor crashed.”

But we can often get away with N-gram models
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Estimating Di

gram probabilities

The Maximum Likelihood Estimate

P(W; [W;.1) =

P(w.

coun{w..,,w.)

counf{w..,)

C(WI 1’W )
C(W; 1)

|Wi1) =



An example

<s>|am Sam </s>

c(w,.,,W.)
P(w, [w.,) = C(\INl )' <s>Sam | am </s>
"1 <s> | do not like green eggs and ham </s>
P(I|<s>) =% =.67 P(Sam|<s>)=1=.33 P(am|I)=%=.67
P(</s>|Sam) = % =0.5 P(Sam|am)= % =.5 P(do|I)= % =.33
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Raw bigram counts

Out of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 | 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 | 0 0
spend 1 0 1 0 0 0 0 0




Raw bigram probabilities

Normalize by unigrams:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
Result:
1 want | to eat chinese | food | lunch | spend

1 0.002 [033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 | 0 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054]0.0011
to 0.00083 | 0 0.0017 | 0.28 | 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 [ 0.056 | O
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | 0 0.0036 | O 0 0 0 0
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P(<s> | want english food </s>) =
P(l|<s>)

x P(want|l)

x P(english|want)

x P(food|english)

x P(</s>|food)

= .000031




What kinds of knowledge?

P(english|want) =.0011
P(chinese|want) = .0065
P(to|want) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) =0

P(i | <s>)=.25




Practical Issues
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log(p,! P! P3! ps)=logp, +logp, +logps;+logp,




Language Modeling Toolkits
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http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Google N-Gram Release, August 2006

AUG All Our N-gram are Belong to You
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset —with everyone. We prbcess-ed 1,024,908,267,229 _words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.




Google N-Gram Release

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40

serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all -our -n-gram -are-belong -to -you.htm|



http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google Book N-grams

http://ngrams.googlelabs.com/



http://ngrams.googlelabs.com/
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Evaluation: How good is our model?
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Extrinsic evaluation of N-gram models

Best evaluation for comparing models A and B
> Put each model in a task
> spelling corrector, speech recognizer, MT system
> Run the task, get an accuracy for A and for B
> How many misspelled words corrected properly
> How many words translated correctly
> Compare accuracy for A and B
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Extrinsic evaluation
> Time-consuming; can take days or weeks

So
o Sometimes use 2.482.32waluation: ! /8!,7/924:

> Bad approximation
> unless the test data looks ;<34ike the training data

> So/[7.785,,: -.,:'<37=<,'2."12,-4"791782>7.43
> But is helpful to think about.




Intuition of Perplexity
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Perplexity

The best language model is one that best predicts an unseen test set

¥ Gives the highest P(sentence) 1
Perplexity is the inverse probability of PPIW) = PWiw,..wy) ¥
the test set, normalized by the number
of words: = T/ 1

P(WW,...wy )
Chain rul i 1
aln rule: = 1
inru PP(W) \ gP(wz'|W1...w,-—1)
For bigrams:

PP(W) =

N
N
\ II;IP w,|w, 1)

Minimizing perplexity is the same as maximizing probability
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Josh Goodman: imagine a call-routing phone system gets 120K calls and has
to recognize

o "Operator" (let's say this occurs 1 in 4 calls)

o "Sales" (1in 4)

o "Technical Support"” (1 in 4)

> 30,000 different names (each name occurring 1 time in the 120K calls)

We get the perplexity of this sequence of length 120Kby first multiplying 120K
probabilities (90K of which are 1/4 and 30K of which are 1/120K), nd then
taking the inverse 120,000th root:

Perp=(%*%*%*%*%* ... *1/120K * 1/120K * ....)A(-1/120K)

But this can be arithmetically simplified to just N = 4: the operator (1/4), the
sales (1/4), the tech support (1/4), and the 30,000 names (1/120,000):

Perplexity= ((4 * % * %4 * 1/120K)*(-1/4) = 52.6



Perplexity as branching factor

Let’s suppose a sentence consisting of random
digits

What is the perplexity of this sentence according to
a model that assign P=1/10 to each digit?

1

PP(W) = P(wiw2...wy) ¥

1
= (= )N
(75 )
1—1
10
= 10




Lower perplexity = better model

Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order
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The Shannon Visualization Method

Choose a random bigram ce> |

(<s>, w) according to its probability | want

Now choose a random bigram want 1o

(w, x) according to its probability (o eat
eat Chinese

Chinese food
Then string the words together food  </s>

| want to eat Chinese food

And so on until we choose </s>




Approximating Shakespeare

gram

gram

gram

gram

PTo him swallowed confess hear both. Which. Of save on trail for are ay devig
rote life have
PHill he late speaks; or! a more to leg less Prst you enter

DPWhy dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry
king. Follow.
PBWhat means, sir. | confess she? then all sorts, he is trim, captain.

DFly, and will rid me these news of price. Therefore the sadness of parting, as th
Otis done.
PThis shall forbid it should be branded, if renown made it empty.

bKing Henry. What! | will go seek the traitor Gloucester. Exeunt some of the wat
great banquet servOd In;
DbIt cannot be but so.




Shakespeare as corpus

+TUUVAMVP*#%K2"04*WTNLAQMM

C1.K2052.$2*5$%&'(2&*XQQ4QQQ*9)-$./*#=
06'#*% @*WES"%&"&()"*(++&,'-",&./0%+1
> S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)
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1 Months the my and issue of year foreign new exchangeOs sep

qram were recession exchange new endorsed a acquire to six executiv

Last December through the way to preserve the Hudson corporati
2 B. E. C. Taylor would seem to complete the major central planner
gram  point bve percent of U. S. E. has already old M. X. corporation of li
on information such as more frequently bshing to keep her

—

They also point to ninety nine point six billion dollars from two hund
four oh six three percent of the rates of interest stores as Mexico ¢

gram  Brazil on market conditions

ld
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The perils of overfitting

N-grams only work well for word prediction if the
test corpus looks like the training corpus

> |n real life, it often doesn’t
> We need to train robust models that generalize!
> One kind of generalization: Zeros!
> Things that don’t ever occur in the training set
> But occur in the test set




Zeros

Training set: ¥ Test set
... denied the allegations ... denied the offer
... denied the reports ... denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0




/ero probability bigrams

Bigrams with zero probability
> mean that we will assign O probability to the test set!

And hence we cannot compute perplexity (can’t
divide by 0)!
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The intuition of smoothing (from Dan Klein)

When we have sparse statistics:
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Steal probability mass to generalize better
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Add-one estimation
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Maximum Likelihood Estimates

The maximum likelihood estimate
o of some parameter of a model M from a training set T
> maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be “bagel”?
MLE estimate is 400/1,000,000 = .0004
K=-.%F0@%?2%0%?03%?2.6-F062%C+,%.+F2%+6=2,%/+,>8.

o Butitis the estimate that makes it most likely that “bagel” will occur 400 times in a
million word corpus.
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1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 | 609 | 2 7 7 6 2
to 3 5 687 | 3 1 7 212
eat 1 3 | 17 3 43 |
chinese 2 1 1 83 2
food 16 16 2 5 |
lunch 3 1 1 2
spend 2 2 1 1




Laplace-smoothed bi;

P (Wn ‘Wn—l ) —

orams

C(Wn—lwn) + 1

C ( Wy ) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025 | 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058| 0.00058] 0.00058| 0.00058| 0.00058




Reconstituted counts

A L 4 A N T N

[C(Wn—lwn) T 1] X C(Wn—l)

c’ (Wn—lwn) —

C(wy—1)+V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098( 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16




Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 | 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| O 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| Ilunch| spend

1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 063 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 [ 0.16 0.16




Add-1 estimation is a blunt instrument

So add-1 isn’t used for N-grams:
o We'll see better methods

But add-1 is used to smooth other NLP models
o For text classification
> |In domains where the number of zeros isn’t so huge.
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Backoft and Interpolation
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Linear Interpolation

Simple interpolation

(Wi W Wi 1) = 1 1P(Wn| Wi 2Wh 1)
+ 1 oP(Wh|wWy 1)
+1 3P(Whp) |

Lambdas conditional on context:

n—1
n—2

Ao (WD P(wpwy_1)

n—2
+ 7\'3 (W:::% )P (Wn)

p(wn|wn—2wn—l) — }"l (W )P(Wnlwn—ZWn—l)




How to set the lambdas?

Use a I"#3$%'( corpus
- Held-Out Test

Choose As to maximize the probability of held-out data:
> Fix the N-gram probabilities (on the training data)
> Then search for As that give largest probability to held-out set:

logP(W.. W, [M(/1../ ) =" 10gRy 1y (W [W )
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Huge web-scale n-grams

How to deal with, e.g., Google N-gram corpus

Pruning

> Only store N-grams with count > threshold.
U .$#9.9%'2,60.3#, %#H<%(26%"™."%,5"+$'

> Entropy-based pruning

Efficiency
o Efficient data structures like tries
> Bloom filters: approximate language models
o Store words as indexes, not strings
U \".%=8<<$+,%;#*2,6%3#%<23%0+"6.%,8%:."" Y#<%5#"*'%2,3#%35#%:43.'
> Quantize probabilities (4-8 bits instead of 8-byte float)




Smoothing for Web-scale N-grams

“Stupid backoff” (Brants "#$%2007)
No discounting, just use relative frequencies

COunt(VVi.! k+1) | f COunt(VViig k+1) >0

S ‘Wii!! 1) = # count(w, ,.,

%o 0.49(w |W,;,,) otherwise

_ count(w)

S(W,) N




N-gram Smoothing Summary

Add-1 smoothing:

> OK for text categorization, not for language modeling

The most commonly used method:
> Extended Interpolated Kneser-Ney

For very large N-grams like the Web:
> Stupid backoff




Advanced Language Modeling

Discriminative models:
> choose n-gram weights to improve a task, not to fit the training set

Parsing-based models
Caching Models

> Recently used words are more likely to appear

c(w € history)
| history |

> These turned out to perform very poorly for speech recognition
(Why?)

P.acie (Wlhistory) = AP(w Tw_w_)+(1-A4)
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/+896%+C%0%6+%.0E2%>,+?20?-1-6@ % FO| 1043101095 6=pogiptset
0 .0000270
G+'%F8/=%6+%.8?76,0/6%! ; 23
2 1.25
L=8,/=%093%Q012%"RSSR$M.%/12E2,%-3p 2.24
T-E-32968>%UU%F-11-+9%"+ 3.96+C%; 96V PE2 >
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It sure looks like c* = (c - .75) d 8.26




Absolute Discounting Interpolation

U#>,&"*.3,$>,3&3"(,&+0(,&H#478="3+&3*/+ #'+&VBWX&Y".&

discounted bigram Interpolation weight
c(w_,,w)-d /
PAbsoluteDiscounting (VVI l \Ni—l) - I I T A’ (\Ni—l ) P(W)
C(W,_,) "\

_ unigram
o (Maybe keeping a couple extra values of d for counts 1 and 2)

But should we really just use the regular unigram P(w)?




Kneser-Ney Smoothing |

Better estimate for probabilities of lower-order unigrams!
> Shannon game: "#$%&"())"*+',-.""/0"1)$2+ 0B BHEAf 1442

o “Kong” turns out to be more common than “glasses”

> ... but “Kong” always follows “Hong”

The unigram is useful exactly when we haven’t seen this bigram!
Instead of P(w): “How likely is w”

P.i1g5)184W): “How likely is w to appear as a novel continuation?
> For each word, count the number of bigram types it completes
> Every bigram type was a novel continuation the first time it was seen

I:)CONTINUATION (W) | ‘{ Vvll : C(\Ni"l’ W) > O}‘




Kneser-Ney Smoothing |l

How many times does w appear as a novel continuation:

I:)CONTINUATION (W) | ‘{ Vvll : C(Vvi"l’ W) > O}‘

Normalized by the total number of word bigram types

‘{ (ij Wj) : C(ij Wj) > O}‘

{w,, :c(w,,,w) >0}

P W) =
CONTINUATION( ) |{ (ij Wj) : C(Wj!11 Wj) > O}|




Kneser-Ney Smoothing |l

Alternative metaphor: The number of # of word types seen to precede w

[{w,, :c(w,,,w)>0}I
normalized by the # of words preceding all words:

{w,, :c(w,, w) >0}
{w', re(w',,w) >0}

I:)CONTINUATI ON (W) = I

"
A frequent word (Kong) occurring in only one context (Hong) will have a low
continuation probability




Kneser-Ney Smoothing [V

max(c(w, ,,w,)! d,0)

Pan (W, (W, 1) = c(w, )

T 'I (Vvl' 1) I:)CONTINUATI ON (\Nl )

A is a normalizing constant; the probability mass we’ve discounted

(W) = — 0w (W, w) > O}

/ C(VVII 1) /\
_ _ The number of word types that can follow w 1
the normalized discount = # of word types we discounted

= # of times we applied normalized discount
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Py (W lW;:rlz+1 _ max{Cyy (Wi n+l)_ 4.9) +/ (Wz n+1)P kv (W, |le rlz+2
CKN (Wz n+1
5# count(¥ for the highest order
Cn (%) =

g continuationcount(¥) for lower order

Continuation count = Number of unique single word contexts for !
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