
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2023. All

rights reserved. Draft of January 28, 2024.

CHAPTER

14 Question Answering and In-
formation Retrieval

The quest for knowledge is deeply human, and so it is not surprising that practically
as soon as there were computers we were asking them questions. By the early 1960s,
systems used the two major paradigms of question answering—retrieval-based and
knowledge-based—to answer questions about baseball statistics or scientific facts.
Even imaginary computers got into the act. Deep Thought, the computer that Dou-
glas Adams invented in The Hitchhiker’s Guide to the Galaxy, managed to answer
“the Ultimate Question Of Life, The Universe, and Everything”.1 In 2011, IBM’s
Watson question-answering system won the TV game-show Jeopardy!, surpassing
humans at answering questions like:

WILLIAM WILKINSON’S “AN ACCOUNT OF THE
PRINCIPALITIES OF WALLACHIA AND MOLDOVIA”
INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 2

Question answering systems are designed to fill human information needs that
might arise in situations like talking to a virtual assistant or a chatbot, interacting
with a search engine, or querying a database. Question answering systems often
focus on a particular subset of these information needs: factoid questions, questions
that can be answered with simple facts expressed in short texts, like the following:

(14.1) Where is the Louvre Museum located?
(14.2) What is the average age of the onset of autism?

One way to do question answering is just to directly ask a large language model.
For example, we could use the techniques of Chapter 12, prompting a large pre-
trained causal language model with a string like

Q: Where is the Louvre Museum located? A:

have it do conditional generation given this prefix, and take the response as the
answer. The idea is that huge pretrained language models have read a lot of facts
in their pretraining data, presumably including the location of the Louvre, and have
encoded this information in their parameters.

For some general factoid questions this can be a useful approach and is used in
practice. But prompting a large language model is not yet a solution for question
answering. The main problem is that large language models often give the wrong
answer! Large language models hallucinate. A hallucination is a response that ishallucinate

not faithful to the facts of the world. That is, when asked questions, large language
models simply make up answers that sound reasonable. For example, (Dahl et al.,
2024) found that when asked questions about the legal domain (like about particular
legal cases), large language models had hallucination rates ranging from 69% to
88%.
1 The answer was 42, but unfortunately the details of the question were never revealed.
2 The answer, of course, is ‘Who is Bram Stoker’, and the novel was Dracula.

2 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

Sometime there are ways to tell that language models are hallucinating, but often
there aren’t. One problem is that language model estimates of their confidence in
their answers aren’t well-calibrated. In a calibrated system, the confidence of acalibrated

system in the correctness of its answer is highly correlated with the probability of an
answer being correct. So if the system is wrong, at least it might hedge its answer
or tell us to go check another source. But since language models are not well-
calibrated, they often give a very wrong answer with complete certainty.

A second problem is that simply prompting a large language model doesn’t allow
us to ask questions about proprietary data. A common use of question-answering is
to query private data, like asking an assistant about our email or private documents,
or asking a question about our own medical records. Or a company may have in-
ternal documents that contain answers for customer service or internal use. Or legal
firms need to ask questions about legal discovery from proprietary documents. Fur-
thermore, the use of internal datasets, or even the web itself, can be especially useful
for rapidly changing or dynamic information; by contrast, large language models
are often only released at long increments of many months and so may not have
up-to-date information.

For this reason the current dominant solution for question-answering is the two-
stage retriever/reader model (Chen et al., 2017), and that is the method we will
focus on in this chapter. In a retriever/reader model, we use information retrieval
techniques to first retrieve documents that are likely to have information that might
help answer the question. Then we either extract an answer from spans of text in
the documents, or use large language models to generate an answer given these
documents, sometimes called retrieval-augmented generation,

Basing our answers on retrieved documents can solve the above-mentioned prob-
lems with using simple prompting to answer questions. First, we can ensure that the
answer is grounded in facts from some curated dataset. And we can give the answer
accompanied by the context of the passage or document the answer came from. This
information can help users have confidence in the accuracy of the answer (or help
them spot when it is wrong!). And we can use our retrieval techniques on any pro-
prietary data we want, such as legal or medical data for those applications.

We’ll begin by introducing information retrieval, the task of choosing the most
relevant document from a document set given a user’s query expressing their infor-
mation need. We’ll see the classic method based on cosines of sparse tf-idf vec-
tors, as well as modern neural IR using dense retriever, in which we run documents
through BERT or other language models to get neural representations, and use co-
sine between dense representations of the query and document.

We then introduce retriever-based question answering, via the retriever/reader
model. This algorithm most commonly relies on the vast amount of text on the
web, in which case it is sometimes called open domain QA, or on collections of
proprietary data, or scientific papers like PubMed. We’ll go through the two types
of readers, span extractors and retrieval-augmented generation.

14.1 Information Retrieval

Information retrieval or IR is the name of the field encompassing the retrieval of allinformation
retrieval

IR manner of media based on user information needs. The resulting IR system is often
called a search engine. Our goal in this section is to give a sufficient overview of IR
to see its application to question answering. Readers with more interest specifically

14.1 • INFORMATION RETRIEVAL 3

in information retrieval should see the Historical Notes section at the end of the
chapter and textbooks like Manning et al. (2008).

The IR task we consider is called ad hoc retrieval, in which a user poses aad hoc retrieval

query to a retrieval system, which then returns an ordered set of documents from
some collection. A document refers to whatever unit of text the system indexes anddocument

retrieves (web pages, scientific papers, news articles, or even shorter passages like
paragraphs). A collection refers to a set of documents being used to satisfy usercollection

requests. A term refers to a word in a collection, but it may also include phrases.term

Finally, a query represents a user’s information need expressed as a set of terms.query

The high-level architecture of an ad hoc retrieval engine is shown in Fig. 14.1.

Document

Document

Document

Document
DocumentDocument

Query
Processing

Indexing

Search

Document
Document

Document
Document

DocumentRanked
Documents

Document

query

Inverted
Index

query
vector

document collection

Figure 14.1 The architecture of an ad hoc IR system.

The basic IR architecture uses the vector space model we introduced in Chap-
ter 6, in which we map queries and document to vectors based on unigram word
counts, and use the cosine similarity between the vectors to rank potential documents
(Salton, 1971). This is thus an example of the bag-of-words model introduced in
Chapter 4, since words are considered independently of their positions.

14.1.1 Term weighting and document scoring
Let’s look at the details of how the match between a document and query is scored.

We don’t use raw word counts in IR, instead computing a term weight for eachterm weight

document word. Two term weighting schemes are common: the tf-idf weighting
introduced in Chapter 6, and a slightly more powerful variant called BM25.BM25

We’ll reintroduce tf-idf here so readers don’t need to look back at Chapter 6.
Tf-idf (the ‘-’ here is a hyphen, not a minus sign) is the product of two terms, the
term frequency tf and the inverse document frequency idf.

The term frequency tells us how frequent the word is; words that occur more
often in a document are likely to be informative about the document’s contents. We
usually use the log10 of the word frequency, rather than the raw count. The intuition
is that a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. We also need to do
something special with counts of 0, since we can’t take the log of 0.3

tft,d =

{
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

(14.3)

If we use log weighting, terms which occur 0 times in a document would have tf= 0,

3 We can also use this alternative formulation, which we have used in earlier editions: tft,d =
log10(count(t,d)+1)

4 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

1 times in a document tf = 1+ log10(1) = 1+ 0 = 1, 10 times in a document tf =
1+ log10(10) = 2, 100 times tf = 1+ log10(100) = 3, 1000 times tf = 4, and so on.

The document frequency dft of a term t is the number of documents it oc-
curs in. Terms that occur in only a few documents are useful for discriminating
those documents from the rest of the collection; terms that occur across the entire
collection aren’t as helpful. The inverse document frequency or idf term weight
(Sparck Jones, 1972) is defined as:

idft = log10
N
dft

(14.4)

where N is the total number of documents in the collection, and dft is the number
of documents in which term t occurs. The fewer documents in which a term occurs,
the higher this weight; the lowest weight of 0 is assigned to terms that occur in every
document.

Here are some idf values for some words in the corpus of Shakespeare plays,
ranging from extremely informative words that occur in only one play like Romeo,
to those that occur in a few like salad or Falstaff, to those that are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.4

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (14.5)

14.1.2 Document Scoring
We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d|

(14.6)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q

|q|
· d
|d|

(14.7)

4 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

14.1 • INFORMATION RETRIEVAL 5

We can spell out Eq. 14.7, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
∑
t∈q

tf-idf(t,q)√∑
qi∈q tf-idf 2(qi,q)

· tf-idf(t,d)√∑
di∈d tf-idf 2(di,d)

(14.8)

Now let’s use (14.8) to walk through an example of a tiny query against a collec-
tion of 4 nano documents, computing tf-idf values and seeing the rank of the docu-
ments. We’ll assume all words in the following query and documents are downcased
and punctuation is removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 14.2 shows the computation of the tf-idf cosine between the query and Doc-
ument 1, and the query and Document 2. The cosine is the normalized dot product
of tf-idf values, so for the normalization we must need to compute the document
vector lengths |q|, |d1|, and |d2| for the query and the first two documents using
Eq. 14.3, Eq. 14.4, Eq. 14.5, and Eq. 14.8 (computations for Documents 3 and 4 are
also needed but are left as an exercise for the reader). The dot product between the
vectors is the sum over dimensions of the product, for each dimension, of the values
of the two tf-idf vectors for that dimension. This product is only non-zero where
both the query and document have non-zero values, so for this example, in which
only sweet and love have non-zero values in the query, the dot product will be the
sum of the products of those elements of each vector.

Document 1 has a higher cosine with the query (0.747) than Document 2 has
with the query (0.0779), and so the tf-idf cosine model would rank Document 1
above Document 2. This ranking is intuitive given the vector space model, since
Document 1 has both terms including two instances of sweet, while Document 2 is
missing one of the terms. We leave the computation for Documents 3 and 4 as an
exercise for the reader.

In practice, there are many variants and approximations to Eq. 14.8. For exam-
ple, we might choose to simplify processing by removing some terms. To see this,
let’s start by expanding the formula for tf-idf in Eq. 14.8 to explicitly mention the tf
and idf terms from (14.5):

score(q,d) =
∑
t∈q

tft,q · idft√∑
qi∈q tf-idf 2(qi,q)

·
tft,d · idft√∑

di∈d tf-idf 2(di,d)
(14.9)

In one common variant of tf-idf cosine, for example, we drop the idf term for the
document. Eliminating the second copy of the idf term (since the identical term is
already computed for the query) turns out to sometimes result in better performance:

score(q,d) =
∑
t∈q

tft,q·idft√∑
qi∈q tf-idf 2(qi,q)

·
tft,d · idft√∑

di∈d tf-idf 2(di,d)
(14.10)

Other variants of tf-idf eliminate various other terms.
A slightly more complex variant in the tf-idf family is the BM25 weightingBM25

6 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

Query
word cnt tf df idf tf-idf n’lized = tf-idf/|q|
sweet 1 1 3 0.125 0.125 0.383
nurse 0 0 2 0.301 0 0
love 1 1 2 0.301 0.301 0.924
how 0 0 1 0.602 0 0
sorrow 0 0 1 0.602 0 0
is 0 0 1 0.602 0 0

|q|=
√
.1252 + .3012 = .326

Document 1 Document 2
word cnt tf tf-idf n’lized × q cnt tf tf-idf n’lized ×q
sweet 2 1.301 0.163 0.357 0.137 1 1.000 0.125 0.203 0.0779
nurse 1 1.000 0.301 0.661 0 0 0 0 0 0
love 1 1.000 0.301 0.661 0.610 0 0 0 0 0
how 0 0 0 0 0 0 0 0 0 0
sorrow 0 0 0 0 0 1 1.000 0.602 0.979 0
is 0 0 0 0 0 0 0 0 0 0

|d1|=
√
.1632 + .3012 + .3012 = .456 |d2|=

√
.1252 + .6022 = .615

Cosine:
∑

of column: 0.747 Cosine:
∑

of column: 0.0779
Figure 14.2 Computation of tf-idf cosine score between the query and nano-documents 1 (0.747) and 2
(0.0779), using Eq. 14.3, Eq. 14.4, Eq. 14.5 and Eq. 14.8.

scheme (sometimes called Okapi BM25 after the Okapi IR system in which it was
introduced (Robertson et al., 1995)). BM25 adds two parameters: k, a knob that
adjust the balance between term frequency and IDF, and b, which controls the im-
portance of document length normalization. The BM25 score of a document d given
a query q is:

∑
t∈q

IDF︷ ︸︸ ︷
log
(

N
dft

) weighted tf︷ ︸︸ ︷
tft,d

k
(

1−b+b
(
|d|
|davg|

))
+ tft,d

(14.11)

where |davg| is the length of the average document. When k is 0, BM25 reverts to
no use of term frequency, just a binary selection of terms in the query (plus idf).
A large k results in raw term frequency (plus idf). b ranges from 1 (scaling by
document length) to 0 (no length scaling). Manning et al. (2008) suggest reasonable
values are k = [1.2,2] and b = 0.75. Kamphuis et al. (2020) is a useful summary of
the many minor variants of BM25.

Stop words In the past it was common to remove high-frequency words from both
the query and document before representing them. The list of such high-frequency
words to be removed is called a stop list. The intuition is that high-frequency termsstop list

(often function words like the, a, to) carry little semantic weight and may not help
with retrieval, and can also help shrink the inverted index files we describe below.
The downside of using a stop list is that it makes it difficult to search for phrases
that contain words in the stop list. For example, common stop lists would reduce the
phrase to be or not to be to the phrase not. In modern IR systems, the use of stop lists
is much less common, partly due to improved efficiency and partly because much
of their function is already handled by IDF weighting, which downweights function

14.1 • INFORMATION RETRIEVAL 7

words that occur in every document. Nonetheless, stop word removal is occasionally
useful in various NLP tasks so is worth keeping in mind.

14.1.3 Inverted Index
In order to compute scores, we need to efficiently find documents that contain words
in the query. (Any document that contains none of the query terms will have a score
of 0 and can be ignored.) The basic search problem in IR is thus to find all documents
d ∈C that contain a term q ∈ Q.

The data structure for this task is the inverted index, which we use for mak-inverted index

ing this search efficient, and also conveniently storing useful information like the
document frequency and the count of each term in each document.

An inverted index, given a query term, gives a list of documents that contain the
term. It consists of two parts, a dictionary and the postings. The dictionary is a listpostings

of terms (designed to be efficiently accessed), each pointing to a postings list for the
term. A postings list is the list of document IDs associated with each term, which
can also contain information like the term frequency or even the exact positions of
terms in the document. The dictionary can also start the document frequency for
each term For example, a simple inverted index for our 4 sample documents above,
with each word containing its document frequency in {}, and a pointer to a postings
list that contains document IDs and term counts in [], might look like the following:

how {1} → 3 [1]
is {1} → 3 [1]
love {2} → 1 [1]→ 3 [1]
nurse {2} → 1 [1]→ 4 [1]
sorry {1} → 2 [1]
sweet {3} → 1 [2]→ 2 [1]→ 3 [1]

Given a list of terms in query, we can very efficiently get lists of all candidate
documents, together with the information necessary to compute the tf-idf scores we
need.

There are alternatives to the inverted index. For the question-answering domain
of finding Wikipedia pages to match a user query, Chen et al. (2017) show that
indexing based on bigrams works better than unigrams, and use efficient hashing
algorithms rather than the inverted index to make the search efficient.

14.1.4 Evaluation of Information-Retrieval Systems
We measure the performance of ranked retrieval systems using the same precision
and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns T ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision =
|R|
|T |

Recall =
|R|
|U |

(14.12)

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two

8 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.

Rank Judgment PrecisionRank RecallRank
1 R 1.0 .11
2 N .50 .11
3 R .66 .22
4 N .50 .22
5 R .60 .33
6 R .66 .44
7 N .57 .44
8 R .63 .55
9 N .55 .55

10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N .46 .66
14 N .43 .66
15 R .47 .77
16 N .44 .77
17 N .44 .77
18 R .44 .88
19 N .42 .88
20 N .40 .88
21 N .38 .88
22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

Figure 14.3 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).

Let’s turn to an example. Assume the table in Fig. 14.3 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same
rank. The recall measures in this example are based on this query having 9 relevant
documents in the collection as a whole.

Note that recall is non-decreasing; when a relevant document is encountered,
recall increases, and when a non-relevant document is found it remains unchanged.
Precision, on the other hand, jumps up and down, increasing when relevant doc-
uments are found, and decreasing otherwise. The most common way to visualize
precision and recall is to plot precision against recall in a precision-recall curve,precision-recall

curve
like the one shown in Fig. 14.4 for the data in table 14.3.

Fig. 14.4 shows the values for a single query. But we’ll need to combine values
for all the queries, and in a way that lets us compare one system to another. One way
of doing this is to plot averaged precision values at 11 fixed levels of recall (0 to 100,
in steps of 10). Since we’re not likely to have datapoints at these exact levels, we
use interpolated precision values for the 11 recall values from the data points we dointerpolated

precision
have. We can accomplish this by choosing the maximum precision value achieved
at any level of recall at or above the one we’re calculating. In other words,

IntPrecision(r) = max
i>=r

Precision(i) (14.13)

14.1 • INFORMATION RETRIEVAL 9

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Figure 14.4 The precision recall curve for the data in table 14.3.

This interpolation scheme not only lets us average performance over a set of queries,
but also helps smooth over the irregular precision values in the original data. It is
designed to give systems the benefit of the doubt by assigning the maximum preci-
sion value achieved at higher levels of recall from the one being measured. Fig. 14.5
and Fig. 14.6 show the resulting interpolated data points from our example.

Interpolated Precision Recall
1.0 0.0
1.0 .10
.66 .20
.66 .30
.66 .40
.63 .50
.55 .60
.47 .70
.44 .80
.36 .90
.36 1.0

Figure 14.5 Interpolated data points from Fig. 14.3.

Given curves such as that in Fig. 14.6 we can compare two systems or approaches
by comparing their curves. Clearly, curves that are higher in precision across all
recall values are preferred. However, these curves can also provide insight into the
overall behavior of a system. Systems that are higher in precision toward the left
may favor precision over recall, while systems that are more geared towards recall
will be higher at higher levels of recall (to the right).

A second way to evaluate ranked retrieval is mean average precision (MAP),mean average
precision

which provides a single metric that can be used to compare competing systems or
approaches. In this approach, we again descend through the ranked list of items,
but now we note the precision only at those points where a relevant item has been
encountered (for example at ranks 1, 3, 5, 6 but not 2 or 4 in Fig. 14.3). For a single
query, we average these individual precision measurements over the return set (up
to some fixed cutoff). More formally, if we assume that Rr is the set of relevant

10 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

Interpolated Precision Recall Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
r
e
c
is

io
n

Figure 14.6 An 11 point interpolated precision-recall curve. Precision at each of the 11
standard recall levels is interpolated for each query from the maximum at any higher level of
recall. The original measured precision recall points are also shown.

documents at or above r, then the average precision (AP) for a single query is

AP =
1
|Rr|

∑
d∈Rr

Precisionr(d) (14.14)

where Precisionr(d) is the precision measured at the rank at which document d was
found. For an ensemble of queries Q, we then average over these averages, to get
our final MAP measure:

MAP =
1
|Q|
∑
q∈Q

AP(q) (14.15)

The MAP for the single query (hence = AP) in Fig. 14.3 is 0.6.

14.2 Information Retrieval with Dense Vectors

The classic tf-idf or BM25 algorithms for IR have long been known to have a con-
ceptual flaw: they work only if there is exact overlap of words between the query
and document. In other words, the user posing a query (or asking a question) needs
to guess exactly what words the writer of the answer might have used, an issue called
the vocabulary mismatch problem (Furnas et al., 1987).

The solution to this problem is to use an approach that can handle synonymy:
instead of (sparse) word-count vectors, using (dense) embeddings. This idea was
first proposed for retrieval in the last century under the name of Latent Semantic
Indexing approach (Deerwester et al., 1990), but is implemented in modern times
via encoders like BERT.

The most powerful approach is to present both the query and the document to a
single encoder, allowing the transformer self-attention to see all the tokens of both

14.2 • INFORMATION RETRIEVAL WITH DENSE VECTORS 11

the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (14.16)

This architecture is shown in Fig. 14.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

Query Document

…

…

…

…

…

…

[sep]

s(q,d)

zCLS
U

Query

zCLS_Q zCLS_D

Document

…

…

…

…

…

…

•
s(q,d)

(a) (b)

Figure 14.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

The problem with the full BERT architecture in Fig. 14.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single single document in our entire collection through a BERT encoder
jointly with the new query! This enormous use of resources is impractical for real
cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 14.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and

12 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

we could represent the query and document as the [CLS] token of the respective
encoders (Karpukhin et al., 2020):

zq = BERTQ(q)[CLS]
zd = BERTD(d)[CLS]

score(q,d) = zq ·zd (14.17)

The bi-encoder is much cheaper than a full query/document encoder, but is also
less accurate, since its relevance decision can’t take full advantage of all the possi-
ble meaning interactions between all the tokens in the query and the tokens in the
document.

There are numerous approaches that lie in between the full encoder and the bi-
encoder. One intermediate alternative is to use cheaper methods (like BM25) as the
first pass relevance ranking for each document, take the top N ranked documents,
and use expensive methods like the full BERT scoring to rerank only the top N
documents rather than the whole set.

Another intermediate approach is the ColBERT approach of Khattab and Za-ColBERT

haria (2020) and Khattab et al. (2021), shown in Fig. 14.8. This method separately
encodes the query and document, but rather than encoding the entire query or doc-
ument into one vector, it separately encodes each of them into contextual represen-
tations for each token. These BERT representations of each document word can be
pre-stored for efficiency. The relevance score between a query q and a document d is
a sum of maximum similarity (MaxSim) operators between tokens in q and tokens
in d. Essentially, for each token in q, ColBERT finds the most contextually simi-
lar token in d, and then sums up these similarities. A relevant document will have
tokens that are contextually very similar to the query.

More formally, a question q is tokenized as [q1, . . . ,qn], prepended with a [CLS]
and a special [Q] token, truncated to N=32 tokens (or padded with [MASK] tokens if
it is shorter), and passed through BERT to get output vectors q = [q1, . . . ,qN]. The
passage d with tokens [d1, . . . ,dm], is processed similarly, including a [CLS] and
special [D] token. A linear layer is applied on top of d and q to control the output
dimension, so as to keep the vectors small for storage efficiency, and vectors are
rescaled to unit length, producing the final vector sequences Eq (length N) and Ed
(length m). The ColBERT scoring mechanism is:

score(q,d) =
N∑

i=1

m
max
j=1

Eqi ·Ed j (14.18)

While the interaction mechanism has no tunable parameters, the ColBERT ar-
chitecture still needs to be trained end-to-end to fine-tune the BERT encoders and
train the linear layers (and the special [Q] and [D] embeddings) from scratch. It
is trained on triples 〈q,d+,d−〉 of query q, positive document d+ and negative doc-
ument d− to produce a score for each document using (14.18), optimizing model
parameters using a cross-entropy loss.

All the supervised algorithms (like ColBERT or the full-interaction version of
the BERT algorithm applied for reranking) need training data in the form of queries
together with relevant and irrelevant passages or documents (positive and negative
examples). There are various semi-supervised ways to get labels; some datasets (like
MS MARCO Ranking, Section 14.3.1) contain gold positive examples. Negative
examples can be sampled randomly from the top-1000 results from some existing
IR system. If datasets don’t have labeled positive examples, iterative methods like

14.3 • USING NEURAL IR FOR QUESTION ANSWERING 13

Query Document

…

…

…

…

…

…

s(q,d)

MaxSim MaxSim MaxSim

∑

norm norm norm normnormnorm

Figure 14.8 A sketch of the ColBERT algorithm at inference time. The query and docu-
ment are first passed through separate BERT encoders. Similarity between query and doc-
ument is computed by summing a soft alignment between the contextual representations of
tokens in the query and the document. Training is end-to-end. (Various details aren’t de-
picted; for example the query is prepended by a [CLS] and [Q:] tokens, and the document
by [CLS] and [D:] tokens). Figure adapted from Khattab and Zaharia (2020).

relevance-guided supervision can be used (Khattab et al., 2021) which rely on the
fact that many datasets contain short answer strings. In this method, an existing IR
system is used to harvest examples that do contain short answer strings (the top few
are taken as positives) or don’t contain short answer strings (the top few are taken as
negatives), these are used to train a new retriever, and then the process is iterated.

Efficiency is an important issue, since every possible document must be ranked
for its similarity to the query. For sparse word-count vectors, the inverted index
allows this very efficiently. For dense vector algorithms finding the set of dense
document vectors that have the highest dot product with a dense query vector is
an instance of the problem of nearest neighbor search. Modern systems there-
fore make use of approximate nearest neighbor vector search algorithms like FaissFaiss

(Johnson et al., 2017).

14.3 Using Neural IR for Question Answering

The goal of retrieval-based QA (sometimes called open domain QA) is to an-retrieval-based
QA

swer a user’s question by either finding short text segments from the web or some
other large collection of documents, or by generating an answer based on them.
Figure 14.9 shows some sample factoid questions with answers.

The dominant paradigm for retrieval-based QA is sometimes called the retrieve
and read model shown in Fig. 14.10. In the first stage of this 2-stage model we re-retrieve and

read
trieve relevant passages from a text collection, for example using the dense retrievers
of the previous section.

The second stage, called the reader, is commonly implemented as either an ex-

14 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

Question Answer
Where is the Louvre Museum located? in Paris, France
What are the names of Odin’s ravens? Huginn and Muninn
What kind of nuts are used in marzipan? almonds
What instrument did Max Roach play? drums
What’s the official language of Algeria? Arabic

Figure 14.9 Some factoid questions and their answers.

tractor or a generator. The first method is span extraction, using a neural reading
comprehension algorithm that passes over each passage and is trained to find spans
of text that answer the question. The second method is also known as retrieval-
augmented generation: we take a large pretrained language model, give it some set
of retrieved passages and other text as its prompt, and autoregressively generate a
new answer token by token.

Q: When was
the premiere of

The Magic Flute?
Relevant

Docs
BERT

[CLS] q1 q2 [SEP] d1 d2

start end

A: 1791

Retriever

Indexed Docs

query

docs

Generator

or Extracter

LLM
Docs and prompt

Reader

Figure 14.10 Retrieval-based question answering has two stages: retrieval, which returns relevant docu-
ments from the collection, and reading, in which a neural reading comprehension system extracts answer
spans, or a large pretrained language model that generates answers autoregressively given the documents as a
prompt.

In the next few sections we’ll describe these two standard reader algorithms.
But first, we’ll introduce some commonly-used question answering datasets.

14.3.1 Retrieval-based QA: Datasets
Datasets for retrieval-based QA are most commonly created by first developing
reading comprehension datasets containing tuples of (passage, question, answer).
Reading comprehension systems can use the datasets to train a reader that is given a
passage and a question, and predicts a span in the passage as the answer. Including
the passage from which the answer is to be extracted eliminates the need for reading
comprehension systems to deal with IR.

For example the Stanford Question Answering Dataset (SQuAD) consists ofSQuAD

passages from Wikipedia and associated questions whose answers are spans from
the passage (Rajpurkar et al. 2016). Squad 2.0 in addition adds some questions
that are designed to be unanswerable (Rajpurkar et al. 2018), with a total of just
over 150,000 questions. Fig. 14.11 shows a (shortened) excerpt from a SQUAD 2.0
passage together with three questions and their gold answer spans.

SQuAD was built by having humans read a given Wikipedia passage, write ques-
tions about the passage, and choose a specific answer span.

Other datasets are created by similar techniques but try to make the questions
more complex. The HotpotQA dataset (Yang et al., 2018) was created by showingHotpotQA

14.3 • USING NEURAL IR FOR QUESTION ANSWERING 15

Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston, Texas, she performed in various
singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer
of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group became
one of the world’s best-selling girl groups of all time. Their hiatus saw the release of Beyoncé’s
debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned
five Grammy Awards and featured the Billboard Hot 100 number-one singles “Crazy in Love” and
“Baby Boy”.
Q: “In what city and state did Beyoncé grow up?”
A: “Houston, Texas”
Q: “What areas did Beyoncé compete in when she was growing up?”
A: “singing and dancing”
Q: “When did Beyoncé release Dangerously in Love?”
A: “2003”

Figure 14.11 A (Wikipedia) passage from the SQuAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample
questions and the labeled answer spans.

crowd workers multiple context documents and asked to come up with questions
that require reasoning about all of the documents.

The fact that questions in datasets like SQuAD or HotpotQA are created by an-
notators who have first read the passage may make their questions easier to answer,
since the annotator may (subconsciously) make use of words from the answer text.

A solution to this possible bias is to make datasets from questions that were not
written with a passage in mind. The TriviaQA dataset (Joshi et al., 2017) contains
94K questions written by trivia enthusiasts, together with supporting documents
from Wikipedia and the web resulting in 650K question-answer-evidence triples.

MS MARCO (Microsoft Machine Reading Comprehension) is a collection ofMS MARCO

datasets, including 1 million real anonymized questions from Microsoft Bing query
logs together with a human generated answer and 9 million passages (Nguyen et al.,
2016), that can be used both to test retrieval ranking and question answering. The
Natural Questions dataset (Kwiatkowski et al., 2019) similarly incorporates realNatural

Questions
anonymized queries to the Google search engine. Annotators are presented a query,
along with a Wikipedia page from the top 5 search results, and annotate a paragraph-
length long answer and a short span answer, or mark null if the text doesn’t contain
the paragraph. For example the question “When are hops added to the brewing
process?” has the short answer the boiling process and a long answer which the
surrounding entire paragraph from the Wikipedia page on Brewing. In using this
dataset, a reading comprehension model is given a question and a Wikipedia page
and must return a long answer, short answer, or ’no answer’ response.

The above datasets are all in English. The TyDi QA dataset contains 204KTyDi QA

question-answer pairs from 11 typologically diverse languages, including Arabic,
Bengali, Kiswahili, Russian, and Thai (Clark et al., 2020). In the TYDI QA task,
a system is given a question and the passages from a Wikipedia article and must
(a) select the passage containing the answer (or NULL if no passage contains the
answer), and (b) mark the minimal answer span (or NULL). Many questions have
no answer. The various languages in the dataset bring up challenges for QA systems
like morphological variation between the question and the answer, or complex issue
with word segmentation or multiple alphabets.

In the reading comprehension task, a system is given a question and the passage
in which the answer should be found. In the full two-stage QA task, however, sys-

16 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

tems are not given a passage, but are required to do their own retrieval from some
document collection. A common way to create open-domain QA datasets is to mod-
ify a reading comprehension dataset. For research purposes this is most commonly
done by using QA datasets that annotate Wikipedia (like SQuAD or HotpotQA). For
training, the entire (question, passage, answer) triple is used to train the reader. But
at inference time, the passages are removed and system is given only the question,
together with access to the entire Wikipedia corpus. The system must then do IR to
find a set of pages and then read them.

14.3.2 Reader algorithms: Answer Span Extraction
The job of the reader is to take a passage as input and produce the answer. Here we
introduce the span extraction style of reader, in which the answer is a span of text
in the passage. For example given a question like “How tall is Mt. Everest?” and
a passage that contains the clause Reaching 29,029 feet at its summit, a reader will
output 29,029 feet.

The answer extraction task is commonly modeled by span labeling: identifying
in the passage a span (a continuous string of text) that constitutes an answer. Neuralspan

algorithms for reading comprehension are given a question q of n tokens q1, ...,qn
and a passage p of m tokens p1, ..., pm. Their goal is thus to compute the probability
P(a|q, p) that each possible span a is the answer.

If each span a starts at position as and ends at position ae, we make the simplify-
ing assumption that this probability can be estimated as P(a|q, p)=Pstart(as|q, p)Pend(ae|q, p).
Thus for for each token pi in the passage we’ll compute two probabilities: pstart(i)
that pi is the start of the answer span, and pend(i) that pi is the end of the answer
span.

A standard baseline algorithm for reading comprehension is to pass the ques-
tion and passage to any encoder like BERT (Fig. 14.12), as strings separated with a
[SEP] token, resulting in an encoding token embedding for every passage token pi.

Encoder (BERT)

… …

Question Passage

i
S E

Pstarti

. . …

[CLS] [SEP] p1

…

Pendi

pmq1 qn

Figure 14.12 An encoder model (using BERT) for span-based question answering from
reading-comprehension-based question answering tasks.

For span-based question answering, we represent the question as the first se-
quence and the passage as the second sequence. We’ll also need to add a linear layer
that will be trained in the fine-tuning phase to predict the start and end position of the

14.3 • USING NEURAL IR FOR QUESTION ANSWERING 17

span. We’ll add two new special vectors: a span-start embedding S and a span-end
embedding E, which will be learned in fine-tuning. To get a span-start probability
for each output token p′i, we compute the dot product between S and p′i and then use
a softmax to normalize over all tokens p′i in the passage:

Pstarti =
exp(S · p′i)∑
j exp(S · p′j)

(14.19)

We do the analogous thing to compute a span-end probability:

Pendi =
exp(E · p′i)∑
j exp(E · p′j)

(14.20)

The score of a candidate span from position i to j is S · p′i +E · p′j, and the highest
scoring span in which j ≥ i is chosen is the model prediction.

The training loss for fine-tuning is the negative sum of the log-likelihoods of the
correct start and end positions for each instance:

L =− logPstarti − logPendi (14.21)

Many datasets (like SQuAD 2.0 and Natural Questions) also contain (question,
passage) pairs in which the answer is not contained in the passage. We thus also
need a way to estimate the probability that the answer to a question is not in the
document. This is standardly done by treating questions with no answer as having
the [CLS] token as the answer, and hence the answer span start and end index will
point at [CLS] (Devlin et al., 2019).

For many datasets the annotated documents/passages are longer than the maxi-
mum 512 input tokens BERT allows, such as Natural Questions whose gold passages
are full Wikipedia pages. In such cases, following Alberti et al. (2019), we can cre-
ate multiple pseudo-passage observations from the labeled Wikipedia page. Each
observation is formed by concatenating [CLS], the question, [SEP], and tokens from
the document. We walk through the document, sliding a window of size 512 (or
rather, 512 minus the question length n minus special tokens) and packing the win-
dow of tokens into each next pseudo-passage. The answer span for the observation
is either labeled [CLS] (= no answer in this particular window) or the gold-labeled
span is marked. The same process can be used for inference, breaking up each re-
trieved document into separate observation passages and labeling each observation.
The answer can be chosen as the span with the highest probability (or nil if no span
is more probable than [CLS]).

14.3.3 Reader algorithms: Retrieval-Augmented Generation
The second standard reader algorithm is to generate from a large language model,
conditioned on the retrieved passages. This method is known as retrieval-augmented
generation, or RAG.

retrieval-
augmented
generation

RAG Recall that in simple conditional generation, we can cast the task of question
answering as word prediction by giving a language model a question and a token
like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

Then we generate autoregressively conditioned on this text.

18 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

More formally, recall that simple autoregressive language modeling computes
the probability of a string from the previous tokens:

p(x1, . . . ,xn) =

n∏
i=1

p(xi|x<i)

And simple conditional generation for question answering adds a prompt like Q: ,
followed by a query q , and A:, all concatenated:

p(x1, . . . ,xn) =

n∏
i=1

p([Q:] ; q ; [A:] ; x<i)

The advantage of using a large language model is the enormous amount of
knowledge encoded in its parameters from the text it was pretrained on. But as
we mentioned at the start of the chapter, while this kind of simple prompted gener-
ation can work fine for many simple factoid questions, it is not a general solution
for QA, because it leads to hallucination, is unable to show users textual evidence to
support the answer, and is unable to answer questions from proprietary data.

The idea of retrieval-augmented generation is to address these problems by con-
ditioning on the retrieved passages as part of the prefix, perhaps with some prompt
text like “Based on these texts, answer this question:”. Let’s suppose we have a
query q, and call the set of retrieved passages based on it R(q). For example, we
could have a prompt like:

retrieved passage 1

retrieved passage 2

...

retrieved passage n

Based on these texts, answer this question: Q: Who wrote

the book ‘‘The Origin of Species"? A:

Or more formally,

p(x1, . . . ,xn) =

n∏
i=1

p(xi|R(q) ; prompt ; [Q:] ; q ;[A:] ;x<i)

As with the span-based extraction reader, successfully applying the retrieval-
augmented generation algorithm for QA requires a successful retriever, and often
a two-stage retrieval algorithm is used in which the retrieval is reranked. Some
complex questions may require multi-hop architectures, in which a query is used tomulti-hop

retrieve documents, which are then appended to the original query for a second stage
of retrieval. Details of prompt engineering also have to be worked out, like deciding
whether to demarcate passages, for example with [SEP] tokens, and so on. Finally,
combinations of private data and public data involving an externally hosted large
language model may lead to privacy concerns that need to be worked out (Arora
et al., 2023).

14.4 • EVALUATING RETRIEVAL-BASED QUESTION ANSWERING 19

14.4 Evaluating Retrieval-based Question Answering

Question answering is commonly evaluated using mean reciprocal rank, or MRRmean
reciprocal rank

MRR (Voorhees, 1999). MRR is designed for systems that return a short ranked list of
answers or passages for each test set question, which we can compare against the
(human-labeled) correct answer. First, each test set question is scored with the re-
ciprocal of the rank of the first correct answer. For example if the system returned
five answers to a question but the first three are wrong (so the highest-ranked correct
answer is ranked fourth), the reciprocal rank for that question is 1

4 . The score for
questions that return no correct answer is 0. The MRR of a system is the average of
the scores for each question in the test set. In some versions of MRR, questions with
a score of zero are ignored in this calculation. More formally, for a system returning
ranked answers to each question in a test set Q, (or in the alternate version, let Q be
the subset of test set questions that have non-zero scores). MRR is then defined as

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

(14.22)

Alternatively, question answering systems can be evaluated with exact match, or
with F1 score. This is common for datasets like SQuAD which are evaluated (first
ignoring punctuation and articles like a, an, the) via both (Rajpurkar et al., 2016):

• Exact match: The % of predicted answers that match the gold answer exactly.
• F1 score: The average word/token overlap between predicted and gold an-

swers. Treat the prediction and gold as a bag of tokens, and compute F1 for
each question, then return the average F1 over all questions.

Other recent datasets include the AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) of multiple choice questions designed to be hard to answer from simple lexical
methods, like this question

Which property of a mineral can be determined just by looking at it?
(A) luster [correct] (B) mass (C) weight (D) hardness

in which the correct answer luster is unlikely to co-occur frequently with phrases
like looking at it, while the word mineral is highly associated with the incorrect
answer hardness.

14.5 Summary

This chapter introduced the tasks of question answering and information retrieval.

• Question answering (QA) is the task of answering a user’s questions.
• We focus in this chapter on the task of retrieval-based question answering,

in which the user’s questions are intended to be answered by the material in
some set of documents.

• Information Retrieval (IR) is the task of returning documents to a user based
on their information need as expressed in a query. In ranked retrieval, the
documents are returned in ranked order.

20 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

• The match between a query and a document can be done by first representing
each of them with a sparse vector that represents the frequencies of words,
weighted by tf-idf or BM25. Then the similarity can be measured by cosine.

• Documents or queries can instead be represented by dense vectors, by encod-
ing the question and document with an encoder-only model like BERT, and in
that case computing similarity in embedding space.

• The inverted index is an storage mechanism that makes it very efficient to
find documents that have a particular word.

• Ranked retrieval is generally evaluated by mean average precision or inter-
polated precision.

• Question answering systems generally use the retriever/reader architecture.
In the retriever stage, an IR system is given a query and returns a set of
documents.

• The reader stage can either be a span-based extractor, that predicts a span
of text in the retrieved documents to return as the answer, or a retrieval-
augmented generator, in which a large language model is used to generate a
novel answer after reading the documents and the query.

• QA can be evaluated by exact match with a known answer if only a single
answer is given, or with mean reciprocal rank if a ranked set of answers is
given.

Bibliographical and Historical Notes
Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:

What do worms eat Worms eat grass Birds eat worms

The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

BIBLIOGRAPHICAL AND HISTORICAL NOTES 21

Month = July

Place = Boston

Day = 7

Game Serial No. = 96

(Team = Red Sox, Score = 5)

(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-state
transducers (see the historical discussion in Joshi and Hopely 1999 and Karttunen
1999). Then in a content analysis phase each word or phrase was associated with a
program that computed parts of its meaning. Thus the phrase ‘Where’ had code to
assign the semantics Place = ?, with the result that the question “Where did the
Red Sox play on July 7” was assigned the meaning

Place = ?

Team = Red Sox

Month = July

Day = 7

The question is then matched against the database to return the answer. Simmons
(1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972, Woods 1978) was designed to beLUNAR

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form

(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13 PCT))))

By a couple decades later, drawing on new machine learning approaches in NLP,
Zelle and Mooney (1996) proposed to treat knowledge-based QA as a semantic pars-
ing task, by creating the Prolog-based GEOQUERY dataset of questions about US
geography. This model was extended by Zettlemoyer and Collins (2005) and 2007.
By a decade later, neural models were applied to semantic parsing (Dong and Lap-
ata 2016, Jia and Liang 2016), and then to knowledge-based question answering by
mapping text to SQL (Iyer et al., 2017).

Meanwhile, the information-retrieval paradigm for question answering was in-
fluenced by the rise of the web in the 1990s. The U.S. government-sponsored TREC
(Text REtrieval Conference) evaluations, run annually since 1992, provide a testbed
for evaluating information-retrieval tasks and techniques (Voorhees and Harman,
2005). TREC added an influential QA track in 1999, which led to a wide variety of
factoid and non-factoid systems competing in annual evaluations.

At that same time, Hirschman et al. (1999) introduced the idea of using chil-
dren’s reading comprehension tests to evaluate machine text comprehension algo-
rithms. They acquired a corpus of 120 passages with 5 questions each designed for
3rd-6th grade children, built an answer extraction system, and measured how well
the answers given by their system corresponded to the answer key from the test’s
publisher. Their algorithm focused on word overlap as a feature; later algorithms
added named entity features and more complex similarity between the question and
the answer span (Riloff and Thelen 2000, Ng et al. 2000).

The DeepQA component of the Watson Jeopardy! system was a large and so-
phisticated feature-based system developed just before neural systems became com-

22 CHAPTER 14 • QUESTION ANSWERING AND INFORMATION RETRIEVAL

mon. It is described in a series of papers in volume 56 of the IBM Journal of Re-
search and Development, e.g., Ferrucci (2012).

Neural reading comprehension systems drew on the insight common to early sys-
tems that answer finding should focus on question-passage similarity. Many of the
architectural outlines of these modern neural systems were laid out in Hermann et al.
(2015), Chen et al. (2017), and Seo et al. (2017). These systems focused on datasets
like Rajpurkar et al. (2016) and Rajpurkar et al. (2018) and their successors, usually
using separate IR algorithms as input to neural reading comprehension systems. The
paradigm of using dense retrieval with a span-based reader, often with a single end-
to-end architecture, is exemplified by systems like Lee et al. (2019) or Karpukhin
et al. (2020). An important research area with dense retrieval for open-domain QA
is training data: using self-supervised methods to avoid having to label positive and
negative passages (Sachan et al., 2023). Retrieval-augmented generation algorithms
were first introduced as a way to improve language modeling (Khandelwal et al.,
2019), but were quickly applied to question answering (Izacard et al., 2022; Ram
et al., 2023; Shi et al., 2023).

Exercises

Exercises 23

Alberti, C., K. Lee, and M. Collins. 2019. A BERT base-
line for the natural questions. http://arxiv.org/abs/
1901.08634.

Arora, S., P. Lewis, A. Fan, J. Kahn, and C. Ré. 2023. Rea-
soning over public and private data in retrieval-based sys-
tems. TACL, 11:902–921.

Chen, D., A. Fisch, J. Weston, and A. Bordes. 2017. Reading
Wikipedia to answer open-domain questions. ACL.

Clark, J. H., E. Choi, M. Collins, D. Garrette,
T. Kwiatkowski, V. Nikolaev, and J. Palomaki. 2020.
TyDi QA: A benchmark for information-seeking ques-
tion answering in typologically diverse languages. TACL,
8:454–470.

Clark, P., I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal,
C. Schoenick, and O. Tafjord. 2018. Think you have
solved question answering? Try ARC, the AI2 reasoning
challenge. ArXiv preprint arXiv:1803.05457.

Dahl, M., V. Magesh, M. Suzgun, and D. E. Ho. 2024. Large
legal fictions: Profiling legal hallucinations in large lan-
guage models. ArXiv preprint.

Deerwester, S. C., S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. 1990. Indexing by latent se-
mantics analysis. JASIS, 41(6):391–407.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL HLT.

Dong, L. and M. Lapata. 2016. Language to logical form
with neural attention. ACL.

Ferrucci, D. A. 2012. Introduction to “This is Watson”. IBM
Journal of Research and Development, 56(3/4):1:1–1:15.

Furnas, G. W., T. K. Landauer, L. M. Gomez, and S. T.
Dumais. 1987. The vocabulary problem in human-
system communication. Communications of the ACM,
30(11):964–971.

Green, B. F., A. K. Wolf, C. Chomsky, and K. Laughery.
1961. Baseball: An automatic question answerer. Pro-
ceedings of the Western Joint Computer Conference 19.

Hermann, K. M., T. Kocisky, E. Grefenstette, L. Espeholt,
W. Kay, M. Suleyman, and P. Blunsom. 2015. Teaching
machines to read and comprehend. NeurIPS.

Hirschman, L., M. Light, E. Breck, and J. D. Burger. 1999.
Deep Read: A reading comprehension system. ACL.

Iyer, S., I. Konstas, A. Cheung, J. Krishnamurthy, and
L. Zettlemoyer. 2017. Learning a neural semantic parser
from user feedback. ACL.

Izacard, G., P. Lewis, M. Lomeli, L. Hosseini, F. Petroni,
T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, and
E. Grave. 2022. Few-shot learning with retrieval aug-
mented language models. ArXiv preprint.

Jia, R. and P. Liang. 2016. Data recombination for neural
semantic parsing. ACL.

Johnson, J., M. Douze, and H. Jégou. 2017. Billion-
scale similarity search with GPUs. ArXiv preprint
arXiv:1702.08734.

Joshi, A. K. and P. Hopely. 1999. A parser from antiquity. In
A. Kornai, editor, Extended Finite State Models of Lan-
guage, pages 6–15. Cambridge University Press.

Joshi, M., E. Choi, D. S. Weld, and L. Zettlemoyer. 2017.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. ACL.

Jurafsky, D. 2014. The Language of Food. W. W. Norton,
New York.

Kamphuis, C., A. P. de Vries, L. Boytsov, and J. Lin. 2020.
Which BM25 do you mean? a large-scale reproducibil-
ity study of scoring variants. European Conference on
Information Retrieval.

Karpukhin, V., B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih. 2020. Dense passage retrieval for
open-domain question answering. EMNLP.

Karttunen, L. 1999. Comments on Joshi. In A. Kornai, edi-
tor, Extended Finite State Models of Language, pages 16–
18. Cambridge University Press.

Khandelwal, U., O. Levy, D. Jurafsky, L. Zettlemoyer, and
M. Lewis. 2019. Generalization through memorization:
Nearest neighbor language models. ICLR.

Khattab, O., C. Potts, and M. Zaharia. 2021. Relevance-
guided supervision for OpenQA with ColBERT. TACL,
9:929–944.

Khattab, O. and M. Zaharia. 2020. ColBERT: Efficient and
effective passage search via contextualized late interac-
tion over BERT. SIGIR.

Kwiatkowski, T., J. Palomaki, O. Redfield, M. Collins,
A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. De-
vlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W.
Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov.
2019. Natural questions: A benchmark for question an-
swering research. TACL, 7:452–466.

Lee, K., M.-W. Chang, and K. Toutanova. 2019. Latent re-
trieval for weakly supervised open domain question an-
swering. ACL.

Manning, C. D., P. Raghavan, and H. Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge.

Ng, H. T., L. H. Teo, and J. L. P. Kwan. 2000. A ma-
chine learning approach to answering questions for read-
ing comprehension tests. EMNLP.

Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary,
R. Majumder, and L. Deng. 2016. Ms marco: A hu-
man generated machine reading comprehension dataset.
NeurIPS.

Phillips, A. V. 1960. A question-answering routine. Techni-
cal Report 16, MIT AI Lab.

Rajpurkar, P., R. Jia, and P. Liang. 2018. Know what you
don’t know: Unanswerable questions for SQuAD. ACL.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ questions for machine comprehension
of text. EMNLP.

Ram, O., Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua,
K. Leyton-Brown, and Y. Shoham. 2023. In-context
retrieval-augmented language models. ArXiv preprint.

Riloff, E. and M. Thelen. 2000. A rule-based ques-
tion answering system for reading comprehension tests.
ANLP/NAACL workshop on reading comprehension tests.

Robertson, S., S. Walker, S. Jones, M. M. Hancock-
Beaulieu, and M. Gatford. 1995. Okapi at TREC-3.
Overview of the Third Text REtrieval Conference (TREC-
3).

http://arxiv.org/abs/1901.08634
http://arxiv.org/abs/1901.08634
https://doi.org/10.1162/tacl_a_00580
https://doi.org/10.1162/tacl_a_00580
https://doi.org/10.1162/tacl_a_00580
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://arxiv.org/pdf/2401.01301.pdf
https://arxiv.org/pdf/2401.01301.pdf
https://arxiv.org/pdf/2401.01301.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.1145/1460690.1460714
https://doi.org/10.3115/1034678.1034731
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://arxiv.org/pdf/2208.03299.pdf
https://arxiv.org/pdf/2208.03299.pdf
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/pdf?id=HklBjCEKvH
https://openreview.net/pdf?id=HklBjCEKvH
https://doi.org/10.1162/tacl_a_00405
https://doi.org/10.1162/tacl_a_00405
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://www.aclweb.org/anthology/Q19-1026
https://www.aclweb.org/anthology/Q19-1026
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://doi.org/10.3115/1117794.1117810
https://doi.org/10.3115/1117794.1117810
https://doi.org/10.3115/1117794.1117810
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/pdf/2302.00083.pdf
https://arxiv.org/pdf/2302.00083.pdf
https://www.aclweb.org/anthology/W00-0603
https://www.aclweb.org/anthology/W00-0603
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/

24 Chapter 14 • Question Answering and Information Retrieval

Sachan, D. S., M. Lewis, D. Yogatama, L. Zettlemoyer,
J. Pineau, and M. Zaheer. 2023. Questions are all you
need to train a dense passage retriever. TACL, 11:600–
616.

Salton, G. 1971. The SMART Retrieval System: Experiments
in Automatic Document Processing. Prentice Hall.

Seo, M., A. Kembhavi, A. Farhadi, and H. Hajishirzi. 2017.
Bidirectional attention flow for machine comprehension.
ICLR.

Shi, W., S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis,
L. Zettlemoyer, and W.-t. Yih. 2023. REPLUG: Retrieval-
augmented black-box language models. ArXiv preprint.

Simmons, R. F. 1965. Answering English questions by com-
puter: A survey. CACM, 8(1):53–70.

Simmons, R. F., S. Klein, and K. McConlogue. 1964. In-
dexing and dependency logic for answering English ques-
tions. American Documentation, 15(3):196–204.

Sparck Jones, K. 1972. A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation, 28(1):11–21.

Voorhees, E. M. 1999. TREC-8 question answering track
report. Proceedings of the 8th Text Retrieval Conference.

Voorhees, E. M. and D. K. Harman. 2005. TREC: Experi-
ment and Evaluation in Information Retrieval. MIT Press.

Woods, W. A. 1978. Semantics and quantification in nat-
ural language question answering. In M. Yovits, editor,
Advances in Computers, pages 2–64. Academic.

Woods, W. A., R. M. Kaplan, and B. L. Nash-Webber. 1972.
The lunar sciences natural language information system:
Final report. Technical Report 2378, BBN.

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhut-
dinov, and C. D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answering.
EMNLP.

Zelle, J. M. and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic programming.
AAAI.

Zettlemoyer, L. and M. Collins. 2005. Learning to map
sentences to logical form: Structured classification with
probabilistic categorial grammars. Uncertainty in Artifi-
cial Intelligence, UAI’05.

Zettlemoyer, L. and M. Collins. 2007. Online learning
of relaxed CCG grammars for parsing to logical form.
EMNLP/CoNLL.

https://doi.org/10.1162/tacl_a_00564
https://doi.org/10.1162/tacl_a_00564
https://arxiv.org/pdf/2301.12652.pdf
https://arxiv.org/pdf/2301.12652.pdf
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071

	Question Answering and Information Retrieval
	Information Retrieval
	Term weighting and document scoring
	Document Scoring
	Inverted Index
	Evaluation of Information-Retrieval Systems

	Information Retrieval with Dense Vectors
	Using Neural IR for Question Answering
	Retrieval-based QA: Datasets
	Reader algorithms: Answer Span Extraction
	Reader algorithms: Retrieval-Augmented Generation

	Evaluating Retrieval-based Question Answering
	Summary
	Bibliographical and Historical Notes
	Exercises

