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Information retrieval

User has an information need
And has some collection of documents
User wants to find a relevant document
• a document (or documents)
• in the collection
• that satisfy their need



Web search



Not just the web

Searching our email
Searching corporate documents
Searching personal medical records
And also, part of LLMs
• retrieval-augmented generation (RAG)



In most cases we do "ranked retrieval"

The retriever returns top-k documents
These are ranked
We can show the user these, or some subset.



Ad-hoc retrieval
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Document Relevance Score

Goal is to assign a score to each document 
for whether it meets the user's information 
need
Instead, we just approximate this by the 
textual similarity between the query and the 
document.



Two architectures

Sparse retrieval
◦ represent query and doc as vectors of word counts
◦ weighted by tf-idf, BM25

Dense retrieval
◦ Use LLM to represent query and doc as embeddings

In both cases, similarity is dot product or cosine 
between query and document representations 
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vector model of IR



The vector space model of IR

Represent a document as a vector of 
counts of the words it contains. 

Gerard Salton, 1971



Bag-of-words model
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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Vector representation of that doc

[1 3 1 1 1 1 1 5 6 1 2 1 4 1 3 1 1 1]



Term-document matrix

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

Each document is represented by a vector of 
words



Visualizing document vectors
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Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

The two dimensional space [battle, fool]



Vectors are the basis of information retrieval
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Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

Vectors are similar for the two comedies

But comedies are different than the other two 
 Comedies have more fools and wit and fewer battles.



Vector representations of queries and documents

Suppose we are looking for a witty fool play:
Query = "fool wit"
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Choose the document that is most similar to 
the query

Which of d1, d2, d3, d4 is most similar to q?
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Similarity methods are variants of dot product

The dot product is q ∙ d
score (q,d1)  = q ∙ d1 = 
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In fact we use cosine

11.1 • INFORMATION RETRIEVAL 5

The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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But raw frequency is a bad representation
• The co-occurrence matrices we have seen 

represent each cell by word frequencies.
• Frequency is clearly useful; if sugar appears a lot 

near apricot, that's useful information.
• But overly frequent words like the, it, or they are 

not very informative about the context
• It's a paradox! How can we balance these two 

conflicting constraints? 



Two common solutions for word weighting

tf-idf:     tf-idf value for word t in document d:

PMI: (Pointwise mutual information)

◦ PMI 𝒘𝟏, 𝒘𝟐 = 𝒍𝒐𝒈 𝒑(𝒘𝟏,𝒘𝟐)
𝒑 𝒘𝟏 𝒑(𝒘𝟐)
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Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Words like "the" or "it" have very low idf

See if words like "good" appear more often with "great" 
than we would expect by chance



Term frequency (tf) in the tf-idf algorithm

We could imagine using raw count:

 tft,d = count(t,d)

But instead of using raw count, we usually 
squash a bit:
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is not the best measure of association between words. Raw frequency is very skewed
and not very discriminative. If we want to know what kinds of contexts are shared
by cherry and strawberry but not by digital and information, we’re not going to get
good discrimination from words like the, it, or they, which occur frequently with
all sorts of words and aren’t informative about any particular word. We saw this
also in Fig. 6.3 for the Shakespeare corpus; the dimension for the word good is not
very discriminative between plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf weighting, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf weighting (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. We also need to do something special with counts of 0, since we can’t
take the log of 0.2

tft,d =

(
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

(6.12)

If we use log weighting, terms which occur 0 times in a document would have tf= 0,
1 times in a document tf = 1+ log10(1) = 1+ 0 = 1, 10 times in a document tf =
1+ log10(10) = 2, 100 times tf = 1+ log10(100) = 3, 1000 times tf = 4, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

2 We can also use this alternative formulation, which we have used in earlier editions: tft,d =
log10(count(t,d)+1)



Document frequency (df)

dft is the number of documents t occurs in.
(note this is not collection frequency: total count 
across all documents)
"Romeo" is very distinctive for one Shakespeare play:
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that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf
tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise



Inverse document frequency (idf)
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
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3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

N is the total number of documents 
in the collection



What is a document?

Could be a play or a Wikipedia article
But for the purposes of tf-idf, documents can be 
anything; we often call each paragraph a 
document!



Final tf-idf weighted value for a word

Raw counts:

tf-idf:
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Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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As You Like It Twelfth Night Julius Caesar Henry V
battle 0.246 0 0.454 0.520
good 0 0 0 0
fool 0.030 0.033 0.0012 0.0019
wit 0.085 0.081 0.048 0.054

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.085 value for wit in As You Like It is
the product of tf = 1+ log10(20) = 2.301 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

6.6 Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf, PPMI (positive pointwise mutual infor-
mation), is used for term-term-matrices, when the vector dimensions correspond to
words rather than documents. PPMI draws on the intuition that the best way to weigh
the association between two words is to ask how much more the two words co-occur
in our corpus than we would have a priori expected them to appear by chance.

Pointwise mutual information (Fano, 1961)4 is one of the most important con-
pointwise

mutual
information cepts in NLP. It is a measure of how often two events x and y occur, compared with

what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(6.16)

The pointwise mutual information between a target word w and a context word
c (Church and Hanks 1989, Church and Hanks 1990) is then defined as:

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(6.17)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often
we would expect the two words to co-occur assuming they each occurred indepen-
dently; recall that the probability of two independent events both occurring is just
the product of the probabilities of the two events. Thus, the ratio gives us an esti-
mate of how much more the two words co-occur than we expect by chance. PMI is
a useful tool whenever we need to find words that are strongly associated.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether
two words whose individual probability is each 10�6 occur together less often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly less than 10�12, and this kind of granularity would require an
enormous corpus. Furthermore it’s not clear whether it’s even possible to evaluate
such scores of ‘unrelatedness’ with human judgments. For this reason it is more

4 PMI is based on the mutual information between two random variables X and Y , defined as:

I(X ,Y ) =
X

x

X

y
P(x,y) log2

P(x,y)
P(x)P(y)

(6.15)

In a confusion of terminology, Fano used the phrase mutual information to refer to what we now call
pointwise mutual information and the phrase expectation of the mutual information for what we now call
mutual information
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
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Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)
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Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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is not the best measure of association between words. Raw frequency is very skewed
and not very discriminative. If we want to know what kinds of contexts are shared
by cherry and strawberry but not by digital and information, we’re not going to get
good discrimination from words like the, it, or they, which occur frequently with
all sorts of words and aren’t informative about any particular word. We saw this
also in Fig. 6.3 for the Shakespeare corpus; the dimension for the word good is not
very discriminative between plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf weighting, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf weighting (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. We also need to do something special with counts of 0, since we can’t
take the log of 0.2

tft,d =

(
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

(6.12)

If we use log weighting, terms which occur 0 times in a document would have tf= 0,
1 times in a document tf = 1+ log10(1) = 1+ 0 = 1, 10 times in a document tf =
1+ log10(10) = 2, 100 times tf = 1+ log10(100) = 3, 1000 times tf = 4, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

2 We can also use this alternative formulation, which we have used in earlier editions: tft,d =
log10(count(t,d)+1)
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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Word Count tf
1+log10(c)

df idf
log10N/df)

tf-idf
tf x idf

normalized

sweet 1
nurse 0
love 1
how 0
sorrow 0
is 0
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

|q| = √
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Word Count tf
1+log10(c)

df idf
log10N/df)

tf-idf
tf x idf

normalized

sweet 1 1 3 0.125 0.125 0.383
nurse 0
love 1 1 2 0.301 0.301 0.924
how 0
sorrow 0
is 0
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

|q| = √(.1252 + .3012) = .325
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Word Coun
t

tf
1+log10(c)

df idf
log10N/df)

tf-idf
tf x idf

normalized × q

sweet 1
nurse 0
love 0
how 0
sorrow 1
is 0
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

|q| = √
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Word Cnt tf
1+log10(c)

df idf
log10N/df)

tf-idf
tf x idf

normalized × q

sweet 1 1 3 0.125 .125 .203 0.0779
nurse 0
love 0
how 0
sorrow 1 1 1 .602 0.602 .979 0
is 0
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

|q| = √(.1252 + .6022) = .615



TF-IDF nano-example

Word Cnt tf
1+log10(c)

df idf
log10N/df)

tf-idf
tf x idf

normalized × q

sweet 1 1 3 0.125 .125 .203 0.0779
nurse 0
love 0
how 0
sorrow 1 1 1 .602 0.602 .979 0
is 0
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.
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Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:
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Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

. = 0.0779



Final cosine

score(q,d1) =  0.747
score(q,d2) = 0.0779
◦ d1 has both terms, including 2 instances of sweet
◦ d2 is missing one of the terms
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Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

(details in
chapter)
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Goal: rank documents in D by their TF-
IDF-weighted  cosines with query q

Do we have to consider all documents in D?

No!  We can ignore all documents that don't 
have any query words!

 They will have a cosine of 0!



How do we efficiently find all documents that 
contain a query term qi?

An index!  

Which for historical reasons we call an 
inverted index!



Inverted Index

Two parts

11.1 • INFORMATION RETRIEVAL 5

The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

Dictionary:
how
is 
love
nurse
sorrow
sweet

 Postings:
à 3
à 3
à 1à 3
à 1 à 4
à 2
à 1à 2 à 3



Inverted Index Creation
1. Sort by term 
and document
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Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

Dict:
how
is 
love
nurse
sorrow
sweet

 Postings:
à 3
à 3
à 1à 3
à 1 à 4
à 2
à 1à 2 à 3

Term Doc#
sweet 1
sweet 1
nurse 1
love 1
sweet 2
sorrow 2
how 3
sweet 3
is 3
love 3
nurse 4

Term Doc#
how 3
is 3
love 1
love 3
nurse 1
nurse 4
sorrow 2
sweet  2
sweet 1
sweet 1
sweet 3

à à à

2. Create linked 
postings list



Inverted Index

Dict
how
is 
love
nurse
sorrow
sweet

 Postings
à 3
à 3
à 1à 3
à 1 à 4
à 2
à 1à 2 à 3



So far this just tells us which documents 
to grab 
Next we need enough information to 
compute tf-idf:

For each term t in vocabulary:
◦ The dft (document frequency) of word t

For each term t in each document d:
◦ The term frequency or count(t,d) of word i in doc d
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where |davg| is the length of the average document. When k is 0, BM25 reverts to
no use of term frequency, just a binary selection of terms in the query (plus idf).
A large k results in raw term frequency (plus idf). b ranges from 1 (scaling by
document length) to 0 (no length scaling). Manning et al. (2008) suggest reasonable
values are k = [1.2,2] and b = 0.75. Kamphuis et al. (2020) is a useful summary of
the many minor variants of BM25.

Stop words In the past it was common to remove high-frequency words from both
the query and document before representing them. The list of such high-frequency
words to be removed is called a stop list. The intuition is that high-frequency termsstop list

(often function words like the, a, to) carry little semantic weight and may not help
with retrieval, and can also help shrink the inverted index files we describe below.
The downside of using a stop list is that it makes it difficult to search for phrases
that contain words in the stop list. For example, common stop lists would reduce the
phrase to be or not to be to the phrase not. In modern IR systems, the use of stop lists
is much less common, partly due to improved efficiency and partly because much
of their function is already handled by IDF weighting, which downweights function
words that occur in every document. Nonetheless, stop word removal is occasionally
useful in various NLP tasks so is worth keeping in mind.

11.1.3 Inverted Index

In order to compute scores, we need to efficiently find documents that contain words
in the query. (Any document that contains none of the query terms will have a score
of 0 and can be ignored.) The basic search problem in IR is thus to find all documents
d 2C that contain a term q 2 Q.

The data structure for this task is the inverted index, which we use for mak-inverted index

ing this search efficient, and also conveniently storing useful information like the
document frequency and the count of each term in each document.

An inverted index, given a query term, gives a list of documents that contain the
term. It consists of two parts, a dictionary and the postings. The dictionary is a listpostings

of terms (designed to be efficiently accessed), each pointing to a postings list for the
term. A postings list is the list of document IDs associated with each term, which
can also contain information like the term frequency or even the exact positions of
terms in the document. The dictionary can also store the document frequency for
each term. For example, a simple inverted index for our 4 sample documents above,
with each word containing its document frequency in {}, and a pointer to a postings
list that contains document IDs and term counts in [], might look like the following:

how {1} ! 3 [1]
is {1} ! 3 [1]
love {2} ! 1 [1] ! 3 [1]
nurse {2} ! 1 [1] ! 4 [1]
sorry {1} ! 2 [1]
sweet {3} ! 1 [2] ! 2 [1] ! 3 [1]

Given a list of terms in query, we can very efficiently get lists of all candidate
documents, together with the information necessary to compute the tf-idf scores we
need.

There are alternatives to the inverted index. For the question-answering domain
of finding Wikipedia pages to match a user query, Chen et al. (2017) show that
indexing based on bigrams works better than unigrams, and use efficient hashing
algorithms rather than the inverted index to make the search efficient.
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (11.6)

11.1.2 Document Scoring

We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (11.7)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q
|q| ·

d
|d| (11.8)

We can spell out Eq. 11.8, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
X

t2q

tf-idf(t,q)qP
qi2q tf-idf 2(qi,q)

· tf-idf(t,d)qP
di2d tf-idf 2(di,d)

(11.9)

Now let’s use Eq. 11.9 to walk through an example of a tiny query against a
collection of 4 nano documents, computing tf-idf values and seeing the rank of the
documents. We’ll assume all words in the following query and documents are down-
cased and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 11.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 11.4, Eq. 11.5, Eq. 11.6, and Eq. 11.9 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

df

tf
Doc#
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Precision and Recall

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Precision: % of selected items that are correct
Recall: % of correct items that are selected

We saw these already for classification



Precision and Recall for IR

User makes an information request
Every document in collection is either:
• Relevant to the user
• Not relevant to the user

The system retrieves a ranked set of 
documents



Precision for IR

Precision = % of retrieved documents that are relevant
System retrieves two kinds of documents
 relevant documents
 irrelevant documents

   |relevant retrieved docs| 
Precision     =    ----------------------------------------
  |relevant retrieved docs| + |irrelevant retrieved docs|
 



Recall for IR

Recall = % of relevant documents that are retrieved

Recall =     |retrieved relevant documents|
  -------------------------------
    |all relevant document|



Precision and Recall aren't enough

This is ranked retrieval
• Given two ranked retrieval systems
• We want a metric that prefers the one that 

ranks relevant documents higher
We need to adapt precision and recall!
• to be sensitive to where in the ranking the 

relevant document occur



Rank-specific
precision and recall

Example:
• 25 documents
• 9 are relevant
• If we return all 25

P=.36, R= 1.0
• Suppose we just return 

one (and it is relevant)?
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11.1.4 Evaluation of Information-Retrieval Systems

We measure the performance of ranked retrieval systems using the same precision

and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns T ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision =
|R|
|T | Recall =

|R|
|U | (11.13)

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two
ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.

Rank Judgment PrecisionRank RecallRank
1 R 1.0 .11
2 N .50 .11
3 R .66 .22
4 N .50 .22
5 R .60 .33
6 R .66 .44
7 N .57 .44
8 R .63 .55
9 N .55 .55

10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N .46 .66
14 N .43 .66
15 R .47 .77
16 N .44 .77
17 N .44 .77
18 R .44 .88
19 N .42 .88
20 N .40 .88
21 N .38 .88
22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

Figure 11.3 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

Let’s turn to an example. Assume the table in Fig. 11.3 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same



Rank-specific
precision and recall
Recall is non-decreasing
• Relevant docs increase 

recall
• Non-relevant docs don't
Precision jumps up and 
down
• increasing for relevant 

docs
• decreasing otherwise. 
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22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

Figure 11.3 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

Let’s turn to an example. Assume the table in Fig. 11.3 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same
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11.1.4 Evaluation of Information-Retrieval Systems

We measure the performance of ranked retrieval systems using the same precision

and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns T ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision =
|R|
|T | Recall =

|R|
|U | (11.13)

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two
ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.

Rank Judgment PrecisionRank RecallRank
1 R 1.0 .11
2 N .50 .11
3 R .66 .22
4 N .50 .22
5 R .60 .33
6 R .66 .44
7 N .57 .44
8 R .63 .55
9 N .55 .55

10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N .46 .66
14 N .43 .66
15 R .47 .77
16 N .44 .77
17 N .44 .77
18 R .44 .88
19 N .42 .88
20 N .40 .88
21 N .38 .88
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Figure 11.3 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

Let’s turn to an example. Assume the table in Fig. 11.3 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same
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Figure 11.4 The precision recall curve for the data in table 11.3.

rank. The recall measures in this example are based on this query having 9 relevant
documents in the collection as a whole.

Note that recall is non-decreasing; when a relevant document is encountered,
recall increases, and when a non-relevant document is found it remains unchanged.
Precision, on the other hand, jumps up and down, increasing when relevant doc-
uments are found, and decreasing otherwise. The most common way to visualize
precision and recall is to plot precision against recall in a precision-recall curve,precision-recall

curve

like the one shown in Fig. 11.4 for the data in table 11.3.
Fig. 11.4 shows the values for a single query. But we’ll need to combine values

for all the queries, and in a way that lets us compare one system to another. One way
of doing this is to plot averaged precision values at 11 fixed levels of recall (0 to 100,
in steps of 10). Since we’re not likely to have datapoints at these exact levels, we
use interpolated precision values for the 11 recall values from the data points we dointerpolated

precision

have. We can accomplish this by choosing the maximum precision value achieved
at any level of recall at or above the one we’re calculating. In other words,

IntPrecision(r) = max
i>=r

Precision(i) (11.14)

This interpolation scheme not only lets us average performance over a set of queries,
but also helps smooth over the irregular precision values in the original data. It is
designed to give systems the benefit of the doubt by assigning the maximum preci-
sion value achieved at higher levels of recall from the one being measured. Fig. 11.5
and Fig. 11.6 show the resulting interpolated data points from our example.

Given curves such as that in Fig. 11.6 we can compare two systems or approaches
by comparing their curves. Clearly, curves that are higher in precision across all
recall values are preferred. However, these curves can also provide insight into the
overall behavior of a system. Systems that are higher in precision toward the left
may favor precision over recall, while systems that are more geared towards recall
will be higher at higher levels of recall (to the right).

A second way to evaluate ranked retrieval is mean average precision (MAP),mean average

precision

which provides a single metric that can be used to compare competing systems or
approaches. In this approach, we again descend through the ranked list of items,
but now we note the precision only at those points where a relevant item has been
encountered (for example at ranks 1, 3, 5, 6 but not 2 or 4 in Fig. 11.3). For a single



Need a metric that aggregates over 
many queries

Two common approaches
• Mean Average Precision
• Interpolated Precision



Mean Average Precision
Descend through ranked items
Note precision only if item is relevant
• e.g. ranks 1, 3, 5, 6 but not 2 or 4:
Precisionr(d) "ranked precision"
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11.1.4 Evaluation of Information-Retrieval Systems

We measure the performance of ranked retrieval systems using the same precision

and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns T ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision =
|R|
|T | Recall =

|R|
|U | (11.13)

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two
ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.

Rank Judgment PrecisionRank RecallRank
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Figure 11.3 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

Let’s turn to an example. Assume the table in Fig. 11.3 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same

precision at the rank 
doc d was found.



Average Precision

Descend through ranked items
Note precision only if item is relevant
Take the average of the ranked-precisions

• Rr is the set of relevant documents at or above r
• Precisionr(d) is precision measured at the rank at 

which document d was found.
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Figure 11.5 Interpolated data points from Fig. 11.3.
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Figure 11.6 An 11 point interpolated precision-recall curve. Precision at each of the 11
standard recall levels is interpolated for each query from the maximum at any higher level of
recall. The original measured precision recall points are also shown.

query, we average these individual precision measurements over the return set (up
to some fixed cutoff). More formally, if we assume that Rr is the set of relevant
documents at or above r, then the average precision (AP) for a single query is

AP =
1

|Rr|
X

d2Rr

Precisionr(d) (11.15)

where Precisionr(d) is the precision measured at the rank at which document d was
found. For an ensemble of queries Q, we then average over these averages, to get
our final MAP measure:

MAP =
1
|Q|

X

q2Q

AP(q) (11.16)

The MAP for the single query (hence = AP) in Fig. 11.3 is 0.6.



Mean Average Precision

For a set of Q queries
Mean Average Precision (MAP):
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query, we average these individual precision measurements over the return set (up
to some fixed cutoff). More formally, if we assume that Rr is the set of relevant
documents at or above r, then the average precision (AP) for a single query is

AP =
1

|Rr|
X

d2Rr

Precisionr(d) (11.15)

where Precisionr(d) is the precision measured at the rank at which document d was
found. For an ensemble of queries Q, we then average over these averages, to get
our final MAP measure:

MAP =
1
|Q|

X

q2Q

AP(q) (11.16)

The MAP for the single query (hence = AP) in Fig. 11.3 is 0.6.
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Problem with classic IR

The vocabulary mismatch problem
• tf-idf or BM25 cosine similarities only work 

if there is exact word overlap between 
query and doc!

• But query-writer can't know the exact 
words the doc might include!



Dense retrieval

Instead of representing query and documents 
with count vectors
Represent both with embeddings!



Hypothetical version of dense retrieval: 
static embeddings

Replace tf-idf vectors with, e.g., word2vec
• Query: the mean of the embeddings of each 

query word
• Doc: the mean of the doc word embeddings
• Now just compute query-doc cosine as 

normal.
We don't do this because contextual 
embeddings work much better!



Dense retrieval #1: Single encoder
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11.2 Information Retrieval with Dense Vectors

The classic tf-idf or BM25 algorithms for IR have long been known to have a con-
ceptual flaw: they work only if there is exact overlap of words between the query
and document. In other words, the user posing a query (or asking a question) needs
to guess exactly what words the writer of the answer might have used, an issue called
the vocabulary mismatch problem (Furnas et al., 1987).

The solution to this problem is to use an approach that can handle synonymy:
instead of (sparse) word-count vectors, using (dense) embeddings. This idea was
first proposed for retrieval in the last century under the name of Latent Semantic
Indexing approach (Deerwester et al., 1990), but is implemented in modern times
via encoders like BERT.

The most powerful approach is to present both the query and the document to a
single encoder, allowing the transformer self-attention to see all the tokens of both
the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (11.17)

This architecture is shown in Fig. 11.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

The problem with the full BERT architecture in Fig. 11.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single document in our entire collection through a BERT encoder jointly
with the new query! This enormous use of resources is impractical for real cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 11.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and
we could represent the query and document as the [CLS] token of the respective
encoders (Karpukhin et al., 2020):

zq = BERTQ(q)[CLS]
zd = BERTD(d)[CLS]

score(q,d) = zq ·zd (11.18)

The bi-encoder is much cheaper than a full query/document encoder, but is also
less accurate, since its relevance decision can’t take full advantage of all the possi-
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Figure 11.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

ble meaning interactions between all the tokens in the query and the tokens in the
document.

There are numerous approaches that lie in between the full encoder and the bi-
encoder. One intermediate alternative is to use cheaper methods (like BM25) as the
first pass relevance ranking for each document, take the top N ranked documents,
and use expensive methods like the full BERT scoring to rerank only the top N
documents rather than the whole set.

Another intermediate approach is the ColBERT approach of Khattab and Za-ColBERT

haria (2020) and Khattab et al. (2021), shown in Fig. 11.8. This method separately
encodes the query and document, but rather than encoding the entire query or doc-
ument into one vector, it separately encodes each of them into contextual represen-
tations for each token. These BERT representations of each document word can be
pre-stored for efficiency. The relevance score between a query q and a document d is
a sum of maximum similarity (MaxSim) operators between tokens in q and tokens
in d. Essentially, for each token in q, ColBERT finds the most contextually simi-
lar token in d, and then sums up these similarities. A relevant document will have
tokens that are contextually very similar to the query.

More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN ]. The
passage d with tokens [d1, . . . ,dm], is processed similarly, including a [CLS] and
special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:

score(q,d) =
NX

i=1

m
max
j=1

Eqi ·Ed j (11.19)

While the interaction mechanism has no tunable parameters, the ColBERT ar-
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System is run on passages (say 
100 tokens) instead of whole 
documents
Training:
• BERT and linear layer U can 

then fine-tuned for relevance
• Creating a tuning dataset of 

relevant and non-relevant 
passages. 
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Figure 11.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

ble meaning interactions between all the tokens in the query and the tokens in the
document.

There are numerous approaches that lie in between the full encoder and the bi-
encoder. One intermediate alternative is to use cheaper methods (like BM25) as the
first pass relevance ranking for each document, take the top N ranked documents,
and use expensive methods like the full BERT scoring to rerank only the top N
documents rather than the whole set.

Another intermediate approach is the ColBERT approach of Khattab and Za-ColBERT

haria (2020) and Khattab et al. (2021), shown in Fig. 11.8. This method separately
encodes the query and document, but rather than encoding the entire query or doc-
ument into one vector, it separately encodes each of them into contextual represen-
tations for each token. These BERT representations of each document word can be
pre-stored for efficiency. The relevance score between a query q and a document d is
a sum of maximum similarity (MaxSim) operators between tokens in q and tokens
in d. Essentially, for each token in q, ColBERT finds the most contextually simi-
lar token in d, and then sums up these similarities. A relevant document will have
tokens that are contextually very similar to the query.

More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN ]. The
passage d with tokens [d1, . . . ,dm], is processed similarly, including a [CLS] and
special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:

score(q,d) =
NX

i=1

m
max
j=1

Eqi ·Ed j (11.19)

While the interaction mechanism has no tunable parameters, the ColBERT ar-
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Figure 11.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

ble meaning interactions between all the tokens in the query and the tokens in the
document.

There are numerous approaches that lie in between the full encoder and the bi-
encoder. One intermediate alternative is to use cheaper methods (like BM25) as the
first pass relevance ranking for each document, take the top N ranked documents,
and use expensive methods like the full BERT scoring to rerank only the top N
documents rather than the whole set.

Another intermediate approach is the ColBERT approach of Khattab and Za-ColBERT

haria (2020) and Khattab et al. (2021), shown in Fig. 11.8. This method separately
encodes the query and document, but rather than encoding the entire query or doc-
ument into one vector, it separately encodes each of them into contextual represen-
tations for each token. These BERT representations of each document word can be
pre-stored for efficiency. The relevance score between a query q and a document d is
a sum of maximum similarity (MaxSim) operators between tokens in q and tokens
in d. Essentially, for each token in q, ColBERT finds the most contextually simi-
lar token in d, and then sums up these similarities. A relevant document will have
tokens that are contextually very similar to the query.

More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN ]. The
passage d with tokens [d1, . . . ,dm], is processed similarly, including a [CLS] and
special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:

score(q,d) =
NX

i=1

m
max
j=1

Eqi ·Ed j (11.19)

While the interaction mechanism has no tunable parameters, the ColBERT ar-
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11.2 Information Retrieval with Dense Vectors

The classic tf-idf or BM25 algorithms for IR have long been known to have a con-
ceptual flaw: they work only if there is exact overlap of words between the query
and document. In other words, the user posing a query (or asking a question) needs
to guess exactly what words the writer of the answer might have used, an issue called
the vocabulary mismatch problem (Furnas et al., 1987).

The solution to this problem is to use an approach that can handle synonymy:
instead of (sparse) word-count vectors, using (dense) embeddings. This idea was
first proposed for retrieval in the last century under the name of Latent Semantic
Indexing approach (Deerwester et al., 1990), but is implemented in modern times
via encoders like BERT.

The most powerful approach is to present both the query and the document to a
single encoder, allowing the transformer self-attention to see all the tokens of both
the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (11.17)

This architecture is shown in Fig. 11.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

The problem with the full BERT architecture in Fig. 11.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single document in our entire collection through a BERT encoder jointly
with the new query! This enormous use of resources is impractical for real cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 11.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and
we could represent the query and document as the [CLS] token of the respective
encoders (Karpukhin et al., 2020):

zq = BERTQ(q)[CLS]
zd = BERTD(d)[CLS]

score(q,d) = zq ·zd (11.18)

The bi-encoder is much cheaper than a full query/document encoder, but is also
less accurate, since its relevance decision can’t take full advantage of all the possi-



Dense retrieval #2 (biencoder)

Encode doc vectors in 
advance. 
Encode query when it arrives
• Score is dot product 

between query vector and 
precomputed doc vector

• Cheaper but less accurate
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Figure 11.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

ble meaning interactions between all the tokens in the query and the tokens in the
document.

There are numerous approaches that lie in between the full encoder and the bi-
encoder. One intermediate alternative is to use cheaper methods (like BM25) as the
first pass relevance ranking for each document, take the top N ranked documents,
and use expensive methods like the full BERT scoring to rerank only the top N
documents rather than the whole set.

Another intermediate approach is the ColBERT approach of Khattab and Za-ColBERT

haria (2020) and Khattab et al. (2021), shown in Fig. 11.8. This method separately
encodes the query and document, but rather than encoding the entire query or doc-
ument into one vector, it separately encodes each of them into contextual represen-
tations for each token. These BERT representations of each document word can be
pre-stored for efficiency. The relevance score between a query q and a document d is
a sum of maximum similarity (MaxSim) operators between tokens in q and tokens
in d. Essentially, for each token in q, ColBERT finds the most contextually simi-
lar token in d, and then sums up these similarities. A relevant document will have
tokens that are contextually very similar to the query.

More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN ]. The
passage d with tokens [d1, . . . ,dm], is processed similarly, including a [CLS] and
special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:

score(q,d) =
NX

i=1

m
max
j=1

Eqi ·Ed j (11.19)

While the interaction mechanism has no tunable parameters, the ColBERT ar-



In-between dense retrieval methods

Use cheap methods (like BM25) as first pass 
relevance ranking for each document, 
Then just rerank the top N ranked docs, 
• Using expensive methods like the full 

BERT scoring



ColBERT

Precompute document but store each word 
vector
Then do maxsim between document and 
query words

Khattab and Zaharia (2020), Khattab et al (2021)



ColBERT
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Figure 11.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.
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More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN ]. The
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special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:
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Figure 11.8 A sketch of the ColBERT algorithm at inference time. The query and docu-
ment are first passed through separate BERT encoders. Similarity between query and doc-
ument is computed by summing a soft alignment between the contextual representations of
tokens in the query and the document. Training is end-to-end. (Various details aren’t de-
picted; for example the query is prepended by a [CLS] and [Q:] tokens, and the document
by [CLS] and [D:] tokens). Figure adapted from Khattab and Zaharia (2020).

chitecture still needs to be trained end-to-end to fine-tune the BERT encoders and
train the linear layers (and the special [Q] and [D] embeddings) from scratch. It is
trained on triples hq,d+,d�i of query q, positive document d+ and negative docu-
ment d� to produce a score for each document using Eq. 11.19, optimizing model
parameters using a cross-entropy loss.

All the supervised algorithms (like ColBERT or the full-interaction version of
the BERT algorithm applied for reranking) need training data in the form of queries
together with relevant and irrelevant passages or documents (positive and negative
examples). There are various semi-supervised ways to get labels; some datasets
(like MS MARCO Ranking, Section 11.4) contain gold positive examples. Negative
examples can be sampled randomly from the top-1000 results from some existing
IR system. If datasets don’t have labeled positive examples, iterative methods like
relevance-guided supervision can be used (Khattab et al., 2021) which rely on the
fact that many datasets contain short answer strings. In this method, an existing IR
system is used to harvest examples that do contain short answer strings (the top few
are taken as positives) or don’t contain short answer strings (the top few are taken as
negatives), these are used to train a new retriever, and then the process is iterated.

Efficiency is an important issue, since every possible document must be ranked
for its similarity to the query. For sparse word-count vectors, the inverted index
allows this very efficiently. For dense vector algorithms finding the set of dense
document vectors that have the highest dot product with a dense query vector is
an instance of the problem of nearest neighbor search. Modern systems there-
fore make use of approximate nearest neighbor vector search algorithms like FaissFaiss

(Johnson et al., 2017).



Training for dense retrieval

ColBERT and other models need to be 
trained
• To fine-tune the BERT encoders and train 

the linear layers (and the special [Q] and [D] 
embeddings) 

• On datasets of  triples ⟨q,d+,d−⟩
• Some datasets like MS MARCO Ranking 

have positive examples



Efficiency in dense retrieval

We must rank every document for its similarity to the query!
Efficiency for sparse word-count vectors: inverted index
Efficiency for dense retrieval:
• nearest neighbor search: finding the set of dense 

document vectors that have the highest dot product with 
a dense query vector. 

• Approximate nearest neighbor algorithm Faiss (Johnson 
et al., 2017). 
• Approximates the doc vector by a smaller quantized vector
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Retrieval-Augmented 
Generation



IR plays a central role in modern LLMs

How to answer factual questions like

• Where is the Louvre Museum located?

• How to get a script l in latex?

• Where does the energy in a nuclear explosion 
come from?



Just prompt an LLM!

LLMs seem to store facts in the connections in 
their feedforward layers!

∙

The Louvre, or the Louvre Museum (French: Musée du Louvre
[myze dy luvʁ]), is a national art museum in Paris, France, and…

10/31/25, 9:47 AM Where is the Louvre Museum located? - Google Search

https://www.google.com/search?q=Where+is+the+Louvre+Museum+located%3F&rlz=1C5GCCM_en&oq=Where+is+the+Louvre+Museum+located%3F&gs_lcrp=… 1/7



But there are issues!



LLMs Hallucinate
Hallucination: a response that is not faithful to 
the facts of the world. 
In the legal domain LLMs were shown to 
hallucinate up to 88% of the time!

Dahl et al. (2024)



Can't use Proprietary Data

People need to ask questions about: 
• personal email. 
• healthcare applications to medical records.
• internal corporate documents 
• legal documents discovery



Can't Handle Dynamic Data

LLMs can't answer questions about rapidly 
changing information
Things that happened last week
In general, data shifts over time



Solution: RAG

Retrieval-Augmented Generation
1. Use IR to retrieve documents from 

some collection
2. Then use LLM to generate an 

answer conditioned on the 
documents



Retrieval Augmented Generation (RAG)

When was
the premiere of

The Magic Flute?

Relevant
Docs

1791, according 
to this page

Retriever

Indexed Docs

LLM

Generator

Corpus of
Documents

User prompt:

Prompt 
formulation

Knowledge
Citation



Basic RAG

Given a document collection D and a user 
query q
• Call a retriever to return top k passages 
• Create a prompt that includes q and the 

passages
• Call an LLM with the prompt
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collection
2. Create a prompt from the user prompt, the retrieved passages, and some addi-

tional text.
3. Call an LLM with the prompt.

The resulting prompts might look something like:

Schematic of a RAG Prompt

retrieved passage 1

retrieved passage 2

...

retrieved passage k

Based on these texts, answer this question: What year
was the premiere of The Magic Flute?

The task for the language model is then to generate text according to this proba-
bility model:

p(x1, . . . ,xn) =
nY

i=1

p(xi|R(q) ; Answer the following question... ; q ;x<i)

There are many augmentations of this basic RAG paradigm. One addition is
the use of agent-based RAG. In the RAG paradigm described so far, a search is
always run and then retrieved passages are combined with the user’s question in a
prompt. But in actual applications, we may not want to run retrieval for every user
turn. Or we may want to retrieve from different collections for different user needs
(sometimes the web, other times a private collection). In agent-based RAG, the
system decides when to call a retrieval agent and for which collection.

Another research area has to do with the relationship between the retriever and
the generator. For example there may be noise in the retrieved passages; some of
them may be irrelevant or wrong, or in an unhelpful order. How can we encourage
the LLM to focus on the good passages? Some RAG architectures add a reranker
that reranks or reorders passages after they are retrieved. Or some complex questions
may require multi-hop architectures, in which a query is used to retrieve documents,
which are then appended to the original query for a second stage of retrieval.

Another class of solutions is to train the LLM for RAG. The basic version of
RAG describe above involves no training; we take an off-the-shelf LLM, and give
it the passages and a prompt and hope that it will correctly figure out which pas-
sages are useful or relevant in generating the answer. One learning variant involves
instruction-tuning an LLM, by first creating a dataset of questions annotated with
retrieved passages and correct answers, and then instruction-tuning the LLM to cor-
rectly answer the questions from the passages. An alternative method is to do this via
test-time compute, prompting the LLM to answer the question and simultaneously to
generate reflections on which passages were useful. The process of generating these
reflections may lead the LLM to improve at identifying good passages. The result-
ing reflection text can also be used for in-context learning, for example by using the
text as part of a prompt for further questions.
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Extensions: Agent-based RAG

Instead of running RAG automatically on 
every user turn
Have a retrieval agents
 System decides when to call it and for which 
document collection



Extensions: Training

Instruction-tune an LLM on a dataset of 
questions with retrieved passages and correct 
answers

Test-time compute: prompt an LLM to answer 
the question and simultaneously to generate 
reflections on which passages were useful



Extensions: Knowledge Citations
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In addition to training the LLM, we could train the IR engine. After all, the IR
engine itself has not been optimized for the RAG scenario. It might not have been
trained, or if it was, it was likely trained for simple IR or factoid question-answering
tasks, not for the RAG scenario where the retrieved passages are specifically to be
used by another LLM for generating texts. We can address this mismatch for train-
able IR algorithms by doing end-to-end training of the entire architecture on some
set of questions and answers, training the parameters of the IR model as well as the
LLM.

Finally, it is generally useful for LLMs to give the user evidence for any factual
statement. This can be in the form of knowledge citations, such as URLs of aknowledge

citations
trusted source or citation references to particular literature. For example a question
answering system might generate numbered pointers to URLs as follows:

Q: Which films have Gong Li as a member of their cast?
A: The Story of Qiu Ju [1], Farewell My Concubine [2], The Monkey
King 2 [3], Mulan [3], Saturday Fiction [3] ...

The simplest way for generating knowledge citations is to specify it as part of
the prompt. For example Gao et al. (2023) employ a prompt with text like:

‘‘Write an answer for the given question using only the
provided search results (some of which might be irrelevant)
and cite them properly... Always cite for any factual claim".

11.5 Datasets

There are scores of datasets that contain information needs in the form of questions,
annotated with the answer. These can be used both for instruction tuning and for
evaluation of the question answering abilities of language models.

We can distinguish the datasets along many dimensions, summarized nicely in
Rogers et al. (2023). One is the original purpose of the questions in the data, whether
they were natural information-seeking questions, or whether they were questions
designed for probing: evaluating or testing systems or humans.

On the natural side there are datasets like Natural Questions (KwiatkowskiNatural
Questions

et al., 2019), a set of anonymized English queries to the Google search engine and
their answers. The answers are created by annotators based on Wikipedia infor-
mation, and include a paragraph-length long answer and a short span answer. For
example the question “When are hops added to the brewing process?” has the short
answer the boiling process and a long answer which is an entire paragraph from the
Wikipedia page on Brewing.

A similar natural question set is the MS MARCO (Microsoft Machine ReadingMS MARCO
Comprehension) collection of datasets, including 1 million real anonymized English
questions from Microsoft Bing query logs together with a human generated answer
and 9 million passages (Bajaj et al., 2016), that can be used both to test retrieval
ranking and question answering.

Although many datasets focus on English, natural information-seeking ques-
tion datasets exist in other languages. The DuReader dataset is a Chinese QA re-
source based on search engine queries and community QA (He et al., 2018). TyDi
QA dataset contains 204K question-answer pairs from 11 typologically diverse lan-TyDi QA

guages, including Arabic, Bengali, Kiswahili, Russian, and Thai (Clark et al., 2020).
In the TYDI QA task, a system is given a question and the passages from a Wiki-

‘‘Write an answer for the given question 
using only the provided search results 
(some of which might be irrelevant) and 
cite them properly...  Always cite for any 
factual claim".
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Question Answering 
datasets and evals



Two kinds of question answering datasets

Natural information-seeking questions
•  Someone actually wanted to know 

the answer to this
Probing (testing) questions
• Exam-type questions for LLM 

evaluation



Natural Questions 
(Kwiatkowski et al., 2019), 

anonymized English queries to the Google 
search engine and short and long answers  
(hand-created from Wikipedia)
“When are hops added to the brewing 
process?” 
short answer: the boiling process 
long answer: paragraph from the Wikipedia 
page on Brewing



MS MARCO (Microsoft Machine Reading 
Comprehension) collection of datasets, 

1 million real anonymized English questions 
from Microsoft Bing query logs
human generated answer 
9 million passages (Bajaj et al., 2016)



Probing dataset: MMLU

15908 knowledge and reasoning questions in 
57 areas including medicine, mathematics, 
computer science, law, etc.. 
Sourced from exams for humans like GRE, AP 
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pedia article and must (a) select the passage containing the answer (or NULL if no
passage contains the answer), and (b) mark the minimal answer span (or NULL).

On the probing side are datasets like MMLU (Massive Multitask Language Un-MMLU
derstanding), a commonly-used dataset of 15908 knowledge and reasoning ques-
tions in 57 areas including medicine, mathematics, computer science, law, and oth-
ers. MMLU questions are sourced from various exams for humans, such as the US
Graduate Record Exam, Medical Licensing Examination, and Advanced Placement
exams. So the questions don’t represent people’s information needs, but rather are
designed to test human knowledge for academic or licensing purposes. Fig. 11.14
shows some examples, with the correct answers in bold.

MMLU examples

College Computer Science
Any set of Boolean operators that is sufficient to represent all Boolean ex-
pressions is said to be complete. Which of the following is NOT complete?
(A) AND, NOT
(B) NOT, OR
(C) AND, OR
(D) NAND

College Physics
The primary source of the Sun’s energy is a series of thermonuclear
reactions in which the energy produced is c2 times the mass difference
between
(A) two hydrogen atoms and one helium atom
(B) four hydrogen atoms and one helium atom
(C) six hydrogen atoms and two helium atoms
(D) three helium atoms and one carbon atom

International Law
Which of the following is a treaty-based human rights mechanism?
(A) The UN Human Rights Committee
(B) The UN Human Rights Council
(C) The UN Universal Periodic Review
(D) The UN special mandates

Prehistory
Unlike most other early civilizations, Minoan culture shows little evidence
of
(A) trade.
(B) warfare.
(C) the development of a common religion.
(D) conspicuous consumption by elites.

Figure 11.14 Example problems from MMLU

Some of the question datasets described above augment each question with pas-
sage(s) from which the answer can be extracted. These datasets were mainly created
for an earlier QA task called reading comprehension in which a model is givenreading

comprehension
a question and a document and is required to extract the answer from the given
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