Words




How many words In a sentence?

They picnicked by the pool, then
lay back on the grass and looked at

the stars.

16 words
> 1If we don't count punctuation marks as words

18 If we count punctuation




How many words In an utterance?

' do uh main- mainly business data
processing’

Disfluencies
> Fragments main-
o Filled pauses: uh and um

> Should we consider these to be words?




How many words In a sentence?

They picnicked by the pool, then
lay back on the grass and looked at

the stars.

Type: an element of the vocabulary V
> The number of types is the vocabulary size |V]

Instance: an instance of that type in running text.
> 14 types and 16 instances (if we ignore punctuation).

More questions: Are They and they the same word?




How many words In a sentence?

I'm

Orthographically one word (in the English
writing system)

But grammatically two words:
1. the subject pronoun |
2. the verb 'm, short for am




How many words In a sentence?

Not every written language uses spaces!!

Chinese, Japanese and Thal don't!




How to choose tokens in Chinese

Chinese words are composed of characters
called "hanzi" GX=£, hanzi) (or sometimes just "zi")

Each one represents a meaning unit called a
morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex
and not agreed upon.




How to choose tokens In Chinese?

WkARIH A S RZE “Yao Ming reaches the finals”
°yao Mming Jin ru zong jue sal

words? T
AHR - HEA WA Chinese Treebank
YaoMing reaches finals
Dt S
\ \L 700N ; \% ' . .
Yao Ming reaches overall finals Peking University
7 words? . \ o
R i S N A 3 Just use characters

Yao Ming enter enter overall decision game




Tokenization across languages

So in Chinese we use characters (z1) as
tokens

But that doesn't work for, e.g., Thal and
Japanese

These differences make it hard to use words as
tokens

And there's another reason why we don't
use words as tokens!




There are simply too many words!

_______ Types:V

Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google N-grams 13+ million 1 trillion

The bigger the corpus, the more word types!




There are simply too many words!

N =number of instances
V| = number of types in vocabulary V
Heaps Law = Herdan's Law

VI — kNﬁ «— Roughly 0.5

Vocab size for a text goes up with the square
root of its length in words




Two kinds of words

Function words
- of the, is, and, una, &,

Content words
+ mango, braise, snowy, feliz, ItIR




10° 10" 10% 10° 10* 10°> 10° 10" 10%® 10°

total number of words (w)
Tria, Loreto, Servedio, 2018




Why Is too many words a problem?

No matter how big our vocabulary
There will always be words we missed!
We will always have unknown words!




Words and Subwords

Because of these three problems:

1. Many languages don't have orthographic
words

2. Defining words post-hoc is challenging
3. The number of words grows without bound

NLP systems don't use words, but smaller
subwords




Words




Morphemes




Words have parts

Morpheme: a minimal meaning-bearing unit in a
language.

fox. one morpheme
cats: two morphemes cat and —s

Morphology: the study of morphemes




Morphemes in English and Chinese

Doc work-ed care-ful-ly wash—-1ng the
glass—-es

T K Il E K W\ ¥ .5 dhE P T
plum dry vegetable use clear water soak soft, remove out after, drip dry
IRt

chop fragment

Soak the preserved vegetable in water until soft, remove, drain, and chop




Types of morphemes

root. central morpheme of the word
- supplying the main meaning
affix: adding additional meanings

worked
root work
affix —ed
glasses
root glass
affix —es




Types of affixes

Inflectional morphemes
- grammatical morphemes
- often syntactic role like agreement

—ed past tense on verbs
-s/-es plural on houns

Derivational morphemes
- more idiosyncratic in application and meaning
- often change grammatical class
care (noun)
+-full 2 careful (adjective)
+ -]y =2 carefully (adverb)




Clitics

A morpheme that acts syntactically like a word but:
> IS reduced In form
o and attached to another word

English: 'vein I've ('ve can't appear alone)
English: ’ s in the teacher’s book

French: 17 In 1’ opera

Arabic: b ‘by/with’, w and’




Morphological Typology

Dimensions along which languages vary

Two are salient for tokenization:
1. number of morphemes per word
2. how easy It Is to segment the morphemes




Number of morphemes per word

Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong
rReols waab cyun4 gwoR3 zeoi3 daaib gaani uRkR1  haib ni1 gaani
he say entire country most big building house is this building

‘He said the biggest house in the country was this one’

Many. Koryak, Kamchatka peninsula in Russia,

t-o-nk e-mejn-o-jetemo-nni-R
1SG.S-E-midnight-big-E-yurt.cover-E-sew-15G.SIPFV]
‘I sewed a lot of yurt covers in the middle of a night.”



Joseph Greenberg (1960) scale

1.1 1.5

0 \©
S O
6@(\% ‘(\\\\ 9\&&\ @(\\@%

2122 2.52.6

A O s § m— @ r—( w— § F—( e § s O el

Analytic

Synthetic

Morphemes per Word

Polysynthetic




How easily segmentable

Agglutinative languages like Turkish

> Very clean boundaries between mor

Fusion languages

ohemes

> a single affix may conflate multiple morphemes,

o Russian -om in stolom (table-SG-INSTR- DECL1)

> Instrumental, singular, and first declension.

- English —=s In"She reads the article’
- Means both "third person” and "present tense’

These are tendencies rather than

absolutes



Morphemes




Unicode




Unicode

a method for representing text written using
* any character (more than 150,000!)
* inany script (168 to date!)

» of the languages of the world
»  Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N'Ko,..
» dead ones like Sumerian cuneiform
» Invented ones like Klingon
*  plus emojis, currency symbols, etc.




ASCIl: Some history for English

1960s American Standard Code for Information Interchange

1 byte per character
> In principle 256 characters
- But high bit setto 0

> SO 7 bits = 128

- However only 95 used
The rest were for teletypes




ASCIl: Some history for English

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
< 3C 60 @ 40 o4 \ 5C 92 60 96
= 3D 61 A 41 65 [ 5D 93 a 61 97
> 3E 62 B 42 66 ©~ 5E 94 b 62 98
? 3F 63 C 43 67 _ 5F 95 c 63 99

h e 1 1 o©
08 065 o6C oC oF




ASCIl wasn't enough!

Spanish: Senor- respondio Sancho
This sentence has hon-ASCIl nand o

About 100,000 Chinese/CJKV characters
(Chinese, Japanese, Korean, or Vietnamese)

Devanagari script for 120 languages like
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc.

AT (Tp): THY AT STH A W= a1 HafeT 37 31fabRT § HH 81 81 9 ddb 3R
faddes T T~ € 9T 3= YT ! HTeHT J IRIER & Yfd BRI BT A1y




Code Points

Unicode assigns a unique ID, a code point,
to each of 1ts 150,000 characters

1.1 million possible code points
> 0 - OX10FFFF

Written in hex, with prefix "U+"
> als U+0061 which = Ox0061

First 127 code points = ASCI|

- For backwards compatibility




Some code points

0061
0062
0063
00F9
00FA
00FB
00FC
8FDB
8FDC
8FDD
8FDE

1F600 =

1FOOE

A code point has
Glyphs are storec

But one code pol

@p}@éf\;ﬂﬁ:ﬁc o oo nN T oW

represents all those ¢

LATIN
LATIN
LATIN
LATIN
LATIN
LATIN
LATIN

SMALL
SMALL
SMALL
SMALL
SMALL
SMALL
SMALL

LETTER A

LETTER B

LETTER C

LETTER U WITH GRAVE
LETTER U WITH ACUTE
LETTER U WITH CIRCUMFLEX
LETTER U WITH DIAERESIS

GRINNING FACE
MAHJONG TILE EIGHT OF CHARACTERS

no visuals; it is not a glyph!
INn fonts: aoraoraora

Nt (U+0061, abstract "LATIN SMALL A"
ifferent a's!



Encodings and UTF-38

We don't stick code points directly in files
We store encodings of chars.

The most popular encoding is UTF-8
Most of the web Is stored in UTF-8




Encodings

hello has these 5 code points:
U+0068 U+0065 U+006C U+006C U+006F

How to write in a file?
There are more than 1 million code points

So would need 4 bytes (or 3 but 3 Is inconvenient):
00 OO0 OO0 68 00 00 00 65 OO 00 0O BC OO OO 00 6C OO OO 00 BF

But that would make files very long!
> Also zeros are bad (since mean "end of string" in ASCII)




Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)

For the first 127 code points, same as ASCI|

UTF-8 encoding of hello Is:
- 68 65 6C 6C 6F

Code points 2128 are encoded as a sequence
of 2, 3, or 4 bytes

> |n range 128 - 255, so won't be confused with ASCI|
- First few bits say if its 2-byte, 3-byte, or 4-byte



UTF-8 Encoding

Code Points UTF-8 Encoding
From - To Bit Value Byte 1 Byte 2 Byte 3 Byte 4
U+0000-U+007F OXXXXXXX XXXXXXXX
U+0080-U+07FF 00000yyy yyXXXxXxx 110yyyyy  10xxxxxx
U+0800-U+FFFF 27727ZYYYy YYXXXXXX 1110zzzz 10yyyyyy 10xxxxxx

U+010000-U+10FFFF 000uuuuu zzzzyyyy yyXXXxxx 11110uuu

10uuzzzz 10yyyyyy 10xXxxxxX

VVV VYXXXXXX

n, code point U+00F1, = 00000000 11110001
> Gets encoded with pattern 110yyyyy 10XXXXXX
> S0 IS mapped to a two-byte bit sequence

> 11000011 10110001 = OXC3B1.



UTF-8 encoding

The first 127 characters (ASCIIl) map to 1 byte

Most remaining characters in European, Middle
Eastern, and African scripts map to 2 bytes

Most Chinese, Japanese, and Korean characters
map to 3 bytes

Rarer CJKV characters, emojis/symbols map to
4 bytes.




UTF-8 encoding

Efficient. fewer bytes for common characters,

Doesn't use zero bytes (except for NULL
character U+0000),

Backwards compatible with ASCII,

Self-synchronizing,

o |f a file Is corrupted, the nearest character boundary
s always findable by moving only up to 3 bytes




UTF-8 and Python 3

Python 3 strings stored internally as Unicode

> each string a sequence of Unicode code points

> string functions, regex apply natively to code points.
> len() returns string length in code points, not bytes

Files need to be encoded/decoded when

written or read

- Every file is stored in some encoding

- "No such thing as a text file without an encoding’
o Ifit's not UTF-8 it's something older like ASCII or iso_8859_1



Unicode




Byte Pair Encoding




The NLP standard for tokenization

Instead of

* white-space / orthographic words
» Lots of languages don't have them
* The humber of words grows without bound

» Unicode characters
» Too small as tokens for many purposes

* morphemes
* Very hard to define

We use the data to tell us how to tokenize.




Why tokenize?

Using a deterministic series of tokens means
systems can be compared equally
- Systems agree on the length of a string

Algorithms like perplexity assume all texts
have a fixed tokenization

Eliminates the problem of unknown words

If some word occurs in test set but not training set,
we still know how to segment it into known tokens.




Subword tokenization

Two most common algorithms:
- Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

- Unigram language modeling tokenization (Kudo,
2018) (sometimes confusingly callec
'SentencePiece” after the library it's in)

All have 2 parts:

- A token learner that takes a raw training corpus and
induces a vocabulary (a set of tokens).

- A token encoder/segmenter that takes a raw test
sentence and tokenizes it according to that vocabulary




Byte Pair Encoding (BPE) token learner

lteratively merge frequent neighboring tokens to create longer tokens.

Vocabular

Repeat; y
- Choose most frequent A, B, C, D, El

neighboring pair (A’, 'B) A B C D E. AB]
> Add a new merged symbol T

(‘'AB") to the vocabulary A, B, C, D, E, AB, CAB]
- Replace every ‘A" 'B'In the

corpus with 'AB". COerS ~

, ABDCABECARB

Until R merges AB D C AB E C AR

AB D CAB E CAB



BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V <—all unique characters in C # 1nitial set of tokens 1s characters
fori=1tok do # merge tokens til k£ times
11, tr <— Most frequent pair of adjacent tokens in C
Ivew < I + IR # make new token by concatenating
VeV + tvew # update the vocabulary
Replace each occurrence of 77, tg in C with tyzy # and update the corpus

return V




Byte Pair Encoding (BPE) Addendum

Generally run within space-separated words

Don't merge across word boundaries

> First separate corpus by whitespace or similar,
using specialized regular expressions

> This gives a set of starting strings, with whitespace
attached to start of each strong

- Counts come from the corpus, but can only merge
within strings.



BPE token learner
Original (very fascinating®) corpus:

set_hew_new_renew_reset_renew

Put space token at start of words

corpus vocabulary

2 . new ., €, n, r, s, t, w
2 . renew

1 s et

1 . reset




BPE token learner

corpus vocabulary

2 - € W ., €, n, r, s, t, w
2 . renew

1 s et

1 . reset

Merge n e to ne (count 4 =2 new + 2 renew)

corpus vocabulary

2 . he w ., €, n, r, s, t, w, ne
2 . enew

1 S et

1 . reset




BPE token learner

corpus vocabulary

2 . he w ., €, n, r, s, t, w, ne
2 . T enew

1 S et

1 _reset

Merge ne w to new (count 4)

corpus vocabulary

2 _ hew ., €, n, r, s, t, w, ne, new
2 . I e new
1 s et

1 _reset




BPE token learner

corpus vocabulary

2 _ hew ., €, n, r, s, t, w, ne, new
2 . I e new

1 s et

1 _.reset

Merge . r to __r (count 3)and _.r eto _re (count 3)

corpus vocabulary

2 _ hew ., e, n, r, s, t, w, ne, new, .r, .re

2 .re new

| S et |

I .reset System has learned prefix re- |




BPE

The next merges are:

merge current vocabulary
(., new) ., €, n, r, s, t,
(_re, new) ., e,
(s, e) _, €,
(se, t) ~, e,

W, nhe, new, .r, .re, .new
, r, s, t, w, ne, new, .r, .re, .new, .renew
, r, s, t, w, ne, new, .r, .re, .new, .renew, Se

r, s, t, w, ne, new, .r, .re, .new, .renew, se, set

S, 82 B2 B




BPE encoder algorithm

Tokenize a test sentence: run each merge learned
from the training data:

o Greedily, in the order we learned them

o (test frequencies don't play a role)

First: segment each test word into characters

Then run rules: (1) merge every n e to ne, (2) merge
newtonew, (3) _r, (4) _re etc.

Result:
- Recreates training set words

- But also learns subwords like _ re that might appear Iin
new words like rearrange




BPE and Unicode

We run BPE on large Unicode corpora, with
vocabulary sizes of 50,000 to 200,000

On individual bytes of UTF-8-encoded text

- Not on Unicode characters

- BPE rediscovers 2-byte and common 3-byte UTF-8
seguences

> Only 256 possible values of a byte, so no unknown
tokens

> (BPE might learn a few illegal UTF-8 sequences
across character boundaries, but these can be filtered)



Visualizing GPT40 tokens

Tat Dat Duong’s Tiktokenizer visualizer

Anyhow, -she's-seen-Jane's-224123-flowers-anyhow!

Tokens: 11865, 8023, 11, 31211, 6177, 23919, 885, 220, 10427, 7633, 18887, 147065, O
Most words are tokens, w/initial space

Clitics like 's

- Are segmented off Jane

- But part of frequent words like she's

Numbers segmented into chunks of 3 digits
Anyhow and -anyhow are segmented differently

Some of this is from preprocessing
> regular expressions for chunking digits, stripping clitics



https://tiktokenizer.vercel.app/

Tokenizing across languages

Even though BPE tokenizers are multilingual
LLM training data is still vastly dominated by

English
Most BP

- tokens used for English, leaving less for

other languages
Words in other languages are often split up



Tokenization is better iIn English

Tat Dat Duong'’s Tiktokenizer visualizer on GPT40

A recipe sentence in two languages

English: 18 tokens; no words are split into multiple tokens).

In-a-deep-bowl, mix-the-orange-juice-with-the-sugar, -9
inger, and-nutmeq.

Spanish: 33 tokens; 6/16 words are split

En-un-recipiente-hondo, -mezclar-el-jugo-de-naranja-con
-el-azlcar, - jengibre, 'y-nuez-moscada.



https://tiktokenizer.vercel.app/

Byte Pair Encoding




Corpora




Corpora

Words don't appear out of nowhere!
A text Is produced by

* a specific writer(s),

» at a specific time,

* In a specific variety,

» of a specific language,

» for a specific function.




Corpora vary along dimensions like

Language: 7097 languages in the world

t's iImportant to test algorithms on multiple
languages

What may work for one may not work for
another




Corpora vary along dimensions like

Variety, like African American English
varieties

- AAE Twitter posts might include forms like “jont” (1
don't)

Genre: newswire, fiction, scientific articles,
Wikipedia

Author Demographics: writer's age, gender,
ethnicity, socio-economic status




Code Switching

Speakers use multiple languages in the same
utterance

This is very common around the world

Especially in spoken language and related
genres like texting and social media




Code Switching: Spanish/English

Por primera vez veo a @username actually
being hateful! It was beautiful:)

[For the first time | get to see @username
actually being hateful! it was beautiful:) |




Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya
rakhe

["he was and will remain a friend ... don't worry ..
but have faith']




Corpus datasheets
Gebru et al (2020), Bender and Friedman (2018)

Motivation:

» Why was the corpus collected?
* By whom?
* Who funded it?

Situation: In what situation was the text written?

Collection process:. How was it sampled? Was there
consent? Pre-processing?

+Annotation process, variety, demographics, etc.




Corpora




Regular Expressions




Regular expressions are used everywhere

> A formal language for specifying text
strings
> Part of every text processing task

- Useful pre-processing or text formatting step, for
example for BPE pre-tokenization

> Also necessary for data analysis of text

> A widely used tool in industry and
academics




Regular expressions

We can use regular expressions to search for
a pattern in a string

For example, the Python function
re.search(pattern,string)

scans through the string and returns the first
match inside it for the pattern




Python syntax

We'll show regex on raw strings with double
quotes:

r'regex’

Raw strings treat backslashes as literal characters
Many regex patterns use backslashes.




Why raw strings?

> Regex and Python both use backslash "\" for
special characters. If you don't use raw notation you
would have to type extra backslashes!
o "\\d+" to search for 1 or more digits

> "\n" in Python means the "newline" character, not a
"slash" followed by an "n". Need "\ \n" for two characters.

> Instead: use Python's raw string notation for regex:
o r" [tT]he"

o r"\d+" matches one or more digits
> instead of \ \d+



file:///d+
file:///d+
file:///d+

Regular expressions

The pattern

r'"'Buttercup”

matches the substring Buttercup in any string, like
the string

I'm called 11ttle Buttercup




Regular Expressions: Disjunctions

_etters inside square brackets |]

Patten | Matches

r''[mM]ary" Mary or mary
r'[1234567890]" Any one digit

Ranges using the dash [A-7]

Patten [ Matches |

r"[A-Z]" Anuppercase letter Drenched Blossoms

r'"[a-z]" Alowercaseletter my beans were 1mpatient

r'"[0-9]" Asingle digit Chapter 1: Down the Rabbit Hole




Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list

> Note: Carat means negation only when it's first in []
o Special characters (., *, +, ?) lose their special meaning inside []

Pattern | Matches _____|Examples

r'"'[AA-Z]"  Not upper case Oyfn pripetchik

r'" [ASs]" Neither ‘S’ nor ‘s’ I have no exquisite reason”
r'[A.]" Not a period Our resident Djinn

r'[eA]™ Either e or A Look up © now




Kleene star and Kleene plus

baa
baaa
baaaa ..

Kleene star * (0 or more of previous characters) ~ >tephen CKleene

Kleene plus + (1 or more of previous character)

r''baaa*" baa baaa baaaa ..
r''baa+"




Wildcard

The period means "any character’

r’ . matches anything

11 a1

r.*  matches any sequence of 0 or more
of anything




Reqgular Expressions: Anchors A $

Pattern | Matches

r“ALA-Z]" Palo Alto
r'"\.%" The end.
r'.$" The end? The end!




Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!

The pipe symbol | for disjunction

r''groundhog|woodchuck™ woodchuck
r''yours|mine" YOUurs
r‘alb|c” = [abc]

r''[gG] roundhog| [Ww]oodchuck"” Woodchuck




Regular Expressions: Convenient aliases

mmm

r'\d"
r"\D"
r\w

r"\w"
r'\s"

r'\S"

[
[

[

"0-9]
a-Z2A-720-9

AW ]
\r\t\n\f]

“\s]

]

Any digit
Any non-digit
Any alphanumeric or

Not alphanumeric or _

Whitespace (space,
tab)

Not whitespace

Fahreneit 451

Blue Moon

Daiyu

Look!

Look, ,up

Look up



The iterative process of writing regex’s

Find me all instances of the word “the" in a text.

the
Misses capitalized examples

[tT ] he
Incorrectly returns other or Theology

\W[tT]lhe\W




False positives and false negatives

The process we just went through was
based on fixing two kinds of errors:

1. Not matching things that we should have
matched (The)

False negatives

2. Matching strings that we should not have
matched (there, then, other)

False positives




Characterizing work on NLP

In NLP we are always dealing with these kinds of
errors.

Reducing the error rate for an application often

involves two antagonistic efforts;

o Increasing coverage (or recall) (minimizing false
negatives).

o Increasing accuracy (or precision) (minimizing false
nositives)




Regular expressions play a surprisingly

large role

Widely used In both academics and industry

1. Part of most text processing tasks, even for

OIg heura

| language model pipelines

o Including

ext formatting and pre-processing

2. Very useful for data analysis of any text data



Reqgular Expressions




Substitutions, Capture
Groups, and Lookahead




Regex Substitutions in Python

To change every instance of cherry to apricot in
string:

re.sub(r”"cherry”, r"apricot”, string)

Upper case all examples of a hame:
re.sub(r"janet”, r"Janet”, string)




Substitutions often need capture
groups

Task: Change:
US format dates (mm/dd/yyyy) to
EU format dates (dd-mm-yyyy)

Pattern to match US format:

ro\di2;/\d12}/\d14}"

How to specify in the replacement that we want
to swap the date and month values?




Capture group

Use parentheses to capture (store) the values
that we matched in the search,

Groups have numbers

In the replacement ("repl’), we refer back to
that group with a number command.




Capture group

re.sub(r”(\di12})/(\d12})/(\di14})",
r'"\2-\1-\3", string);

Parens (and ) around the two month digits, the
two day digits, and the four year digits,

This stores

> the first 2 digits in group 1,

> the second 2 digits in group 2,
> final digits in group 3.

Then in the repl string,
> \1, \2, and \3, refer to the 1st, 2nd, and 3rd registers.




That regex will

map
The date I1s 10/15/2011
to

The date Is 15-10-2011




But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing

Non-capturing groups: add a ?: after paren:
r'(?:some|a few) (people|cats) like some \1/"

matches
o some cats like some cats

but not

o some cats like some some




| ookahead assertions

(7= pattern) istrue if pattern matches, but
IS zero-width; doesn't advance character
pointer

(?! pattern) trueif a pattern does not
match

How to capture the first word on the line, but
only If it doesn't start with the letter T;

r - (?21LET]) Q\w+) \b"




Simple Application: ELIZA

Early NLP system that imitated a Rogerian
psychotherapist
- Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,.
° T need X”

and translates them into, e.qg.
o “What would 1t mean to you 1f you got X?




Simple Application: ELIZA

Men are all alike.
IN WHAT WAY

They're always bugging us about something or
other. CAN YOU THINK OF A SPECIFIC EXAMPL

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HER

He says I'm depressed much of the time.
| AM SORRY TO HEAR YOU ARE DEPRESS

Il
U,




How ELIZA works

re.sub(r".* I’'M (depressed|sad) .*",r"'I AM
SORRY TO HEAR YOU ARE \1",1nput)
re.sub(r".* I AM (depressed|sad) .*",r"WHY

DO YOU THINK YOU ARE \1",1nput)

re.sub(r".* all .*",r"IN WHAT WAY?",1nput)

re.sub(r”.* always .*",r"CAN YOU THINK OF
A SPECIFIC EXAMPLE?",input)




Substitutions, Capture
Groups, and Lookahead




Pretokenization for BPE




Pretokenization for BPE

The GPE-2 rules for pretokenization:
» Count clitics like 't and 'm as tokens
* Pull off punctuation and numbers
We do this with one regex:

r''s|'t|'re|'ve| 'm|"11]'d| ?\p{Li+| ?\p{N}+| ?["\s\p{LI\p{N}]+|\s+(?




The Python regex (as opposed to re) library

Special \p and \P operators;

\p{LI matches any Unicode letter,
\P{L} matches any non-letter,
\P{N} matches any number,

\P{N} matches any non-number.




>>> 1mport regex as re
>>> pat = re.compile(
. # Contractions: 't and 'm are tokens
r''s|'t]|'re|'ve| 'm|"11]|"'d]|"
. # Words: sequence of Unicode letters (after optional space)

I|ll ?\p{L}+| [
. #Number: sequence of digits (after optional space)
Illl ?\p{N}_I_l |1

. # Punctuation: sequence of non-alphanumeric/non-space
#(after optional space)
r* ?[\s\p{LI\p{N}]+[|"
. # whitespace
. r'"\s+(?!\S) | \s+"
)

>>> text = "We're 350 dogs! Um, lunch?"”
>>> print(pat.findall (text))
['We', "'re", ' 350", ' dogs', '"!', " Um', ',', ' lunch', '?']

>2>>




Pretokenization could also allow
multiple words!

SUPERBPE runs a second stage of BPE
allowing merges across spaces and
punctuation.

BPE: By| the| wayl,] I| am| a] fan| of| the| Milky| Way].
SuperBPE: By the way/, I am| al fan| of thel Milky Way.

Liu et al 2025




Pretokenization for BPE




Rule-based tokenization
and
Simple Unix tools




Rule-based tokenization

Although subword tokenization is the norm
Sometimes we need particular tokens

Like for parsing, where the parser needs
grammatical words, or social science




Issues for rule-based tokenization

Mostly but not always remove punctuation:
m.p.h., Ph.D., AT&T, cap'n

prices ($45.55)

dates (01/02/06)

URLs (http://www.stanford.edu)

hashtags (#nlproc)

- email addresses (someone@cs.colorado.edu)

Numbers are tokenized differently across
languages
- English 555,500.50 = French 555 500,50

Multiword expressions (MWE)?
> New York, rock 'n’ roll

@) @) @) @) @)




Penn Treebank Tokenization Standard

Input: "The San Francisco-based restaurant,"” they said,
"doesn’t charge $10".
Output: "_The_San_Francisco-based._restaurant.,."_they_said.,._

"_does.n’t_charge_$_10._"_.




Tokenization iIn NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O'Reilly

>>> text = 'That U.S.A. poster-print costs $12.40..."

>>> pattern = r'''(7x)

(7:[A-Z]\.)+

\W+(7:-\w+)*
\S2\d+(7:\.\d+) 7%7

\-\-\. # ellipsis
10,5770 -]

>>> nltk.regexp_tokenize(text, pattern)

['That', 'U.S.A.'",

'poster-print’',

'costs',

'$12.40",

# set flag to allow verbose regexps
# abbreviations, e.g. U.S.A.
# words with optional internal hyphens
# currency, percentages, e.g. $12.40, 82%

# these are separate tokens; includes ], [

o]




Sentence Segmentation

|, 7 mostly unambiguous but period "." is very
aMmpbiguous

- Sentence boundary

- Abbreviations like Inc. or Dr.

o Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML
to classity a period as either (a) part of the word or
(b) a sentence-boundary.

- An abbreviation dictionary can help

Sentence segmentation can then often be done by
rules based on this tokenization.




Space-based tokenization

A very simple way to tokenize

- For languages that use space characters between
words

- Arabic, Cyrillic, Greek, Latin, etc,, based writing systems
- Segment off a token between instances of spaces

Unix tools for space-based tokenization
> The "tr' commanc
> Inspired by Ken Church's UNIX for Poets

> Given a text file, output the word tokens and their
frequencies




Simple Tokenization in UNIX

(Inspired by Ken Church's UNIX for Poets.)
Given a text file, output the word tokens and their frequencies

tr -sc '"A-Za-z’' ’"\n’ < shakes.txt

Change all non-alpha to newlines
| sort

| uniq -c Sort in alphabetical order
Merge and count each type
1945 A
72 AARON
19 ABBESS

5 ABBOT

5 Aaron
""" 6 Abate
1 Abates
5 Abbess
6
3

Abbey
Abbot




The first step: tokenizing

tr —-sc "A-Za-z’' "\n’ < shakes.txt | head

THE

SONNETS

by

William
Shakespeare
From
falrest
creatures

We




The second step: sorting

tr —-sc '"A-Za-z’' ’"\n’ < shakes.txt | sort | head

T = -




More counting

Merging upper and lower case

tr ‘A-Z’' ‘a-z’ < shakes.txt | tr -sc ‘A-Za-z’ *\n’ | sort | unig -c

Sorting the counts

tr ‘A-7Z' ‘a-z’ < shakes.txt | tr -sc ‘A-Za-z’ ‘\n’ | sort | unig -c¢ | sort -n -r

23243 the

22225 1

18618 and

16339 to

15687 of

12780 a

12163 you What happened here?
10839 my

10005 1n

8954 d




Rule-based tokenization
and
Simple Unix tools




