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Aerospace vehicles flying at supersonic and hypersonic speeds are subject to increasedwall heating rates caused by

viscous frictionwith the gas environment. This extra heat is commonly referred to as convective aerodynamic heating.

In wall-modeled large-eddy simulations, the near-wall region of the flow is not resolved by the computational grid. As

a result, the effects of aerodynamic heating need to be modeled using a large-eddy simulation wall model. In this

investigation, wall-modeled large-eddy simulations of turbulent high-speed flows are performed to address this issue.

In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different

combinations of thermal boundary conditions and grid sizes as well as in transitional hypersonic boundary layers

interacting with incident shock waves. Specifically, the wall-modeled large-eddy simulations of the Couette flow

configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small

sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and

generates a sharp temperature peak there. Additionally, the simulations indicate that the wall model predicts shear

stresses and heat fluxes that are mostly proportional to the near-wall velocity in a manner that resembles an

approximate power law. In the wall-modeled large-eddy simulation of hypersonic boundary-layer/shock-wave

interaction, the model is tested against direct numerical simulations and experiments. It is shown to correctly capture

aerodynamic heating and the overall heat transfer rate around the shock-impingement zone, despite the fact that the

adverse pressure gradients in that region may involve nonequilibrium effects.

Nomenclature

A = wall-damping constant
a = speed of sound
Bq = wall heat-transfer coefficient
Cf = skin-friction coefficient
cp = specific heat at constant pressure
hwm = large-eddy simulation/wall-model matching location

from the wall
L = length scale
M = Mach number
N = number of grid cells
P = static pressure
Pr = Prandtl number
q = heat flux
Reδ = bulk Reynolds number
Reτ = friction Reynolds number
Rg = gas constant
S = Sutherland constant
St = Stanton number
T = static temperature
tf = flow-through time
U = velocity
uτ = friction velocity
x = streamwise direction

y = wall-normal direction
z = spanwise direction
Δ = grid spacing
δ = half-channel height
δ� = displacement thickness
κ = von Kármán constant
μ = viscosity
ρ = density
τ = shear stress

Subscripts

b = bottom-wall quantity
t = top-wall quantity
w = wall quantity
wm = wall-model quantity
k = wall-parallel quantity
� = normalization by wall units
∞ = freestream quantity

I. Introduction

N EAR-WALL turbulence modeling is a relevant discipline for
engineering problems that involve wall-bounded turbulent flows

and heat transfer. In particular, examples where wall heat transfer plays
an important role include inlets and combustors in air-breathing
hypersonic propulsion systems [1], fuselages of high-speed aerospace
vehicles during reentry or hypersonic cruise flight [2], and the first rows
of turbine blades immediately downstream of the combustor in jet
engines [3]. Because of the associated complexity and computational
cost of high-fidelity simulations including direct numerical simulations
(DNSs) and wall-resolved large-eddy simulations (LES), most of the
early near-wall treatments are based on empirical correlations calibrated
a priori for specific types of flows [4,5] and wall functions in Reynolds-
averaged Navier–Stokes simulations [6,7]. Besides the aforementioned
methods, wall-modeled large-eddy simulation (WMLES) is becoming
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viable as an attractive high-fidelity alternative to DNS in industrial
design [8]. In WMLES, the bulk of the flow is resolved, and only the
near-wall turbulence is modeled.
Most of the earlier work on WMLES has been focused on

addressing the momentum transfer near the wall (e.g., see reviews in
[9,10]), with focus being made mostly on low-speed flows such as
incompressible channel flows [11,12], atmospheric boundary layers
[13,14], urban boundary layers [15,16], and low-speed transitional
boundary layers [17]. Wall heat-transfer modeling in high-speed
flows, on the other hand, has received much less attention in
comparison with wall shear-stress modeling. The reason perhaps is
that theReynolds analogy and theMonin–Obukhov similarity theory,
according to which the wall heat transfer is slaved to the wall shear
stress, have so far worked fairly well in low-speed flows [18,19].
However, at high speeds, such simplification cannot be exploited due
to the disjoining effect of the aerodynamic heating near the wall,
which makes modeling the thermal field an additional challenge that
has to be undertaken in these types of flows.
High-speed wall-bounded flows involve a number of additional

physical processes that complicate LES wall modeling. Predictions of
thevelocity field in principle tend to rely onpredictions of thermal fields,
and vice versa, particularly in high-Mach-number regimes, where
significant density variations occur near the wall that couple the
momentum and thermal-energy conservation equations. Additionally,
high-speed flows tend to involve impingement of shock waves on
boundary layers alongwith aerodynamic heating. The former aspect has
beendiscussed, for example, in [20,21]within the context ofWMLESof
fully developed turbulent supersonic boundary layers interacting with
shock waves above adiabatic walls. In practical applications, such as
hypersonic flows around aerospace vehicles or internal flows in
supersonic combustors, however, heat transfer to walls plays an
important role, and WMLES strategies have demonstrated promise in
capturing complex phenomena there [22]. At high Mach numbers,
the heat-transfer effect induced by both convective and radiative
aerodynamic heating is significant near the wall. Correspondingly,
coarse grids typically used in LESmay not be able to capture this effect
because they do not resolve this region, and an appropriate LES wall
model is required.
This investigation focuses on the role of convective aerodynamic

heating in wall heat-transfer modeling inWMLES of turbulent flows in
the supersonic and hypersonic velocity ranges (Mach 2–6). Additional
effects such as the radiative transfer connected with nonequilibrium
thermochemical processes, sometimes enabled by the high flow
temperatures near the fuselage of high-speed aerospace vehicles, are not
considered in this work. The wall model under consideration is an
equilibrium one (see [23] and Sec. II for details). Although the
equilibrium wall model has been used previously for computing high-
speed turbulent flows [20,22], the present study provides a first
systematic analysis of grid convergence and model performance in
different flow configurations. In particular, the capability of themodel in
capturing the wall heat-transfer rates is tested in high-speed Couette
flows and transitional boundary layers interacting with incident shock
waves. The results show that the model performs remarkably well even
in cases where the intense, near-wall aerodynamic heating is not
resolved by the LES grid.
The remainder of this paper is organized as follows. The model

formulation is summarized in Sec. II for later use throughout the
paper. Themodel performance is first tested in Sec. III for high-speed
Couette flows and later in Sec. IV for the case of an oblique shock
wave impinging on a transitional hypersonic boundary layer. Last,
conclusions and comments on future work are provided in Sec. V.

II. Equilibrium Wall Model

The equilibrium wall model integrates the momentum and total-
energy conservation equations

d

dy

�
�μ� μt;wm�

duk
dy

�
� 0 (1)

d

dy

�
�μ� μt;wm�uk

duk
dy

� cp

�
μ

Pr
� μt;wm

Prt;wm

�
dT

dy

�
� 0 (2)

within a layer spanning from the wall y � 0 to a matching location
y � hwm, where appropriate boundary conditions are applied, as
explained later. In this formulation, y is the wall-normal coordinate;
uk is the total wall-parallel velocity including both the streamwise
and spanwise components; T is the static temperature; cp is the
specific heat at constant pressure; Pr � 0.7 is the molecular Prandtl
number; μ is the molecular dynamic viscosity; and the subscript
“wm” indicates unclosed quantities modeled in the wall model.
Themolecular viscosity μ is a function of the temperature, with the

particular dependence being provided in Secs. III and IV for each of
the two problems treated here. Additionally, the eddy viscosity μt;wm
is specified according to the mixing-length model

μt;wm � κρy

������
τw
ρ

r
D (3)

where κ � 0.4 is thevonKármán constant, ρ is the density, and τw is the
local wall shear stress. The van Driest damping functionD is given by

D �
�
1 − exp

�
−
y�

A�

��
2

(4)

where the superscript “�” indicates lengths normalized by the
instantaneous local wall unit δν � νw∕uτ, with νw and uτ being the
wall kinematic viscosity and friction velocity, respectively. In Eq. (4),
A� � 17 is a model constant indicating the dimensionless height
above thewallwhere themolecular and eddy viscosities become of the
same order of magnitude.
Density and temperature are related through the equation of state:

P � ρRgT (5)

where Rg is the gas constant, and P is the static pressure; the latter is
considered to be a constant across the wall-modeled region that
matcheswith the LES pressure at the LES/wall-model interface. Last,
Prt;wm � 0.9 is the eddy Prandtl number. Note that the model does
not include awall-normal velocity component, a streamwise pressure
gradient, nor time variations of momentum and energy, and it does
not account for total-energy transfer by pressure work.
Equations (1) and (2) along with Eqs. (3–5) are numerically

integrated on a one-dimensional grid 0 ≤ y ≤ hwm bounded by the
wall at y � 0 and by a matching location at y � hwm where the wall-
model solution matches with the LES solution on the coarse grid.
Following Kawai and Larsson [23], the matching location is set to
hwm � 2.5Δy, where Δy is the WMLES grid spacing in the wall-
normal direction. This matching height corresponds to the third LES
grid point (cell center) from thewall. The boundary conditions for the
wall model at the wall y � 0 are

uk�Uw; T�Tw �isothermalwall� or dT∕dy�0 �adiabaticwall�
(6)

whereUw and Tw are thewall velocity (for moving surfaces) and wall
temperature, respectively. For isothermal walls, thewall temperature is
kept uniform along the wall and constant in time. The corresponding
boundary conditions at the matching location y � hwm are

uk � ~Uk; T � ~T; P � P (7)

where ~Uk, ~T, and P are the resolved LES values of wall-parallel
velocity, static temperature, and static pressure. The former includes
the streamwise and spanwise components as appropriate depending on
the local direction of the resolvedLES flow at thematching location. In
this notation, the tilde and overline operators indicate Favre and
Reynolds filtering, respectively. The equilibrium wall model provides
the necessary boundary conditions for the integration of the outer LES
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equations. Specifically, the first LES cell from the wall is fed with

the wall shear stress τw � μduk∕dyjy�0 and the wall heat flux

qw � �μcp∕Pr�dT∕dyjy�0 from the solution to the wall-model

problem [Eqs. (1–7)].

A. Remarks on the EquilibriumWall-Modeled Energy Equation

In anticipation of the results presented later, it is convenient to

highlight two different aspects of the energy equation [Eq. (2)]. The

first one relates to the representation of the aerodynamic heating in the

equilibrium wall model. Upon integrating Eq. (1) once, the first term

on the left-hand side of Eq. (2) can be easily rewritten as a molecular

dissipation given by τw�duk∕dy�, which corresponds to the subgrid-

scale (SGS) aerodynamic heating and becomes important at

sufficiently high Mach numbers.
To estimate the relative importance of the aerodynamic heating in

Eq. (2), consider a freestream at velocity U∞ and temperature T∞
flowing along a colder stationary wall at temperature Tw. The two

terms involving the temperature gradient in Eq. (2) represent the

molecular heat conduction �cpμ∕Pr�dT∕dy and the turbulent heat

transport �cpμwm∕Prt;wm�dT∕dy. The former prevails over the latter

close to the wall where y� ≪ �A��2∕3; note that requiring μwm∕μ ∼
κy��1 − exp�−y�∕A���2 ∼ κy��y�∕A��2 ≪ 1 leads directly to

y� ≪ �A��2∕3. The opposite occurs relatively far away from the

wall, when y� ≫ A�, where the ratio of molecular to eddy viscosities

is small, μ∕μwm ∼ 1∕�κy�� ≪ 1. Focusing first on the region where

molecular effects prevail, the aerodynamic heating scales as τwuτ∕δν,
whereas the heat conduction becomes of order cpμwTτ∕δ2ν, where δν is
the viscous length scale, and Tτ ∼ qw∕�ρwcpuτ� is a friction

temperature [24] that characterizes temperature variation across the

viscous sublayer and can be further simplified by using the Reynolds

analogy qw ∼ τwcp�T∞ − Tw�∕U∞ (assuming that the Reynolds

analogy still applies). As a result, in this region, when the condition

�γ − 1�
�

T∞

T∞ − Tw

�
M2

∞C
1∕2
f � O�1� (8)

is satisfied, the aerodynamic heating becomes of the same order as

the molecular heat conduction, τwuτ∕δν ∼ cpμwTτ∕δ2ν . In Eq. (8), γ is
the adiabatic coefficient,Cf is the skin friction coefficient, andM∞ is the

freestreamMach number.Conversely, in the regionwhere turbulent heat

transport prevails, the assumption of approximate logarithmic laws for

velocity and temperature, duk∕dy ∼ uτ∕�κy� and dT∕dy ∼ Tτ∕�κTy�,
suggests the scaling τwuτ∕�κy� for the aerodynamic heating and

cpμwmTτ∕�Prt;wmκTy2� for the divergence of the turbulent heat flux,
with the latter being further simplified by assumingPrt;wm ∼ κ∕κT [25]
and using the asymptotic expression μwm ∼ κρ∞yuτ emerging from the

eddy-viscosity model [Eq. (3)] at y�∕A� ≫ 1. Consequently, in this

region, the aerodynamic heating becomes of the same order as the

turbulent heat transport when the condition

�γ − 1�
�

T∞

T∞ − Tw

��
ρw
ρ∞

�
M2

∞

κ
C1∕2
f � O�1� (9)

is satisfied. Because the temperature and density variations are typically

of order unity, both conditions [Eq. (8) and (9)] approximately lead to

M2
∞C

1∕2
f � O�1�, indicating that aerodynamic heating becomes

important throughout the entire wall-modeled layer when M∞ C
−1∕4
f ,

which translates into Mach numbers of order 3–5 when Cf ∼
0.001–0.005 as in the simulations detailed later (up to premultiplying

factors of order unity). When such high Mach numbers are met, the

resulting aeroheated region is typically not resolved by WMLES grids,

in which the spacing in the wall-normal direction scales with the local

boundary layer height. As described in Secs. III and IV, in some

WMLES cases, the aerodynamic heating modeled as described

previously leads to nonmonotonic SGS temperature profiles within the

wall-modeled region by which heat is transferred both to thewall and to

the bulk flow.

The second aspectworth highlighting is related to the coupling of the
SGS aerodynamic heating with the resolved LES field. Under the
equilibrium assumption, the bracketed quantities in Eqs. (1) and (2) are
constant across the wall-modeled layer. These conserved quantities
correspond to the sum of the viscous and turbulent shear stresses
[in Eq. (1)] and to the sum of aerodynamic heating, molecular heat
conduction, and turbulent heat transport [in Eq. (2)]. Of particular
interest for interpreting the performance of the equilibrium wall model
is the latter invariance.To see this, consider awall at rest, or equivalently
a reference frame moving with thewall, in such a way thatUw � 0 for
illustration. Specifically, the first integral of Eq. (2) evaluated at the
matching location yields

qw �
�
ukτw � cp

μt;wm
Prt;wm

∂T
∂y

�
y�hwm

(10)

where the molecular heat conduction has been neglected on the right-
hand side because μ∕μwm � O�δν∕hwm� ≪ 1 there. Equation (10)
states that the wall heat flux is the sum of the aerodynamic heating and
the turbulent heat transport at the matching location, with each
represented by the first and second terms on the right-hand side,
respectively. This conservation constraint, for instance, indicates that, in
adiabatic flows (qw � 0), the slope of the temperature at the edge of the
wall-modeled layer is not necessarily zero in high-speed conditions
described previously where aerodynamic heating becomes important
because that extra heat must be evacuated to the bulk flow. Note,
however, that the right-hand sideofEq. (10) cannot be exactly equated to

the equivalent expressionwritten in terms of the LES quantities ~U and ~T
because such constraint is not strictly imposed at the matching location.
In anasymptotic sense, and if theLESconservationequations effectively
reduced to Eq. (2) close to the wall, expression (10) could be
approximated as

qw ≈
�

~Ukτw � cp
μt;LES
Prt;LES

∂ ~T
∂y

�
y∕δ→0;y�≫1

(11)

where μt;LES and Prt;LES are the LES eddy viscosity and turbulent

Prandtl number, respectively, δ is a large scale (e.g., a boundary-layer
thickness or half-channel height), and the bracketed quantities are
evaluated sufficiently close to the wall but outside the viscous sublayer.
The results described in Sec. III suggest that Eq. (11) is qualitatively

correct, in that the action of the aerodynamic heating ~Uk close to thewall
regulates the slope of the resolved LES temperature field, to the extent,

for instance, that ∂ ~T∕∂yjy∕δ→0;y�≫1 ≠ 0 in adiabatic conditions,

where qw � 0.

B. Code Numerics

The performance of this equilibrium wall model in capturing the
wall heat-transfer rates is examined in Sec. III in high-speed turbulent
Couette flows and in Sec. IV in a shock/transitional-boundary-layer
interaction problem. The numerical code used in this study is the
unstructured, finite volume compressible solver CharLES [20,26],
which has been extensively used and validated for wall-bounded
flow calculations (see for example [20,22,27,28]). The code solves
the Favre-filtered compressible Navier–Stokes equations for the
conserved flow quantities of mass, momentum, and total energy. The
eddy viscosity is modeled using the Vreman model [29] for
the results presented in Sec. III, whereas the dynamic Smagorinsky
(DS) model [30] is used for those in Sec. IV. Among those two, the
choice of SGS model did not lead to significant differences in the
Couette flow configuration, but the local character of the DS model
led to improved predictions in the problem of the shock interaction
with a transitional boundary layer. A fourth-order central scheme is
used for flux reconstruction in regions away from shocks, which are
detected using aDucros shock sensor [31,32] with a typical threshold
of 0.02. Near shocks, an essentially nonoscillatory scheme is used. A
third-order explicit Runge–Kutta scheme is used for time integration.
Recent applications of this code in the context of WMLES can be
found, for instance, in [33].

YANG ETAL. 733

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Ja
nu

ar
y 

31
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

62
40

 



III. High-Speed Turbulent Couette Flows

A. Computational Set-up

Consider a turbulent flow between two parallel plates moving at

the same speed Uw but in opposite directions, as sketched in Fig. 1.

The top- and bottom-wall temperatures are denoted as Tw;t and Tw;b,
respectively. The subscriptsb and t are used throughout this section to
indicate quantities at the bottom and top walls. The computational

domain has dimensions Lx × Ly × Lz � 2πδ × 2δ × 2πδ in the
streamwise, wall-normal, and spanwise directions, respectively,

where δ is the half-channel height. A structured Cartesian grid with

uniform grid spacing in each direction is used. The grid spacings
Δx,Δy, andΔz and thematching height hwm are such thatΔx∕hwm �
Δz∕hwm � 0.63 andΔy∕hwm � 0.4. The reader is referred to [34] for
investigations of the effects of varying the ratio Δx∕Δz. Periodic

boundary conditions are imposed in the streamwise and spanwise

directions. Statistics are averaged spatially in both x and z directions,
and temporally for ∼100tf, where tf � Lx∕Uw is the flow-through

time, which, in these simulations, is of the same order as the large-

scale eddy turnover time δ∕uτ.
The cases computed here are summarized in Tables 1–3. The wall

Mach numbers range from Mw ≈ 1 to 6 based on the local speed of

sound, with grid sizes ranging from 55,000 to 8 million elements.
Isothermal conditionswith equalwall temperatures (Tw;b � Tw;t) are

addressed in Sec. III.B, cases with unequal wall temperatures

(Tw;b ≠ Tw;t) are studied in Sec. III.C, and last adiabatic wall
conditions (qw;t � 0) are considered in Sec. III.D.
The results shown later focus on the performance of the equilibrium

wall model under different grid resolutions and thermal boundary
conditions. In particular, the analysis reports the dimensionless heat

rate in the form of the parameter

Bq � qw∕�ρwcpuτTw� (12)

along with the skin friction

Cf � 2τw∕�ρwU2
w� (13)

and the friction Reynolds number

Reτ � ρwuτδ∕μw (14)

In Eqs. (12–14), qw, τw, ρw, μw, and Tw are averaged in time and in

the spanwise and streamwise directions (note that the last three vary in

space and time when adiabatic wall conditions are employed). The
friction velocity is then computed asuτ �

��������������
τw∕ρw

p
. Note thatBq,Cf,

andReτ generally have different values on each wall, as prescribed by
the evaluation of each parameter qw, τw, ρw, μw, and Tw on either the
upper or bottom wall, unless the boundary conditions are the same on

both walls, in which case the differences are not significant in the

statistically steady state.
The sound speed at the bottom wall (aw;b � �����������������

γRgTw;b

p
), the

bottom wall temperature Tw;b, the volume-averaged density ρm, and
the half-channel height δ are the same in all the cases and are used for
nondimensionalizing the results. Quantities with a superscript “�”

are normalized with inner units corresponding to δν � νw∕uτ as the
unit length and uτ as the unit velocity. The molecular dynamic

viscosity μ is made to vary with temperature according to the power
law μ∕μref � �T∕Tref�σ, where Tref � Tw;b and μref � μw;b are the
reference values of temperature and viscosity, respectively, and
σ � 0.7 is the power exponent. The results presented next are focused
on quantities that are conserved inWMLES, such as the mean values
of velocity, temperature, wall shear stress, and wall heat transfer.
Outer scales are employed for normalizing the wall-normal direction
in the figures shown later because aerodynamic heating generally
prevents logarithmic scaling of the mean velocity and temperature.

B. Isothermal Walls at the Same Wall Temperature

Six baseline cases, denoted as AX and BX in Table 1, are first
described that are characterized by having upper and bottom walls at
equal temperatures Tw;b � Tw;t. Cases beginning with the letters A
and B correspond to Mw � 3 and Mw � 6, respectively, where
Mw � Uw∕aw;b is the Mach number. Note thatMw, Bq,Cf, and Reτ
are the same for bothwalls. The digitX is an index proportional to the
grid size (X � 1 is the coarsest resolution and X � 3 is the finest
one). The bulk Reynolds number, which is based on δ,Uw, μw;t, and
ρm, isReδ � 3.0 × 104 for theMach 6 cases andReδ � 1.5 × 104 for
the Mach 3 cases.
All the cases with equal wall temperatures lead to monotonic

temperature profiles near the wall. This can be observed in Fig. 2,
which shows the profiles of mean velocity and temperature for
theMach 3 cases in Table 1. Because of the aerodynamic heating, the
bulk temperature is higher than that at the wall. Specifically, the
higher the Mach number is, the larger the bulk-to-wall temperature
ratio is, which becomes 2.4 for theMach 3 cases and 6.5 for theMach
6 cases.
The mean velocity and temperature are fairly independent of the

grid resolution for the grid sizes considered here. However, the LES
solutions from the wall up to the third grid point on the LES grid
appear to be grid-dependent, with the temperature profile from the
coarse A1 grid falling consistently below that from the finer-grid
calculations A2 and A3. This is similar to the observations made in
[23] regardingWMLES of supersonic channels and boundary layers.
There, grid-independent results were found only for values of hwm
above the third LES grid point from the wall. Despite these
differences in the near-wall LES profiles, the wall quantities Cf, Bq,
and Reτ are mostly grid-independent for the twowall Mach numbers
considered here, as shown in Table 1. Note that, although the sharp
near-wall gradients in both profiles are poorly resolved in case A1 in
comparison with A3, the subgrid profiles obtained from the wall
model are similar for all grids, as shown in Fig. 2 where the wall-
modeled profiles collapse near the wall. The convergence of the
subgrid profiles and the absence of noticeable variations in Cf, Bq,
and Reτ indicate that the increasingly larger portions of unresolved
velocity and temperature near the wall are correctly modeled by the
equilibrium wall model. As a consequence, the wall heat fluxes and
shear stresses become mostly independent of the grid size. The small
differences detected in bothCf andBq with grid refinement might be
ascribed to the underperformance of the SGS model for the
dissipation in Eq. (2) and a lack of statistical convergence, although
these aspects have not been investigated in detail here. Similar
conclusions are inferred from the BX cases (plots not shown here for
brevity).

C. Isothermal Boundary Conditions with Different Wall

Temperatures

The next two sets of cases, CX andDX, pertain to isothermal walls
at different temperatures with Tw;t � 9Tw;b, as summarized in
Table 2. The bottom-wall Mach number in both sets of cases is
Mw;b � 6. As a result of the increase in the top wall temperature, the
sound speed aw;t �

�����������������
γRgTw;t

p
increases, and the top-wall Mach

number decreases to Mw;t � 2. Cases CX and DX differ in their
bulk Reynolds numbers, with Reδ � 3.0 × 104 for CX and
Reδ � 1.2 × 105 for DX. Similar to the previous subsection, X is an
index proportional to the grid resolution.
Because the flow is statistically stationary, the mean shear stress at

the topwall balances that at the bottomwall. The differences between
Fig. 1 Schematics of the computational setup forWMLESof high-speed
turbulent Couette flows.
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the top- and bottom-wall skin-friction coefficients are due to the

different densities on each wall. Although the bottom-wall shear

stresses in cases CX are not very different from those in cases BX

(i.e., 0.127 for CX and 0.154 for BX), the bottom-wall skin-friction

coefficient is significantly smaller in the CX cases due to the

additional factors participating in the normalization. Note, however,

that the resulting heat-transfer fluxes at the bottom wall are not

significantly different from those in the BX cases (i.e., 0.98 for CX

and 0.91 for BX). Similarly, as the top-wall density decreases due to

the increase in wall temperature, the viscous length μw;t∕�ρw;tuτ;t�

increases. Correspondingly, the flow near the top wall is better

numerically resolved than the flow near the bottom wall, which

makes the grid resolution in the parallel directions near the topwall in

case C2 comparable to a typical wall-resolved LES.

The increase in the top-wall temperature also has an important

physical effect enabled by near-wall aerodynamic heating, in that it

generates a near-wall peak in the temperature profiles in all cases, as

shown in Fig. 3. As the top-wall temperature is increased, this peak

moves increasingly closer to the top wall. If the top-wall temperature

were increased to very high values, the peak temperature would be

a) b)
Fig. 2 a)Mean streamwise velocity and b)mean temperature profiles for the AX cases outlined in Table 1. In each case, thematching location y � hwm is
indicated using thin vertical lines, whichmove toward thewall as the grid is refined. The inset shows an amplified view of the profiles near the bottomwall.

LES solutions withinhwm < y < 2δ − hwm are shown using symbols (at grid points). SGS profiles computed from the equilibriumwall model (WM) in the
wall-modeled regions 0 < y < hwm and 2δ − hwm < y < 2δ are shown using solid bold lines (two of the lines are indistinguishable from the third one).
Colors indicate results computed on the finest grid (A3, yellow lines), coarsest grid (A1, blue lines), and intermediate grid (A2, orange lines).

Table 1 WMLES cases of high-speed turbulent Couette flows between two
isothermal walls at the same temperature

Case Mw Nx × Ny × Nz Δ�
x × Δ�

y × Δ�
z �⋅102� Cf Bq Reτ

A1 3.0 64 × 32 × 64 1.32 × 0.842 × 1.32 0.00286 0.137 1.35 × 103

A2 3.0 128 × 64 × 128 0.665 × 0.424 × 0.665 0.00287 0.135 1.35 × 103

A3 3.0 256 × 128 × 256 0.339 × 0.216 × 0.339 0.00293 0.137 1.38 × 103

B1 6.0 64 × 32 × 64 4.90 × 3.12 × 4.90 0.00131 0.366 4.99 × 103

B2 6.0 128 × 64 × 128 2.45 × 1.56 × 2.45 0.00131 0.365 5.00 × 103

B3 6.0 256 × 128 × 256 1.23 × 0.782 × 1.23 0.00133 0.367 5.00 × 103

Table 2 WMLES cases for high-speed turbulent Couette flows between two
isothermal walls at different temperatures (Tw;t � 9Tw;b)

a

Case Mw Nx × Ny × Nz Δ�
x × Δ�

y × �Δ�
z ⋅ 102� Cf Bq Reτ (×103)

C1 2.0 48 × 24 × 48 0.513 × 0.327 × 0.513 0.00686 0.0655 0.392
C1 6.0 48 × 24 × 48 7.19 × 4.58 × 7.19 0.000768 0.363 5.49
C2 2.0 128 × 64 × 128 0.185 × 0.118 × 0.185 0.00715 0.0665 0.377
C2 6.0 128 × 64 × 128 2.59 × 1.64 × 2.59 0.000795 0.369 5.27
D1 2.0 48 × 24 × 48 1.80 × 1.14 × 1.80 0.00481 0.0547 1.37
D1 6.0 48 × 24 × 48 25.1 × 16.0 × 25.1 0.000536 0.306 19.2
D2 2.0 128 × 64 × 128 0.674 × 0.430 × 0.674 0.00489 0.0549 1.37
D2 6.0 128 × 64 × 128 9.46 × 6.02 × 9.45 0.000546 0.307 19.2

aValues at the top and bottom walls are listed consecutively in each of the two rows for every case.

Table 3 WMLES cases for high-speed turbulent Couette flows between an upper
adiabatic wall and a lower isothermal walla

Case M Nx × Ny × Nz Δ�
x × Δ�

y × Δ�
z �×102� Cf Bq Reτ (×103)

E1 1.1 64 × 32 × 64 0.171 × 0.109 × 0.171 0.010049 0.0 0.17
E1 3.0 64 × 32 × 64 1.83 × 1.16 × 1.83 0.001419 0.1876 1.86
E2 1.1 128 × 64 × 128 0.0905 × 0.0577 × 0.0905 0.01094 0.0 0.18
E2 3.0 128 × 64 × 128 0.974 × 0.620 × 0.974 0.001525 0.194 1.98

aValues at the top and bottom walls are listed consecutively in each of the two rows for every case. The

top-wall Mach number is based on the planar averaged speed of sound evaluated there.
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located there. At the intermediate top-wall temperature analyzed
here, Tw;t � 9Tw;b, the peak temperature caused by aerodynamic
heating sits near the top wall. Specifically, the peak temperature is
partially resolved in cases C2 and D2 by the LES grid, whose
resolution in both cases is high enough to warrant capturing this
phenomenon. However, in cases C1 and D1, which are computed on
coarser grids, the peak temperature ceases to be captured in the LES
grid, as observed in Fig. 3. Despite this apparent shortfall, the heat-
transfer coefficients Bq predicted by the equilibrium wall model in
cases C1 and D1 are very similar to the ones obtained using the finer
grids in cases C2 and D2, as indicated in Table 2. This indicates that
aerodynamic heating has been correctly accounted for by the wall
model in the computation of the near-wall temperature profile. Note,
however, that the skin-friction coefficients for the CX cases increase
by approximately 4%when the grid is refined by a factor of 2.5. This
weak dependency of Cf on the grid resolution does not alter
significantly the performance of the model regarding heat transfer
rates, as shown in Table 2.

D. Mixed Isothermal/Adiabatic Boundary Conditions

The effect of adiabatic boundary conditions is addressed in cases
EX in Table 3, which correspond to a bulk Reynolds number
Reδ � 1.5 × 104. In these cases, the bottom wall is isothermal, and
the top one is adiabatic. The resulting profiles of temperature are
shown in Fig. 4. Because the heat generated from aerodynamic
heating near the top wall can only escape the computational domain
through the bottom wall, the mean temperature peaks at the top wall
with a temperature Tw;t ≈ 7Tw;b. As a result, the flow near the top
wall is better resolved than that near the bottom wall. The WMLES
results show a small sensitivity to the grid resolution, with
approximately a 6% difference being observed in the skin-friction
and heat-transfer coefficients upon doubling the grid resolution in all
three directions from case E1 to E2.
As discussed in Sec. II within the context of the energy equation

[Eq. (2)] in the wall model, the temperature resolved on the LES grid
does not necessarily have to arrive with zero slope at the adiabatic
wall, particularly in high-speed flows where aerodynamic heating is

important, as in the present configuration. Conversely, the LES

temperature slope at the adiabatic wall increasingly departs from zero

as the grid is coarsened, which finds justification in the fact that the
aerodynamic heat generated in the near-wall region (computed by

the equilibrium wall model) must be transferred into the bulk flow.

The adiabatic boundary condition is strictly satisfied on the physical
wall, in the form of a zero gradient of the temperature at y � 0within
the wall-modeled region. Therefore, the resulting wall heat-transfer

rates reported in Table 3 become mostly insensitive to the grid
resolution and to the presence or absence of adiabaticity in the

resolved temperature field.
The results presented in the previous three subsections systematically

illustrate the grid convergence and physical performance of the

equilibrium wall model in high-speed flows for a number of different

resolutions and wall boundary conditions. In particular, the grid
convergence observed here indicates that, as the grid is refined, the LES

conservation equations increasingly reproduce the results previously

predicted by thewallmodel on coarser grids, thereby suggesting that the
wall model captures some of the relevant physics associated with

thermal coupling in high-speed wall-bounded turbulent flows. The
remaining portion of this section addresses the nature of the predicted

wall quantities and their dependence on the flow variables at the

matching location.

E. Correlations of Wall Quantities with Velocities and Temperatures

at the Matching Location

A question of some interest for LES modeling of wall-bounded

flows is the relation between wall-based quantities such as the shear

stress τw and the heat flux qw as a function of the LES flow variables
at the matching location, including the temperature ~T and wall-

parallel velocity ~Uk. These two LES flow variables correspond to the

upper boundary conditions of the wall model, as described in Sec. II.
In cases where both walls are isothermal and kept at the same

temperature, as in case A2 in Table 1, the near-wall structure of the

streamwise velocity ~U and temperature ~T at the matching location
with thewall model are correlated with the corresponding wall-shear

stress τw;b and wall heat flux qw;b. This is shown in the in-plane

a) b)
Fig. 3 Mean temperature for cases a) CX, and b) DX in Table 2. Refer to Fig. 2 for legends.

a) b)
Fig. 4 a) Mean streamwise velocity and b) temperature for cases EX in Table 3. Refer to Fig. 2 for legends.
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visualizations in Fig. 5 (cross-correlation coefficients c ~T;qw
� 0.89

and c ~U;τw
� 0.97; any phase lag between the wall quantities and the

LES solutions at the matching location is absent in the current wall
model formulation). Streaky structures can be discerned in all the
contours. Similarly, in cases where the wall temperatures are
different, as in case C2 in Table 2, the wall heat flux and shear stress
are correlated with each other and with the near-wall structure of the
streamwise velocity at the matching location, as observed in Fig. 6
(cross-correlation coefficients c ~U;qw;t

� 0.93 and c ~U;τw;t
� 0.97).

However, the near-wall temperature is poorly correlated from the
other three quantities, particularly with the wall heat transfer (cross-
correlation coefficient c ~T;qw;t

� 0.25). This is in contrast with the
equal-temperature case shown in Fig. 5, where both quantities are
highly correlated, and it suggests that aerodynamic heating, rather
than turbulent heat conduction, is here the dominant mechanism in
modulating the temperature distribution at the matching location.
Last, analogous in-plane contours provided in Fig. 7 for the mixed
isothermal/adiabatic case E2 show that, at the adiabatic wall, the
shear stress is correlated with the velocity and anticorrelated with
temperature at the matching location (correlation coefficients
c ~U;τw;t

� 0.99 and c ~T;τw;t
� −0.87), with the latter being explained by

the monotonic decrease in temperature away from the wall.
The considerations given previously suggest that τw and qw are

correlated in all cases with the near-wall velocity, whereas such
proportionality relation of τw and qw with the near-wall temperature
is not as discernible. This is shown in Fig. 8, where panels Figs. 8a
and 8b suggest that a power-law scaling may exist between the shear
stress, heat flux, and the near-wall velocity in all cases except for the
mixed isothermal/adiabatic one, in which the relation appears to be
more complex as revealed by the slight curvature of the scatter cloud.
The scaling of the wall shear stress, however, is subject to a finite
width vertical spread caused by the inherent dependence of this
quantity on the near-wall temperature, as explained later.
In incompressible flows with constant viscosity, the solution to

Eqs. (1) and (2) has the following characteristics. First, the near-wall
velocity and wall shear stress are related as

~Uk � τw

Z
hwm

0

F�y; τw� dy

in the reference frame moving with the wall velocity, where
F � 1∕�μ� μwm� is a function that depends on y and τw, thereby
rendering a nonlinear relation between ~Uk and τw with zero spread.
Second, the near-wall temperature is given by

~T − Tw �
Z

hwm

0

G�y; τw; qw� dy

where G � �qw∕cp��μ∕Pr� μwm∕Prt;wm�−1 is a function that
depends on y, τw, and qw. If the molecular and turbulent Prandtl
numbers are assumed to be unity, then F andG are simply related as
G � qwF∕cp, and the equilibrium wall model predicts the Reynolds
analogy, qw � τwcp� ~T − Tw�∕ ~Uk. In addition, when the integration
of the equilibrium wall-model equations is made indefinite in the
wall-normal coordinate, the pointwise proportional relation uk∕τw ∼
�T − Tw�∕�qw∕cp� between the temperature and velocity profiles is
obtained throughout the wall-modeled layer.
Conversely, in high-speed flows, the solution to Eqs. (1) and (2) is

equivalent to simultaneously integrating

uk �
Z

y

0

τw dy

μ� μwm
(15)

and

Z
y

0

τ2w dy

μ� μwm
� cp

�
μ

Pr
� μwm

Prt;wm

�
dT

dy
� qw (16)

subject to uk � ~Uk and T � ~T at the matching location y � hwm. In
particular, Eq. (15) indicates that the velocity field is additionally
influenced by the local near-wall temperature through the viscosity
coefficients, which necessarily leads to spreading in the τw versus ~Uk

Fig. 5 CaseA2 instantaneous isocontoursof a) streamwisevelocity, andb) temperature, both evaluatedat thematching locationwith thewallmodel away
from the bottom wall, along with c) bottom-wall shear stress, and d) bottom-wall heat flux. The flow goes from left to right. In these plots, the frame of
reference moves at the bottom-wall speed Uw;b.
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plot. Similarly, Eq. (16) is an autonomous integrodifferential
equation that only depends on temperature and contains two separate
terms on the left-hand side that correspond to aerodynamic heating
and heat transport, whose competition describes the relative
importance of these two mechanisms in determining the wall heat
fluxqw.When the aerodynamic heating term prevails in the near-wall
region, as in case C2, the temperature dependence enters in qw
primarily through the viscosity coefficients, thereby leading to poor
correlations of qw and τw with the near-wall temperature, as observed
in Figs. 8c and 8d. It is worth mentioning that although the
temperature and velocity profiles cease to be proportional within the
wall-modeled region when the aerodynamic heating is important,
which suggests a breakdown of the classic Reynolds analogy, the
shear stresses and heat fluxes remain mostly proportional, as
observed in Fig. 8e.

IV. Shock-Wave Interaction with a Transitional
Hypersonic Boundary Layer

In this section, the performance of the equilibrium wall model

described in Sec. II is tested against DNS and experimental data in a

Mach 6 transitional boundary layer interactingwith an incident shock

wave. The corresponding computational set-up is sketched in Fig. 9.

The size of the computational domain is Lx × Ly × Lz � 300 ×
25 × 45 in units of the displacement thickness δ⋆o at the domain

entrance. Two grid sizes are considered, namely Nx × Ny × Nz �
256 × 64 × 72 (∼1 million cells) and 512 × 64 × 144 (∼4 million

cells), which are denoted as WMLES1 and WMLES2 in what

follows. The corresponding resolutions in viscous units on the

fully turbulent region are Δx� × Δy� × Δz� � 40 × 16 × 23 and

20 × 16 × 11, respectively. In terms of a large scale, such as the

Fig. 7 CaseE2 instantaneous isocontours of a) streamwisevelocity, andb) temperature, both evaluated at thematching locationwith thewallmodel away
from the top wall, along with c) top-wall shear stress. The flow goes from left to right. In these plots, the frame of reference moves at the top-wall speed.

Fig. 6 Case C2 instantaneous isocontours of a) streamwise velocity, and b) temperature, both evaluated at the matching location with the wall
model away from the topwall, along with c) top-wall shear stress and d) top-wall heat flux. The flow goes from left to right. In these plots, the frame of
reference moves at the top-wall speed.
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boundary layer height at the domain outlet, δ � 5.1δ�o, the grid
resolution in the wall-parallel directions are Δx � 0.23δ and
Δz � 0.12δ for WMLES1, and Δx � 0.11δ and Δz � 0.061δ for
WMLES2. In the wall-normal direction, δ is resolved by 20 grid
points in both simulations. The LES/wall-model matching location is
hwm � 0.1δ. Such a resolution gives Δx∕hwm ≈ 2 and Δz∕hwm ≈ 1
for WMLES1 and Δx∕hwm ≈ 1 and Δz∕hwm ≈ 0.5 for WMLES2,
which conforms to typical WMLES resolution [34]. Wall units at the
streamwise location where the skin friction peaks are used for
normalization here. Note that early DNS work in [35] on the same
configuration employed a grid size of approximately 200 million
cells. Those DNS results, along with experiments in two different
facilities in the same configuration (RWG [36] and H2K [37]), are
used later for comparisons.
The boundary conditions used in the WMLES are as follows.

Periodicity is imposed in the spanwise direction, whereas a similarity
solution for compressible laminar boundary layers is imposed at the
inflow (see [38] for details). The inflow freestreamMach number is 6.
The inflow displacement thickness of the boundary layer, the
freestream speed of sound, the freestream density ρ∞, and the
freestream temperature T∞ are taken as reference values to normalize
lengths, velocities, densities, and temperatures. The resulting inflow
Reynolds number is Reδ⋆o � 6830 based on the inflow displacement
thickness and on the freestream values of velocity, density, and
viscosity, which corresponds to Rex � 0.3 ⋅ 106. In the present flow

regime, where the deflection angle of the incident shock is not
sufficiently large, the sole action of the shock is unable to cause
transition, which would occur far away downstream from the
impingement location. To trigger transition, the forcing method of
[35] is followed, by which broadband acoustic disturbances are
added to the inflow density as

ρ 0 � AW�y�
XJ
j�0

cos�2πjz∕Lz � ϕj�
XK
k�1

sin�2πfkt� ψk�

where ϕj and ψk are random phases, f � 0.12 is the base frequency,
and J � 16 and K � 20 are cutoff wave numbers. Additionally,
W�y� � 1 − e−y

3

is awindow function that dampens the disturbances
within the boundary layer. The disturbance amplitude isA � 0.001 at
the WMLES inlet, as opposed to A � 0.0005 in the DNS. Further
comments about this necessary mismatch are provided later. Note
that the DNS did not aim at exactly matching the disturbance level
of the experiments, which are challenging to characterize, but
demonstrated that the numerical results fall between the experimental
heat transfer curves when appropriate levels are employed (see [35]
and discussion later).
Thewall temperature is kept constant and uniform atTw � 4.5T∞.

Rankine–Hugoniot jump conditions are used downstream from the
shock to obtain the corresponding boundary values necessary for an
obliquely impinging shock wave arising from an inviscid flow over
the 4°-wedge used in the experiments. A characteristic Navier–
Stokes boundary condition is superimposed on the top boundary to
warrant nonreflectivity of pressure waves. The shock-impingement
location computed from the inviscid wave propagation is at
x∕δ⋆o � 150, which translates into a local Reynolds number
Rex � 1.34 × 106. A nonreflecting sponge layer of streamwise
thickness Δx � 10 is placed near the outflow. The molecular
viscosity in the equilibrium wall model and in the outer LES
varies with temperature according to the Sutherland’s law
μ∕μref � �T∕Tref�1.5��Tref � S�∕�T � S��, where S∕Tref � 1.69 is
a constant, and Tref is set equal to the freestream temperature.
Instantaneous contours of the spanwise-averagedmagnitude of the

resolved density gradient from WMLES2 are shown in Fig. 10. The
reflected flow structure consists of three different parts: 1) a
compression shock emanating from upstream of the interaction zone,

Fig. 9 Schematics of the computational set-up used for WMLES of a
shock wave interacting with a transitional hypersonic boundary layer
(ISW: incident shock wave; LBL: laminar boundary layer).

Fig. 8 Local and instantaneous top-wall values of a) shear stress, and b) heat flux from the wall model as functions of the local and instantaneous LES
velocity at thematching location on a log–log scale. The frame of referencemoves at the top-wall speed. Local top-wall values of c) shear stress, and d) heat
flux as functions of the local LES temperature at the matching location on a log–log scale. Last, Fig. 8e shows the local top-wall values of the heat flux as a

function of the shear stress, where the straight line indicates slope 1.
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which is generated by the upward flow deflection induced by the

adverse pressure gradient created by the shock, 2) an expansion fan

atop the interaction zone, and 3) a recompression shock downstream

from the interaction zone created as the flow recovers its original

direction. In addition, the shock-induced adverse pressure gradient

produces a separation bubble that entrains cold freestream air and

decreases the local effect of the aerodynamic heating.
The boundary layer rapidly undergoes transition downstream from

the interaction region. The transition is clearly visible in the

instantaneous streamwisemomentum isocontours shown in Fig. 11a.

Specifically, velocity streaks form that may be enhanced by Görtler-

like instabilities engendered by the concave curvature of the

streamlines along the edge of the boundary layer downstream of the

interaction zone [39]. These transition dynamics are accompanied by

a large increase in the near-wall flow temperature, as observed in

Fig. 11b. Correspondingly, the dimensionless wall heat flux qw
shown in Fig. 12 undergoes a large increase upon transition.

Remarkably, footprints of the velocity streaks are clearly discerned in
the instantaneous wall heat transfer that highlight the importance of

the near-wall momentum transport for heat-transfer modeling.
A more quantitative assessment of the wall heat-transfer rate is

made in Fig. 13 in terms of the Stanton number

St � qw∕�ρ∞U∞cp�Tr − Tw�� (17)

where Tr � T∞�1� r�γ − 1�M2
∞∕2� is the recovery temperature,

and r � Pr1∕2 � 0.83 is the recovery factor. In Eq. (17), the

numerator is averaged in the spanwise direction and in time during

eight flow-through times using eight snapshots. The resolved LES
temperature is not significantly larger than the wall temperature

anywhere in the LES grid. The near-wall peak in the static

temperature, which is a result of the aerodynamic heating near the

wall, is not resolved by the coarse LES grid but is modeled by the

equilibrium wall model and leads to mostly grid-independent

Fig. 10 Instantaneous isocontours of the spanwise-averaged magnitude of the resolved density gradient in case WMLES2.

Fig. 11 Instantaneous isocontours of a) ρ ~u and b) ρ ~T, both being extracted at a distance y∕δ�o � 0.4 from the wall, which corresponds to the third LES
grid point away from the wall in case WMLES2.

Fig. 12 Instantaneous isocontours of the wall heat-transfer flux predicted by the equilibrium wall model in case WMLES2.
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temperature profiles, as shown in Fig. 14. As a result, and for both

grid resolutions tested here, the WMLES reproduces well the DNS

results in [35]. This is in contrast to the results from LESwith nowall

model, which are performed on the samegrid asWMLES1 andwhich

largely underpredict the shock-induced heat transfer rates, as

observed in Fig. 13. Note that WMLES2 predicts a slightly higher

peak Stanton number than WMLES1, as expected by the increased

spatial support for the growth of the inlet disturbances.
It is worth mentioning that the differences between the DNS and

the experiments in Fig. 13 are due to discrepancies in the turbulence

level within and above the boundary layer near the shock-

impingement location. The DNS can match the experiments by

adjusting the turbulence level at the inlet such that it matches that of

the experiments. Because WMLES cannot capture the evolution of

disturbance in the transitional region, for LES to match the

experiments, the disturbances at the inlet must be adjusted such that

turbulence levels similar to DNS are obtained near the impingement

region. Further investigations are therefore needed to model the flow

in the transitional region, particularly in regimes of low shock

strengths when transition highly depends on the dynamics in the

upstream laminar zone. These analyses may include extensions to

high-speed flows of the treatment of the growth of the intrinsic

boundary-layer instabilities in coarse grids as done, for instance,

in [40] using disturbance models based on the parabolized Navier–
Stokes equations. In conclusion, Fig. 13 shows that the equilibrium
wall model provides a good prediction of the DNS results at a much
lower computational cost, provided that the inflow turbulence level in
WMLES is adjusted appropriately, as described previously.

V. Conclusions

In this work, the equilibrium wall model is investigated within the
context of high-speed flows where convective aerodynamic heating
becomes an important effect in quantifying wall heat-transfer rates.
The formulation of the model is described with emphasis on heat-
transfer aspects. Focus is made on two different configurations: high-
speed turbulent Couette flows, and shock-wave interactions with
transitional hypersonic boundary layers. Because the distance from
the wall to the spatial location of the maximum of the aerodynamic-
heating rate scales with inner viscous units, typical large-eddy
simulations (LES) grids, whose resolution in the wall-normal
direction scales with outer units, tend to miss the corresponding
temperature peak. However, in coarse LES grids, the equilibrium
wall model is able to account for subgrid-scale aerodynamic heating
and provides predictions of wall heat-transfer rates that are
indistinguishable from those in finer LES grids, in which the near-
wall resolution is sufficient to resolve the aerodynamic heating.
In high-speed turbulent Couette flows, the wall model leads to

predictions of wall heat-transfer rates that remain mostly grid-
independent when different computations are performed in grids
which are vastly different in size. Similarly, the model is able to
reproduce the DNS wall heat-transfer rate in the problem of a shock
impinging on a transitional supersonic boundary layer. Despite the
presence of flow separation and a strong adverse pressure gradient,
realistic predictions of the mean wall heat-transfer rate are found
in the present wall-modeled large-eddy simulation (WMLES)
calculation that uses merely 1 million cells as compared to the much
more costly DNS. These considerations highlight the importance
of correctly capturing the subgrid-scale aerodynamic heating
in WMLES.
Enhanced predictions of higher-order statistics, particularly in

situations where adverse pressure gradients play an important role,
might require nonequilibrium wall-model effects to be included
[33,41], but these are beyond the scope of this investigation. Note,
however, that close to the wall the flow is subsonic, and the
corresponding streamwise pressure gradients operate along much
longer distances than close to the boundary-layer edgewhere the flow
is supersonic and is impinged by the shock. Similarly, there are
several other wall-modeling aspects that may influence the heat-
transfer rates and remain largely unexplored in WMLES of high-
speed aerothermodynamics, such as radiative aerodynamic heating,
nonequilibrium gasdynamic effects in energy transfer, and near-wall
chemical reactions, including ionization, ablation, and dissociation–
recombination processes. It should, however, bementioned that some
of those tend to increase the temperature in the boundary layer and
correspondingly decrease the characteristic Reynolds number.
Further analyses of these additional effects within the context of
WMLES are deferred to future work.
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