HRP 262 SAS LAB SIX, May 20, 2009

Lab Six: GEE, mixed models; time independent vs. time-dependent predictors

Lab Objectives

After today’s lab you should be able to:

1. Analyze longitudinal data with GEE using PROC GENMOD.

2. Analyze longitudinal data with mixed models using PROC MIXED.

3. Interpret results from (1) and (2).

4. Understand the difference between time-independent and time-dependent predictors.

5. Interpret results with time-independent predictors

6. Understand the difference between “between-subjects” and “within subjects” effects. 

7. Output predicted values from PROC MIXED and graph them.

 LAB EXERCISE STEPS:

Follow along with the computer in front…

1. For today’s class, download the lab 4 data at: www.stanford.edu/~kcobb/courses/hrp262 (if it’s not already on your desktop)

2. Open SAS; create a library pointing to the desktop.
3. Turn the data into the long form, with both a continuous and categorical measure of time (time in months and dxa). Create both a repeated-measure outcome variable (bmc) and repeated-measure (=time-dependent) predictor (calcium). Do not fill in missing observations, since mixed models and GEE account for these.

data hrp262.runners;

set hrp262.runners;

id=_n_;

run;


data long;

set hrp262.runners;

dxa=1; time=0; bmc=bmc1; calc=calc1; output;

dxa=2; time=(dxaday2-dxaday1)*12/365.25; bmc=bmc2; calc=calc2; output;

dxa=3; time=(dxaday3-dxaday1)*12/365.25; bmc=bmc3; calc=calc3; output;

label time='Months since baseline';

label bmc=’BMC (g)';

label calc='dietary calcium, mg/day';

run;

4. Recall repeated measures ANOVA results and graphics from last time:

Predictor: treatment assignment:
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Predictor: baseline calcium (divided into tertiles):
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5. Now, look at the data graphically.  Last time we plotted BMC against time as categorical. Now see what happens if you plot BMC against continuous time.  
/*With time as continuous*/
proc gplot data=long;

   symbol1 c=black i=join v=dot height=.5 repeat=78;

  plot bmc*time=id/nolegend vaxis=axis1;

  where time<30;

run; quit;
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6. Run a GEE model with treatment randomization as a predictor (time-independent predictor).


proc genmod data=long;

class  id; *treat time as continuous;
model bmc=  treatr time treatr*time; 

repeated subject = id / type=exch  corrw ;

run; quit;

Working Correlation Matrix

                                       Col1         Col2         Col3


                          Row1       1.0000       0.9712       0.9712

                          Row2       0.9712       1.0000       0.9712

                          Row3       0.9712       0.9712       1.0000

     



Analysis Of GEE Parameter Estimates

                               Empirical Standard Error Estimates

                                     Standard   95% Confidence

                Parameter   Estimate    Error       Limits            Z Pr > |Z|

                Intercept   2174.489  43.3302 2089.563 2259.414   50.18   <.0001

                treatr       21.3704  71.8467 -119.447 162.1874    0.30   0.7661

                time          0.8620   0.4930  -0.1042   1.8282    1.75   0.0804

                treatr*time   0.1248   0.7609  -1.3666   1.6161    0.16   0.8698

7. Try a continuous, time-independent predictor: baseline calcium intake. 

proc genmod data=long;

class  id treatr; *treat time as continuous;
model bmc=  calc1 time calc1*time; 

repeated subject = id / type=exch  corrw ;

run; quit;

  The GENMOD Procedure

                              Analysis Of GEE Parameter Estimates

                              Empirical Standard Error Estimates

                                    Standard   95% Confidence

                Parameter  Estimate    Error       Limits            Z Pr > |Z|

                Intercept  2196.058  76.7285 2045.673 2346.443   28.62   <.0001

                calc1       -0.0062   0.0434  -0.0912   0.0788   -0.14   0.8866

                time        -0.8655   0.6759  -2.1903   0.4592   -1.28   0.2004

            calc1*time   0.0012   0.0004   0.0004   0.0020    3.06   0.0020
8. Now, try calcium as a time-varying predictor. NOTE: do not add a time*calc interaction term unless you think that the effect of calcium on BMC changes over time. (Next week, I will show you how to graph a time-dependent predictor!) 

proc genmod data=long;

class  id treatr; *treat time as continuous;
model bmc= calc time; 

repeated subject = id / type=exch  ;

run; quit;
The GENMOD Procedure

                                    Standard   95% Confidence

                 Parameter Estimate    Error       Limits            Z Pr > |Z|

                 Intercept 2191.600  38.3044 2116.525 2266.676   57.22   <.0001

                 calc       -0.0060   0.0136  -0.0327   0.0207   -0.44   0.6609

                 time        0.9000   0.3945   0.1267   1.6734    2.28   0.0225
9. What’s happening is that your baseline BMC has nothing to do with your baseline calcium intake (since your skeletal size was determined as a teenager. There are huge between-subject differences in BMC, but they aren’t accounted for by current calcium intake:

axis2 label=(angle=90);

symbol1  c=red v=dot i=rl;

proc gplot data=broad;

plot bmc1*calc1 /vaxis=axis1;

run;
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This doesn’t rule out the possibility that there may be some within-subjects effects for calcium that are just overwhelmed by the lack of between-subjects effects.  In other words, a high calcium intake may still predict changes in BMC over time. But the within-subject variation is just tiny, tiny compared with the between-subject variation…

When you have a time-dependent predictor in GEE and mixed models, you cannot distinguish between between-subjects and within-subjects effects! (Next week, we’ll learn some further strategies for teasing this out).

10. Just for fun, try changing the correlation structure in your last model to unstructured:

proc genmod data=long;

class  id; *treat time as continuous;
model bmc= calc time; 

repeated subject = id / type=unstr corrw;

run; quit;
                              Analysis Of GEE Parameter Estimates

                               Empirical Standard Error Estimates

                                    Standard   95% Confidence

                 Parameter Estimate    Error       Limits            Z Pr > |Z|

                 Intercept 2374.901 207.5778 1968.056 2781.746   11.44   <.0001

                 calc       -0.0082   0.0228  -0.0529   0.0366   -0.36   0.7208

             time        1.1635   0.7949  -0.3945   2.7215    1.46   0.1433

Working Correlation Matrix

                                       Col1         Col2         Col3

                          Row1       1.0000       0.8884       0.9716

                          Row2       0.8884       1.0000       0.9716

                      Row3       0.9716       0.9716       1.0000

11. Run a mixed model with treatment randomization as a predictor (time-independent predictor). Start with a random intercept only (gives nearly the same results as a GEE with an exchangeable correlation structure).

proc mixed data=long;

class  id; 

model bmc= time treatr time*treatr/solution ddfm=kr; 

random int / subject=id ;

run; quit;

 



 Fit Statistics

                             -2 Res Log Likelihood          2418.3

                             AIC (smaller is better)        2422.3

                             AICC (smaller is better)       2422.3

                             BIC (smaller is better)        2427.0

 
      


Solution for Fixed Effects

                                          Standard

               Effect         Estimate       Error      DF    t Value    Pr > |t|


               Intercept       2174.46     45.9232      75      47.35      <.0001

               time             0.8603      0.3882     119       2.22      0.0286

               treatr          21.4722     72.3736     119       0.30      0.7672

               time*treatr      0.1180      0.6320     119       0.19      0.8522

12. Now add a random slope:

proc mixed data=long;

class  id; 

model bmc= time treatr time*treatr/solution ddfm=kr;; 

random int time/ subject=id ;

run; quit;

Covariance Parameter Estimates

                               Cov Parm      Subject    Estimate

                               Intercept     id         54442177

                               time          id           6.4651

                               Residual                   593.07
    



Fit Statistics

                             -2 Res Log Likelihood          2839.7

                             AIC (smaller is better)        2845.7

                             AICC (smaller is better)       2845.8

                             BIC (smaller is better)        2852.8
Solution for Fixed Effects

                                          Standard

               Effect         Estimate       Error      DF    t Value    Pr > |t|

               Intercept       2175.41     1087.90      75       2.00      0.0492

               time             0.8108      0.4510      73       1.80      0.0763

               treatr          21.3040     1714.57      46       0.01      0.9901

               time*treatr     0.01743      0.7152      46       0.02      0.9807

13. Run a mixed model with baseline calcium as a predictor (time-independent predictor). Use a random intercept only:

proc mixed data=long;

class  id; 

model bmc= time calc1 time*calc1/solution ddfm=kr; 

random int / subject=id ;

run; quit;
Solution for Fixed Effects

                                         Standard

               Effect        Estimate       Error      DF    t Value    Pr > |t|

               Intercept      2179.02     77.3809      75      28.16      <.0001

               time           -0.8590      0.6377     119      -1.35      0.1805

               calc1         0.001691     0.04747     119       0.04      0.9716

           time*calc1    0.001194    0.000377     119       3.17      0.0020

14. Run a mixed model with calcium as a time-dependent predictor. Use a random intercept only:
proc mixed data=long;

class  id; 

model bmc= time calc/solution ddfm=kr;
random int / subject=id ;

run; quit;

    


Solution for Fixed Effects

                                         Standard

                Effect       Estimate       Error      DF    t Value    Pr > |t|


                Intercept     2187.27     37.1624      77      58.86      <.0001

                time           0.8939      0.3108     103       2.88      0.0049

            calc         -0.00688    0.007673     103      -0.90      0.3719

15. What does it mean to have a random intercept? First look at the model with just a random intercept:

proc mixed data=long; 


class id;


model bmc = time  /s outpred=mixout ddfm=kr;

random int /subject=id;

run; quit;

goptions reset=symbol;

symbol1 i=join v=none l=1 r=12;

proc gplot data=mixout;

plot pred*time=id /nolegend;

run; quit;
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16. What does it mean to have a random intercept and random time?
proc mixed data=long; 


class id;


model bmc = time  /s outpred=mixout ddfm=kr;


random int time/subject=id;

run; quit;

goptions reset=symbol;

symbol1 i=join v=none l=1 r=12;

proc gplot data=mixout;

plot pred*time=id /nolegend;

run; quit;
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17. What does it mean to just have a random effect for time?
proc mixed data=long; 


class id;


model bmc = time  /s outpred=mixout ddfm=kr;


random time/subject=id;

run; quit;

goptions reset=symbol;

symbol1 i=join v=none l=1 r=12;

proc gplot data=mixout;

plot pred*time=id /nolegend;

run; quit;
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Estimates of correlation are pretty similar anyway, so we are better off choosing exchangeable correlation structure. 





These are the estimates of correlation between time points (exchangeable means only one correlation is estimated).





Similar results to rANOVA. But now we can quantify the rate of change in bmc:  almost 1 g/month in each group (.86g/month in the control group; .86+.12=.98g/month in the treatment group) 




















Recall from last time, that it looked like compound symmetry was well met, so we are likely justified in using exchangeable correlation structure.




















Same result as from GEE…








Every 1 mg of calcium intake correlates to a .0012 increase in the rate of change of bmc (in grams/month).  Same result as GEE!





AIC=2422 (model fit)





Ask to see the working correlation matrix.





Similar results to GEE.





You can see why we don’t need a random slope—there’s very little variation in the slopes between individuals.




















Calcium is no longer correlated with bone mineral content. 


Why not? What’s going on?








Variance for slope is very small—indicating random slope (time) is not necessary.








Note the assignment of permanent labels to variables within a datastep. This is a global assignment, so all subsequent plots and procedures will use these labels by default.























AIC goes up indicating we don’t gain anything by adding a random slope.











By rANOVA and rMANOVA,


Time (DXA) is significant


Calcium is not significant


Time*Calcium is significant





By rANOVA and rMANOVA,


Time (DXA) is significant


Treatr is not significant


Time*Treatr is not significant














We need to assign a unique ID number to each participant for the long form (otherwise we will be unable to tell which observations belong to which subject)!





Because we had to estimate all these extra parameters, we lost some degrees of freedom and thus some statistical power—hence our p-value for time went up. 





Calcium is a time-dependent predictor.





Every 1 mg of calcium intake at baseline correlates to a .0012 increase in the rate of change of bmc (in grams/month). 





I’m restricting the graph to 30 months of follow-up, to avoid a lot of white space in the graph (women were supposed to finish the study in 2 years).





Continuous time is great for modeling, but bad for graphics!!
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