
Words
and
Tokens

Words

How many words in a sentence?

They picnicked by the pool, then
lay back on the grass and looked at
the stars.

16 words
◦ if we don’t count punctuation marks as words

18 if we count punctuation

How many words in an utterance?

"I do uh main- mainly business data
processing"

Disfluencies
◦ Fragments main-
◦ Filled pauses: uh and um

◦ Should we consider these to be words?

How many words in a sentence?

They picnicked by the pool, then
lay back on the grass and looked at
the stars.

Type: an element of the vocabulary V
◦ The number of types is the vocabulary size |V|

Instance: an instance of that type in running text.
◦ 14 types and 16 instances (if we ignore punctuation).

More questions: Are They and they the same word?

How many words in a sentence?

I'm

Orthographically one word (in the English
writing system)

But grammatically two words:
1. the subject pronoun I
2. the verb ’m, short for am

How many words in a sentence?

Not every written language uses spaces!!

Chinese, Japanese and Thai don't!

How to choose tokens in Chinese

Chinese words are composed of characters
called "hanzi" (汉字, hànzì) (or sometimes just "zi")
Each one represents a meaning unit called a
morpheme.
Each word has on average 2.4 of them.
But deciding what counts as a word is complex
and not agreed upon.

How to choose tokens in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”
◦yáo míng jìn rù zǒng jué sài

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 words?
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Chinese Treebank

Peking University

Just use characters

Tokenization across languages

So in Chinese we use characters (zi) as
tokens

But that doesn't work for, e.g., Thai and
Japanese
These differences make it hard to use words as
tokens

And there's another reason why we don't
use words as tokens!

There are simply too many words!

Types = |V| Instances = N
Shakespeare 31 thousand 884,000
Brown Corpus 38 thousand 1 million
Switchboard conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google N-grams 13+ million 1 trillion

The bigger the corpus, the more word types!

There are simply too many words!
N = number of instances
|V | = number of types in vocabulary V
Heaps Law = Herdan's Law

Vocab size for a text goes up with the square
root of its length in words

2.2 • WORDS 11

duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)Roughly 0.5

Two kinds of words

Function words
• of, the, is, and, una, 是,

Content words
• mango, braise, snowy, feliz, 北京

Entropy 2018, 20, 752 4 of 19

Figure 2. Growth of the number of distinct words computed on the Gutenberg corpus of texts [15].
The position of texts in the corpus is chosen at random. In this case g ' 0.44. Similar behaviours are
observed in many other systems.

2.3. Zipf’s vs. Heaps’ Laws

In this section we compare the two laws just observed, Zipf’s law for the frequencies of occurrence
of the elements in a system and Heaps’ law for their temporal appearance. It has often been claimed that
Heaps’ and Zipf’s law are trivially related and that one can derive Heaps’s law once the Zipf’s is known.
This is not true in general. It turns out to be true only under the specific hypothesis of random-sampling
as follows. Suppose the existence of a strict power-law behaviour of the frequency-rank distribution,
f (R) ⇠ R�a, and construct a sequence of elements by randomly sampling from this Zipf distribution
f (R). Through this procedure, one recovers a Heaps’ law with the functional form D(t) ⇠ tg [23,24]
with g = 1/a. In order to do that we need to consider the correct expression for f (R) that includes the
normalisation factor, whose expression can be derived through the following approximated integral:

Z Rmax

1
f (R̃)dR̃ = 1 . (3)

Let us now distinguish the two cases. For a 6= 1 one has

f (R) =
1 � a

R1�a
max � 1

R�a . (4)

while for a = 1 one obtains:
f (R) =

1
log Rmax

R�1 . (5)

When a > 1, one can neglect the term R1�a
max in Equation (4), and when a < 1, one can write

R1�a
max � 1 ' R1�a

max.

Tria, Loreto, Servedio, 2018

|V|

β
β

Why is too many words a problem?

No matter how big our vocabulary
There will always be words we missed!
We will always have unknown words!

Words and Subwords

Because of these three problems:
1. Many languages don't have orthographic

words
2. Defining words post-hoc is challenging
3. The number of words grows without bound

NLP systems don't use words, but smaller
subwords

Words
and
Tokens

Words

Words
and
Tokens

Morphemes

Words have parts

Morpheme: a minimal meaning-bearing unit in a
language.
 fox: one morpheme
 cats: two morphemes cat and –s

Morphology: the study of morphemes

Morphemes in English and Chinese

Doc work-ed care-ful-ly wash-ing the
glass-es

2.2 • MORPHEMES: PARTS OF WORDS 5

2.2 Morphemes: Parts of Words

Words have parts. At the level of characters, this is obvious. The word cats is com-
posed of four characters, ‘c’, ‘a’, ‘t’, ‘s’. But this is also true at a more subtle level:
words have components that themselves have coherent meanings. These compo-
nents are called morphemes, and the study of morphemes is called morphology. Amorphology

morpheme is a minimal meaning-bearing unit in a language. So, for example, themorpheme

word fox consists of one morpheme (the morpheme fox) while the word cats consists
of two: the morpheme cat and the morpheme -s that indicates plural.

Here’s a sentence in English segmented into morphemes with hyphens:

(2.6) Doc work-ed care-ful-ly wash-ing the glass-es

As we mentioned above, in Chinese, conveniently, the writing system is set up
so that each character mainly describes a morpheme. Here’s a sentence in Mandarin
Chinese with each morpheme character glossed, followed by the translation:

(2.7) Ö
plum

r
dry
‹
vegetable

(
use
⇧
clear

4
water

·
soak

o
soft
�
,
^
remove

˙
out
�
after

�
,
•
drip
r
dry

⌥
chop

é
fragment

Soak the preserved vegetable in water until soft, remove, drain, and chop

We generally distinguish two broad classes of morphemes: roots—the centralroot
morpheme of the word, supplying the main meaning—and affixes—adding “ad-affix
ditional” meanings of various kinds. In the English example above, for the word
worked, work is a root and -ed is an affix; similarly glasses is a root and -es an affix.

Affixes themselves fall into two classes, or more correctly a continuum between
two poles. At one end, inflectional morphemes are grammatical morphemes thatinflectional

morphemes
tend to play a syntactic role, such as marking agreement. For example, English has
the inflectional morpheme -s (or -es) for marking the plural on nouns and the inflec-
tional morpheme -ed for marking the past tense on verbs. Inflectional morphemes
tend to be productive and often obligatory and their meanings tend to be predictable.
Derivational morphemes are more idiosyncratic in their application and meaning.derivational

morphemes
Usually they apply only to a specific subclass of words and result in a word of a dif-
ferent grammatical class than the root, often with a meaning hard to predict exactly.
In the example above, the word care (a noun) can be combined with the derivational
affix -full to produce an adjective (careful), and another derivational affix -ly to result
in an adverb (carefully).

There is another class of morphemes: clitics. A clitic is a morpheme that actsclitic
syntactically like a word but is reduced in form and attached (phonologically and
sometimes orthographically) to another word. For example the English morpheme
’ve in the word I’ve is a clitic; it has the grammatical meaning of the word have, but
in form in cannot appear alone (you can’t just say the sentence “’ve”). The English
possessive morpheme ’s in the phrase the teacher’s book is a clitic. French definite
article l’ in the word l’opera is a clitic, as are prepositions in Arabic like b ‘by/with’
and conjunctions like w ‘and’.

The study of how languages vary in their morphology, i.e., how words break
up into their parts, is called morphological typology. While morphologies of lan-morphological

typology
guages can differ along many dimensions, two dimensions are particularly relevant
for computational word tokenization.

Types of morphemes

root: central morpheme of the word
 - supplying the main meaning
affix: adding additional meanings

worked
 root work
 affix -ed
glasses
 root glass
 affix -es

Types of affixes
Inflectional morphemes
◦ grammatical morphemes
◦ often syntactic role like agreement
–ed past tense on verbs
-s/-es plural on nouns

Derivational morphemes
◦ more idiosyncratic in application and meaning
◦ often change grammatical class
care (noun)
 + -full à careful (adjective)
 + -ly à carefully (adverb)

Clitics
A morpheme that acts syntactically like a word but:
◦ is reduced in form
◦ and attached to another word

English: 've in I've ('ve can't appear alone)
English: ’s in the teacher’s book
French: l’ in l’opera
Arabic: b ‘by/with’, w ‘and’.

Morphological Typology

Dimensions along which languages vary
Two are salient for tokenization:

1. number of morphemes per word
2. how easy it is to segment the morphemes

Number of morphemes per word
Few. Cantonese, spoken in Guangdong, Guangxi, Hong Kong
keoi5 waa6 cyun4 gwok3 zeoi3 daai6 gaan1 uk1 hai6 ni1 gaan1
he say entire country most big building house is this building

“He said the biggest house in the country was this one”

Many. Koryak, Kamchatka peninsula in Russia,
t-ə-nk’e-mejŋ-ə-jetemə-nni-k
1SG.S-E-midnight-big-E-yurt.cover-E-sew-1SG.S[PFV]
“I sewed a lot of yurt covers in the middle of a night.”

Joseph Greenberg (1960) scale

Analytic Synthetic

Farsi Greenlandic

(Inuit)
Sanskr

it

Swahili
Yakut

Old English

English
Vietnamese

1.1 1.5 1.7 2.1 2.2 2.5 2.6 3.7

Morphemes per Word

Polysynthetic

How easily segmentable

Agglutinative languages like Turkish
◦ Very clean boundaries between morphemes

Fusion languages
◦ a single affix may conflate multiple morphemes,

◦ Russian -om in stolom (table-SG-INSTR- DECL1)
◦ instrumental, singular, and first declension.
◦ English –s in "She reads the article"
◦ Means both "third person" and "present tense"

These are tendencies rather than absolutes

Words
and
Tokens

Morphemes

Words
and
Tokens

Unicode

Unicode

a method for representing text written using
• any character (more than 150,000!)
• in any script (168 to date!)
• of the languages of the world
• Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko,…
• dead ones like Sumerian cuneiform
• invented ones like Klingon
• plus emojis, currency symbols, etc.

ASCII: Some history for English

1 byte per character
◦ In principle 256 characters
◦ But high bit set to 0
◦ So 7 bits = 128
◦ However only 95 used
The rest were for teletypes

1960s American Standard Code for Information Interchange

ASCII: Some history for English

2.3 • UNICODE 7

2.3 Unicode

Another option we could consider for tokenization is the level of the individual char-
acter. How do we even represent characters across languages and writing system?
The Unicode standard is a method for representing text written using any characterUnicode
in any script of the languages of the world (including dead languages like Sumerian
cuneiform, and invented languages like Klingon).

Let’s start with a brief historical note about an English-specific subset of Unicode
(technically called ‘Basic Latin’ in Unicode, and commonly referred to as ASCII).
Starting in the 1960s, the Latin characters used to write English (like the ones used
in this sentence), were represented with a code called ASCII (American StandardASCII
Code for Information Interchange). ASCII represented each character with a single
byte. A byte can represent 256 different characters, but ASCII only used 127 of
them; the high-order bit of ASCII bytes is always set to 0. (Actually it only used 95
of them and the rest were control codes for an obsolete machine called a teletype).
Here’s a few ASCII characters with their representation in hex and decimal:

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
< 3C 60 @ 40 64 ... \ 5C 92 ` 60 96
= 3D 61 A 41 65 ... [5D 93 a 61 97
> 3E 62 B 42 66 ... ˆ 5E 94 b 62 98
? 3F 63 C 43 67 ... _ 5F 95 c 63 99
Figure 2.4 Some selected ASCII codes for some English letters, with the codes shown both
in hexadecimal and decimal.

But ASCII is of course insufficient since there are lots of other characters in the
world’s writing systems! Even for scripts that use Latin characters, there are many
more than the 95 in ASCII. For example, this Spanish phrase (meaning “Sir, replied
Sancho”) has two non-ASCII characters, ñ and ó:

(2.10) Señor- respondió Sancho-

And lots of languages aren’t based on Latin characters at all! The DevanagariDevanagari

script is used for 120 languages (including Hindi, Marathi, Nepali, Sindhi, and San-
skrit). Here’s a Devanagari example from the Hindi text of the Universal Declaration
of Human Rights:

Chinese has about 100,000 Chinese characters in Unicode (including overlap-
ping and non-overlapping variants used in Chinese, Japanese, Korean, and Viet-
namese, collectively referred to as CJKV).

All in all there are more than 150,000 characters and 168 different scripts sup-
ported in Unicode 16.0. Even though many scripts from around the world have
yet to be added to Unicode, there are so many there, from scripts used by mod-
ern languages (Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko, Turkish,
Spanish) to scripts of ancient languages (Cuneiform, Ugaritic, Egyptian Hieroglyph,
Pahlavi), as well as mathematical symbols, emojis, currency symbols, and more.

2.3.1 Code Points
How does it work? Unicode assigns a unique id, called a code point, for each onecode point

h e l l o

68 65 6C 6C 6F

ASCII wasn't enough!

Spanish: Señor- respondió Sancho
 This sentence has non-ASCII ñ and ó
About 100,000 Chinese/CJKV characters
(Chinese, Japanese, Korean, or Vietnamese)
Devanagari script for 120 languages like
Hindi, Marathi, Nepali, Sindhi, Sanskrit, etc.

2.3 • UNICODE 7

2.3 Unicode

Another option we could consider for tokenization is the level of the individual char-
acter. How do we even represent characters across languages and writing system?
The Unicode standard is a method for representing text written using any characterUnicode
in any script of the languages of the world (including dead languages like Sumerian
cuneiform, and invented languages like Klingon).

Let’s start with a brief historical note about an English-specific subset of Unicode
(technically called ‘Basic Latin’ in Unicode, and commonly referred to as ASCII).
Starting in the 1960s, the Latin characters used to write English (like the ones used
in this sentence), were represented with a code called ASCII (American StandardASCII
Code for Information Interchange). ASCII represented each character with a single
byte. A byte can represent 256 different characters, but ASCII only used 127 of
them; the high-order bit of ASCII bytes is always set to 0. (Actually it only used 95
of them and the rest were control codes for an obsolete machine called a teletype).
Here’s a few ASCII characters with their representation in hex and decimal:

Ch Hex Dec Ch Hex Dec Ch Hex Dec Ch Hex Dec
< 3C 60 @ 40 64 ... \ 5C 92 ` 60 96
= 3D 61 A 41 65 ... [5D 93 a 61 97
> 3E 62 B 42 66 ... ˆ 5E 94 b 62 98
? 3F 63 C 43 67 ... _ 5F 95 c 63 99
Figure 2.4 Some selected ASCII codes for some English letters, with the codes shown both
in hexadecimal and decimal.

But ASCII is of course insufficient since there are lots of other characters in the
world’s writing systems! Even for scripts that use Latin characters, there are many
more than the 95 in ASCII. For example, this Spanish phrase (meaning “Sir, replied
Sancho”) has two non-ASCII characters, ñ and ó:

(2.10) Señor- respondió Sancho-

And lots of languages aren’t based on Latin characters at all! The DevanagariDevanagari

script is used for 120 languages (including Hindi, Marathi, Nepali, Sindhi, and San-
skrit). Here’s a Devanagari example from the Hindi text of the Universal Declaration
of Human Rights:

Chinese has about 100,000 Chinese characters in Unicode (including overlap-
ping and non-overlapping variants used in Chinese, Japanese, Korean, and Viet-
namese, collectively referred to as CJKV).

All in all there are more than 150,000 characters and 168 different scripts sup-
ported in Unicode 16.0. Even though many scripts from around the world have
yet to be added to Unicode, there are so many there, from scripts used by mod-
ern languages (Chinese, Arabic, Hindi, Cherokee, Ethiopic, Khmer, N’Ko, Turkish,
Spanish) to scripts of ancient languages (Cuneiform, Ugaritic, Egyptian Hieroglyph,
Pahlavi), as well as mathematical symbols, emojis, currency symbols, and more.

2.3.1 Code Points
How does it work? Unicode assigns a unique id, called a code point, for each onecode point

Code Points

Unicode assigns a unique ID, a code point,
to each of its 150,000 characters
1.1 million possible code points
◦ 0 – 0x10FFFF

Written in hex, with prefix "U+"
◦ a is U+0061 which = 0x0061
First 127 code points = ASCII
◦ For backwards compatibility

Some code points

8 CHAPTER 2 • WORDS AND TOKENS

of these 150,000 characters.
The code point is an abstract representation of the character, and each code point

is represented by a number, traditionally written in hexadecimal, from number 0
through 0x10FFFF (which is 1,114,111 decimal). Having over a million code points
means there is a lot of room for new characters. It is traditional to represent these
code points with the prefix “U+” (which just means “the following is a Unicode hex
representation of a code point”). So the code point for the character a is U+0061
which is the same as 0x0061. (Note that Unicode was designed to be backwards
compatible with ASCII, which means that the first 127 code points, including the
code for a, are identical with ASCII.) Here are some sample code points; some (but
not all) come with descriptions:

0061 a LATIN SMALL LETTER A
0062 b LATIN SMALL LETTER B
0063 c LATIN SMALL LETTER C
00F9 ù LATIN SMALL LETTER U WITH GRAVE
00FA ú LATIN SMALL LETTER U WITH ACUTE
00FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
00FC ü LATIN SMALL LETTER U WITH DIAERESIS
8FDB €
8FDC ‹
8FDD ›
8FDE fi

1F600

🀎

5/23/25, 5:26 PM x.html

file:///Users/jurafsky/x.html 1/1

GRINNING FACE

1F00E 🀎

5/23/25, 5:26 PM x.html

file:///Users/jurafsky/x.html 1/1

MAHJONG TILE EIGHT OF CHARACTERS

2.3.2 UTF-8 Encoding
While the code point (the unique id) is the abstract Unicode representation of the
character, we don’t just stick that id in a text file.

Instead, whenever we need to represent a character in a text string, we write an
encoding of the character. There are many different possible encoding methods, butencoding

the encoding method called UTF-8 is by far the most frequent (for example almost
the entire web is encoded in UTF-8).

Let’s talk about encodings. The Unicode representation of the word hello con-
sists of the following sequence of 5 code points:

U+0068 U+0065 U+006C U+006C U+UU6F

We can imagine a very simple encoding method: just write the code point id in
a file. Since there are more than 1 million characters, 16 bits (2 bytes) isn’t enough,
so we’ll need to use 4 bytes (32 bit) to capture the 21 bits we need to represent 1.1
million characters. (We could fit it in 3 bytes but it’s inconvenient to use multiples
of 3 for bytes.)

With this 4-byte representation the word hello would be encoded as the follow-
ing set of bytes:

00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But we don’t use this encoding (which is technically called UTF-32) because it
makes every file 4 times longer than it would have been in ASCII, making files really
big and full of zeros. Also those zeros cause another problem: it turns out that having
any byte that is completely zero messes things up for backwards compatibility for
ASCII-based systems that historically used a 0 byte as an end-of-string marker.

A code point has no visuals; it is not a glyph!
Glyphs are stored in fonts: a or a or a or a
But one code point (U+0061, abstract "LATIN SMALL A")
represents all those different a's!

Encodings and UTF-8

We don't stick code points directly in files
We store encodings of chars.
The most popular encoding is UTF-8
Most of the web is stored in UTF-8

Encodings

hello has these 5 code points:
U+0068 U+0065 U+006C U+006C U+006F

How to write in a file?
There are more than 1 million code points
So would need 4 bytes (or 3 but 3 is inconvenient):
00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But that would make files very long!
◦ Also zeros are bad (since mean "end of string" in ASCII)

Instead: Variable Length Encoding

UTF-8 (Unicode Transformation Format 8)
For the first 127 code points, same as ASCII
UTF-8 encoding of hello is :
◦ 68 65 6C 6C 6F
Code points ≥128 are encoded as a sequence
of 2, 3, or 4 bytes

◦ In range 128 - 255, so won’t be confused with ASCII
◦ First few bits say if its 2-byte, 3-byte, or 4-byte

UTF-8 Encoding

̃n, code point U+00F1, = 00000000 11110001
◦ Gets encoded with pattern 110yyyyy 10xxxxxx
◦ So is mapped to a two-byte bit sequence
◦ 11000011 10110001 = 0xC3B1.

2.3 • UNICODE 9

00 00 00 68 00 00 00 65 00 00 00 6C 00 00 00 6C 00 00 00 6F

But we don’t use this encoding (which is technically called UTF-32) because it
makes every file 4 times longer than it would have been in ASCII, making files really
big and full of zeros. Also those zeros cause another problem: it turns out that having
any byte that is completely zero messes things up for backwards compatibility for
ASCII-based systems that historically used a 0 byte as an end-of-string marker.

Instead, the most common encoding standard is UTF-8 (Unicode Transforma-UTF-8
tion Format 8), which represents characters efficiently (using fewer bytes on av-
erage) by writing some characters using fewer bytes and some using more bytes.
UTF-8 is thus a variable-length encoding.variable-length

encoding
For some characters (the first 127 code points, i.e. the set of ASCII characters),

UTF-8 encodes them as a single byte, so the UTF-8 encoding of hello is :

68 65 6C 6C 6F

This conveniently means that files encoded in ASCII are also valid UTF-8 en-
codings!

But UTF-8 is a variable length encoding, meaning that code points �128 are
encoded as a sequence of two, three, or four bytes. Each of these bytes are between
128 and 255, so they won’t be confused with ASCII, and each byte indicates in the
first few bits whether it’s a 2-byte, 3-byte, or 4-byte encoding.

Code Points UTF-8 Encoding
From - To Bit Value Byte 1 Byte 2 Byte 3 Byte 4
U+0000-U+007F 0xxxxxxx xxxxxxxx
U+0080-U+07FF 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
U+0800-U+FFFF zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
U+010000-U+10FFFF 000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
Figure 2.5 Mapping from Unicode code point to the variable length UTF-8 encoding. For a given code point
in the From-To range, the bit value in column 2 is packed into 1, 2, 3, or 4 bytes. Figure adapted from Unicode
16.0 Core Spec Chapter 3 Table 3-6.

Fig. 2.5 shows how this mapping occurs. For example these rules explain how
the character ñ, which has code point U+00F1, is mapped to the two-byte bit se-
quence 11000011 10110001 or 0xC3B1. As a result of these rules, the first 127
characters (ASCII) are mapped to one byte, most remaining characters in European,
Middle Eastern, and African scripts map to two bytes, most Chinese, Japanese, and
Korean characters map to three bytes, and rarer CJKV characters and emojis and
some symbols map to 4 bytes.

UTF-8 has a number of advantages. It’s relatively efficient, using fewer bytes for
commonly-encountered characters, it doesn’t use zero bytes (except when literally
representing the NULL character which is U+0000), it’s backwards compatible with
ASCII, and it’s self-synchronizing, meaning that if a file is corrupted, it’s always
possible to find the start of the next or prior character just by moving up to 3 bytes
left or right.

Unicode and Python: Starting with Python 3, all Python strings are stored in-
ternally as Unicode, each string a sequence of Unicode code points. Thus string
functions and regular expressions all apply natively to code points. For example,
functions like len() of a string return its length in characters, i.e., code points, not
its length in bytes.

When reading or writing from a file, however, the code points need to be encoded
and decoding using a method like UTF-8. That is, every file is encoded in some

yyy yyxxxxxx

UTF-8 encoding

The first 127 characters (ASCII) map to 1 byte
Most remaining characters in European, Middle
Eastern, and African scripts map to 2 bytes
Most Chinese, Japanese, and Korean characters
map to 3 bytes
Rarer CJKV characters, emojis/symbols map to
4 bytes.

UTF-8 encoding

Efficient: fewer bytes for common characters,
Doesn't use zero bytes (except for NULL
character U+0000),
Backwards compatible with ASCII,
Self-synchronizing,

◦ If a file is corrupted, the nearest character boundary
is always findable by moving only up to 3 bytes

UTF-8 and Python 3

Python 3 strings stored internally as Unicode
◦ each string a sequence of Unicode code points
◦ string functions, regex apply natively to code points.

◦ len() returns string length in code points, not bytes
Files need to be encoded/decoded when
written or read
◦ Every file is stored in some encoding
◦ *No such thing as a text file without an encoding*

◦ If it's not UTF-8 it's something older like ASCII or iso_8859_1

Words
and
Tokens

Unicode

Words
and
Tokens

Byte Pair Encoding

The NLP standard for tokenization
Instead of
• white-space / orthographic words
• Lots of languages don't have them
• The number of words grows without bound

• Unicode characters
• Too small as tokens for many purposes

• morphemes
• Very hard to define

We use the data to tell us how to tokenize.

Why tokenize?

Using a deterministic series of tokens means
systems can be compared equally

◦ Systems agree on the length of a string

Algorithms like perplexity assume all texts
have a fixed tokenization
Eliminates the problem of unknown words

If some word occurs in test set but not training set,
we still know how to segment it into known tokens.

Subword tokenization
Two most common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo,

2018) (sometimes confusingly called
"SentencePiece" after the library it's in)

All have 2 parts:
◦ A token learner that takes a raw training corpus and

induces a vocabulary (a set of tokens).
◦ A token encoder/segmenter that takes a raw test

sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Repeat:
◦ Choose most frequent

neighboring pair ('A', 'B')
◦ Add a new merged symbol

('AB') to the vocabulary
◦ Replace every 'A' 'B' in the

corpus with 'AB'.

Until k merges

Vocabulary
 [A, B, C, D, E]
 [A, B, C, D, E, AB]
 [A, B, C, D, E, AB, CAB]
Corpus
A B D C A B E C A B
AB D C AB E C AB
AB D CAB E CAB

Iteratively merge frequent neighboring tokens to create longer tokens.

BPE token learner algorithm2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

Byte Pair Encoding (BPE) Addendum

Generally run within space-separated words
Don't merge across word boundaries
◦ First separate corpus by whitespace or similar,

using specialized regular expressions
◦ This gives a set of starting strings, with whitespace

attached to start of each strong
◦ Counts come from the corpus, but can only merge

within strings.

BPE token learner
Original (very fascinating🙄) corpus:

set␣new␣new␣renew␣reset␣renew

Put space token at start of words

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 11

(usually roughly pre-separated into words, for example by whitespace) and induce
a vocabulary, a set of tokens. Then a token encoder take a raw test sentence and
encodes it into the tokens in the vocabulary that were learned in training.

2.4.1 BPE training
The BPE training algorithm iteratively merges frequent neighboring tokens to create
longer and longer tokens. The algorithm begins with a vocabulary that is just the
set of all individual characters. It then examines the training corpus, and finds the
two characters that are most frequently adjacent. Imagine our original corpus is 10
characters long, using a vocabulary of 5 characters, {A, B, C, D, E}:

A B D C A B E C A B

The most frequent neighboring pair of characters is “A B” so we merge those,
add a new merged token ‘AB’ to the vocabulary, and replace every adjacent ‘A’ ‘B’
in the corpus with the new ‘AB’:

AB D C AB E C AB

Now we have a vocabulary of 6 possible tokens {A, B, C, D, E, AB}, and the
corpus has length 7. And now the most frequent pair of tokens is “C AB”, so we
merge those, leading to a vocabulary with 7 tokens {A, B, C, D, E, AB, CAB}, and the
corpus has length 5.

AB D CAB F CAB

The algorithm continues to count and merge, creating new longer and longer
character strings, until k merges have been done creating k novel tokens; k is thus a
parameter of the algorithm. The resulting vocabulary consists of the original set of
characters plus k new symbols. That’s the core of the algorithm.

The only additional complication is that in practice, instead of running on the
raw sequence of characters, the algorithm is usually run only inside words. That is,
the algorithm does not merge across word boundaries. To do this, the input corpus
is often first separated at white space and punctuation (using the regular expressions
that we define later in the chapter). This gives a starting set of strings, each corre-
sponding to the characters of a word, (with the white space usually attached to the
start of the word), together with the counts of the words. Then while counts come
from a corpus, merges are only allowed within the strings.

Let’s see how the full algorithm thus works on this tiny synthetic corpus, where
we’ve explicitly marked the spaces between words:3

(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
The result looks like the following list of 4 words and a starting vocabulary of 7
characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 11

(usually roughly pre-separated into words, for example by whitespace) and induce
a vocabulary, a set of tokens. Then a token encoder take a raw test sentence and
encodes it into the tokens in the vocabulary that were learned in training.

2.4.1 BPE training
The BPE training algorithm iteratively merges frequent neighboring tokens to create
longer and longer tokens. The algorithm begins with a vocabulary that is just the
set of all individual characters. It then examines the training corpus, and finds the
two characters that are most frequently adjacent. Imagine our original corpus is 10
characters long, using a vocabulary of 5 characters, {A, B, C, D, E}:

A B D C A B E C A B

The most frequent neighboring pair of characters is “A B” so we merge those,
add a new merged token ‘AB’ to the vocabulary, and replace every adjacent ‘A’ ‘B’
in the corpus with the new ‘AB’:

AB D C AB E C AB

Now we have a vocabulary of 6 possible tokens {A, B, C, D, E, AB}, and the
corpus has length 7. And now the most frequent pair of tokens is “C AB”, so we
merge those, leading to a vocabulary with 7 tokens {A, B, C, D, E, AB, CAB}, and the
corpus has length 5.

AB D CAB F CAB

The algorithm continues to count and merge, creating new longer and longer
character strings, until k merges have been done creating k novel tokens; k is thus a
parameter of the algorithm. The resulting vocabulary consists of the original set of
characters plus k new symbols. That’s the core of the algorithm.

The only additional complication is that in practice, instead of running on the
raw sequence of characters, the algorithm is usually run only inside words. That is,
the algorithm does not merge across word boundaries. To do this, the input corpus
is often first separated at white space and punctuation (using the regular expressions
that we define later in the chapter). This gives a starting set of strings, each corre-
sponding to the characters of a word, (with the white space usually attached to the
start of the word), together with the counts of the words. Then while counts come
from a corpus, merges are only allowed within the strings.

Let’s see how the full algorithm thus works on this tiny synthetic corpus, where
we’ve explicitly marked the spaces between words:3

(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
The result looks like the following list of 4 words and a starting vocabulary of 7
characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.

BPE token learner

Merge n e to ne (count 4 = 2 new + 2 renew)

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 11

(usually roughly pre-separated into words, for example by whitespace) and induce
a vocabulary, a set of tokens. Then a token encoder take a raw test sentence and
encodes it into the tokens in the vocabulary that were learned in training.

2.4.1 BPE training
The BPE training algorithm iteratively merges frequent neighboring tokens to create
longer and longer tokens. The algorithm begins with a vocabulary that is just the
set of all individual characters. It then examines the training corpus, and finds the
two characters that are most frequently adjacent. Imagine our original corpus is 10
characters long, using a vocabulary of 5 characters, {A, B, C, D, E}:

A B D C A B E C A B

The most frequent neighboring pair of characters is “A B” so we merge those,
add a new merged token ‘AB’ to the vocabulary, and replace every adjacent ‘A’ ‘B’
in the corpus with the new ‘AB’:

AB D C AB E C AB

Now we have a vocabulary of 6 possible tokens {A, B, C, D, E, AB}, and the
corpus has length 7. And now the most frequent pair of tokens is “C AB”, so we
merge those, leading to a vocabulary with 7 tokens {A, B, C, D, E, AB, CAB}, and the
corpus has length 5.

AB D CAB F CAB

The algorithm continues to count and merge, creating new longer and longer
character strings, until k merges have been done creating k novel tokens; k is thus a
parameter of the algorithm. The resulting vocabulary consists of the original set of
characters plus k new symbols. That’s the core of the algorithm.

The only additional complication is that in practice, instead of running on the
raw sequence of characters, the algorithm is usually run only inside words. That is,
the algorithm does not merge across word boundaries. To do this, the input corpus
is often first separated at white space and punctuation (using the regular expressions
that we define later in the chapter). This gives a starting set of strings, each corre-
sponding to the characters of a word, (with the white space usually attached to the
start of the word), together with the counts of the words. Then while counts come
from a corpus, merges are only allowed within the strings.

Let’s see how the full algorithm thus works on this tiny synthetic corpus, where
we’ve explicitly marked the spaces between words:3

(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
The result looks like the following list of 4 words and a starting vocabulary of 7
characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 11

(usually roughly pre-separated into words, for example by whitespace) and induce
a vocabulary, a set of tokens. Then a token encoder take a raw test sentence and
encodes it into the tokens in the vocabulary that were learned in training.

2.4.1 BPE training
The BPE training algorithm iteratively merges frequent neighboring tokens to create
longer and longer tokens. The algorithm begins with a vocabulary that is just the
set of all individual characters. It then examines the training corpus, and finds the
two characters that are most frequently adjacent. Imagine our original corpus is 10
characters long, using a vocabulary of 5 characters, {A, B, C, D, E}:

A B D C A B E C A B

The most frequent neighboring pair of characters is “A B” so we merge those,
add a new merged token ‘AB’ to the vocabulary, and replace every adjacent ‘A’ ‘B’
in the corpus with the new ‘AB’:

AB D C AB E C AB

Now we have a vocabulary of 6 possible tokens {A, B, C, D, E, AB}, and the
corpus has length 7. And now the most frequent pair of tokens is “C AB”, so we
merge those, leading to a vocabulary with 7 tokens {A, B, C, D, E, AB, CAB}, and the
corpus has length 5.

AB D CAB F CAB

The algorithm continues to count and merge, creating new longer and longer
character strings, until k merges have been done creating k novel tokens; k is thus a
parameter of the algorithm. The resulting vocabulary consists of the original set of
characters plus k new symbols. That’s the core of the algorithm.

The only additional complication is that in practice, instead of running on the
raw sequence of characters, the algorithm is usually run only inside words. That is,
the algorithm does not merge across word boundaries. To do this, the input corpus
is often first separated at white space and punctuation (using the regular expressions
that we define later in the chapter). This gives a starting set of strings, each corre-
sponding to the characters of a word, (with the white space usually attached to the
start of the word), together with the counts of the words. Then while counts come
from a corpus, merges are only allowed within the strings.

Let’s see how the full algorithm thus works on this tiny synthetic corpus, where
we’ve explicitly marked the spaces between words:3

(2.11) set new new renew reset renew

First, we’ll break up the corpus into words, with leading whitespace, together
with their counts; no merges will be allowed to go beyond these word boundaries.
The result looks like the following list of 4 words and a starting vocabulary of 7
characters:

corpus vocabulary
2 n e w , e, n, r, s, t, w
2 r e n e w
1 s e t
1 r e s e t

3 Yes, we realize this isn’t a particularly likely or exciting sentence.

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

BPE token learner

Merge ne w to new (count 4)

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

BPE token learner

Merge ␣ r to ␣r (count 3) and ␣r e to ␣re (count 3)

System has learned prefix re- !

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

BPE

The next merges are:

12 CHAPTER 2 • WORDS AND TOKENS

The BPE training algorithm first counts all pairs of adjacent symbols: the most
frequent is the pair n e because it occurs in new (frequency of 2) and renew (fre-
quency of 2) for a total of 4 occurrences. We then merge these symbols, treating ne
as one symbol, and count again:

corpus vocabulary
2 ne w , e, n, r, s, t, w, ne
2 r e ne w
1 s e t
1 r e s e t

Now the most frequent pair is ne w (total count=4), which we merge.

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new
2 r e new
1 s e t
1 r e s e t

Next r (total count of 3) get merged to r, and then r e (total count 3) gets
merged to re. The system has essentially induced that there is a word-initial prefix
re-:

corpus vocabulary
2 new , e, n, r, s, t, w, ne, new, r, re
2 re new
1 s e t
1 re s e t

If we continue, the next merges are:
merge current vocabulary
(, new) , e, n, r, s, t, w, ne, new, r, re, new
(re, new) , e, n, r, s, t, w, ne, new, r, re, new, renew
(s, e) , e, n, r, s, t, w, ne, new, r, re, new, renew, se
(se, t) , e, n, r, s, t, w, ne, new, r, re, new, renew, se, set

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.6 The training part of the BPE algorithm for taking a corpus broken up into in-
dividual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure
adapted from Bostrom and Durrett (2020).

2.4.2 BPE encoder
Once we’ve learned our vocabulary, the BPE encoder is used to tokenize a test
sentence. The encoder just runs on the test data the merges we have learned from

BPE encoder algorithm
Tokenize a test sentence: run each merge learned
from the training data:
◦ Greedily, in the order we learned them
◦ (test frequencies don't play a role)

First: segment each test word into characters
Then run rules: (1) merge every n e to ne, (2) merge
ne w to new, (3) ␣r, (4) ␣re etc.
Result:
◦ Recreates training set words
◦ But also learns subwords like ␣re that might appear in

new words like rearrange

BPE and Unicode

We run BPE on large Unicode corpora, with
vocabulary sizes of 50,000 to 200,000
On individual bytes of UTF-8-encoded text
◦ Not on Unicode characters
◦ BPE rediscovers 2-byte and common 3-byte UTF-8

sequences
◦ Only 256 possible values of a byte, so no unknown

tokens
◦ (BPE might learn a few illegal UTF-8 sequences

across character boundaries, but these can be filtered)

Visualizing GPT4o tokens

Tokens: 11865, 8923, 11, 31211, 6177, 23919, 885, 220, 19427, 7633, 18887, 147065, 0

Most words are tokens, w/initial space
Clitics like ’s
◦ Are segmented off Jane
◦ But part of frequent words like she’s
Numbers segmented into chunks of 3 digits
Anyhow and ·anyhow are segmented differently
Some of this is from preprocessing
◦ regular expressions for chunking digits, stripping clitics

2.4 • SUBWORD TOKENIZATION: BYTE-PAIR ENCODING 13

the training data. It runs them greedily, in the order we learned them. (Thus the
frequencies in the test data don’t play a role, just the frequencies in the training
data). So first we segment each test sentence word into characters. Then we apply
the first rule: replace every instance of n e in the test corpus with ne, and then the
second rule: replace every instance of ne w in the test corpus with new, and so on.
By the end of course many of the merges simple recreated words in the training
set. But the merges also created knowledge of morphemes like the re- prefix (that
might appear in perhaps unseen combinations like revisit or rearrange), or the
morpheme new without an initial space (hence word-internal) that might appear at
the start of sentences or in words unseen in training like anew.

Of course in real settings BPE is run with tens of thousands of merges on a very
large input corpus, to produce vocabulary sizes of 50,000, 100,000, or even 200,000
tokens. The result is that most words can be represented as single tokens, and only
the rarer words (and unknown words) will have to be represented by multiple tokens.
At least for English. For multilingual systems, the tokens can be dominated by
English, leaving fewer tokens for other languages, as we’ll discuss below.

2.4.3 BPE in practice
The example above just showed simple BPE learning from sequences of ASCII
bytes. How does BPE work with Unicode input? We normally run BPE on the
individual bytes of UTF-8-encoded text. That is, we take a Unicode representations
of text as a series of code points, encode it in bytes using UTF-8, and we treat each of
these individual bytes as the input to BPE. Thus BPE likely begins by rediscovering
the 2-byte and common 3-byte sequences that UTF-8 uses to encode various code
points. Again, running BPE only inside presegmented words helps avoid problems.
Because there are only 256 possible values of a byte, there will be no unknown to-
kens, although it’s possible that BPE will learn some illegal UTF-8 sequences across
character boundaries. These will be very rare, and can be eliminated with a filter.

Let’s see some examples of the industrial application of the BPE tokenizer used
in large systems like OpenAI GPT4o. This tokenizer has 200K tokens, which is a
comparatively large number. We can use Tat Dat Duong’s Tiktokenizer visualizer
(https://tiktokenizer.vercel.app/) to see the number of tokens in a given
sentence. For example here’s the tokenization of a nonsense sentence we made up;
the visualizer uses a center dot to indicate a space:

The visualization shows colors to separate out words, but of course the true out-
put of the tokenizer is simply a sequence of unique token ids. (In case you’re in-
terested, they were the following 13 tokens: 11865, 8923, 11, 31211, 6177, 23919,
885, 220, 19427, 7633, 18887, 147065, 0)

Notice that most words are their own token, usually including the leading space.
Clitics like ’s are segmented off when they appear on proper nouns like Jane, but
are counted as part of a word for frequent words like she’s. Numbers tend to be
segmented into chunks of 3 digits. And some words (like anyhow) are segmented
differently if they appear capitalized sentence-initially (two tokens, Any and how),
then if they appear after a space, lower case (one token anyhow).

Some of these are related to preprocessing steps. As we mentioned briefly above,
language models usually create their tokens in a pretokenization stage that first seg-pretokenization

ments the input using regular expressions, for example breaking the input at spaces
and punctuation, stripping off clitics, and breaking numbers into sets of 3 digits.

Tat Dat Duong’s Tiktokenizer visualizer

https://tiktokenizer.vercel.app/

Tokenizing across languages

Even though BPE tokenizers are multilingual
LLM training data is still vastly dominated by
English

Most BPE tokens used for English, leaving less for
other languages
Words in other languages are often split up

Tokenization is better in English

A recipe sentence in two languages

14 CHAPTER 2 • WORDS AND TOKENS

We’ll see how to use regular expressions in Section 2.7.
It’s possible to change this pretokenization to allow BPE tokens to span multiple

words. For example the SuperBPE algorithm first induces regular BPE subwordSuperBPE

tokens by enforcing pretokenization. It then runs a second stage of BPE allowing
merges across spaces and punctuation. The result is a large set of tokens that can be
more efficient. See Fig. 2.7.Preprint

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and the
gap grows with larger vocabulary size. Encoding efficiency (y-axis) is measured with
bytes-per-token, the number of bytes encoded per token on average over a large corpus of text.
In the above text with 40 bytes, SuperBPE uses 7 tokens and BPE uses 13, so the methods’
efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph,
the encoding efficiency of BPE plateaus early due to exhausting the valuable whitespace-
delimited words in the training data. In fact, it is bounded above by the gray dotted line,
which shows the maximum achievable encoding efficiency with BPE, if every whitespace-
delimited word were in the vocabulary. On the other hand, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens to the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always gives an immediate improvement. SuperBPE also has better encoding
efficiency than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. Including multi-word tokens promises to be beneficial
in several ways: it can lead to shorter token sequences, lowering the computational costs of
LM training and inference, and may also offer representational advantages by segmenting
text into more semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann
et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to refer to tokens that bridge more
than one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popu-
lar byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE), but
is disabled in a second stage, where the tokenizer transitions to learning superword tokens.
Notably, SuperBPE tokenizers scale much better with vocabulary size—while BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, SuperBPE can continue to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our main experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learning
the vocabulary—we find that models trained with SuperBPE tokenizers consistently and
significantly improve over counterparts trained with a BPE tokenizer, while also being 27–
33% more efficient at inference time. Our best SuperBPE model achieves an average +4.0%

2

Figure 2.7 The SuperBPE algorithm creating larger tokens by allow a second stage of
merging across spaces. Figure from Liu et al. (2025).

Many of the tokenizers used in practice for large language models are multilin-
gual, trained on many languages. But because the training data for large language
models is vastly dominated by English text, these multilingual BPE tokenizers tend
to use most of the tokens for English, leaving fewer of them for other languages. The
result is that they do a better job of tokenizing English, and the other languages tend
to get their words split up into shorter tokens. For example let’s look at a Spanish
sentence from a recipe for plantains, together with an English translation.

The English has 18 tokens; each of the 14 words is a token (none of the words
are split into multiple tokens):

By contrast, the original 16 words in Spanish have been encoded into 33 tokens,
a much larger number. Notice that many basic words have been broken into pieces.
For example hondo, ‘deep’, has been segmented into h and ondo. Similarly for
jugo, ‘juice’, nuez, ‘nut’ and jenjibre ‘ginger’):

Spanish is not a particularly low-resource language; this oversegmenting can be
even more serious in lower resource languages, often down to individual characters.
Oversegmenting into these tiny tokens can cause various problems for the down-
stream processing of the language. As will become more clear once we introduce
transformer models in Chapter 8, such fragmentation can lead to poor representa-
tions of meaning, the need for longer contexts, and higher costs to train models
(Rust et al., 2021; Ahia et al., 2023).

2.5 Rule-based tokenization

While data-based tokenization like BPE is the most common way of doing tokeniza-
tion, there are also situations where we want to constrain our tokens to be words and
not subwords. This might be useful if we are running parsing algorithms for English
where the parser might need grammatical words as input. Or it can be useful for
any linguistic application where we have some a prior definition of the token that we

14 CHAPTER 2 • WORDS AND TOKENS

We’ll see how to use regular expressions in Section 2.7.
It’s possible to change this pretokenization to allow BPE tokens to span multiple

words. For example the SuperBPE algorithm first induces regular BPE subwordSuperBPE

tokens by enforcing pretokenization. It then runs a second stage of BPE allowing
merges across spaces and punctuation. The result is a large set of tokens that can be
more efficient. See Fig. 2.7.Preprint

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and the
gap grows with larger vocabulary size. Encoding efficiency (y-axis) is measured with
bytes-per-token, the number of bytes encoded per token on average over a large corpus of text.
In the above text with 40 bytes, SuperBPE uses 7 tokens and BPE uses 13, so the methods’
efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph,
the encoding efficiency of BPE plateaus early due to exhausting the valuable whitespace-
delimited words in the training data. In fact, it is bounded above by the gray dotted line,
which shows the maximum achievable encoding efficiency with BPE, if every whitespace-
delimited word were in the vocabulary. On the other hand, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens to the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always gives an immediate improvement. SuperBPE also has better encoding
efficiency than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. Including multi-word tokens promises to be beneficial
in several ways: it can lead to shorter token sequences, lowering the computational costs of
LM training and inference, and may also offer representational advantages by segmenting
text into more semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann
et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to refer to tokens that bridge more
than one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popu-
lar byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE), but
is disabled in a second stage, where the tokenizer transitions to learning superword tokens.
Notably, SuperBPE tokenizers scale much better with vocabulary size—while BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, SuperBPE can continue to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our main experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learning
the vocabulary—we find that models trained with SuperBPE tokenizers consistently and
significantly improve over counterparts trained with a BPE tokenizer, while also being 27–
33% more efficient at inference time. Our best SuperBPE model achieves an average +4.0%

2

Figure 2.7 The SuperBPE algorithm creating larger tokens by allow a second stage of
merging across spaces. Figure from Liu et al. (2025).

Many of the tokenizers used in practice for large language models are multilin-
gual, trained on many languages. But because the training data for large language
models is vastly dominated by English text, these multilingual BPE tokenizers tend
to use most of the tokens for English, leaving fewer of them for other languages. The
result is that they do a better job of tokenizing English, and the other languages tend
to get their words split up into shorter tokens. For example let’s look at a Spanish
sentence from a recipe for plantains, together with an English translation.

The English has 18 tokens; each of the 14 words is a token (none of the words
are split into multiple tokens):

By contrast, the original 16 words in Spanish have been encoded into 33 tokens,
a much larger number. Notice that many basic words have been broken into pieces.
For example hondo, ‘deep’, has been segmented into h and ondo. Similarly for
jugo, ‘juice’, nuez, ‘nut’ and jenjibre ‘ginger’):

Spanish is not a particularly low-resource language; this oversegmenting can be
even more serious in lower resource languages, often down to individual characters.
Oversegmenting into these tiny tokens can cause various problems for the down-
stream processing of the language. As will become more clear once we introduce
transformer models in Chapter 8, such fragmentation can lead to poor representa-
tions of meaning, the need for longer contexts, and higher costs to train models
(Rust et al., 2021; Ahia et al., 2023).

2.5 Rule-based tokenization

While data-based tokenization like BPE is the most common way of doing tokeniza-
tion, there are also situations where we want to constrain our tokens to be words and
not subwords. This might be useful if we are running parsing algorithms for English
where the parser might need grammatical words as input. Or it can be useful for
any linguistic application where we have some a prior definition of the token that we

Tat Dat Duong’s Tiktokenizer visualizer on GPT4o

English: 18 tokens; no words are split into multiple tokens):

Spanish: 33 tokens; 6/16 words are split

https://tiktokenizer.vercel.app/

Words
and
Tokens

Byte Pair Encoding

Words
and
Tokens

Corpora

Corpora

Words don't appear out of nowhere!
A text is produced by
• a specific writer(s),
• at a specific time,
• in a specific variety,
• of a specific language,
• for a specific function.

Corpora vary along dimensions like
Language: 7097 languages in the world
It's important to test algorithms on multiple
languages
What may work for one may not work for
another

Corpora vary along dimensions like
Variety, like African American English
varieties

◦ AAE Twitter posts might include forms like "iont" (I
don't)

Genre: newswire, fiction, scientific articles,
Wikipedia
Author Demographics: writer's age, gender,
ethnicity, socio-economic status

Code Switching
Speakers use multiple languages in the same
utterance
This is very common around the world
Especially in spoken language and related
genres like texting and social media

Code Switching: Spanish/English

 Por primera vez veo a @username actually
being hateful! It was beautiful:)

[For the first time I get to see @username
actually being hateful! it was beautiful:)]

Code Switching: Hindi/English

dost tha or ra- hega ... dont wory ... but dherya
rakhe

[“he was and will remain a friend ... don’t worry ...
but have faith”]

Corpus datasheets

Motivation:
• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?
Collection process: How was it sampled? Was there
consent? Pre-processing?
 +Annotation process, variety, demographics, etc.

Gebru et al (2020), Bender and Friedman (2018)

Words
and
Tokens

Corpora

Words
and
Tokens

Regular Expressions

Regular expressions are used everywhere

◦ A formal language for specifying text
strings

◦ Part of every text processing task
◦ Useful pre-processing or text formatting step, for

example for BPE pre-tokenization
◦ Also necessary for data analysis of text
◦ A widely used tool in industry and

academics

71

Regular expressions

We can use regular expressions to search for
a pattern in a string

For example, the Python function
re.search(pattern,string)

scans through the string and returns the first
match inside it for the pattern

Python syntax

We'll show regex on raw strings with double
quotes:

r"regex"

Raw strings treat backslashes as literal characters
 Many regex patterns use backslashes.

Why raw strings?
◦ Regex and Python both use backslash "\" for

special characters. If you don't use raw notation you
would have to type extra backslashes!

◦ "\\d+" to search for 1 or more digits
◦ "\n" in Python means the "newline" character, not a

"slash" followed by an "n". Need "\\n" for two characters.
◦ Instead: use Python's raw string notation for regex:

◦ r"[tT]he"
◦ r"\d+" matches one or more digits

◦ instead of \\d+
74

file:///d+
file:///d+
file:///d+

Regular expressions
The pattern

r"Buttercup"

matches the substring Buttercup in any string, like
the string

I’m called little Buttercup

Regular Expressions: Disjunctions
Letters inside square brackets []

Ranges using the dash [A-Z]

Pattern Matches
r"[mM]ary" Mary or mary

r"[1234567890]" Any one digit

Pattern Matches
r"[A-Z]" An upper case letter Drenched Blossoms

r"[a-z]" A lower case letter my beans were impatient

r"[0-9]" A single digit Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list
◦ Note: Carat means negation only when it's first in []
◦ Special characters (., *, +, ?) lose their special meaning inside []

Pattern Matches Examples
r"[^A-Z]" Not upper case Oyfn pripetchik

r"[^Ss]" Neither ‘S’ nor ‘s’ I have no exquisite reason”

r"[^.]" Not a period Our resident Djinn

r"[e^]" Either e or ^ Look up ^ now

Kleene star and Kleene plus
baa
baaa
baaaa ...

Kleene star * (0 or more of previous characters)
Kleene plus + (1 or more of previous character)

r"baaa*" baa baaa baaaa …
r"baa+"

Stephen C Kleene

Wildcard

The period means "any character"

r"." matches anything
r".*" matches any sequence of 0 or more

of anything

Regular Expressions: Anchors ^ $

Pattern Matches
r"^[A-Z]" Palo Alto

r"\.$" The end.

r".$" The end? The end!

Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!
The pipe symbol | for disjunction

Pattern Matches

r"groundhog|woodchuck" woodchuck

r"yours|mine" yours

r"a|b|c" = [abc]
r"[gG]roundhog|[Ww]oodchuck" Woodchuck

Regular Expressions: Convenient aliases
Pattern Expansion Matches Examples
r"\d" [0-9] Any digit Fahreneit 451

r"\D" [^0-9] Any non-digit Blue Moon

r"\w" [a-ZA-Z0-9_] Any alphanumeric or
_

Daiyu

r"\W" [^\w] Not alphanumeric or _ Look!

r"\s" [\r\t\n\f] Whitespace (space,
tab)

Look␣up

r"\S" [^\s] Not whitespace Look up

The iterative process of writing regex's
Find me all instances of the word “the” in a text.

the
Misses capitalized examples

[tT]he
Incorrectly returns other or Theology

\W[tT]he\W

False positives and false negatives
The process we just went through was
based on fixing two kinds of errors:

1. Not matching things that we should have
matched (The)

False negatives

2. Matching strings that we should not have
matched (there, then, other)

False positives

Characterizing work on NLP

In NLP we are always dealing with these kinds of
errors.
Reducing the error rate for an application often
involves two antagonistic efforts:

◦ Increasing coverage (or recall) (minimizing false
negatives).

◦ Increasing accuracy (or precision) (minimizing false
positives)

Regular expressions play a surprisingly
large role

Widely used in both academics and industry

1. Part of most text processing tasks, even for
big neural language model pipelines

◦ including text formatting and pre-processing

2. Very useful for data analysis of any text data

86

Words
and
Tokens

Regular Expressions

Words
and
Tokens

Substitutions, Capture
Groups, and Lookahead

Regex Substitutions in Python

To change every instance of cherry to apricot in
string:
re.sub(r"cherry", r"apricot", string)

Upper case all examples of a name:
re.sub(r"janet", r"Janet", string)

Substitutions often need capture
groups

Task: Change:
 US format dates (mm/dd/yyyy) to
 EU format dates (dd-mm-yyyy)

Pattern to match US format:
r"\d{2}/\d{2}/\d{4}"
How to specify in the replacement that we want
to swap the date and month values?

Capture group

Use parentheses to capture (store) the values
that we matched in the search,
Groups have numbers
In the replacement ("repl"), we refer back to
that group with a number command.

Capture group

re.sub(r"(\d{2})/(\d{2})/(\d{4})",
r"\2-\1-\3", string)}
Parens (and) around the two month digits, the
two day digits, and the four year digits,
This stores
◦ the first 2 digits in group 1,
◦ the second 2 digits in group 2,
◦ final digits in group 3.
Then in the repl string,
◦ \1, \2, and \3, refer to the 1st, 2nd, and 3rd registers.

That regex will

map
The date is 10/15/2011
to
 The date is 15-10-2011

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing
Non-capturing groups: add a ?: after paren:
r"(?:some|a few) (people|cats) like some \1/"

matches
◦ some cats like some cats

but not
◦ some cats like some some

Lookahead assertions

(?= pattern) is true if pattern matches, but
is zero-width; doesn't advance character
pointer
(?! pattern) true if a pattern does not

match
How to capture the first word on the line, but
only if it doesn’t start with the letter T:
r"ˆ(?![tT])(\w+)\b"

Simple Application: ELIZA
Early NLP system that imitated a Rogerian
psychotherapist

◦ Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,:
◦ “I need X”

and translates them into, e.g.
◦ “What would it mean to you if you got X?

Simple Application: ELIZA
Men are all alike.
IN WHAT WAY
They're always bugging us about something or
other. CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

re.sub(r".* I’M (depressed|sad) .*",r"I AM
SORRY TO HEAR YOU ARE \1",input)

re.sub(r".* I AM (depressed|sad) .*",r"WHY
DO YOU THINK YOU ARE \1",input)

re.sub(r".* all .*",r"IN WHAT WAY?",input)

re.sub(r".* always .*",r"CAN YOU THINK OF
A SPECIFIC EXAMPLE?",input)

Words
and
Tokens

Substitutions, Capture
Groups, and Lookahead

Words
and
Tokens

Pretokenization for BPE

Pretokenization for BPE

The GPE-2 rules for pretokenization:
• Count clitics like 't and 'm as tokens
• Pull off punctuation and numbers

We do this with one regex:24 CHAPTER 2 • WORDS AND TOKENS

r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[ˆ\s\p{L}\p{N}]+|\s+(?!\S)|\s+"

This is quite a complex regular expression, and also makes use of some advanced
Unicode-related features we haven’t described yet. These features are part of a pop-
ular external Python 3 library called regex (as opposed to the internal Python 3
library called re).

For example the regex library has special \p and \P operators that can match
only if the current character has particular Unicode codepoint properties. For ex-
ample \p{L} matches any Unicode letter, \P{L} matches any non-letter, \p{N}
matches any number, and \P{L} matches any non-number.

Fig. 2.16 annotates the regular expression more clearly, and also shows the
output of running the GPT-2 tokenizer on the sentence We’re 350 dogs! Um,
lunch?.

Note that the tokenizer splits We’re into We and ’re, that punctuation is split
off from dogs and lunch, and that some tokens like dogs start with a space, and
others like We and ! do not.

2.7 Simple Unix Tools for Word Tokenization

For English it is possible to do simple naive word tokenization and frequency com-
putation in a single Unix command-line. As Church (1994) points out, this can be
useful when we need quick information about a text corpus. We’ll make use of some
Unix commands: tr, used to systematically change particular characters in the in-
put; sort, which sorts input lines in alphabetical order; and uniq, which collapses
and counts adjacent identical lines.

For example let’s begin with the ‘complete words’ of Shakespeare in one file,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic and the -c option
complements to non-alphabet, so together they mean to change every non-alphabetic
character into a newline. The -s (‘squeeze’) option is used to replace the result
of multiple consecutive changes into a single output, so a series of non-alphabetic
characters in a row would all be ‘squeezed’ into a single newline):

tr -sc 'A-Za-z' '\n' < sh.txt

The output of this command will be:

THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
...

Now that there is one word per line, we can sort the lines, and pass them to uniq
-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

with the following output:

The Python regex (as opposed to re) library

Special \p and \P operators:

\p{L} matches any Unicode letter,
\P{L} matches any non-letter,
\p{N} matches any number,
\P{N} matches any non-number.

2.6 • REGULAR EXPRESSIONS 23

2.6.8 Lookahead Assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not yet advance the pointer we always keep
to where we are in the text, so that we can then deal with the pattern if it occurs, but
if it doesn’t we can check for something else instead.

These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead
ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance, just as we sawzero-width
with anchors and boundary markers like \b. The operator (?! pattern) only re-
turns true if a pattern does not match, but again is zero-width and doesn’t advance
the pointer. Negative lookahead is commonly used when we are parsing some com-
plex pattern but want to rule out a special case. For example suppose we want to
capture the first word on the line, but only if it doesn’t start with the letter T. We can
use negative lookahead to do this:

r"ˆ(?![tT])(\w+)\b" (2.18)

The first negative lookahead says that the line must not start with a t or T, but
matches the empty string, not moving the match pointer. Then the capture group
captures the first word.

2.6.9 Regular Expressions for BPE pre-tokenization

>>> import regex as re

>>> pat = re.compile(

... # Contractions: 't and 'm are tokens

... r"'s|'t|'re|'ve|'m|'ll|'d|"

... # Words: sequence of Unicode letters (after optional space)

... r" ?\p{L}+|"

... #Number: sequence of digits (after optional space)

... r" ?\p{N}+|"

... # Punctuation: sequence of non-alphanumeric/non-space

... #(after optional space)

... r" ?[ˆ\s\p{L}\p{N}]+|"

... # whitespace

... r"\s+(?!\S)|\s+"

...)

>>> text = "We're 350 dogs! Um, lunch?"

>>> print(pat.findall(text))

['We', "'re", ' 350', ' dogs', '!', ' Um', ',', ' lunch', '?']

>>>

Figure 2.15 The GPT-2 pre-tokenizer regular expression, used to split (roughly) on white-
space before running the BPE algorithm.

We described in Section 2.4 how before we run a BPE tokenization algorithm on
a corpus we first pre-tokenize, splitting the course roughly by whitespace. Then the
tokenization algorithm builds up tokens from sequences of characters inside words
and doesn’t tokenize across word boundaries.

Here’s the regular expression used to do this pretokenization that is used for the
GPT-2 language model (Radford et al., 2019):

Pretokenization could also allow
multiple words!

SUPERBPE runs a second stage of BPE
allowing merges across spaces and
punctuation.

Liu et al 2025

14 CHAPTER 2 • WORDS AND TOKENS

Some of these are related to preprocessing steps. As we mentioned briefly above,
language models usually create their tokens in a pretokenization stage that first seg-pretokenization

ments the input using regular expressions, for example breaking the input at spaces
and punctuation, stripping off clitics, and breaking numbers into sets of digits. We’ll
see how to use regular expressions in Section 2.7.

It’s possible to change this pretokenization to allow BPE tokens to span multiple
words . For example the SuperBPE (Liu et al., 2025) and BoundlessBPE (SchmidtSuperBPE

BoundlessBPE et al., 2025) algorithms first induce regular BPE subword tokens by enforcing preto-
kenization. They then run a second stage of BPE allowing merges across spaces and
punctuation. The result is a large set of tokens that can be more efficient (Fig. 2.7).

Preprint

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and the
gap grows with larger vocabulary size. Encoding efficiency (y-axis) is measured with
bytes-per-token, the number of bytes encoded per token on average over a large corpus of text.
In the above text with 40 bytes, SuperBPE uses 7 tokens and BPE uses 13, so the methods’
efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph,
the encoding efficiency of BPE plateaus early due to exhausting the valuable whitespace-
delimited words in the training data. In fact, it is bounded above by the gray dotted line,
which shows the maximum achievable encoding efficiency with BPE, if every whitespace-
delimited word were in the vocabulary. On the other hand, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens to the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always gives an immediate improvement. SuperBPE also has better encoding
efficiency than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. Including multi-word tokens promises to be beneficial
in several ways: it can lead to shorter token sequences, lowering the computational costs of
LM training and inference, and may also offer representational advantages by segmenting
text into more semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann
et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to refer to tokens that bridge more
than one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popu-
lar byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE), but
is disabled in a second stage, where the tokenizer transitions to learning superword tokens.
Notably, SuperBPE tokenizers scale much better with vocabulary size—while BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, SuperBPE can continue to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our main experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learning
the vocabulary—we find that models trained with SuperBPE tokenizers consistently and
significantly improve over counterparts trained with a BPE tokenizer, while also being 27–
33% more efficient at inference time. Our best SuperBPE model achieves an average +4.0%

2

Figure 2.7 The SuperBPE algorithm creating larger tokens by allowing a second stage of
merging across spaces. Figure from Liu et al. (2025).

Many of the tokenizers used in practice for large language models are multilin-
gual, trained on many languages. But because the training data for large language
models is vastly dominated by English text, these multilingual BPE tokenizers tend
to use most of the tokens for English, leaving fewer of them for other languages. The
result is that they do a better job of tokenizing English, and the other languages tend
to get their words split up into shorter tokens. For example let’s look at a Spanish
sentence from a recipe for plantains, together with an English translation.

The English has 18 tokens; each of the 14 words is a token (none of the words
are split into multiple tokens):

By contrast, the original 16 words in Spanish have been encoded into 33 tokens,
a much larger number. Notice that many basic words have been broken into pieces.
For example hondo, ‘deep’, has been segmented into h and ondo. Similarly for
jugo, ‘juice’, nuez, ‘nut’ and jenjibre ‘ginger’):

Spanish is not a particularly low-resource language; this oversegmenting can be
even more serious in lower resource languages, often down to individual characters.
Oversegmenting into these tiny tokens can cause various problems for the down-
stream processing of the language. As will become more clear once we introduce
transformer models in Chapter 8, such fragmentation can lead to poor representa-
tions of meaning, the need for longer contexts, and higher costs to train models
(Rust et al., 2021; Ahia et al., 2023).

2.5 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a

Words
and
Tokens

Pretokenization for BPE

Words
and
Tokens

Rule-based tokenization
and
Simple Unix tools

Rule-based tokenization

Although subword tokenization is the norm
Sometimes we need particular tokens
Like for parsing, where the parser needs
grammatical words, or social science

Issues for rule-based tokenization
Mostly but not always remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)
Numbers are tokenized differently across
languages
◦ English 555,500.50 = French 555 500,50
Multiword expressions (MWE)?
◦ New York, rock ’n’ roll

Penn Treebank Tokenization Standard

2.5 • RULE-BASED TOKENIZATION 15

are interested in studying. Or it can be useful for social science applications where
orthographic words are useful domains of study.

In rule-based tokenization, we pre-define a standard and implement rules to im-
plement that kind of tokenization. Let’s explore this for English word tokenization.

We have some desiderata for English. We often want to break off punctua-
tion as a separate token; commas are a useful piece of information for parsers,
and periods help indicate sentence boundaries. But we’ll often want to keep the
punctuation that occurs word internally, in examples like m.p.h., Ph.D., AT&T, and
cap’n. Special characters and numbers will need to be kept in prices ($45.55) and
dates (01/02/06); we don’t want to segment that price into separate tokens of “45”
and “55”. And there are URLs (https://www.stanford.edu), Twitter hashtags
(#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce complications; in addition to appearing at word
boundaries, commas appear inside numbers in English, every three digits: 555,500.50.
Tokenization differs by language; languages like Spanish, French, and German, for
example, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A rule-based tokenizer can also be used to expand clitic contractions that areclitic
marked by apostrophes, converting what’re to the two tokens what are, and we’re
to we are. A clitic is a part of a word that can’t stand on its own, and can only oc-
cur when it is attached to another word. Such contractions occur in other alphabetic
languages, including French pronouns (j’ai and articles l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Rule-based tokenization is
thus intimately tied up with named entity recognition, the task of detecting names,
dates, and organizations (Chapter 17).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation (to save space we’re showing visible spaces
‘ ’ between tokens, although newlines is a more common output):

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization is run before any other language processing, it
needs to be very fast. For rule-based word tokenization we generally use deter-
ministic algorithms based on regular expressions compiled into efficient finite state
automata. For example, Fig. 2.8 shows a basic regular expression that can be used
to tokenize English with the nltk.regexp tokenize function of the Python-based
Natural Language Toolkit (NLTK) (Bird et al. 2009; https://www.nltk.org).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Tokenization in NLTK
Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly16 CHAPTER 2 • WORDS AND TOKENS

>>> text = 'That U.S.A. poster-print costs $12.40...'

>>> pattern = r'''(?x) # set flag to allow verbose regexps

... (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(?:-\w+)* # words with optional internal hyphens

... | \$?\d+(?:\.\d+)?%? # currency, percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"'?():_`-] # these are separate tokens; includes], [

... '''

>>> nltk.regexp_tokenize(text, pattern)

['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']

Figure 2.8 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

2.5.1 Sentence Segmentation
Rule-based segmentation is commonly used for another kind of tokenization pro-
cess: the sentence. Sentence segmentation is a step that is can be optionally appliedsentence

segmentation
in text processing. It is especially important when applying NLP algorithms to tasks
of detecting structure, like parse structure.

Sentence segmentation depends on the language and the genre. The most useful
cues for segmenting a text into sentences in English written text tend to be punc-
tuation, like periods, question marks, and exclamation points. Question marks and
exclamation points are relatively unambiguous markers of sentence boundaries, and
simple rules can segment sentences when they appear.

The period character “.”, on the other hand, is ambiguous between a sentence
boundary marker and a marker of abbreviations like Dr. or Inc. The previous sen-
tence that you just read showed an even more complex case of this ambiguity, in
which the final period of Inc. marked both an abbreviation and the sentence bound-
ary marker. For this reason, sentence tokenization and word tokenization can be
addressed jointly.

Many English sentence tokenization methods work by first deciding (often based
on deterministic rules, but sometimes via machine learning) whether a period is part
of the word or is a sentence-boundary marker. An abbreviation dictionary can help
determine whether the period is part of a commonly used abbreviation; the dictio-
naries can be hand-built or machine-learned (Kiss and Strunk, 2006), as can the final
sentence splitter. In the Stanford CoreNLP toolkit (Manning et al., 2014), for exam-
ple sentence splitting is rule-based, a deterministic consequence of tokenization; a
sentence ends when a sentence-ending punctuation (., !, or ?) is not already grouped
with other characters into a token (such as for an abbreviation or number), optionally
followed by additional final quotes or brackets.

2.6 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a
specific language, at a specific time, in a specific place, for a specific function.

Perhaps the most important dimension of variation is the language. NLP algo-

Sentence Segmentation
!, ? mostly unambiguous but period “.” is very
ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML
to classify a period as either (a) part of the word or
(b) a sentence-boundary.

◦ An abbreviation dictionary can help
Sentence segmentation can then often be done by
rules based on this tokenization.

Space-based tokenization

A very simple way to tokenize
◦ For languages that use space characters between

words
◦ Arabic, Cyrillic, Greek, Latin, etc., based writing systems

◦ Segment off a token between instances of spaces
Unix tools for space-based tokenization
◦ The "tr" command
◦ Inspired by Ken Church's UNIX for Poets
◦ Given a text file, output the word tokens and their

frequencies

Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)
Given a text file, output the word tokens and their frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort

 | uniq –c

1945 A

 72 AARON

 19 ABBESS

 5 ABBOT

25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot

.... …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type

The first step: tokenizing
tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

The second step: sorting
tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...

More counting
Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954 d

What happened here?

Words
and
Tokens

Rule-based tokenization
and
Simple Unix tools

