Unexpected ergativity
Wh-agreeing possessors in West Circassian

Ksenia Ershova
Stanford University

11 February 2022
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

S = subject of intransitive verb

O = object of transitive verb

A = subject of transitive verb
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

S = subject of intransitive verb

O = object of transitive verb

A = subject of transitive verb
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

S = subject of intransitive verb
O = object of transitive verb
A = subject of transitive verb
What makes a language syntactically ergative?

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
   SUBJECT
   V\text{\textsubscript{INTR}} ...
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
    <SUBJECT>
  \checkmark
  V_{INTR}...
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
  <SUBJECT>
  V_{INTR}...
```

Transitive clause:

```
CP
  SUBJECT
  V_{TR} OBJECT
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
   SUBJECT
   <SUBJECT>
   V_{INTR}
   ...
```

Transitive clause:

```
CP
   OBJECT
   SUBJECT
   V_{TR}
   <OBJECT>
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
bann on wh-movement of the ergative agent

Intransitive clause:

```
CP
 SUBJECT
 <SUBJECT>
 V_INTR ...
```

Transitive clause:

```
CP
 SUBJECT
 V_TR OBJECT
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  
SUBJECT

<VINTR>
  
ABS

VINTR
```

Transitive clause:

```
CP
  
SUBJECT

<VTR>
  
OBJECT
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
     <SUBJECT>
       ABS
```

Transitive clause:

```
CP
  SUBJECT
     V_{TR}
       OBJECT
       ABS
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
   SUBJECT
      <SUBJECT> ABS
      V_INTR ...
```

Transitive clause:

```
CP
   SUBJECT
      ERG
      V_TR
   OBJECT
      ABS
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
* Maktxel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’
ERG cannot move in Q’ankob’al (Mayan)

* Maktxel max y-il ___ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

*ERG WH-MOVT
ERG cannot move in Q’an kob’al (Mayan)

* Maktxel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

Maktxel max y-il naq winaq __ABS ?
who PFV A3-see CLF man

‘Who did the man see?’
ERG cannot move in Q’ankob’al (Mayan)

* Maktxel max y-il _ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

*Maktxel max y-il naq winaq _ABS ?
 who PFV A3-see CLF man

‘Who did the man see?’

(Coon et al. 2014, 2021; Tollan and Clemens 2021)
ERG cannot move in Tagalog (Austronesian)

* Sino ang b-in-ilí __ERG__ ang libró?
 who ABS -PERF-buy ABS book

Intended: ‘Who bought the book?’
ERG cannot move in Tagalog (Austronesian)

* Sino ang b-in-ilí _ERG_ ang libró?
 who ABS -PERF-buy ABS book

Intended: ‘Who bought the book?’

*ERG WH-MOVT
ERG cannot move in Tagalog (Austronesian)

* Sino ang b-in-ilí ___ERG ang libró?
 who ABS -PERF-buy ABS book

Intended: ‘Who bought the book?’

*ERG WH-MOVT

Anó ang b-in-ilí ni Maria ___ABS?
what ABS -PERF-buy ERG Maria

‘What did Maria buy?’
ERG cannot move in Tagalog (Austronesian)

* Sino ang b-in-ilí __ERG ang libró?
 who ABS -PERF-buy ABS book

Intended: ‘Who bought the book?’

Anó ang b-in-ilí ni Maria __ABS?
what ABS -PERF-buy ERG Maria

‘What did Maria buy?’

(Aldridge 2004, 2008)
ERG cannot move in Kalaallisut (Inuit)

* angut [__ERG aallaat tigu-sima-sa-a]
 man gun.ABS take-PFV-REL.[+TR]-3SG:SG

Intended: ‘the man who took the gun’
ERG cannot move in Kalaallisut (Inuit)

* angut [___ERG aallaat tigu-sima-sa-a]
man gun.ABS take-PFV-REL. [+TR]-3SG:SG

Intended: ‘the man who took the gun’

*ERG WH-MOV'T
ERG cannot move in Kalaallisut (Inuit)

* angut [_ERG aallaat tigu-sima-sa-a]
 man gun.ABS take-PFV-REL.[+TR]-3SG:SG

Intended: ‘the man who took the gun’

miiqqa-t [_ABS sila-mi pinnguar-tu-t]
child-PL outdoors-LOC play-REL.[-TR]-PL

‘the children who are playing outdoors’
ERG cannot move in Kalaallisut (Inuit)

* angut [__ERG aallaat tigu-sima-sa-a]
 man gun.ABS take-PFV-REL. [+TR] -3SG:SG

Intended: ‘the man who took the gun’

*ERG WH-MOV’T

miiqqa-t [__ABS sila-mi pinnguar-tu-t]
 child-PL outdoors-LOC play-REL. [-TR] -PL

‘the children who are playing outdoors’

✓ABS WH-MOV’T

(Bittner 1994)
High absolutive

A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
High absolutive

A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
A class of approaches accounts for syntactic ergativity effects with movement of \textit{ABS} to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.

Raised \textit{ABS} blocks \textit{ERG} \bar{A}-movement:
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.

Raised ABS blocks ERG Ā-movement:
The main claim

- The ban on ergative wh-movement is taken to be the defining property of syntactically ergative languages.
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

- Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG.
The main claim

▶ The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

▶ Under existing accounts, **ABS** raising alone is **insufficient** to derive blocking of **ERG**.

Additional assumptions or analytical tools are required.
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

- Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG.

 Additional assumptions or analytical tools are required.

- **This is a desirable aspect of high absolutive analyses.**
The main claim

▶ The ban on ergative wh-movement is taken to be the defining property of syntactically ergative languages.

▶ Under existing accounts, ABS raising alone is insufficient to derive blocking of ERG.

Additional assumptions or analytical tools are required.

▶ This is a desirable aspect of high absolutive analyses.

The ban on ergative extraction is not necessarily predicted by high absolutive syntax, nor necessarily predicts high absolutive syntax.
High absolutive syntax:
High absolutive syntax:

- predicts other syntactic reflexes of high ABS
High absolutive syntax:

- predicts other syntactic reflexes of high ABS
- does not readily predict a ban on ERG wh-movement
High absolutive syntax:

- predicts other syntactic reflexes of high ABS
- does not readily predict a ban on ERG wh-movement

Both predictions are confirmed by West Circassian

A language can be syntactically ergative without ‘standard syntactic ergativity’.
Syntactic ergativity in West Circassian

The ergative can move in West Circassian:

\[\text{ˇc.} \text{alew} \quad \text{ERG} \]
\[\text{ˇs} \quad \text{his brother} \]
\[\text{velosj} \quad \text{ped} \]
\[\text{Ø-Ø-z} \quad \text{-t} \quad \text{K} \]
\[\text{3} \quad \text{abs} \quad -3 \quad \text{sg} \quad \text{io} \quad \text{-dat} \quad \text{WH} \quad \text{ERG} \quad \text{-give-pst} \quad \text{-r} \quad \text{-abs} \]

\[\text{Ø} \]

\[\text{er-} \quad \text{WH} \quad \text{ERG} \quad \text{MOVT} \]

\[\text{BUT} \]

displays a number of other syntactic ergativity effects.
The ergative can Ā-move in West Circassian:
The ergative can Ā-move in West Circassian:

\[
\text{č'alew} \quad [\text{__ERG} \quad \text{əš} \quad \text{velosjəped}\quad \text{boy} \quad \text{his brother bicycle} \quad \text{Ø-Ø-je-zə-tə-ve} \quad] \quad -r
\]
\[
3\text{ABS-3SG.IO-DAT-\textbf{WH.ERG}-give-PST} \quad -\text{ABS}
\]

‘the boy who gave a bicycle to his brother’ \quad \checkmark\textbf{ERG WH-MOVTE}
Syntactic ergativity in West Circassian

The ergative can Ā-move in West Circassian:

\[
\text{č’alew [\underline{\text{ERG}} \ əš \ \text{velosjoped} }
\]

\[
\text{boy \ his brother bicycle}
\]

\[
\text{Ø-Ø-je-zə-tə-ve] -r}
\]

\[
\text{3ABS-3SG.IO-DAT-\textbf{WH.ERG}-give-PST \ -ABS}
\]

‘the boy who gave a bicycle to his brother’ \(\checkmark\text{ERG WH-MOVt}\)

\textbf{BUT} displays a number of other syntactic ergativity effects
Syntactic ergativity in West Circassian wh-movement

1. only abs is transparent for possessor extraction (Ershova 2020a)

2. anti-c-command condition: abs trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)
1. only **ABS** is transparent for possessor extraction (Ershova 2020a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)

2. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)

2. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)

\[
\begin{array}{c}
\text{DP}_{\text{ABS}} \\
\text{POSS}
\end{array}
\]

2. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)

\[
\begin{array}{c}
t_{\text{ABS}} \\
\text{DP}_{\text{ERG/IO}} \\
\text{DP}_{\text{IO}} \
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{ERG/IO}} \\
\text{POSS}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{IO}} \\
\text{POSS}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{ABS}} \\
\text{POSS}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{ERG}} \\
\text{POSS}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{io}} \\
\text{poss}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{abs}} \\
\text{poss}
\end{array}
\]

\[
\begin{array}{c}
\text{DP}_{\text{erg}} \\
\text{poss}
\end{array}
\]
1. only ABS is transparent for possessor extraction (Ershova 2020a)

2. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. only ABS is transparent for possessor extraction (Ershova 2020a)

2. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
Two syntactic rules which group S and O together, to the exclusion of A

Both require S and O to be structurally distinct from A

⇒ S and O must share the same position

This position is outside vP, and c-commands erg

Broad syntactic ergativity is evidence for high absolutive syntax.
Two syntactic rules which group S and O together, to the exclusion of A
Unifying syntactic ergativity effects

- Two syntactic rules which group S and O together, to the exclusion of A
- Both require S and O to be **structurally** distinct from A
Two syntactic rules which group S and O together, to the exclusion of A

Both require S and O to be structurally distinct from A

⇒ S and O must share the same position
Two syntactic rules which group S and O together, to the exclusion of A

Both require S and O to be \textit{structurally} distinct from A

\Rightarrow S and O must \textit{share the same position}

This position is outside vP,

\textbf{Broad syntactic ergativity} is evidence for \textbf{high absolutive syntax}.

\textbf{Introduction}
Two syntactic rules which group S and O together, to the exclusion of A

Both require S and O to be structurally distinct from A

⇒ S and O must share the same position

This position is outside vP, and c-commands ERG
Two syntactic rules which group S and O together, to the exclusion of A

Both require S and O to be \textit{structurally} distinct from A

\Rightarrow S and O must \textit{share the same position}

This position is outside vP, and c-commands \textit{ERG}

\textbf{Broad syntactic ergativity} is evidence for \textit{high absolutive} syntax.
The syntactic ergativity parameter
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O

```
TP
  ┌── T'
  │   └── vP
  │         T
  │       ┌── DP_A
  │       │   v'
  │       │       └── vP
  │       │           v
  │       │               └── DP_O V
  │       └── v'
  └── v
```
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O

Syntactic ergativity:
O raises to c-command A
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O

Syntactic ergativity:
O raises to c-command A
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O

Syntactic ergativity:
O raises to c-command A

LOW ABSOLUTIVE
The syntactic ergativity parameter

Syntactic accusativity:
A c-commands O

Syntactic ergativity:
O raises to c-command A

LOW ABSOLUTIVE

HIGH ABSOLUTIVE
Expanding high absolutive analyses

Proposals for high absolutive:
Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008;
Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.
Proposals for high absolutive:
Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008;
Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.

Key diagnostic for high absolutive: ban on ergative wh-movement.
Expanding high absolutive analyses

- **Proposals for high absolutive:**
 Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008;
 Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.
Expanding high absolutive analyses

- **Key diagnostic for high absolutive**: ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.

This talk
Expanding high absolutive analyses

- **Proposals for high absolutive:**

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.

This talk

- High absolutive syntax confirmed with **novel structural diagnostics**.
Expanding high absolutive analyses

- **Proposals for high absolutive:**

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.

This talk

- High absolutive syntax confirmed with **novel structural diagnostics**.

- **Counter to prior literature:** high absolutive does not predict a ban on ergative wh-movement.
typologically unusual and theoretically challenging phenomena
Methodological lesson

▶ typologically unusual and theoretically challenging phenomena derived from well-understood and well-attested microparameters ‘conspiring’ together
Methodological lesson

- typologically unusual and theoretically challenging phenomena derived from well-understood and well-attested microparameters ‘conspiring’ together

REQUIRES
Methodological lesson

- typologically unusual and theoretically challenging phenomena derived from well-understood and well-attested microparameters ‘conspiring’ together

REQUIRES

- understanding of the language as a whole
Methodological lesson

- typologically unusual and theoretically challenging phenomena derived from well-understood and well-attested microparameters ‘conspiring’ together

REQUIRES

- understanding of the language as a whole
- careful study of its core components
Deconstructing syntactic ergativity: Roadmap

Predictions of high absolutive syntax
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
 - possessor extraction
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
 - possessor extraction
 - parasitic gaps
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
In *high absolutive* languages, the ABS object raises to a position above the ERG agent:
High absolutive languages

In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

```
ERG
  /
ABS
```
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

![Diagram](image)

The raised absolutive:
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

The raised absolutive:
- should be detectable by syntactic rules that are sensitive to structural superiority
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

The raised absolutive:

- should be detectable by syntactic rules that are sensitive to structural superiority
- does not necessarily block ergative extraction
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the
 Constraint on Crossing Dependencies (Tollan and Clemens 2021)
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
(Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

Ergative extraction is blocked by a combination of raised absolutive + additional language-specific assumptions.
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. **raised ABS intervenes between wh-probe and ERG**
 (Aldridge 2004, 2008; Coon et al. 2021)

2. **ERG movement over raised ABS** is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

Ergative extraction is blocked by a combination of raised absolutive + additional language-specific assumptions.
High absolutive intervenes

Coon et al. (2021):
High absolutive intervenes

Coon et al. (2021):

ABS object raises to Spec,νP
Coon et al. (2021):

ABS object raises to Spec, vP

ABS intervenes for ERG wh-movement
Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement because wh-C is *relativized* for [WH] and [D]
High absolutive intervenes

Coon et al. (2021):

ABS object raises to Spec, vP

ABS intervenes for ERG wh-movement

because wh-C is relativized for [WH] and [D]

In most languages, the wh-probe is not relativized for [D].

Predicts high absolutive languages with no ban on erg extraction.
High absolutive intervenes

Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement
 because wh-C is \textit{relativized} for [WH] and [D]

\[D, WH \]

\[D, WH \]
High absolutive intervenes

Coon et al. (2021):

ABS object raises to Spec, vP

ABS intervenes for ERG wh-movement

because wh-C is relativized for [WH] and [D]

In most languages, the wh-probe is not relativized for [D].

Predictions of high absolutive
Coon et al. (2021):

- ABS object raises to Spec, νP
- ABS intervenes for ERG wh-movement because wh-C is relativized for [WH] and [D]
- relativized probe is language-specific

In most languages, the wh-probe is not relativized for [D]. Predicts high absolutive languages with no ban on erg extraction.
High absolutive intervenes

Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement because wh-C is relativized for [WH] and [D]
- relativized probe is language-specific

In most languages, the wh-probe is not relativized for [D]. Predicts high ABS languages with no ban on ERG extraction.
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

Constraint on Crossing Dependencies

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

\[
\begin{align*}
\text{CP} & \rightarrow \text{ssP} \\
\text{ssP} & \rightarrow \text{DP}_{\text{ABS}} \\
\text{DP}_{\text{ABS}} & \rightarrow \text{VoiceP} \\
\text{VoiceP} & \rightarrow \text{DP}_{\text{ERG}} \text{<DP}_{\text{ABS}}>
\end{align*}
\]

Constraint on Crossing Dependencies

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

\[
\text{CP} \\
\text{ssP} \\
\text{DP}_{\text{ABS}} \\
\text{VoiceP} \\
\text{DP}_{\text{ERG}} <\text{DP}_{\text{ABS}}>
\]

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

CP

ssP

DP_{ABS}

VoiceP

DP_{ERG} <DP_{ABS}>

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Tollan and Clemens (2021): there are well-known counterexamples
Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement
Constraint on Crossing Dependencies is not universal

Tollan and Clemens (2021): there are well-known counterexamples

▶ Dutch clause-final verb clusters
▶ Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.
Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.

Does not predict universal correlation between high absolutive and ergative extraction constraint.
Constraint on Crossing Dependencies is not universal

Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.

Does not predict universal correlation between high absolutive and ergative extraction constraint.

Allows for possibility of high ABS language without a ban on crossing dependencies, i.e. no ban ERG extraction.
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

 Predicts tendency for high absolutive to correlate with ergative extraction constraint.

 Leaves space for counterexamples.
Raised absolutive does not necessarily block ergative extraction.

High position of absol should affect syntactic rules which are sensitive to c-command or syntactic position.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command or syntactic position.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to \texttt{c-command} or syntactic position.

\begin{tikzpicture}[->,node distance=1cm, thick]
 \node {ABS} [grow'=right] child {node {c-command} \nodepart{right} ERG \nodepart{right} \langle ABS \rangle};
\end{tikzpicture}
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command or **syntactic position**.
West Circassian confirms both predictions of high absolutive analyses:
West Circassian confirms both predictions of high absolutive analyses:

- no ban on ergative extraction
West Circassian is a high absolutive language

West Circassian confirms both predictions of high absolutive analyses:
- no ban on ergative extraction
- high absolutive diagnosed in two novel domains:
West Circassian is a high absolutive language

West Circassian confirms both predictions of high absolutive analyses:

▶ no ban on ergative extraction
▶ high absolutive diagnosed in two novel domains:
 ▶ parasitic gaps
West Circassian is a high absolutive language

West Circassian confirms both predictions of high absolutive analyses:

- no ban on ergative extraction
- high absolutive diagnosed in two novel domains:
 - parasitic gaps → sensitive to c-command
West Circassian is a high absolutive language

West Circassian confirms both predictions of high absolutive analyses:

- no ban on ergative extraction
- high absolutive diagnosed in two novel domains:
 - parasitic gaps → sensitive to c-command
 - possessor extraction
West Circassian confirms both predictions of high absolutive analyses:

- no ban on ergative extraction
- high absolutive diagnosed in two novel domains:
 - parasitic gaps → sensitive to c-command
 - possessor extraction → sensitive to structural position
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps
- **Conclusion and implications**
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
West Circassian (or Adyghe):
Case Study: West Circassian

West Circassian (or Adyghe):

- Northwest Caucasian

Data from fieldwork on the Temirgoy dialect in the Shovgenovsky district of Adygea, collected during three trips in 2017-2019.
West Circassian (or Adyghe):

- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia
Case Study: West Circassian

West Circassian (or Adyghe):
- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia

Data from fieldwork on **Temirgoy dialect** in the Shovgenovsky district of Adygea, collected during three trips in 2017-2019.
Exploring the whole language

The analysis builds on 11 years of fieldwork and language study.

August 2010, Khatazhukaj, Adygea © Peter Arkadiev
Exploring the whole language

The analysis builds on 11 years of fieldwork and language study.

Piece of bigger project on argument alignment:
Exploring the whole language

The analysis builds on **11 years** of fieldwork and language study.

Piece of bigger project on **argument alignment**:
- anaphor binding (Ershova 2019, 2021c)
Exploring the whole language

The analysis builds on 11 years of fieldwork and language study.

Piece of bigger project on argument alignment:

- anaphor binding (Ershova 2019, 2021c)
- control (Ershova 2019)
Exploring the whole language

The analysis builds on **11 years** of fieldwork and language study.

Piece of bigger project on **argument alignment**:
- anaphor binding (Ershova 2019, 2021c)
- control (Ershova 2019)
- argument encoding in nominalizations (Ershova 2015, 2020b)
Exploring the whole language

The analysis builds on 11 years of fieldwork and language study.

August 2010, Khatazhukaj, Adygea © Peter Arkadiev

Piece of bigger project on argument alignment:
- anaphor binding (Ershova 2019, 2021c)
- control (Ershova 2019)
- argument encoding in nominalizations (Ershova 2015, 2020b)
- agreement and nominal licensing (Ershova 2021b)
Exploring the whole language

The analysis builds on **11 years** of fieldwork and language study.

Piece of bigger project on **argument alignment**:

- anaphor binding (Ershova 2019, 2021c)
- control (Ershova 2019)
- argument encoding in nominalizations (Ershova 2015, 2020b)
- agreement and nominal licensing (Ershova 2021b)
- weak crossover (Ershova to appear)
West Circassian is polysynthetic

Agglutinating prefixal and suffixal morphology:
West Circassian is polysynthetic

Agglutinating prefixal and suffixal morphology:

\[
\text{wəqəzerešharərəzhrəwək}^\text{w}\text{ereješ’əž’əswəwəkər}
\]

wə- qə- zere- ŝha- rə- z- əe-
2SG.ABS- DIR- FACT- head- LOC- TRANS- 1SG.ERG- CAUS-
wək^wwereje -č’ə -ž’ə -šwə -əa -əe -r
fall -go.out -RE -POT -PST -PST -ABS

‘that I was able to make you turn a somersault’

(Lander and Testelets 2017:952)
West Circassian is polysynthetic

Head marking and pro-drop:

'He showed me to them for your sake.' (Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

$s\emptyset p\emptyset f a r j \emptyset k e \lambda e b^w \emptyset v$

s\emptyset- q\emptyset- p-f- a-r- j\emptyset- k\emptyset- \lambda e b^w \emptyset -v
1SG.ABS- DIR- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpfarjəwəkələbwəb \]

me for your sake to them he

1SG.ABS- DIR- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)
Head marking on nominals

s- šẹpχʷəxer
1sg.poss- sister.PL.ABS

‘my sisters’ INALIENABLE
Head marking on nominals

s- šəpχwəxer
\textbf{1sg.poss}- sister.PL.ABS

‘my sisters’ \hspace{2cm} \textbf{INALIENABLE}

t- jə- vənəvəxem
\textbf{1pl.poss}- \textbf{ALIEN}- neighbor.PL.OBL

‘our neighbors’ \hspace{2cm} \textbf{ALIENABLE}
Verbal agreement is ergative

\[
\begin{align*}
\text{w-} & \quad a-de- & \quad s- & \quad \text{š‘aβ}
\end{align*}
\]

2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them.’ (Rogava and Keraševa 1966:160)
Verbal agreement is ergative

\[O \quad IO \quad A \]
\[w- \quad a-de- \quad s- \quad š’ab \]
\[2SG.ABS- \ 3PL.IO-COM- \ 1SG.ERG- \ bring.PST \]

‘I brought you with them.’ (Rogava and Keraševa 1966:160)
Verbal agreement is ergative

O IO A
w- a-de- s- š’aβ
2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them.’ (Rogava and Keraševa 1966:160)

wə- q- a-fe- k’w’aβ
2SG.ABS- DIR- 3PL.IO+BEN- go.PST

‘You went for them.’ (Rogava and Keraševa 1966:138)
Verbal agreement is ergative

O IO A
w- a-de- s- š’ab
2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them.’ (Rogava and Keraševa 1966:160)

S IO
wə- q- a-fe- kʷab
2SG.ABS- DIR- 3PL.IO+BEN- go.PST

‘You went for them.’ (Rogava and Keraševa 1966:138)
Verbal agreement is ergative

O IO A
w- a-de- s- š’aβ
2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them.’ (Rogava and Keraševa 1966:160)

S IO
wə- q- a-fe- k’waβ
2SG.ABS- DIR- 3PL.IO+BEN- go.PST

‘You went for them.’ (Rogava and Keraševa 1966:138)
Applied objects

'll\' Will you dance with me?'
Applied objects (IO) cross-referenced by agreement + APPL prefix.
Applied objects (IO) cross-referenced by agreement + APPL prefix.
Applied objects

Applied objects (IO) cross-referenced by agreement + APPL prefix.

wə- qə- z- de- ᵇʷeš’ta?
1SG.ABS- DIR- 1SG.IO- COM- dance.FUT.Q

‘Will you dance with me?’ HIGH APPLICATIVE
Applied objects (IO) cross-referenced by agreement + APPL prefix.

\begin{align*}
\text{wə-} & \quad \text{qə-} \quad \text{z-} \quad \text{de-} \quad \text{šwēš’ta?} \\
1\text{SG.ABS-} & \quad \text{DIR-} \quad 1\text{SG.IO-} \quad \text{COM-} \quad \text{dance.FUT.Q}
\end{align*}

‘Will you dance with me?’

\textbf{HIGH APPLICATIVE}

\textbf{INDIRECT OBJECT}
Applied objects (io) cross-referenced by agreement + APPL prefix.

wə- qə- z- de- ̓swəš’ta?
1SG.ABS- DIR- 1SG.IO- COM- dance.FUT.Q

‘Will you dance with me?’ HIGH APPLICATIVE

te me txələ-r Ø- qə- w- e- t- təøj’əv
we this book-ABS 3ABS- DIR- 2SG.IO- DAT- 1PL.ERG- give.PST

‘We gave this book to you.’ INDIRECT OBJECT
Case marking is ergative
Case marking is ergative

-r (\textsc{abs}:)
Case marking is ergative

-\textbf{r (ABS)}:
 - subject of intransitive verb (\textbf{S})

\begin{verbatim}
mo p\textbf{a}se-\textbf{r} daxew qa\textbf{s}we
this girl-\textbf{ABS} well dances
\end{verbatim}

‘This girl(S) dances well.’
Case marking is ergative

-\texttt{r} (\texttt{ABS}):
 \begin{itemize}
 \item subject of intransitive verb (\texttt{S})
 \item object of transitive verb (\texttt{O})
 \end{itemize}

\texttt{sab\text{ë}jxe-m haxe-r qa\text{ë}b\text{ë}w\text{ë}b}
children-\texttt{OBL} dogs-\texttt{ABS} saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

- \(r\) (ABS):
 - subject of intransitive verb (S)
 - object of transitive verb (O)

- \(m\) (OBL):

sabəjxe-m haxe-r qałęw\(^w\)wəw
children-OBL dogs-ABS saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

- **r (ABS):**
 - subject of intransitive verb (S)
 - object of transitive verb (O)

- **m (OBL):**
 - subject of transitive verb (A)

```
sabəjxe-m  haxe-r  qałeβʷəbw
children-OBL  dogs-ABS  saw

‘The children(A) saw the dogs(O).’
```
Case marking is ergative

-\(r\) (ABS):
 ▶ subject of intransitive verb (S)
 ▶ object of transitive verb (O)

-\(m\) (OBL):
 ▶ subject of transitive verb (A)
 ▶ applied object (IO)

\(\text{žegwə-m səpəśəwərəp}\)

wedding-\textbf{OBL} I didn’t dance

‘I didn’t dance at the wedding(IO).’
Case marking is ergative

-r (ABS):
 ▶ subject of intransitive verb (S)
 ▶ object of transitive verb (O)

-m (OBL):
 ▶ subject of transitive verb (A)
 ▶ applied object (IO)
 ▶ possessor

mə ̣ swəzə-m Ø-jə-pṣaṣe
this woman-oBL 3SG.POSS-ALIEN-girl

‘this woman’s daughter’
Case marking is ergative

-\textbf{r (abs)}:\n \begin{itemize}
 \item subject of intransitive verb (S)
 \item object of transitive verb (O)
 \end{itemize}

-\textbf{m (obl)}:\n \begin{itemize}
 \item subject of transitive verb (A)
 \item applied object (IO)
 \item possessor
 \item complement of postposition
 \end{itemize}

\begin{verbatim}
mo p\textasciitilde sa\textasciitilde e-m paje
this girl-\textbf{obl} for
‘for this girl’
\end{verbatim}
FINITE CLAUSE:

\[
\text{a-š’} \quad \text{txəλə-r} \quad [\text{mo ɕəfə-m}] \\
\text{that-OBL} \quad \text{book-ABS} \quad \text{this person-OBL} \\
Ø- \quad Ø- \quad r- \quad jə- \quad tə-ɯ \\
3\text{ABS- 3SG.IO- DAT- 3SG.ERG- give-PST}
\]

‘S/he gave a book to this person.’
Structure of relative clauses

Finite clause:

\[
\begin{align*}
\text{a-š’} & \quad \text{txəɬə-r} & \quad [\text{mə ȼəfə-m}] \\
\text{that-OBL} & \quad \text{book-ABS} & \quad \text{this person-OBL} \\
\text{Ø-} & \quad \text{Ø-} & \quad \text{r- jə- tə-r} \\
3\text{ABS-} & \quad 3\text{SG.IO-} & \quad \text{DAT-} \quad 3\text{SG.ERG-} \quad \text{give-PST}
\end{align*}
\]

‘S/he gave a book to this person.’

Relative clause:

(Lander 2012:276)
Structure of relative clauses

Finite clause:

\[
\begin{align*}
\text{a-š’} & \quad \text{txəɬə-r} & \quad [\text{mə çəfə-m}] \\
\text{that-OBL} & \quad \text{book-ABS} & \quad \text{this person-OBL} \\
Ø & \quad Ø & \quad r- \quad jə- \quad tə-b \\
\text{3ABS-} & \quad \text{3SG.IO-} & \quad \text{DAT-} & \quad \text{3SG.ERG-} & \quad \text{give-PST}
\end{align*}
\]

‘S/he gave a book to this person.’

Relative clause:

\[
\begin{align*}
[\text{txəɬə-r} & \quad _{\text{IO}} \quad Ø & \quad \text{ze-} & \quad r- \quad jə- \quad tə-bəe & \quad] \quad çəfə-r \\
\text{book-ABS} & \quad \text{3ABS-} & \quad \text{WH.IO-} & \quad \text{DAT-} & \quad \text{3SG.ERG-} & \quad \text{give-PST} & \quad \text{person-ABS} \\
\text{WH-MOVEMENT}
\end{align*}
\]

‘the person to whom s/he gave the book’

(IO WH-MOVVT)

(Lander 2012:276)
Finite clause:

\[
\text{a-š’ that-OBL book-ABS [mə çəfə-m this person-OBL]}
\]

\[
Ø- r- jə- tə-b 3ABS- 3SG.IO- DAT- 3SG.ERG- give-PST
\]

‘S/he gave a book to this person.’

Relative clause:

\[
\text{[txələ-r 0- ze- r- jə- tə-b] çəfə-r}
\]

\[
\text{book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS}
\]

\[
\text{WH-MOVEMENT}
\]

‘the person to whom s/he gave the book’

IO WH-MOVT

(Lander 2012:276)
No ergative extraction constraint

(Lander 2012:274-276)
No ergative extraction constraint

\(χərbəzəw \ [\ _\text{ABS} \ a- salarié \] \)
watermelon that-OBL \(\text{WH.ABS-} \text{ 3SG.ERG-} \text{ cut-PST-ABS} \)

‘the watermelon that he cut’

(Lander 2012:274-276)
No ergative extraction constraint

χǝɾbǝȝəw [__ABS a-š’ Ø- ə- bzǝ-ɾe-r]
watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ ✓ABS WH-MOVT

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi \text{ər'bəzəw} \quad [__\text{ABS} \, a-\text{š}' \quad \emptyset- \quad \text{ə}- \quad \text{bzə-ri}e\text{-r}] \]
watermelon \quad that-\text{OBL} \quad \text{WH.ABS}- \quad 3\text{SG.ERG}- \quad \text{cut-PST-ABS} \]

‘the watermelon that he cut’ \quad \checkmark \text{ABS WH-MOVVT}

[txələ-r \quad __\text{IO} \quad \emptyset- \quad \text{ze}- \quad r- \quad jə- \quad tə-ri] \quad çəfə-r
book-\text{ABS} \quad 3\text{ABS}- \quad \text{WH.IO}- \quad \text{DAT}- \quad 3\text{SG.ERG}- \quad \text{give-PST} \quad \text{person-ABS} \]

‘the person to whom s/he gave the book’

(Lander 2012:274-276)
No ergative extraction constraint

χərə̀zə́we [_ABS a-š’] Ø- ø- bzə́-βe-r]
watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ ✓ABS WH-MOV'T

[txə́lə́r _IO Ø- ze- r- jə́- tə́-βe] çə́fə́-r
book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’ ✓IO WH-MOV'T

(Lander 2012:274-276)
No ergative extraction constraint

γηρβζζεw [_ABS a-š’ Ø- ø- bzø-βe-r]
watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ ✓ABS WH-MOVТ

[τξελε-β __IO Ø- ze- r- jø- tø-βε] çεfε-β
book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’ ✓IO WH-MOVТ

č’αεw [apč’ε-β __ERG Ø- zε- qwøta-βε-βm]
boy glass-ABS 3ABS- WH.ERG- break-PST-OBL

‘the boy that broke the glass’

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi\text{erb}\text{ezew} \quad [_\text{ABS} \ a\text{-}\varsigma' \text{Ø-} \text{ς-} \text{bz}\text{ω-βe-r}] \]

watermelon \quad \text{that-}\text{OBL} \text{WH.ABS-} 3\text{SG.ERG-} \text{cut-PST-ABS} \]

‘the watermelon that he cut’ \quad \checkmark \text{ABS \ WH-MOVVT}

\[\text{txe}\text{λe-r} \quad _\text{IO} \text{Ø-} \text{ze-} \text{ρ-} \text{jω-} \text{tω-βe} \quad] \text{çe}\text{fω-r} \]

book-\text{ABS} 3\text{ABS-} \text{WH.IO-} \text{DAT-} 3\text{SG.ERG-} \text{give-PST} \text{person-ABS} \]

‘the person to whom s/he gave the book’ \quad \checkmark \text{IO \ WH-MOVVT}

\[\text{çe}\text{alew} \quad [\text{ap}\text{c’}e-r _\text{ERG} \text{Ø-} \text{zω-} \text{q}\text{w}\text{e}\text{ta-}\text{βe-m}] \]

boy \text{glass-ABS} 3\text{ABS-} \text{WH.ERG-} \text{break-PST-}\text{OBL} \]

‘the boy that broke the glass’ \quad \checkmark \text{ERG \ WH-MOVVT}

(Lander 2012:274-276)
West Circassian does not display a ban on ergative extraction.
West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.
West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.

Evidence:
Broader syntactic ergativity in West Circassian

West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.

Evidence:
- constraints on possessor extraction
West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.

Evidence:
- constraints on possessor extraction
- conditions on parasitic gap licensing
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - *possessor extraction*
 - parasitic gaps
- Conclusion and implications
Syntactic ergativity in possessor extraction

(Ershova 2020a)
Only ABS is transparent for possessor extraction

(Ershova 2020a)
Only ABS is transparent for possessor extraction

(Ershova 2020a)
Syntactic ergativity in possessor extraction

- Only **ABS** is transparent for possessor extraction
- **ERG** and **IO** are islands

(Ershova 2020a)
Syntactic ergativity in possessor extraction

- Only ABS is transparent for possessor extraction
- ERG and IO are islands

(Ershova 2020a)
Syntactic ergativity in possessor extraction

- Only **ABS** is transparent for possessor extraction
- **ERG** and **IO** are islands

(Ershova 2020a)
ABS external argument is transparent for subextraction

\[\text{swəzew}_i \ [t_i \ z- \ jəpšaše](\text{ABS}) \ daxew \ Ø- \ qaš\text{w}erer \]

woman \ WH.POSS- girl \ well \ 3\text{ABS}- dance.DYN.ABS

‘the woman whose daughter dances well’
ABS internal argument is transparent for subextraction

\[s^w \text{əzew}_i \ [t_i \ zə- \ q^w e](\text{ABS}) \text{ hapsem}
\]
woman [WH.Poss- son] prison.OBL

\[Ø- \ Ø-č-a-ʔəbe-r
\]

3ABS- 3io.sg-loc-3pl.erg-throw.pst.abs

‘the woman whose son they threw in jail’
Possessor of ERG or IO cannot be relativized directly

* $\text{Op}_i \left[t_i \ z-j\ddot{o}-\dddot{c}'ale \right] \text{(ERG)} \ daxew \ \text{wered(ABS)}$

$\text{WH.POSS-ALIEN-boy well song}$

$\emptyset- \ q- \ \varnothing- \ ?\text{werer}$

$3\text{ABS- DIR- 3SG.ERG- sing.DYN.ABS}$

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

POSS WH-AGREEMENT

* Op_i \([t_i \text{ z-} j \text{-} \text{č’} \text{a} \text{le}](\text{ERG}) \text{ daxew} \text{ wered} (\text{ABS})\)

\(\text{WH.Poss} - \text{ALIEN-boy} \text{ well} \text{ song}\)

\(\emptyset - q - \text{ə-} \text{werer}\)

3ABS- DIR- 3SG.ERG- sing.DYN.ABS

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

POSS WH-AGREEMENT

* Op_{i} \begin{array}{ll}
\text{3ABS-} & \text{3SG.ERG-} \\
\text{wh.poss-} & \text{sing.dyn.abs} \\
\end{array}
\begin{array}{ll}
\text{t}_{i} & \text{z-}\text{jē-č’ale} \\
\text{wh.poss-} & \text{alien-} \\
\end{array}
\text{(ERG)} \ daxew \ \text{wered(ABS)} \
\text{q-} \ \text{̄erer} \\
\text{Ø-} \ \text{̄-} \ \text{̄-} \ \text{̄}

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

\[
\text{Op}_i \quad [\quad t_i \quad z-jə-č’ale \quad](\text{ERG}) \quad \text{daxew} \quad \text{wered(ABS)} \\
\text{WH.POSS-ALIEN-boy} \quad \quad \quad \text{well} \quad \text{song}
\]

\[
\text{Ø-} \quad \text{qe-} \quad zə- \quad ?^{\text{werer}} \\
\text{3ABS-} \quad \text{DIR-} \quad \text{WH.ERG-} \quad \text{sing.DYN.ABS}
\]

POSS WH-AGREEMENT

* \[
\text{Op}_i \quad [\quad t_i \quad z-jə-č’ale \quad](\text{ERG}) \quad \text{daxew} \quad \text{wered(ABS)} \\
\text{WH.POSS-ALIEN-boy} \quad \quad \quad \text{well} \quad \text{song}
\]

\[
\text{Ø-} \quad \text{q-} \quad ə- \quad \ ?^{\text{werer}} \\
\text{3ABS-} \quad \text{DIR-} \quad \text{3SG.ERG-} \quad \text{sing.DYN.ABS}
\]

* **REGULAR φ-AGREEMENT**

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

POSS WH-AGREEMENT

Op_i [t_i z-jə-č’ale](ERG) daxew wered(ABS)
 \textit{WH.POSS-ALIEN-boy} well song
Ø- qe- zə- ?ẘerer
3ABS- DIR- \textit{WH.ERG-} sing.DYN.ABS

POSS WH-AGREEMENT

* Op_i [t_i z-jə-č’ale](ERG) daxew wered(ABS)
 \textit{WH.POSS-ALIEN-boy} well song
Ø- q- ə- ?ẘerer
3ABS- DIR- \textit{3SG.ERG-} sing.DYN.ABS
* \textbf{REGULAR }φ-\textbf{AGREEMENT}

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

POSS WH-AGREEMENT

\[\text{Op}_i \quad [\, t_i \quad z-jə-č’ale \quad](\text{ERG}) \quad \text{daxew} \quad \text{wered(ABS)} \]

WH.POSS-ALIEN-boy

\[\emptyset - \quad qe\- \quad zə\- \quad \text{?werer} \]

3ABS- DIR- **WH.ERG-** sing.DYN.ABS

ERG WH-AGREEMENT

POSS WH-AGREEMENT

\[* \quad \text{Op}_i \quad [\, t_i \quad z-jə-č’ale \quad](\text{ERG}) \quad \text{daxew} \quad \text{wered(ABS)} \]

WH.POSS-ALIEN-boy

\[\emptyset - \quad q \- \quad ø\- \quad \text{?werer} \]

3ABS- DIR- **3SG.ERG-** sing.DYN.ABS

* REGULAR ϕ-AGREEMENT

‘the one whose son sings well’
Possessor of ERG or IO cannot be relativized directly

POSS WH-AGREEMENT

\[\text{Op}_i \ [t_i \ z-\j̄-č’ale \] (\text{ERG}) \ daxew \ \text{wered(ABS)} \]

\[\text{WH.POSS-ALIEN-boy} \]

\[\text{Ø-} \ qe- \ z\̄- \ ?\text{werer} \]

\[3\text{ABS-} \ \text{DIR-} \ \text{WH.ERG-} \ \text{sing.DYN.ABS} \]

ERG WH-AGREEMENT

\[\text{Ø-} \ q- \ ŋ- \ ?\text{werer} \]

\[3\text{ABS-} \ \text{DIR-} \ 3\text{SG.ERG-} \ \text{sing.DYN.ABS} \]

* REGULAR \(\varphi \)-AGREEMENT

‘the one whose son sings well’
Multiple wh-agreement as a pseudocleft

\[
\begin{align*}
\text{Op}_i & \quad [t_i \quad \text{WH-noun}] \quad [\text{Op}_j \quad ... \quad t_j \quad ... \quad \text{WH-verb}]
\end{align*}
\]
Multiple wh-agreement as a pseudocleft

\[
\begin{align*}
\text{Op}_i & \quad [t_i \quad \text{WH-noun}] \quad [\text{Op}_j \quad \ldots \quad t_j \quad \ldots \quad \text{WH-verb}] \\
& \quad \text{ERG WH-MOVEMENT (Poss WH-MOVEMENT)}
\end{align*}
\]
Multiple wh-agreement as a pseudocleft

\[\text{Op}_i \ [t_i \ WH\text{-noun}] \ [\text{Op}_j \ ... \ t_j \ ... \ WH\text{-verb} \]

Evidence: case connectivity effects (Ershova 2020a)
Multiple wh-agreement as a pseudocleft

\[\text{POSS WH-MOVEMENT} \quad \text{ERG WH-MOVEMENT} \]

\[O_{p_i} \quad [\ t_i \quad \text{WH-noun} \] \quad [\ O_{p_j} \quad ... \ t_j \quad ... \quad \text{WH-verb} \] \]

Evidence: case connectivity effects (Ershova 2020a)
Possessor of ERG cannot be extracted

DIRECT RELATIVIZATION:

* Opᵢ [tᵢ z- jəč’ale](ERG) daxew wered(ABS)
 WH.POSS- boy well song

Ø- q- ω- ?werer
3ABS- DIR- 3SG.ERG- sing.DYN.ABS

‘the one whose son sings well’
DIRECT RELATIVIZATION:

* Op_i [t_i z- jəč’ale](ERG) daxew wered(ABS)
WH.POSS- boy
Ø- q- ?werer
3ABS- DIR- 3SG.ERG- sing.DYN.ABS

‘the one whose son sings well’

REGULAR φ-AGREEMENT
Possessor of ERG cannot be extracted

PSEUDOCLEFT REPAIR:

* Op$_i$ [t_i z- jəč’ale](ERG) daxew wered(ABS) well song

Ø- q- θ- ?werer
3ABS- DIR- 3SG.ERG- sing.DYN.ABS

DIRECT RELATIVIZATION:

REGULAR φ-AGREEMENT

‘the one whose son sings well’
Possessor of ERG cannot be extracted

PSEUDOCLEFT REPAIR:

\[\text{Op}_i \quad [t_i \quad z- \quad jəč’ale \quad (\text{ABS}) \quad [\text{Op}_j \quad t_j \quad \text{daxew well} \quad \text{wered}} \quad Ø- \quad qe- \quad zə- \quad ?'\text{werer} \quad] \quad \text{song} \quad 3\text{ABS-} \quad \text{DIR-} \quad \text{WH.ERG-} \quad \text{sing.DYN.ABS}\]

DIRECT RELATIVIZATION:

\[
\text{* Op}_i \quad [t_i \quad z- \quad jəč’ale \quad (\text{ERG}) \quad \text{daxew well} \quad \text{wered(ABS)} \quad \text{song} \quad \text{Ø-} \quad q- \quad ə- \quad ?'\text{werer} \quad 3\text{ABS-} \quad \text{DIR-} \quad \text{3SG.ERG-} \quad \text{sing.DYN.ABS}]
\]

‘the one whose son sings well’

REGULAR φ-AGREEMENT
Possessor of **ERG** cannot be extracted

PSEUDOCLEFT REPAIR:

\[
\begin{align*}
\text{Op}_i \ [t_i & \text{ z- } \text{ jəč’ale } \text{ (ABS)}] \quad \text{WH.POSS- boy} \\
\text{wered} & \quad \text{Ø- qe- } \text{ zə- } \text{ ?w} \text{ erer} \\
\text{song} & \quad 3\text{ABS- DIR- WH.ERG- sing.DYN.ABS}
\end{align*}
\]

ERG WH-MOVEMENT

DIRECT RELATIVIZATION:

\[
\begin{align*}
\text{Ø- q- } \text{ ø- } \text{ ?w} \text{ erer} \\
3\text{ABS- DIR- 3SG.ERG- sing.DYN.ABS}
\end{align*}
\]

\[\text{Op}_i \ [t_i \text{ z- jəč’ale } \text{ (ERG)}] \quad \text{daxew \ wered(ABS)} \\
\text{Ø- q- } \text{ ø- } \text{ ?w} \text{ erer} \\
3\text{ABS- DIR- 3SG.ERG- sing.DYN.ABS}
\]

REGULAR φ-AGREEMENT

‘the one whose son sings well’
Possessor of ERG cannot be extracted

PSEUDOCLEFT REPAIR:

\[
\text{Op}_i \quad [\quad t_i \quad z- \quad \text{jěč’ale} \quad](\text{ABS}) \quad [\quad \text{Op}_j \quad t_j \quad \text{daxew} \quad \text{well} \quad]
\]

\[
\text{wered} \quad \emptyset- \quad \text{qe}- \quad \text{zə-} \quad ?^w\text{werer} \quad \]

\[
\text{song} \quad 3\text{ABS}- \quad \text{DIR-} \quad \text{WH.ERG-} \quad \text{sing.DYN.ABS} \quad \]

\[
\text{ERG WH-MOVEMENT} \quad \text{ERG WH-AGREEMENT}
\]

DIRECT RELATIVIZATION:

\[
* \quad \text{Op}_i \quad [\quad t_i \quad z- \quad \text{jěč’ale} \quad](\text{ERG}) \quad \text{daxew} \quad \text{wered(ABS)}
\]

\[
\emptyset- \quad \text{q-} \quad \text{ə-} \quad ?^w\text{werer} \quad \]

\[
3\text{ABS}- \quad \text{DIR-} \quad \text{3SG.ERG-} \quad \text{sing.DYN.ABS} \quad \]

\[
\text{REGULAR} \quad \varphi-\text{AGREEMENT}
\]

‘the one whose son sings well’
DIRECT RELATIVIZATION:

* Șwazewi [t₁ zè- qwe](10) Ȝ’elejeważer
woman WH.Poss- son teacher.ABS
Ø- Ø- je- čeçaver
3ABS- 3SG.IO- DAT- scold.pst.ABS

‘the woman whose son the teacher scolded’
Possessor of IO cannot be extracted

DIRECT RELATIVIZATION:

* ŝwәzewi [t₁ zә- qʷe](IO) ç’elejebažer
 woman WH.POSS- son teacher.ABS
∅- Ø- je- çeçaber
3ABS- 3SG.IO- DAT- scold.PST.ABS

REGULAR φ-AGREEMENT

‘the woman whose son the teacher scolded’
Possessor of IO cannot be extracted

PSEUDOCLEFT REPAIR:

\[\hat{s}^w \hat{\varepsilon}zew_1 [t_i \ z\varepsilon- \ q^w e](ABS) \ [\ \text{Op}_j \ t_j \ \text{\cprime}\text{elejeba\v{z}er} \]

woman \ WH.POSS- son
\[\emptyset- z- e- \ \text{\cprime}e\text{\cprime}c\text{\cprime}a\text{\cprime}b\text{\cprime} \]
3ABS- WH.IO- DAT- scold.PST.ABS

DIRECT RELATIVIZATION:

* \[\hat{s}^w \hat{\varepsilon}zew_1 [t_i \ z\varepsilon- \ q^w e](IO) \]

woman \ WH.POSS- son
\[\emptyset- \emptyset- \text{je}- \ \text{\cprime}e\text{\cprime}c\text{\cprime}a\text{\cprime}b\text{\cprime} \]
3ABS- 3SG.IO- DAT- scold.PST.ABS

\[\text{\cprime\cprime} \text{the woman whose son the teacher scolded} \text{\cprime\cprime} \]

REGULAR φ-AGREEMENT
Possessor of IO cannot be extracted

PSEUDOCLEFT REPAIR:

\[
\begin{align*}
\hat{s}^w\epsilon z\text{ew}_i & \quad [t_i \quad z\text{-} \quad q^w e \quad](\text{ABS}) \quad [\text{Op}_j \quad t_j \quad \epsilon'\text{eleje\textbar}\text{a}\text{z}e] \quad \text{teacher.}\text{ABS} \\
\text{woman} & \quad \text{WH.POSS-} \quad \text{son} \\
\emptyset - & \quad z- \quad e- \quad \epsilon'\text{ce\textbar}\text{a}\text{v}\text{er} \\
3\text{ABS-} & \quad \text{WH.IO-} \quad \text{DAT-} \quad \text{scold.}\text{PST.}\text{ABS}
\end{align*}
\]

DIRECT RELATIVIZATION:

* \[
\begin{align*}
\hat{s}^w\epsilon z\text{ew}_i & \quad [t_i \quad z\text{-} \quad q^w e \quad](\text{IO}) \quad \epsilon'\text{eleje\textbar}\text{a}\text{z}e] \\
\text{woman} & \quad \text{WH.POSS-} \quad \text{son} \\
\emptyset - & \quad \emptyset - \quad \epsilon'\text{je-} \quad \epsilon'\text{ce\textbar}\text{a}\text{v}\text{er} \\
3\text{ABS-} & \quad \text{3SG.IO-} \quad \text{DAT-} \quad \text{scold.}\text{PST.}\text{ABS}
\end{align*}
\]

\[\text{REGULAR } \phi\text{-AGREEMENT}\]

‘the woman whose son the teacher scolded’
Possessor of IO cannot be extracted

PSEUDOCLEFT REPAIR:

\[
\text{woman } \overset{\text{WH.Poss}}{-z-} \overset{\text{son}}{q \text{we}} \text{(ABS)} \quad \overset{\text{teacher}}{O_p j} \overset{t_j}{\text{č’elejebažer}}
\]

\[
\text{Ø- } \overset{\text{son}}{z-} \overset{\text{čecáveis}}{e-} \quad \text{3ABS- WH.IO- DAT- scold.pst.abs}
\]

DIRECT RELATIVIZATION:

\[
\text{woman } \overset{\text{WH.Poss}}{-z-} \overset{\text{son}}{q \text{we}} \text{(IO)} \quad \text{č’elejebažer}
\]

\[
\text{Ø- } \overset{\text{son}}{Ø-} \overset{\text{čecáveis}}{je-} \quad \text{3ABS- 3SG.IO- DAT- scold.pst.abs}
\]

‘the woman whose son the teacher scolded’
Possessor of IO cannot be extracted

PSEUDOCLEFT REPAIR:

\[^{\mathbf{s}}\text{üzew}_{i} [t_{i} \text{z-} q^{\text{we}}](\text{ABS}) \quad [\text{Op}_{j} \quad t_{j} \text{č’elejeβažer} \quad \text{teacher.ABS}]
\]

IO WH-MOVEMENT

IO WH-AGREEMENT

DIRECT RELATIVIZATION:

\[^{\mathbf{s}}\text{üzew}_{i} [t_{i} \text{z-} q^{\text{we}}](\text{IO}) \quad \text{č’elejeβažer} \quad \text{teacher.ABS}
\]

\[^{\mathbf{Ø}}\quad \text{je-} \quad \text{čežačer} \quad \text{DAT- scold.PST.ABS}
\]

REGULAR φ-AGREEMENT

‘the woman whose son the teacher scolded’
Possessor extraction: summary

- possessor of ABS may be relativized directly
Possessor extraction: summary

- possessor of ABS may be relativized directly
- possessor of ERG or IO may not be relativized
possessor of ABS may be relativized directly

possessor of ERG or IO may not be relativized

repair: pseudocleft to promote possessed NP to ABS position
Possessor extraction: summary

- possessor of **ABS** may be relativized directly
- possessor of **ERG** or **IO** may not be relativized

repair: pseudocleft to promote possessed NP to **ABS** position

- **Only part of the story:** no islandhood effects with long-distance wh-movement.
Possessor extraction: summary

- Possessor of ABS may be relativized directly.
- Possessor of ERG or IO may not be relativized.

Repair: pseudocleft to promote possessed NP to ABS position.

- **Only part of the story:** no islandhood effects with long-distance wh-movement.
- Details in Ershova (2020a)
The proposal: phase edges are islands

 Possessor extraction
The proposal: phase edges are islands

ERG is merged and assigned case in Spec, vP

(Woolford 1997, 2006; Legate 2008, a.o.)
The proposal: phase edges are islands

- ERG is merged and assigned case in Spec, vP
 (Woolford 1997, 2006; Legate 2008, a.o.)

- IO is merged and assigned case in Spec, ApplP (Pylkkänen 2008)
The proposal: phase edges are islands

- **ERG** is merged and assigned case in Spec, νP
 (Woolford 1997, 2006; Legate 2008, a.o.)

- **IO** is merged and assigned case in Spec, ApplP
 (Pylkkänen 2008)

- **νP** is a phase
 (Chomsky 2001; Legate 2003, a.o.)
The proposal: phase edges are islands

- ERG is merged and assigned case in Spec, vP

 (Woolford 1997, 2006; Legate 2008, a.o.)

- IO is merged and assigned case in Spec, ApplP

 (Pylkkänen 2008)

- vP is a phase

 (Chomsky 2001; Legate 2003, a.o.)

- ApplP is a phase

 (McGinnis 2000, 2001)
The proposal: phase edges are islands

- ERG is merged and assigned case in Spec, vP
 (Woolford 1997, 2006; Legate 2008, a.o.)
- IO is merged and assigned case in Spec, ApplP
 (Pylkkänen 2008)
- vP is a phase
 (Chomsky 2001; Legate 2003, a.o.)
- ApplP is a phase
 (McGinnis 2000, 2001)
- Phase edges are opaque for subextraction
 (Chomsky 2000, 2001)
The proposal: phase edges are islands

- ERG is merged and assigned case in Spec, vP
 (Woolford 1997, 2006; Legate 2008, a.o.)
- IO is merged and assigned case in Spec, ApplP
 (Pylkkänen 2008)
- vP is a phase
 (Chomsky 2001; Legate 2003, a.o.)
- ApplP is a phase
 (McGinnis 2000, 2001)
- Phase edges are opaque for subextraction
 (Chomsky 2000, 2001)

⇒ ERG and IO are islands.
The proposal: phase edges are islands

- **ERG** is merged and assigned case in Spec, vP

 (Woolford 1997, 2006; Legate 2008, a.o.)

- **IO** is merged and assigned case in Spec, ApplP

 (Pylkkänen 2008)

- **vP** is a phase

 (Chomsky 2001; Legate 2003, a.o.)

- **ApplP** is a phase

 (McGinnis 2000, 2001)

- Phase edges are opaque for subextraction

 (Chomsky 2000, 2001)

⇒ ERG and IO are islands.
The proposal: phase edges are islands

- ERG is merged and assigned case in Spec, νP
 (Woolford 1997, 2006; Legate 2008, a.o.)
- IO is merged and assigned case in Spec, ApplP
 (Pylkkänen 2008)
- νP is a phase
 (Chomsky 2001; Legate 2003, a.o.)
- ApplP is a phase
 (McGinnis 2000, 2001)
- Phase edges are opaque for subextraction
 (Chomsky 2000, 2001)

⇒ ERG and IO are islands.
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec, TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- ⇒ S and O move to the same position: Spec, TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \(\Rightarrow \) S and O move to the same position: Spec,TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec,TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec,TP

Diagram:

```
TP
  └── T'  vP
    └── T     v'
        └── <DP_{ABS}> = S

TP
  └── T'  vP
    └── T     v'
        └── DP_{ERG}  v'
            └── v  VP
                └── DP_{ABS}  V
```

Possessor extraction

11 February 2022
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec, TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec,TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- ⇒ S and O move to the same position: Spec, TP
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \(\Rightarrow \) S and O move to the same position: Spec, TP
- TP is not a phase

```
  TP
 /   \\
|     |
DP_{ABS} T'
 |     |
|     |
T  vP
    |
<DP_{ABS}> v'
  |
  = S
```

```
  TP
 /   \\
|     |
DP_{ABS} T'
 |     |
|     |
T  vP
    |
DP_{ERG} v'
  |
  = O
```

ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \(\Rightarrow \) S and O move to the same position: Spec, TP
- TP is not a phase

ABS is not an island.
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- S and O move to the same position: Spec, TP
- TP is not a phase

ABS is not an island.
ABS moves out of phase

- ABS arguments are transparent for POSS extraction
- \Rightarrow S and O move to the same position: Spec,TP
- TP is not a phase

$\langle DP_{\text{ABS}} \rangle = S$

$\langle DP_{\text{ABS}} \rangle = O$

ABS is not an island.
Possessor extraction: summary

Possessor of \textit{erg} / \textit{io} is relativized with pseudocleft repair strategy.

Possessor of \textit{abs} is relativized directly.

The proposal \textit{erg} and \textit{io} are merged at phase edges ⇒ opaque for subextraction \textit{abs} moves to Spec,TP ⇒ transparent for subextraction.
Possessor extraction: summary

- Possessor of ERG / IO is relativized with pseudocleft repair strategy.
Possessor extraction: summary

- Possessor of \texttt{ERG} / \texttt{IO} is relativized with pseudocleft repair strategy.
- Possessor of \texttt{ABS} is relativized directly.
Possessor extraction: summary

- Possessor of \textit{ERG} / \textit{IO} is relativized with pseudocleft repair strategy.
- Possessor of \textit{ABS} is relativized directly.

The proposal

\textit{ERG} and \textit{IO} are merged at phase edges
Possessor extraction: summary

- Possessor of \texttt{ERG} / \texttt{IO} is relativized with pseudocleft repair strategy.
- Possessor of \texttt{ABS} is relativized directly.

The proposal

\texttt{ERG} and \texttt{IO} are merged at phase edges

\[\Rightarrow\] opaque for subextraction
Possessor extraction: summary

- Possessor of \textit{ERG} / \textit{IO} is relativized with pseudocleft repair strategy.
- Possessor of \textit{ABS} is relativized directly.

The proposal

\textbf{ERG} and \textbf{IO} are merged at phase edges
\[\Rightarrow \text{opaque for subextraction}\]
\textbf{ABS} moves to Spec,TP
Possessor extraction: summary

- Possessor of **ERG** / **IO** is relativized with pseudocleft repair strategy.
- Possessor of **ABS** is relativized directly.

The proposal

ERG and **IO** are merged at phase edges

\Rightarrow opaque for subextraction

ABS moves to Spec,TP

\Rightarrow transparent for subextraction
A novel type of syntactic ergativity effect: only absol is transparent for possessor extraction. Predicted by high absolutive syntax: erg and io are merged and licensed at phase edges. Abs moves out of the vP phase – to Spec,TP. Further prediction: high absolutive should affect rules which are sensitive to c-command. Confirmed by parasitic gaps.
A novel type of syntactic ergativity effect:
A novel type of syntactic ergativity effect: only ABS is transparent for possessor extraction.
A novel type of syntactic ergativity effect:
only ABS is transparent for possessor extraction.

Predicted by high absolutive syntax:
A novel type of syntactic ergativity effect:
only ABS is transparent for possessor extraction.

Predicted by high absolutive syntax:

ERG and IO are merged and licensed at phase edges.
A novel type of syntactic ergativity effect:
only \text{ABS} is transparent for possessor extraction.

\textbf{Predicted by high absolutive syntax:}

\begin{itemize}
 \item \text{ERG} and \text{IO} are merged and licensed at phase edges
 \item \text{ABS} moves out of the νP phase – to Spec,TP
\end{itemize}
Possessor extraction and high absolutive

- A novel type of syntactic ergativity effect:
 - only absolutive ABS is transparent for possessor extraction.
- Predicted by high absolutive syntax:

 ERG and IO are merged and licensed at phase edges
 ABS moves out of the vP phase – to Spec,TP

Further prediction: high absolutive should affect rules which are sensitive to c-command
A novel type of syntactic ergativity effect:
only ABS is transparent for possessor extraction.

Predicted by high absolutive syntax:

ERG and IO are merged and licensed at phase edges
ABS moves out of the vP phase – to Spec,TP

Further prediction: high absolutive should affect rules which are sensitive to c-command

Confirmed by parasitic gaps.
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
Prediction of high absolutive syntax:

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

\[t_{\text{ABS}} \]

\[\text{DP}_{\text{ERG/IO}} \]

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

\[
\begin{array}{c}
t_{\text{ABS}} \\
\downarrow \\
\text{DP}_{\text{ERG/IO}} \\
\downarrow \\
\ast \quad _\text{PG}
\end{array}
\]

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
The Anti-C-Command Condition

A parasitic gap may not be c-commanded by the real gap.

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.

\[\text{\textbf{XP}} \quad \text{\textbf{YP}} \]
\[t_{\text{LG}} \quad \text{PG} \]

\[\checkmark \text{parasitic gap} \]
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.

\[
\begin{array}{c}
\text{...} \\
\text{t}_{LG} \quad \text{...} \\
\text{XP} \\
\text{YP} \\
\text{PG}
\end{array}
\]

parasitic gap
object doesn’t c-command adjunct \Rightarrow can license parasitic gap
The anti-c-command condition in English

object doesn’t c-command adjunct \Rightarrow can license parasitic gap

```
CP
   QP
      which articles
   C'
      C
data
   DP
     John
   T'
   T
     vP
     vP
       file $t_i$
       without reading $\checkmark_{PG}$
     XP
   vP
```
The anti-c-command condition in English

subject c-commands adjunct ⇒ cannot license parasitic gap
The anti-c-command condition in English

subject c-commands adjunct ⇒ cannot license parasitic gap

*

```
CP

QP

which articles

C'

C

TP

ti

T'

T

got

vP

vP

filed by John

without him reading _PG
```
Parasitic gaps in West Circassian

A pronoun that is bound by relativized participant may be replaced by a parasitic gap. The parasitic gap triggers parasitic wh-agreement.

Aslan mafem day rjene [CP Ø-3 abs e-dat m@wew neg hit. adv] t Ø-3 abs z@-wh. io-de-ˇ Zeg rer play. dyn. abs 'the one Aslan plays with all day [without hitting]'
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap
A pronoun that is bound by relativized participant may be replaced by a parasitic gap.

‘the one Aslan plays with ___ all day [without hitting them]’
A pronoun that is bound by relativized participant may be replaced by a parasitic gap

‘the one Aslan plays with ___ all day [without hitting ___]’
Parasitic gaps in West Circassian

A pronoun that is bound by relativized participant may be replaced by a parasitic gap

\[\text{Aslan} \text{ day whole} \]

\[\text{the one Aslan plays with } _ \text{ all day } [\text{ without hitting } _ \text{]’} \]
Parasitic gaps in West Circassian

A pronoun that is bound by relativized participant may be replaced by a parasitic gap

\[
\begin{align*}
\text{Op}_i & \quad \text{as\l an} \quad \text{mafem} \quad \text{rjene} \\
& \quad \text{Aslan} \quad \text{day} \quad \text{whole} \\
\text{CP} & \quad \text{PG} \quad \text{Ø}\- \quad \text{z-} \quad \text{e-} \quad \text{məwew} \\
& \quad \text{3ABS- WH.IO- DAT- NEG.hit.ADV} \\
\text{ti} & \quad \text{Ø-} \quad \text{zə-} \quad \text{de-} \quad \text{ʒegwərər} \\
& \quad \text{3ABS- WH.IO- COM- play.DYN.ABS} \\
\end{align*}
\]

‘the one Aslan plays with __ all day [without hitting __]’
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap.
- The parasitic gap triggers parasitic wh-agreement.

\[
\text{Op}_i \quad \text{aslan} \quad \text{mafem} \quad \text{rjene} \\
\text{Aslan} \quad \text{day} \quad \text{whole} \\
\text{[CP} \quad \text{PG} \quad \text{Ø-} \quad \text{z-} \quad \text{e-} \quad \text{məwew} \quad \text{]} \\
\text{3ABS- WH.IO- DAT- NEG-hit.ADV} \\
\text{t}_i \quad \text{Ø-} \quad \text{zə-} \quad \text{de-} \quad \text{ʒegʷərər} \\
\text{3ABS- WH.IO- COM- play.DYN.ABS} \\
\text{‘the one Aslan plays with __ all day [without hitting __]’}
\]
A pronoun that is bound by relativized participant may be replaced by a parasitic gap.

- The parasitic gap triggers parasitic wh-agreement.

\[
\begin{array}{llll}
O_p & \text{as\l an} & \text{mafem} & \text{rjene} \\
\text{Aslan} & \text{day} & \text{whole} \\
\end{array}
\]

\[
[CP _ _PG _ _ _ 3ABS- WH.IO- DAT- NEG.hit.ADV]
\]

\[
\begin{array}{llll}
t_1 & \text{Ø-} & \text{zə-} & \text{de-} \\
\text{3ABS- WH.IO- COM- play.DYN.ABS}
\end{array}
\]

‘the one Aslan plays with ___ all day [without hitting ___]’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.
A relativized participant may license a parasitic gap in place of a bound possessor in a clausalmate DP.

\[\text{\četwewi } [\text{pro}_i] \text{z- } \text{ješxən}] t_i \ O- \text{zə- } \text{məšxərər} \]

\[\text{cat } \text{WH.Poss- } \text{food } \text{3Abs- WH.Erg- } \text{Neg.eat.Dyn.Abs} \]

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

\[
\text{PRIMARY WH-AGREEMENT}
\]

\[
\text{ˇ cetəwew}_i [\text{pro}_i \text{ z- } \text{jəšxən}] t_i \text{ Ø- zə- məšxərər}
\]

\[
\text{cat WH.POSS- food 3ABS- WH.ERG- NEG.eat.DYN.ABS}
\]

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

\[\text{ˇ} \text{cetwew}_i \ [\text{pro}_i \ z- \text{ješxən}] \ t_i \ Ø- \ zə- \text{məšxərer} \]
\[\text{cat} \ \text{WH.Poss-} \text{food} \ 3\text{ABS-} \text{WH.erg-} \text{neg.eat.Dyn.Abs} \]

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

The parasitic gap triggers parasitic possessor wh-agreement.

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

The parasitic gap triggers **parasitic possessor wh-agreement**.

\[\text{'the cat who doesn't eat its food'} \]
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alewí t_i [___PG zə- ŝ] Ø- qədekwaðer
boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alew₁ ₜ₁ [___PG zə- š] Ø- qədekʷɑ̃ber
boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alewi \(t_i \) [___PG \(z\text{-} \) š] \(\emptyset \) qədekwəber
boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alew₁ tᵢ [___PG zə- ſ] Ø- qədekʷəber
boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
An ABS trace cannot license parasitic gaps in clausalmate NPs

\[
\text{C-COMMAND}
\]

* \(\text{č’alew}_i \) \(t_i \) [\(____PG \)] \(z\theta \) - ́š] \(\emptyset \) - qədekk\text{wa}ber

boy \(\text{WH.POSS} \) - brother \(\text{WH.ABS} \) - 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausal NPs

\[
\text{C-COMMAND}
\]

\begin{align*}
\bullet & \quad \text{č’alew}_i \quad t_i \quad [\quad \text{PG} \quad] \\
& \quad \text{boy} \quad \text{WH.POSS}- \quad \text{brother} \quad \text{WH.ABS}- \quad 3\text{SG.IO}+\text{COM.go.PST.ABS}
\end{align*}

\begin{quote}
‘the boy who arrived together with his brother’
\end{quote}

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

\[\Rightarrow \text{ABS c-commands the coreferent possessor} \]
The anti-c-command condition and syntactic ergativity

ERG or IO trace can license a parasitic gap in ABS DP:

\[
\begin{align*}
\text{CP} & \quad \text{C'} \\
\text{TP} & \quad \text{C} \\
\text{DP(ABS)} & \quad \text{T'} \\
\text{vP} & \quad \text{T} \\
\text{DP(ERG)} & \quad \text{v'} \\
\text{ApplP} & \quad \text{v} \\
\text{DP(IO)} & \quad \text{Appl'} \\
\end{align*}
\]
The anti-c-command condition and syntactic ergativity

ERG or IO trace can license a parasitic gap in ABS DP:

\[\text{DP(ABS)} \]

\[\text{DP(IO)} \]

\[\text{Appl'} \]

\[\text{PG} \]

\[\text{t_i} \]

\[\text{v'} \]

\[\text{v} \]

\[\text{ApplP} \]

\[\text{vP} \]

\[\text{T'} \]

\[\text{T} \]

\[\text{TP} \]

\[\text{C'} \]

\[\text{C} \]

\[\text{CP} \]

\[\text{Op_i} \]
ERG or **IO** trace can license a parasitic gap in **ABS** DP:
\textbf{ABS} trace cannot license a parasitic gap in \textbf{ERG} or \textbf{IO} DP:
The anti-c-command condition and syntactic ergativity

ABS trace cannot license a parasitic gap in **ERG** or **IO** DP:

```
CP
  \--- Op_i  \--- C'
     \       \      \--- TP
       \       \      \--- C
       \       \      \--- T'
       \       \      \--- vP
       \       \      \--- T
       \       \      \--- v
       \       \      \--- \_ApplP
       \       \      \--- \_Appl'
       \       \--- \_DP(ERG)
       \--- \_DP(IO)
       \--- PG
```

Parasitic gaps
The anti-c-command condition and syntactic ergativity

ABS trace cannot license a parasitic gap in **ERG** or **IO** DP:

```

ABS trace cannot license a parasitic gap in ERG or IO DP:

CP

Op_i

CP

ABS trace cannot license a parasitic gap in ERG or IO DP:

CP

Op_i

CP
```

The anti-c-command condition and syntactic ergativity

ABS trace cannot license a parasitic gap in **ERG** or **IO** DP:

```

ABS trace cannot license a parasitic gap in ERG or IO DP:

CP

Op_i

CP

ABS trace cannot license a parasitic gap in ERG or IO DP:

CP

Op_i

CP
```
ERG trace licenses parasitic gap in ABS DP

\[
\begin{array}{c}
\text{DP}_{\text{ERG}}
\end{array}
\begin{array}{c}
\text{DP}_{\text{ABS}}
\end{array}
\begin{array}{c}
\text{DP}
\end{array}
\begin{array}{c}
\text{vP}
\end{array}
\begin{array}{c}
\text{CP}
\end{array}
\begin{array}{c}
\text{\`cet\`awew}_{\text{i}}
\end{array}
\begin{array}{c}
\text{cat}
\end{array}
\begin{array}{c}
\text{_PG}
\end{array}
\begin{array}{c}
\text{_z-}
\end{array}
\begin{array}{c}
\text{\j`\`sx\`en}
\end{array}
\begin{array}{c}
\text{_WH.POSS-}
\end{array}
\begin{array}{c}
\text{food}
\end{array}
\begin{array}{c}
\text{_t}_{\text{i}}
\end{array}
\begin{array}{c}
\text{_\`-}
\end{array}
\begin{array}{c}
\text{_m\`sx\`er}
\end{array}
\begin{array}{c}
\text{_3ABS-}
\end{array}
\begin{array}{c}
\text{_WH.ERG-}
\end{array}
\begin{array}{c}
\text{_NEG.eat.DYN.ABS}
\end{array}
\end{array}

\text{‘the cat who doesn’t eat its food’}
ERG trace licenses parasitic gap in ABS DP

‘the cat who doesn’t eat its food’
ERG trace licenses parasitic gap in ABS DP

\[
\begin{array}{c}
\text{DP}_{\text{ERG}} \\
\tilde{\text{cet\textsc{\textasciitilde}wew}}_1 \\
\text{cat} \\
\end{array}
\quad \begin{array}{c}
\text{CP} \\
\text{DP}_{\text{ABS}} \\
\text{vP} \\
\end{array}
\quad \begin{array}{c}
\checkmark_{\text{PG}} \\
\text{z-} \\
\text{WH.POSS-} \\
\text{food} \\
\end{array}
\quad \begin{array}{c}
t_i \\
\text{3ABS-} \\
\text{WH.ERG-} \\
\text{NEG.eat.DYN.ABS} \\
\end{array}
\]

‘the cat who doesn’t eat its food’
IO trace licenses parasitic gap in ABS DP

‘the boy whom his brother always hits’
IO trace licenses parasitic gap in ABS DP

‘the boy whom his brother always hits’
IO trace licenses parasitic gap in ABS DP

‘the boy whom his brother always hits’
Absolutive trace cannot license parasitic gaps
ABS theme cannot license parasitic gap in **ERG** DP:

* Op_i \(t_1 \) [__PG z- jane] \(\text{Ø-} \) \(\text{ə-} \) məбаšxere
 \text{WH.POSS-} mother \text{WH.ABS-} 3\text{SG.ERG-} \text{NEG.feed.DYN}
hažwəš’ərxem
puppies

Intended: ‘the puppies whom their mother doesn’t feed’
ABS theme cannot license parasitic gap in **ERG** DP:

\[* \text{Op}_i t_i [_____ \text{z-} \text{jane}] \quad \emptyset - \emptyset - \text{mwašxere} \quad \text{WH.POSS-} \text{mother} \quad \text{WH.ABS-} \text{3SG.ERG-} \text{NEG.feed.DYN} \]

hažwěš’ěrxem

puppies

Intended: ‘the puppies whom their mother doesn’t feed’
Absolutive trace cannot license parasitic gaps

ABS agent cannot license parasitic gap in **IO** DP:

* hawi \(t_i(\text{ABS}) \) [*PG z- jexw'ezjajən]
 dog \text{WH.Poss}- owner

Ø- \Ø- jeceqež’ə̱ə̱em
\text{WH.Abs}- 3SG.IO- bite.PST.OBL

Intended: ‘the dog that bit its owner’
ABS agent cannot license parasitic gap in **IO** DP:

\[
\begin{array}{c}
\text{ABS} & \text{IO} \\
* \text{haw}_i & [^* \text{PG} \ z- \ j\check{x}^w \text{ezjaj}\text{\text{"en}}] \\
\text{dog} & \text{WH.POSS- owner} \\
\emptyset & \emptyset \ \text{jeceqez’\text{"ebem}} \\
\text{WH.ABS- 3SG.IO- bite.PST.OBL} & \\
\end{array}
\]

Intended: ‘the dog that bit its owner’
a pronoun that is bound by a relativized participant may be replaced by a parasitic gap
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

the parasitic gap triggers **parasitic wh-agreement**
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

the parasitic gap triggers **parasitic wh-agreement**

ERG or **IO** trace can license parasitic gaps in **ABS**
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

the parasitic gap triggers **parasitic wh-agreement**

ERG or **IO** trace can license parasitic gaps in **ABS**

ABS trace cannot license parasitic gaps in **ERG** or **IO** DPs
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

the parasitic gap triggers **parasitic wh-agreement**

ERG or **IO** trace can license parasitic gaps in **ABS**

ABS trace cannot license parasitic gaps in **ERG** or **IO** DPs

Per the anti-c-command condition
Summary: parasitic gaps and syntactic ergativity

- A pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**
- The parasitic gap triggers **parasitic wh-agreement**
- **ERG** or **IO** trace can license parasitic gaps in **ABS**
- **ABS** trace cannot license parasitic gaps in **ERG** or **IO** DPs
- Per the anti-c-command condition
 \[\Rightarrow \text{ABS c-commands ERG and IO} \]
Summary: parasitic gaps and syntactic ergativity

- A pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**
- The parasitic gap triggers **parasitic wh-agreement**
- **ERG** or **IO** trace can license parasitic gaps in **ABS**
- **ABS** trace cannot license parasitic gaps in **ERG** or **IO** DPs
- Per the anti-c-command condition
 \[\Rightarrow \text{ABS} \text{ c-commands ERG and IO}\]

Parasitic gaps provide evidence for a high absolutive syntax.
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- West Circassian:
 - background on the language
 - possessor extraction
 - parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- **West Circassian:**
 - background on the language
 - possessor extraction
 - parasitic gaps

- **Conclusion and implications**
Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

- Possessor relativization is grammatical only out of the absolutive DP.
- A possessor may not be replaced with a parasitic gap if it is bound by an absolutive trace.

Taken together, these generalizations form a unified picture: The absolutive DP moves high. Other aspects of the grammar fit this bigger picture: E.g. reciprocal binding (Ershova 2019, 2021c).
Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

- possessor relativization is grammatical only out of the ABS DP
Putting the puzzle pieces together

Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

- possessor relativization is grammatical only out of the ABS DP
- a possessor may not be replaced with a parasitic gap if it is bound by an ABS trace
Putting the puzzle pieces together

Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

- possessor relativization is grammatical only out of the ABS DP
- a possessor may not be replaced with a parasitic gap if it is bound by an ABS trace

Taken together, these generalizations form a unified picture:
Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

- possessor relativization is grammatical only out of the ABS DP
- a possessor may not be replaced with a parasitic gap if it is bound by an ABS trace

Taken together, these generalizations form a unified picture:

The absolutive DP moves high.
Putting the puzzle pieces together

Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

▶ possessor relativization is grammatical only out of the ABS DP
▶ a possessor may not be replaced with a parasitic gap if it is bound by an ABS trace

Taken together, these generalizations form a unified picture:

The absolutive DP moves high.

Other aspects of the grammar fit this bigger picture:
Putting the puzzle pieces together

Wh-agreeing possessors in West Circassian display two types of syntactic ergativity effects:

▶ possessor relativization is grammatical only out of the \textit{ABS} DP
▶ a possessor may not be replaced with a parasitic gap if it is bound by an \textit{ABS} trace

\textbf{Taken together}, these generalizations form a unified picture:

\textbf{The absolutive DP moves high.}

\textbf{Other aspects of the grammar} fit this bigger picture:
E.g. reciprocal binding (Ershova 2019, 2021c)
Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)

ERG may not undergo Ā-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)

ERG may not undergo Ā-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.

Q’ankob’al (Mayan):

* Maktxel max y-il ___**ERG** ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’
Syntactic ergativity and ergative extraction

Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)

ERG may not undergo Ā-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.

Q’ANKOB’AL (MAYAN):

* Maktxel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

(Coon et al. 2021)
Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)

ERG may not undergo А-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.

Q’ANKOB’AL (MAYAN):

* Maktixel max y-il ___ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

(Coon et al. 2021)
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages.
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages

& high absolutive syntax is required to derive the ergative extraction constraint
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages

& high absolutive syntax is **required** to derive the ergative extraction constraint

(but see Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages

& high absolutive syntax is **required** to derive the ergative extraction constraint

(but see Otsuka 2006, 2017; Deal 2016; Polinsky 2016)

This talk

The ergative extraction constraint is not necessarily **predicted** by high absolutive syntax, nor necessarily **predicts** high absolutive syntax.
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.
High absolutive ⇆ ergative extraction constraint

The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:

▶ relativized wh-probe (Coon et al. 2021)
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
- constraint on crossing dependencies (Tollan and Clemens 2021)
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
- constraint on crossing dependencies (Tollan and Clemens 2021)

This is a desirable prediction.
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
- constraint on crossing dependencies (Tollan and Clemens 2021)

This is a desirable prediction.

West Circassian is a high absolutive language without an ergative extraction constraint.
Raised ABS is not the only way to derive the ban on ergative wh-movement.
Raised ABS is not the only way to derive the ban on ergative wh-movement.

Approaches based on properties of ERG:

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Raised ABS is not the only way to derive the ban on ergative wh-movement.

Approaches based on properties of ERG:

- ERG cannot move because of case or structural position

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Raised ABS is not the only way to derive the ban on ergative wh-movement.

Approaches based on properties of ERG:

- ERG cannot move because of case or structural position
- ABS remains low and does not interact with ergative extraction

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Moving forward

This talk: two previously undiscussed reflexes of high absolutive syntax
Moving forward

- **This talk:** two previously undiscussed reflexes of high absolutive syntax

 1. subextraction asymmetries
Moving forward

- **This talk:** two previously undiscussed reflexes of high absolutive syntax
 1. subextraction asymmetries
 2. conditions on parasitic gap licensing
Moving forward

- This talk: two previously undiscussed reflexes of high absolutive syntax
 1. subextraction asymmetries
 2. conditions on parasitic gap licensing

- Future direction: similar effects are predicted for other high absolutive languages
Moving forward

- **This talk:** two previously undisussed reflexes of high absolutive syntax
 1. subextraction asymmetries
 2. conditions on parasitic gap licensing

- **Future direction:** similar effects are predicted for other high absolutive languages

Main takeaway
Moving forward

- **This talk:** two previously undiscussed reflexes of high absolutive syntax

 1. subextraction asymmetries
 2. conditions on parasitic gap licensing

- **Future direction:** similar effects are predicted for other high absolutive languages

Main takeaway

High absolutive syntax permeates a language’s grammar and should be observable in multiple domains.
Moving forward

- **This talk:** two previously undiscussed reflexes of high absolutive syntax
 1. subextraction asymmetries
 2. conditions on parasitic gap licensing

- **Future direction:** similar effects are predicted for other high absolutive languages

Main takeaway

High absolutive syntax permeates a language’s grammar and should be observable in multiple domains.

The ergative extraction constraint is not necessarily *predicted* by high absolutive syntax, nor necessarily *predicts* high absolutive syntax.
Thank you!

- West Circassian consultants: Svetlana K. Alishaeva, Saida Gisheva, Susana K. Khatkova, and Zarema Meretukova
- Karlos Arregi, Cleo Condoravdi, Itamar Francez, Vera Gribanova, Boris Harizanov, Ana Ilievska, Paul Kiparsky, Yury Lander, Beth Levin, Jason Merchant, Yakov G. Testelets, and four anonymous journal reviewers

- Funding sources:
 - Dissertation Research Improvement Grant from the National Science Foundation (BCS-1749299)
 - Association for Slavic, East European, and Eurasian Studies Dissertation Research Grant
 - Andrew W. Mellon Fellowship of Scholars in the Humanities at Stanford University

References (cont.)

