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Information retrieval

User has an information need

And has some collection of documents

User wants to find a relevant document
- a document (or documents)
* In the collection
» that satisfty their need




Web search

Google
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Not just the web

Searching our email

Searching corporate documents
Searching personal medical records
And also, part of LLMs

 retrieval-augmented generation (RAG)




INn Most cases we do ‘ranked retrieval’

The retriever returns top-k documents
These are ranked
We can show the user these, or some subset.




Ad-hoc retrieval
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Document Relevance Score

Goal Is to assign a score to each document
for whether it meets the user's information
need

Instead, we just approximate this by the
textual similarity between the query and the
document.



Two architectures

Sparse retrieval

> represent query and doc as vectors of word counts
> weighted by tf-idf, BM25

Dense retrieval
- Use LLM to represent query and doc as embeddings

In both cases, similarity is dot product or cosine
between query and document representations
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The vector space model of IR
Gerard Salton, 1971

Represent a document as a vector of
counts of the words it contains.




Bag-of-words model

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!




Vector representation of that doc

[131111156121413111]




Term-document matrix

Each document is represented by a vector of
words

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 ] 13
good 14 80 62 389
fool 36 58 1 4
wit 0 15 2 3




Visualizing document vectors
The two dimensional space [battle, fooll
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Vectors are the basis of information retrieval

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 3

good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3

Vectors are similar for the two comedies

But comedies are different than the other two
Comedies have more fools and wit and fewer battles.




Vector representations of queries and documents

Suppose we are looking for a witty fool play:

Query = "fool wit"

As You Like It Twelfth Night Julius Caesar Henry V Query

battle 1 0] ] 3 0
good 14 80 62 89 0
fool 36 58 1 4 |
wit 0 15 2 3 |




Choose the document that Is most similar to
the query

Which of d,, d,, d,, d, is most similar to g7

d; d; d3 dy q

As You Like It Twelfth Night Julius Caesar Henry V Query
battle 1 0] ] 3 0
good 14 80 62 89 0
fool 36 58 1 4 |
wit 0 15 2 3 1




Similarity methods are variants of dot product

The dot productisq-d
score (g,d{) =gq-d, =

d; d; d3 dy q

As You Like It Twelfth Night Julius Caesar Henry V Query
battle 1 0] ] 3 0
good 14 80 62 89 0
fool 36 58 1 4 |
wit 0 15 2 3 1




INn fact we use cosine

q-d

score(q,d) = cos(q,d) =




INn fact we use cosine

score(q,d) = cos(q,d) =
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But raw frequency Is a bad representation

 The co-occurrence matrices we have seen
represent each cell by word frequencies.

* Frequency is clearly useful; if sugar appears a lot
near apricot, that's useful information.

» But overly frequent words like the, it, or they are
not very informative about the context

* |t's a paradox! How can we balance these two
conflicting constraints?




Two common solutions for word welighting

tf-idf: tf-idf value for word t in document d:

Wt)d — tfl‘,d X ldft

Words like "the" or "it" have very low idf

PMI: (Pointwise mutual information)
p(Wl,WZ)
p(w1)p(w2)

© PM'(Wl,Wz) — lﬂg

See if words like "good" appear more often with "great"
than we would expect by chance




Term frequency (tf) in the tf-idf algorithm

We could imagine using raw count:

tft,d — Count(t,d)

But instead of using raw count, we usually
squash a bit:

o 1 +log;gcount(z,d)  if count(t,d) > 0
"0 otherwise




Document frequency (df)

df, is the number

of documents t occurs in.

(note this is not collection frequency: total count

across all docurr

'"Romeo” Is very C

ents)
istinctive for one Shakespeare play:

Collection Frequency Document Frequency

Romeo 113
action 113

1
31




Inverse document frequency (idf)

. N
ldft — logl() (d_f>
[

N is the total number of documents
in the collection

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaft 4 0.967
forest 12  0.489
battle 21 0.246
wit 34  0.037
fool 36 0.012
good 37 O
sweet 37 0



What Is a document?

Could be a play or a Wikipedia article

But for the purposes of tf-idf, documents can be

anything; we often call each paragraph a
document!




Final tf-1df weighted value for a word

Wl,d — tft,d X ldft

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3
tf-i1df;
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.246 0 0.454 0.520
good 0 0 0 0
fool 0.030 0.033 0.0012 0.0019
wit 0.085 0.081 0.048 0.054
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Cosine

score(q,d) = cos(q,d) =




TF-IDF weighted cosine

q d
score(q,d) = cos(q,d) = — -
q| [d|
Z tf-1df(z, ) tf-1df(¢,d)

req \/Zq eqf ldf2 ql, \/Zdedtf ldfz(dlyd)




TF-IDF weighted cosine

{1 +logocount(z,d)  if count(z,d) >0
tft d — .
0 otherwise

. N
ldft = lOglo (d_f)
[

SCOI’@( d) Z tf—ldf(t Q) tf- ldf(t d)
q,d) =
0/ greq A2 (g1, \/zd _tF-idf 2 (d;, d)




TF-IDF hano-example

Query: sweet love

Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet 1s love?

Doc 4: Nurse!




TF-IDF nano-example

Query: sweet love

gl =
Count |tf idf normalized
1+log,(c) log,,N/df)

sweet 1
nurse 0
love 1
how 0
SOrrow 0
S 0




TF-IDF nano-example Query: swect love

gl = +/(.125% + .301°) = .325

Count | tf idf tf-idf normalized
1+Iog10(c) log,,N/df) tf x idf

sweet 1 0.125 0.125 0.383
nurse 0
love 1 1 2 0.301 0.301 0.924
how 0
SOrrow 0
S 0




TF-IDF nano-example Dec2: Sweet sorrow

lql =

Coun | tf idf normalized
t 1+log,,(c) log,,N/df)

sweet 1
nurse 0
love 0
how 0
sorrow 1
S 0




TF-IDF nano-example

Doc 2: Sweet sorrow

Iq] = /(.1252 + .6022) = .615

tf idf tf-idf normalized
1+Iog10(c) log,,N/df) | tf x idf

sweet 1 0.125 125 0.0779
nurse 0O

love 0

how 0

sorrow 1 1 1 .602 0.602 979 0

S 0




TF-IDF nano-example

Query: sweetlove . Doc2: Sweet sorrow = 0.0/779
R
1+log,,(c) log,,N/df) | tf x idf

sweet 1 0.125 125 0.0779
nurse O

love 0

how 0

sorrow 1 1 1 .602 0.602 979 0

1S 0




Cinal cosine Query: sweet love

Doc 1: Sweet sweet nurse! Love?
(details in Doc 2: Sweet sorrow

chapter) Doc 3: How sweet 1s love?
Doc 4: Nurse!

score(q,d1) = 0.747

score(g,d2) = 0.0779
> d1 has both terms, including 2 instances of sweet
> d2 Is missing one of the terms
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Goal: rank documents in D by thelir TF-
IDF-welighted cosines with query g

Do we have to consider all documents in D?

No! We can ighore all documents that don't
have any query words!

They will have a cosine of 0!




How do we efficiently find all documents that
contain a query term q;?

An Index!

Which for historical reasons we call an
iInverted index!




|ﬂverted |ﬂdex Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow
Doc 3: How sweet 1s love?

Doc 4: Nurse!
Two parts

Dictionary: Postings:

how 23

IS 23

love 2> 12 3

nurse 2> 124

SOrrow 22

sweet 212> 2->3




INnverted Index Creation

1. Sort by term 2. Create linked
and document postings list

Term Doc# Term Doc#
sweet 1 how 3
sweet 1 S 3
nurse 1 love 1 Dict: Postings:
Doc 1: Sweet sweet nurse! Love? love 1 love
Doc 2: Sweet sorrow - > 3 > how -2 3
Doc 3: How sweet is love? sweet 2 nurse 1 . BN
Doc 4: Nurse! SOrrow 2 nurse 4 IS 3
how 3 Sorrow 2 love 2 12 3
;weet 3 sweet 2 nurse > 14
1S 3 sweet 1 N
love 3 sweet 1 SOrrow =2 2
nurse 4 sweet 3 sweet 212223




INnverted Index

Dict Postings

how -2 3

IS -2 3

love 2 12> 3
nurse —2>1-24
SOrrow -2 2

sweet 212223




So far this just tells us which documents
to grab

Next we heed enough information to
compute tf-idf:

For each term t in vocabulary:
> The df, (document frequency) of word t

For each term t in each document d.
- The term frequency or count(t,d) of word i in doc d




Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow Dcc#

Doc 3: How sweet 1s love?

Doc 4: Nurse! C /\ tf
g fowalp  —73[1]

is {1} — 3 [1]

love {2} — 1[1]— 3[1]

nurse {2} — 1[1] —4[1]

sorry {1} — 2[1]

sweet {3} — 1[2]—=2[1]— 3[1]
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Precision and Recall

We saw these already for classification

gold standard labels
gold positive  gold negative
svstem SySf[Qm o 0 o 0 o o _ tp
0); ot positive | frue positive | false positive _[_)_l‘_e_c_l_S}(_)fl““tR .

t . :
labels nsggsag\r,le false negative | true negative

o | a tptn
! - accuracy =
tp+fn . l tp+p+tnt+in

Precision: % of selected items that are correct

recall =

Recall: 76 of correct items that are selected



Precision and Recall for IR

User makes an information request
Every document in collection is elther;
» Relevant to the user
* Not relevant to the user

The system retrieves a ranked set of
documents




Precision for IR

Precision = % of retrieved documents that are relevant
System retrieves two kinds of documents

relevant documents

irrelevant documents

Irelevant retrieved docs]|
Precision = =---meemmmememmmmme oo
Irelevant retrieved docs| * |lirrelevant retrieved docs|




Recall for IR

Recall = % of relevant documents that are retrieved

Recall = |retrieved relevant documents]|

lall relevant document]|




Precision and Recall aren't enough

This is ranked retrieval
»  Glven two ranked retrieval systems

«  We want a metric that prefers the one that
ranks relevant documents higher

We need to adapt precision and recall

» 1o be sensitive to where in the ranking the
relevant document occur



Rank Judgment Precisiong Recallg ;1

Rank-specific I 0
precision and recall

Example:
+ 25 documents
* Qg are relevant

* |f we return all 25
P=136, R=1.0

*  Suppose we just return
one (and it is relevant)?




Rank Judgment Precisiong Recallg ;1

Rank-specific B 0
s 2 N S50 :

orecision and recall T e 2

4 N S50 22

. . 5 R .60 33

Recall Is non-decreasing ° R 66 44

. N S7 44

«  Relevant docs increase X N g g

recall 10 N 50 s

| 11 R S5 .66

* Non-relevant docsdon't ~ © N 50 66

. : N 46 .66

Precision jumps up and 14 N 43 o6

down 5N “ 7

» increasing for relevant s R 9 a8

QOCS ;g N 42 .88

| | N 40 88

» decreasing otherwise. . N 38 88

23 N :35 :88

24 N 33 .88

25 R .36 1.0




The precision-recall curve (for one query)

1.0 -
Rank Judgment Precisiong Recally,,,i
1 R 1.0 A1 0.8}
2 N .50 A1
3 R .66 22
4 N .50 22 C
5 R .60 33 O 0.6¢
6 R .66 44 wn
7 N 57 44 5
8 R .63 55 el 0.4
9 N 55 55 a B
10 N .50 S5
11 R S5 .66
12 N .50 .66
13 N 46 .66 0.2
14 N 43 .66
15 R 47 A7
16 N 44 A7 0 | | | |
17 N 44 77 '8.0 0.2 0.4 0.6 0.8
18 R 44 .88 Recall
10 T 11 QQ




Need a metric that aggregates over
many queries

Two common approaches
*  Mean Average Precision
» Interpolated Precision




Mean Average Precision

Descend through ranked items

Note precision only if item is relevant
* e.g.ranks1, 3,5, 6 but not 2 or 4.

Precision (d) "'ranked precision’

prec ision at the rank __ Rank  Judgment  Precisiong,,;  Recallgg;

1 1
doc d was found. 1

22
22
33
44
44

z|=|~| z =]z~
~J - o

~N O\ O B W




Average Precision

Descend through ranked items
Note precision only If item Is relevant
Take the average of the ranked-precisions

1

X Z Precision, (d)
dER;

*  R_Is the set of relevant documents at or above r

»  Precision(d) Is precision measured at the rank at
which document d was found.

AP =




Mean Average Precision

For a set of Q queries
Mean Average Precision (MAP);

|
MAP = ol > AP(q)

geQ




Evaluation of IR

Information

Retrieval
and RAG




Dense Retrieval

Information

Retrieval
and RAG




Problem with classic IR

The vocabulary mismatch problem

» tf-1df or BM25 cosine similarities only work
f there is exact word overlap between
query and doc!

«  But query-writer can't know the exact
words the doc might include!




Dense retrieval

Instead of representing query and documents
with count vectors

Represent both with embeddings!




Hypothetical version of dense retrieval.
static embeddings

Replace tf-idf vectors with, e.g., word2vec

* Query: the mean of the embeddings of each
query word

*  Doc: the mean of the doc word embeddings

*  Now just compute query-doc cosine as
normal.

We don't do this because contextual
embeddings work much better!




Dense retrieval #1: Single encoder

s(q,d)

ZcLs z = BERT(q; [SEP];d) [CLS]
score(q,d) = softmax(U(z))




Dense retrieval #1: Single encoder

System is run on passages (say

E

100 tokens) instead of whole

)

o documents

= _== &= _= Training:

= = —=| ° BERT and linear layer U can
=E = _E= then fine-tuned for relevance
et == =) - Creatingatuning dataset of
P o - relevant and non-relevant

PasSSages.



Dense retrieval #2 (biencoder)

s(q,d)
ZCLSQ/@\ ZCLs. D
[% ——— %\
= = - E=)| z,=BERT)(q)[CLS]
== = z/=BERT)(Q)[CLS]

score(q,d) =z,-24

I

II
s sl I

Sl
|
|
|

£l

@00 @00 @eQ

Document




Dense retrieval #2 (biencoder)

Encode doc vectors In
advance.

Encode query when it arrives

» Score Is dot product
between query vector and
precomputed doc vector

»  Cheaper but less accurate



INn-between dense retrieval methods

Use cheap methods (like BM25) as first pass
relevance ranking for each document,

Then just rerank the top N ranked docs,

»  Using expensive methods like the full
BERT scoring



ColBERT

Precompute document but store each word
vector

Then do maxsim between document and
query words

Khattab and Zaharia (2020), Khattab et al (2021)




ColBERT

s(q,d)

score(q,d)

Document



Training for dense retrieval

ColBERT and other models need to be
trained

 To fine-tune the BERT encoders and train

the linear layers (and the special [Q] and [D]
embeddings)

»  On datasets of triples (g.d+d-)

»  Some datasets like MS MARCO Ranking
have positive examples




Efficiency in dense retrieval

We must rank every document for its similarity to the query!

Efficiency for sparse word-count vectors: inverted index

Efficiency for dense retrieval.:

* nearest neighbor search: finding the set of dense
document vectors that have the highest dot product with

a dense query vector.

«  Approximate nearest neighbor algorithm Faiss (Johnson

et al, 2017).
Approximates the doc vector by a smaller quantized vector
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IR plays a central role In modern LLMs

How to answer factual questions like

« Where is the Louvre Museum located?

» How to get a script L in latex?

»  Where does the energy In a nuclear explosion
come from?




Just prompt an LLM!

* Al Overview

The main Louvre Museum is located in Paris, France,
at the Musée du Louvre, 75001 Paris, France. It is sit-
uated on the Right Bank of the Seine River in the city's
1st arrondissement, housed within the historic Louvre
Palace. ¢

e Address: Rue de Rivoli, 75001 Paris, France.

L LMs seem to store facts in the connections In
their feedforward layers!




But there are 1ssues!




L LMs Hallucinate

Hallucination: a response that is not faithful to
the facts of the world.

In the legal domain LLMs were shown to
hallucinate up to 88% of the timel

Dahl et al. (2024)




Can't use Proprietary Data

People need to ask questions about:

personal email.
healthcare applications to medical records.

internal corporate documents
legal documents discovery



Can't Handle Dynamic Data

L LMs can't answer questions about rapidly
changing information

Things that happened last week
In general, data shifts over time




Solution: RAG

Retrieval-Augmented Generation

1. Use IR to retrieve documents from
some collection

2. Then use LLM to generate an
answer conditioned on the
documents




Retrieval Augmented Generation (RAG)

User prompt: [ Retriever i Generator \
When was
the premiere of —=>{ =~ . > h

The Magic Flute? B .
J E E— forpr;%rlgi’iton —) |, 1791, according
_ = | to this page

—
Indexed Docs _)\ J
T Relevant [Knowledge]
Citation
Corpus of Docs

—
Documents




Basic RAG

Given a document collection D and a user
query g

- Call aretriever to return top r passages

»  Create a prompt that includes g and the
passages

»  Callan LLM with the prompt




Schematic of a RAG Prompt

retrieved passage 1

retrieved passage 2

retrieved passage Kk

Based on these texts, answer this question: What year
was the premiere of The Magic Flute?




(X1, Xxy) = H p(x;|R(g) ; Answer the following question... ; g ;x-;)
i=1




Extensions: Agent-based RAG

Instead of running RAG automatically on
every user turn

Have a retrieval agents

System decides when to call it and for which
document collection




Extensions: Tralning

Instruction-tune an LLM on a dataset of
questions with retrieved passages and correct
answers

Test-time compute: prompt an LLM to answer
the question and simultaneously to generate
reflections on which passages were useful



Extensions: Knowledge Citations

Q: Which films have Gong L1 as a member of their cast?
A: The Story of Qiu Ju [1], Farewell My Concubine [2], The Monkey
King 2 [3], Mulan [3], Saturday Fiction [3] ..

“‘Write an answer for the given question
using only the provided search results
(some of which might be irrelevant) and
cite them properly... Always cite for any
factual claim”
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Two kinds of question answering datasets

Natural information-seeking questions

»  Someone actually wanted to know
the answer to this

Probing (testing) questions

» Exam-type questions for LLM
evaluation




Natural Questions
(Kwiatkowski et al., 2019),

anonymized English queries to the Google
search engine and short and long answers
(hand-created from Wikipedia)

“When are hops added to the brewing
process?”

short answer: the boiling process

long answer. paragraph from the Wikipedia
page on Brewing




MS MARCO (Microsoft Machine Reading
Comprehension) collection of datasets,

1 million real anonymized English questions
from Microsoft Bing query logs

human generated answer
9 million passages (Bajaj et al., 2016)




Probing dataset: MMLU

15908 know
57 areas Inc

edge and reasoning questions in

uding medicine, mathematics,

computer science, law, etc..
Sourced from exams for humans like GRE, AP

College Computer Science
Any set of Boolean operators that 1s sufficient to represent all Boolean ex-
pressions is said to be complete. Which of the following 1s NOT complete?

(A) AND, NOT
(B) NOT, OR
(C) AND, OR
(D) NAND
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