Unexpected Ā-movement in West Circassian
Theoretical implications for syntactic ergativity

Ksenia Ershova
Stanford University

Princeton Symposium on Syntactic Theory 2022
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of syntactic rules that group S and O (the absolutive) together, to the exclusion of A (the ergative).”
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

S = subject of intransitive verb
O = object of transitive verb
A = subject of transitive verb
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

\[S = \text{subject of intransitive verb} \]
\[O = \text{object of transitive verb} \]
\[A = \text{subject of transitive verb} \]
What is syntactic ergativity

Defined broadly (Polinsky 2017:3):

“The presence of **syntactic rules** that group S and O (the absolutive) together, to the exclusion of A (the ergative).”

\[
\begin{align*}
S &= \text{subject of intransitive verb} \\
O &= \text{object of transitive verb} \\
A &= \text{subject of transitive verb}
\end{align*}
\]

\[
\begin{align*}
\{ & \text{ABS} \\
\{ & \text{ERG}
\end{align*}
\]
What makes a language syntactically ergative?

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
  V_{INTR} ...
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
    <SUBJECT>
```

Transitive clause:

```
CP
  <OBJECT>
    SUBJECT
      <OBJECT>
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
   \--- SUBJECT
      \  <SUBJECT>
        \     \ V_{INTR}
          \    ...
```

Transitive clause:

```
CP
   \--- SUBJECT
      \  V_{TR}
        \   OBJECT
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
    <SUBJECT>
    V_INTR
    ...
```

Transitive clause:

```
CP
  OBJECT
  SUBJECT
    V_TR
    <OBJECT>
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

<table>
<thead>
<tr>
<th>CP</th>
<th>SUBJECT</th>
<th>V<sub>INTR</sub></th>
<th>...</th>
</tr>
</thead>
</table>

Transitive clause:

<table>
<thead>
<tr>
<th>CP</th>
<th>SUBJECT</th>
<th>V<sub>TR</sub></th>
<th>OBJECT</th>
</tr>
</thead>
</table>

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP

SUBJECT

V_{INTR}...

<SUBJECT>

ABS
```

Transitive clause:

```
CP

SUBJECT

V_{TR}

OBJECT
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
bann on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
 <SUBJECT>
  ABS
  V_INTR
```

Transitive clause:

```
CP
  SUBJECT
  V_TR
  OBJECT
  ABS
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
What makes a language syntactically ergative?

Trademark property:
ban on wh-movement of the ergative agent

Intransitive clause:

```
CP
  SUBJECT
  <SUBJECT>
  ABS

V_INTR
```

Transitive clause:

```
CP
  SUBJECT
   ERG

V_TR
  OBJECT
    ABS
```

Dixon (1994); Manning (1996); Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.
Example: ERG cannot move in Q’anjob’al (Mayan)

* Maktxel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’
Example: ERG cannot move in Q’anjob’al (Mayan)

* Maktixel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

*ERG WH-MOVT
Example: ERG cannot move in Q’anjob’al (Mayan)

* Maktxel max y-il \(_{\text{ERG}}\) ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

Maktxel max y-il naq winaq \(_{\text{ABS}}\) ?
who PFV A3-see CLF man

‘Who did the man see?’
Example: ERG cannot move in Q’anjob’al (Mayan)

* Maktxel max y-il __ERG ix ix?
 who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

Maktxel max y-il naq winaq __ABS ?
who PFV A3-see CLF man

‘Who did the man see?’

(Coon et al. 2014, 2021; Tollan and Clemens 2021)
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
A class of approaches accounts for syntactic ergativity effects with movement of \textit{ABS} to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.

Raised ABS blocks ERG Ā-movement:
A class of approaches accounts for syntactic ergativity effects with movement of ABS to a high position.

Aldridge (2004, 2008); Coon et al. (2014, 2021); Tollan and Clemens (2021), a.o.

Raised ABS blocks ERG Ā-movement:
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.
The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG.
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

- Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG.

 Additional assumptions or analytical tools are required.
The main claim

- The ban on ergative wh-movement is taken to be the defining property of syntactically ergative languages.

- Under existing accounts, ABS raising alone is insufficient to derive blocking of ERG.

 Additional assumptions or analytical tools are required.

- This is a desirable aspect of high absolutive analyses.
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.

- Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG.

 Additional assumptions or analytical tools are required.

- **This is a desirable aspect of high absolutive analyses.**

The ban on ergative extraction is not necessarily **predicted** by high absolutive syntax, nor necessarily **predicts** high absolutive syntax.
The main claim

- The ban on ergative wh-movement is taken to be the **defining property** of syntactically ergative languages.
- Under existing accounts, ABS raising alone is **insufficient** to derive blocking of ERG. Additional assumptions or analytical tools are required.
- **This is a desirable aspect of high absolutive analyses.**

The ban on ergative extraction is not necessarily **predicted** by high absolutive syntax, nor necessarily **predicts** high absolutive syntax.

Confirmed by West Circassian.
The ergative can move in West Circassian:

\[
\begin{align*}
\text{ˇ c.'alew} & \rightarrow \text{ˇ s} \rightarrow \text{his brother} \\
\text{velosj} & \rightarrow \text{bicycle} \\
\text{Ø-Ø-je-K} & \rightarrow \text{give-pst-abs} \\
\text{io-dat-WH} & \rightarrow \text{ERG-MOVT} \\
\end{align*}
\]

The boy who gave a bicycle to his brother

displays a number of other syntactic ergativity effects
The ergative can Ā-move in West Circassian:
The ergative can Ā-move in West Circassian:

\[\text{č’alew [_{ERG} \ əš \ velosjəped \ boy \ his \ brother \ bicycle \ Ø-Ø-je-zə-tə-ve }] \ -r \ 3\text{ABS-3SG.IO-DAT-\textbf{WH.ERG}-give-PST} \ -\text{ABS} \]

‘the boy who gave a bicycle to his brother’ \ ✓ \text{ERG WH-MOVT}
The ergative can Ā-move in West Circassian:

č’alew [_ERG őš velosjəped
boy his brother bicycle
Ø-Ø-je-zə-tə-ve] -r
3ABS-3SG.IO-DAT-**WH.ERG**-give-PST -ABS

‘the boy who gave a bicycle to his brother’ ✓ERG **WH-MOV**

BUT displays a number of **other** syntactic ergativity effects
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
Broader syntactic ergativity in West Circassian

1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

```
DP_{ABS}  
     /     
    /      
   /       
  DP_{ERG}  
       /     
      /      
     /       
    DP_{IO}  
     / 
    REC
```

only ABS is transparent for possessor extraction (Ershova 2020)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)
1. **ABS** binds **ERG** and **IO** reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only **ABS** is transparent for possessor extraction (Ershova 2020)
1. **ABS** binds **ERG** and **IO** reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only **ABS** is transparent for possessor extraction (Ershova 2020)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)
2. only ABS is transparent for possessor extraction (Ershova 2020)
3. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. **ABS** binds **ERG** and **IO** reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only **ABS** is transparent for possessor extraction (Ershova 2020)

3. anti-c-command condition: **ABS** trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. **ABS** binds **ERG** and **IO** reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only **ABS** is transparent for possessor extraction (Ershova 2020)

3. anti-c-command condition: **ABS** trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)

3. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)

3. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
1. ABS binds ERG and IO reciprocals, and not vice versa (Ershova 2019, 2021b)

2. only ABS is transparent for possessor extraction (Ershova 2020)

3. anti-c-command condition: ABS trace cannot license parasitic gaps (Ershova 2019, 2021a)
Unifying syntactic ergativity effects

Three syntactic rules which group S and O together, to the exclusion of A

All three require S and O to be structurally distinct from A

⇒ S and O must share the same position

This position is outside vP, and c-commands erg

Broad syntactic ergativity is evidence for high absolutive syntax.

Introduction
Unifying syntactic ergativity effects

Three syntactic rules which group S and O together, to the exclusion of A

Broad syntactic ergativity is evidence for high absolutive syntax.
Unifying syntactic ergativity effects

- Three syntactic rules which group S and O together, to the exclusion of A
- All three require S and O to be **structurally** distinct from A
Unifying syntactic ergativity effects

- Three syntactic rules which group S and O together, to the exclusion of A
- All three require S and O to be structurally distinct from A
- So S and O must share the same position
Three syntactic rules which group S and O together, to the exclusion of A.

All three require S and O to be structurally distinct from A.

⇒ S and O must share the same position.

This position is outside vP.
Three syntactic rules which group S and O together, to the exclusion of A

All three require S and O to be \textit{structurally} distinct from A

\[\Rightarrow \text{S and O must } \textit{share the same position} \]

This position is outside \(\nu P \), and c-commands \(\text{ERG} \)
Three syntactic rules which group S and O together, to the exclusion of A

All three require S and O to be **structurally** distinct from A

⇒ S and O must **share the same position**

This position is outside vP, and c-commands ERG

Broad syntactic ergativity is evidence for **high absolutive** syntax.
Expanding high absolutive analyses

Proposals for high absolutive:

Expanding high absolutive analyses

- **Proposals for high absolutive:**

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

This talk

High absolutive syntax confirmed with novel structural diagnostics.

Counter to prior literature: high absolutive does not predict a ban on ergative wh-movement.
Expanding high absolutive analyses

- **Proposals for high absolutive:** Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008; Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.
Expanding high absolutive analyses

- **Proposals for high absolutive:**

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.

This talk
Expanding high absolutive analyses

- **Proposals for high absolutive:** Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008; Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.

- **Key diagnostic for high absolutive:** ban on ergative wh-movement.

- **Additional reflexes of high absolutive** in quantifier scope, cross-clausal coreference, word order, and agreement morphology.

This talk

- High absolutive syntax confirmed with **novel structural diagnostics**.
Expanding high absolutive analyses

▶ Proposals for high absolutive:
Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2004, 2008;
Coon et al. 2014, 2021; Yuan 2018; Drummond 2021, a.o.

▶ Key diagnostic for high absolutive: ban on ergative wh-movement.

▶ Additional reflexes of high absolutive in quantifier scope,
cross-clausal coreference, word order, and agreement morphology.

This talk

▶ High absolutive syntax confirmed with novel structural diagnostics.

▶ Counter to prior literature: high absolutive does not predict a ban on ergative wh-movement.
Deconstructing syntactic ergativity: Roadmap

▶ Predictions of high absolutive syntax
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:
In **high absolutive** languages, the **ABS** object raises to a position above the **ERG** agent:

```
            ABS
           /  \
          /    \
ERG      ABS
```
In **high absolutive** languages, the **ABS** object raises to a position above the **ERG** agent:
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

The raised absolutive:
In high absolutive languages, the ABS object raises to a position above the ERG agent:

The raised absolutive:
- should be detectable by syntactic rules that are sensitive to structural superiority
In **high absolutive** languages, the ABS object raises to a position above the ERG agent:

```
ABS  
│   
│   ERG
│   
│   <ABS>
```

The raised absolutive:

- should be detectable by syntactic rules that are sensitive to structural superiority
- does not necessarily block ergative extraction
Two prominent approaches:
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

Ergative extraction is blocked by a combination of raised absolutive + additional language-specific assumptions.
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

Ergative extraction is blocked by a combination of raised absolutive + additional language-specific assumptions.
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. **raised ABS intervenes between wh-probe and ERG**
 (Aldridge 2004, 2008; Coon et al. 2021)

2. **ERG movement over raised ABS** is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

Ergative extraction is blocked by a combination of raised absolutive + additional language-specific assumptions.
Coon et al. (2021):
Coon et al. (2021):

- ABS object raises to Spec, vP
Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement
Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement because wh-C is relativized for [WH] and [D]

In most languages, the wh-probe is not relativized for [d]. Predicts high absolutive languages with no ban on erg extraction.
Coon et al. (2021):

- **ABS** object raises to Spec, \(\nu P\)
- **ABS** intervenes for ERG wh-movement because wh-C is *relativized* for [WH] and [D]

In most languages, the wh-probe is not relativized for [D]. Predicts high absolutive languages with no ban on erg extraction.
Coon et al. (2021):

- **ABS object raises to Spec, vP**
- **ABS intervenes for ERG wh-movement**

because wh-C is *relativized* for [WH] and [D]

In most languages, the wh-probe is not relativized for [D].

Predicts high absolutive languages with no ban on erg extraction.
High absolutive intervenes

Coon et al. (2021):

ABS object raises to Spec, vP
ABS intervenes for ERG wh-movement
because wh-C is relativized for [WH] and [D]

In most languages, the wh-probe is not relativized for [D].
Predicts high absolutive languages with no ban on erg extraction.
High absolutive intervenes

Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement because wh-C is relativized for [WH] and [D]
- relativized probe is language-specific

In most languages, the wh-probe is not relativized for [D]. Predicts high absolutive languages with no ban on erg extraction.
High absolutive intervenes

Coon et al. (2021):

- ABS object raises to Spec, vP
- ABS intervenes for ERG wh-movement because wh-C is relativized for [WH] and [D]
- relativized probe is language-specific

In most languages, the wh-probe is not relativized for [D]. Predicts high ABS languages with no ban on ERG extraction.
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):
Tollan and Clemens (2021): Constraint on Crossing Dependencies

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

CP

ssP

DP_{ABS}

VoiceP

DP_{ERG} <DP_{ABS}>

Constraint on Crossing Dependencies

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021): CP

Constraint on Crossing Dependencies

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Constraint on Crossing Dependencies

Tollan and Clemens (2021):

- CP
- ssP
- DP$_{ABS}$
- VoiceP
- DP$_{ERG}$

No movement dependency may cross another movement dependency. (Kuno and Robinson 1972; Steedman 1985, a.o.)
Tollan and Clemens (2021): there are well-known counterexamples

Constraint on Crossing Dependencies is not universal
Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters

Predicts tendency for high absolutive languages to display ergative extraction constraint. Does not predict universal correlation between high absolutive and ergative extraction constraint. Allows for possibility of high absolutive language without a ban on crossing dependencies, i.e. no ban on ergative extraction.
Constraint on Crossing Dependencies is not universal

Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement
Constraint on Crossing Dependencies is not universal

Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.
Constraint on Crossing Dependencies is not universal

Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.

Does not predict universal correlation between high absolutive and ergative extraction constraint.
Tollan and Clemens (2021): there are well-known counterexamples

- Dutch clause-final verb clusters
- Bulgarian multiple wh-movement

⇒ Predicts *tendency* for high absolutive languages to display ergative extraction constraint.

Does not predict universal correlation between high absolutive and ergative extraction constraint.

Allows for possibility of high ABS language without a ban on crossing dependencies, i.e. no ban ERG extraction.
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised **ABS** intervenes between *wh*-probe and **ERG**
 (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that **ERG** extraction constraint is necessary property of high absolutive languages.

2. **ERG** movement over raised **ABS** is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)
How the high absolutive blocks ergative extraction

Two prominent approaches:

1. raised ABS intervenes between wh-probe and ERG
 (Aldridge 2004, 2008; Coon et al. 2021)

 Does not predict that ERG extraction constraint is necessary property of high absolutive languages.

2. ERG movement over raised ABS is a violation of the Constraint on Crossing Dependencies (Tollan and Clemens 2021)

 Predicts tendency for high absolutive to correlate with ergative extraction constraint.

 Leaves space for counterexamples.
High absolutive in the broader syntax

Raised absolutive does not necessarily block ergative extraction. High position of absol should affect syntactic rules which are sensitive to c-command. Both predictions confirmed by West Circassian. High absolutive diagnosed in three novel domains: reciprocal binding, possessor extraction, parasitic gaps.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.

Both predictions confirmed by West Circassian.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of \textit{ABS} should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.

High absolutive diagnosed in three novel domains:
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.

High absolutive diagnosed in three novel domains:
- reciprocal binding
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of \textit{ABS} should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.

High absolutive diagnosed in three novel domains:
- reciprocal binding
- possessor extraction
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.

High absolutive diagnosed in three novel domains:
- reciprocal binding
- possessor extraction
- parasitic gaps
High absolutive in the broader syntax

- Raised absolutive does not necessarily block ergative extraction.
- High position of ABS should affect syntactic rules which are sensitive to c-command.

Both predictions confirmed by West Circassian.

High absolutive diagnosed in three novel domains:
- reciprocal binding
- possessor extraction
- parasitic gaps
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
West Circassian (or Adyghe):
Case Study: West Circassian

West Circassian (or Adyghe):
- Northwest Caucasian
West Circassian (or Adyghe):

- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia
Case Study: West Circassian

West Circassian (or Adyghe):
- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia

Data from fieldwork on Temirgoy dialect in the Shovgenovsky district of Adygea, collected during three trips in 2017-2019.
West Circassian is polysynthetic

Head marking and pro-drop:

'He showed me to them for your sake.' (Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpdfarjəveləb^wəb \]
West Circassian is polysynthetic

Head marking and pro-drop:

\[s\tilde{q}\tilde{q}p\tilde{f}a\tilde{r}j\tilde{v}\tilde{e}\lambda e\tilde{v}^w\tilde{v}^w \]

\[s\tilde{v}- q\tilde{v}- p-f- a-r- j\tilde{v}- \lambda e- \lambda e\tilde{v}^w\tilde{v}^w -v \]

1SG.ABS- DIR- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpfarjəveλəb^wəb \]

\[
\begin{array}{cccccccc}
 & sə- & qə- & p-f- & a-r- & jə- & he- & λəb^wə- & -v \\
1SG.ABS- & DIR- & 2SG.IO-BEN- & 3PL.IO-DAT- & 3SG.ERG- & CAUS- & see & -PST
\end{array}
\]

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpzərjəvəleb^wəb\]

me for your sake to them he

1SG.ABS- DIR- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)

Agreement order:
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpfarjəwəlebwəb \]

\[
\begin{array}{c}
\text{me} & \text{for your sake} & \text{to them} & \text{he} \\
\text{sə-} & \text{qə-} & \text{p-f-} & \text{a-r-} & \text{jə-} & \text{he-} & \text{lebwəb -v} \\
\text{1SG.ABS-} & \text{DIR-} & \text{2SG.IO-BEN-} & \text{3PL.IO-DAT-} & \text{3SG.ERG-} & \text{CAUS-} & \text{see} & \text{-PST} \\
\end{array}
\]

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)

Agreement order:

\begin{array}{c}
\text{S/O-} \\
\text{ABS-}
\end{array}
West Circassian is polysynthetic

Head marking and pro-drop:

\[s\omega p\bar{f}ar\jmath\bar{e}\lambda\bar{e}b\, w\omega \bar{b} \]

1SG.ABS- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)

Agreement order:

S/O- IO- ABS- IO+APPL-
West Circassian is polysynthetic

Head marking and pro-drop:

\[
\text{səqəpfarjəkəleb}^\text{wəb}
\]

me for your sake to them he

1SG.ABS- DIR- 2SG.IO-BEN- 3PL.IO-DAT- 3SG.ERG- CAUS- see -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)

Agreement order:

S/O- IO- A-
ABS- IO+APPL- ERG-
Head marking on nominals
Head marking on nominals

\[s- \quad \text{šəpч̱вəxer} \]
\[1\text{sg.pos} - \text{sister.PL.abs} \]

‘my sisters’

INALIENABLE
Head marking on nominals

\[s- \quad \text{šəpχwəxer} \]
\[\text{1sg.poss- } \text{sister.PL.ABS} \]

‘my sisters’ \text{INALIENABLE}

\[t- \quad jə- \quad \text{wənebəxem} \]
\[\text{1pl.poss- ALIEN- } \text{neighbor.PL.OBL} \]

‘our neighbors’ \text{ALIENABLE}
Case marking is ergative
Case marking is ergative

-\(r \) (ABS):
Case marking is ergative

-\textit{r (ABS)}:
 \begin{itemize}
 \item subject of intransitive verb (S)
 \end{itemize}

\begin{verbatim}
mə pśaše-r daxew qašwē
this girl-\textbf{ABS} well dances
\end{verbatim}

‘This girl(S) dances well.’
Case marking is ergative

-\(r \) (ABS):
 - subject of intransitive verb (S)
 - object of transitive verb (O)

sabəjxe-m haxe-r qaλeбwэб
children-OBL dogs-ABS saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

-r (ABS):
 ▶ subject of intransitive verb (S)
 ▶ object of transitive verb (O)

-m (OBL):

sabəjxe-m haxe-r qaλεβɬəɓ saw
children-OBL dogs-ABS saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

- **r (ABS):**
 - subject of intransitive verb (S)
 - object of transitive verb (O)

- **m (OBL):**
 - subject of transitive verb (A)

```
sabəjxe-m haxe-r qaλεv[wəv
children-OBL dogs-ABS saw

'The children(A) saw the dogs(O).'
```
Case marking is ergative

-\textit{r} (\texttt{ABS}):
 - subject of intransitive verb (\texttt{S})
 - object of transitive verb (\texttt{O})

-\textit{m} (\texttt{OBL}):
 - subject of transitive verb (\texttt{A})
 - applied object (\texttt{IO})

\begin{verbatim}
\text{žegwə-m} seqəš’eqwərepid
wedding-\texttt{OBL} I didn’t dance
\end{verbatim}

‘I didn’t dance at the wedding(\texttt{IO}).’
Case marking is ergative

-\texttt{r} (\texttt{ABS}):
 ▶ subject of intransitive verb (\texttt{S})
 ▶ object of transitive verb (\texttt{O})

-\texttt{m} (\texttt{OBL}):
 ▶ subject of transitive verb (\texttt{A})
 ▶ applied object (\texttt{IO})
 ▶ possessor

\texttt{mə ñwæzə-m Ō-jə-pśaśē}

this woman-\texttt{OBL} 3SG.POSS-ALIEN-girl

‘this woman’s daughter’
Case marking is ergative

-\textbf{r (ABS)}:
 ▶ subject of intransitive verb (\textit{S})
 ▶ object of transitive verb (\textit{O})

-\textbf{m (OBL)}:
 ▶ subject of transitive verb (\textit{A})
 ▶ applied object (\textit{IO})
 ▶ possessor
 ▶ complement of postposition

\begin{verbatim}
 mə pšaše-\textbf{m} paje
 this girl-\textbf{OBL} for
\end{verbatim}

‘for this girl’
Structure of relative clauses

Relativization = only type of wh-movement

FINITE CLAUSE:

Ø-

RELATIVE CLAUSE:

'S/he gave a book to this person.'

IO WH

WH-MOVEMENT

WH-AGREEMENT (Lander 2012:276)
Structure of relative clauses

Relativization = only type of wh-movement
Structure of relative clauses

Relativization = only type of wh-movement

Finite clause:

\[
\begin{align*}
\text{a-š'} & \quad \text{txələ-r} & [\text{mə çəfə-m}] \\
\text{that-OBL} & \quad \text{book-ABS} & \text{this person-OBL} \\
\text{Ø-} & \quad \text{Ø-} & \text{r- jə- tə-ɾ} \\
\text{3ABS-} & \textbf{3SG.IO-} & \text{DAT-} \text{ 3SG.ERG-} \text{give-PST}
\end{align*}
\]

‘S/he gave a book to this person.’
Relativization = only type of wh-movement

Finite clause:

\[
\text{a-š’ txəɬə-r [mə çəfə-m]}
\]

that-OBL book-ABS this person-OBL

\[
Ø- Ø- r- jə- tə-ɾ
\]

3ABS- 3SG.IO- DAT- 3SG.ERG- give-PST

‘S/he gave a book to this person.’

Relative clause:

\[
[\text{txəɬə-r } \text{i_o} \text{Ø- ze- r- jə- tə-ɾe }] \text{çəfə-r}
\]

book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’

IO WH-MOVMT
Structure of relative clauses

Relativization = only type of wh-movement

Finite clause:

\[
\text{a-š’} \quad \text{txəλə-r} \quad [\text{mə çəfə-m}] \\
\text{that-OBL} \quad \text{book-ABS} \quad \text{this person-OBL} \\
\text{Ø-} \quad \text{Ø-} \quad \text{r-} \quad \text{jə-} \quad \text{tə-b} \\
\text{3ABS-} \quad \text{3SG.IO-} \quad \text{DAT-} \quad \text{3SG.ERG-} \quad \text{give-PST}
\]

‘S/he gave a book to this person.’

Relative clause:

\[
[\text{txəλə-r} \quad _{\text{IO}} \quad \text{Ø-} \quad \text{ze-} \quad \text{r-} \quad \text{jə-} \quad \text{tə-şə} \quad] \quad \text{çəfə-r} \\
\text{book-ABS} \quad 3\text{ABS-} \quad \text{WH.IO-} \quad \text{DAT-} \quad \text{3SG.ERG-} \quad \text{give-PST} \quad \text{person-ABS} \\
\text{WH-MOVEMENT}
\]

‘the person to whom s/he gave the book’

(From: Lander 2012:276)
Structure of relative clauses

Relativization = only type of wh-movement

Finite clause:

a-š’
that-OBL
Ø-
3ABS- 3SG.IO-

\[tx Ward r \]
book-ABS
Ø-
r-
j-
t-w

\[m \text{er } çəfə-m \]
this person-OBL
3ABS-

Ø-
3ABS-

\[ze }-\]
\[r- \]
\[j- \]
\[t-\]

\[çəfə-r \]
person-ABS

give-PST

‘S/he gave a book to this person.’

Relative clause:

\[tx Ward r \]
book-ABS
Ø-
3ABS- 3SG.IO-

\[ze }-\]
\[r- \]
\[j- \]
\[t-\]

\[çəfə-r \]
person-ABS

give-PST

‘the person to whom s/he gave the book’

WH-MOVEMENT

WH-AGREEMENT

(Lander 2012:276)
No ergative extraction constraint

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi\epsilon\rho\varepsilon\varepsilon\varepsilon \text{w} \quad [_\text{ABS} \; a-\'s'] \; \emptyset- \; \emptyset- \; \text{bz}\epsilon-\text{re-r}] \]

watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi e'rbəzəw \quad [_A B S \quad a-\text{š}' \quad \text{Ø}- \quad \text{ə}- \quad bzə-\text{re}-r] \]

watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’

✓ABS WH-MOV'T

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi\varepsilon\rho\varepsilon\varnothing\varepsilon\text{zwew} \quad [\text{ABS} \ a-\text{š’} \quad \Omega- \quad \varepsilon- \quad \text{bzə-}\text{be-r}]\]

watermelon

\[
\text{that-OBL} \quad \text{WH.ABS-} \quad 3\text{SG.ERG-} \quad \text{cut-PST-ABS}
\]

‘the watermelon that he cut’

\[
\text{txələ-}\text{r} \quad \text{io} \quad \Omega- \quad \text{ze-} \quad \text{r-} \quad \text{jə-} \quad \text{tə-}\text{be} \quad] \quad \text{ʒəfə-r}
\]

book-ABS

\[
3\text{ABS-} \quad \text{WH.IO-} \quad \text{DAT-} \quad 3\text{SG.ERG-} \quad \text{give-PST} \quad \text{person-ABS}
\]

‘the person to whom s/he gave the book’

(Lander 2012:274-276)
No ergative extraction constraint

χərəzəzw [ABS a-š' Ø- ø- bzə-re-r]
watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ ✓ABS WH-MOV'T

[txələ-r ___io Ø- ze- r- jə- tə-re] çəfə-r
book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’ ✓IO WH-MOV'T

(Lander 2012:274-276)
No ergative extraction constraint

\[\chi \text{er} \text{b} \text{ez} \text{ew} \quad [\quad \text{ABS} \quad \text{a-š’} \quad \emptyset \quad \emptyset \quad \text{bz} \text{e-}\text{r} \quad] \]
watermelon that-OBL \textbf{WH.ABS-} 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ \quad \checkmark \text{ABS WH-MOVMT}

\[[\quad \text{tx} \text{ə} \text{l} \text{ə}-\text{r} \quad \text{IO} \quad \emptyset \quad \text{ze-} \quad \text{r-} \quad \text{jə-} \quad \text{tə-}\text{r} \quad] \quad \text{çəfə-r} \]
book-ABS 3ABS- \textbf{WH.IO-} DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’ \quad \checkmark \text{IO WH-MOVMT}

\[\checkmark \text{c’alew} \quad [\quad \text{ap} \text{č’ə}-\text{r} \quad \text{ERG} \quad \emptyset \quad \text{zə-} \quad q^{w}\text{ə-ta-}\text{r} \quad] \]
boy glass-ABS 3ABS- \textbf{WH.ERG-} break-PST-OBL

‘the boy that broke the glass’

(Lander 2012:274-276)
No ergative extraction constraint

\(\chi\text{erbəzəw} \) [___ABS a-š’ \ Ø- \ ə- \ bzə-ɪə-r]
watermelon that-OBL WH.ABS- 3SG.ERG- cut-PST-ABS

‘the watermelon that he cut’ ✓ABS WH-MOV'T

[txələ-r ___IO Ø- ze- r- jə- tə-ɪe] čəʃə-r
book-ABS 3ABS- WH.IO- DAT- 3SG.ERG- give-PST person-ABS

‘the person to whom s/he gave the book’ ✓IO WH-MOV'T

\(\text{č’alew} \) [apč’ə-r ___ERG Ø- ze- qʷətə-ɪə-m]
boy glass-ABS 3ABS- WH.ERG- break-PST-OBL

‘the boy that broke the glass’ ✓ERG WH-MOV'T

(Lander 2012:274-276)
Broader syntactic ergativity in West Circassian

West Circassian does not display a ban on ergative extraction.
Broader syntactic ergativity in West Circassian

West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.
West Circassian does not display a ban on ergative extraction.

However, West Circassian is a high absolutive language.

Case study: constraints on parasitic gaps
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- **Case study: parasitic gaps**
- Conclusion and implications
Syntactic ergativity and parasitic gaps

Prediction of high absolutive syntax:

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An **ABS** trace cannot license parasitic gaps in **ERG** or **IO**, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
Prediction of high absolutive syntax:

An ABS trace cannot license parasitic gaps in ERG or IO, per the anti-c-command condition (Engdahl 1983).

(Ershova 2019, 2021a)
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The Anti-C-Command Condition

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

See also Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
The anti-c-command condition in English

object doesn’t c-command adjunct ⇒ can license parasitic gap
The anti-c-command condition in English

object doesn’t c-command adjunct ⇒ can license parasitic gap
The anti-c-command condition in English

subject c-commands adjunct \Rightarrow cannot license parasitic gap
subject c-commands adjunct \Rightarrow cannot license parasitic gap

*
```
subject  c-commands adjunct $\Rightarrow$ cannot license parasitic gap

\begin{itemize}
  \item \textit{subject}
  \item \textit{c-commands adjunct}$ \Rightarrow$ \textit{cannot license parasitic gap}
\end{itemize}

\begin{itemize}
  \item \textit{subject}
  \item \textit{c-commands adjunct}$ \Rightarrow$ \textit{cannot license parasitic gap}
\end{itemize}
Parasitic gaps in West Circassian

A pronoun that is bound by relativized participant may be replaced by a parasitic gap. The parasitic gap triggers parasitic wh-agreement.

Aslan mafem day[rjene ß]Ø-3 abs-e-dat m@ wew adv hit.

[ti Ø-3 abs-z@-wh io-de-com ˇ Z eg w@ rer play. dyn. abs]'

'the one Aslan plays with all day [without hitting]'
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap.
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap

‘the one Aslan plays with __ all day [without hitting them]’
Parasitic gaps in West Circassian

▶ A pronoun that is bound by relativized participant may be replaced by a parasitic gap

‘the one Aslan plays with ___ all day [ without hitting ___ ]’
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap

\[ \text{Op}_i \quad \text{aslan} \quad \text{mafem} \quad \text{rjene} \]
\[ \text{Aslan} \quad \text{day} \quad \text{whole} \]
\[ \begin{array}{c}
\text{[CP } \text{pro}_i \quad \text{Ø} - \quad \text{Ø} - \quad \text{je-} \quad \text{məwew} \quad \text{]} \\
\text{3ABS- 3SG.IO- DAT- NEG.hit.ADV} \\
\text{ti} \quad \text{Ø} - \quad \text{zə-} \quad \text{de-} \quad \text{ʒegʷərər} \\
\text{3ABS- WH.IO- COM- play.DYN.ABS} \\
\end{array} \]

‘the one Aslan plays with ___ all day [ without hitting ___ ]’
A pronoun that is bound by relativized participant may be replaced by a parasitic gap

\[ \text{Aslan} \quad \text{day} \quad \text{whole} \]

\[ \text{'the one Aslan plays with ___ all day [ without hitting ___ ]'} \]
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap
- the parasitic gap triggers parasitic wh-agreement

\[
\begin{align*}
\text{Op}_i & \quad \text{aslan} \quad \text{mafem} \quad \text{rjene} \\
& \quad \text{Aslan} \quad \text{day} \quad \text{whole} \\
& \quad [\text{CP} \quad \underline{\text{Pg}} \quad \varnothing - \quad \text{z-} \quad \text{e-} \quad \text{məwew}] \\
& \quad 3\text{ABS- WH.IO- DAT- NEG.hit.ADV} \\
\text{ti} & \quad \varnothing - \quad \text{zə-} \quad \text{de-} \quad \text{ʒegwərər} \\
& \quad 3\text{ABS- WH.IO- COM- play.DYN.ABS}
\end{align*}
\]

‘the one Aslan plays with ___ all day [ without hitting ___ ]’
Parasitic gaps in West Circassian

- A pronoun that is bound by relativized participant may be replaced by a parasitic gap
- The parasitic gap triggers **parasitic wh-agreement**

\[
\begin{align*}
\text{Op}_i & \quad \text{as\`lan} \quad \text{mafem} \quad \text{rjene} \\
& \quad \text{Aslan} \quad \text{day} \quad \text{whole} \\
\left[\text{CP} & \quad \text{PG} \quad \emptyset- \quad \mathbf{z-} \quad \text{e-} \quad \text{m\`ewew} \quad \right] \\
& \quad \text{3ABS- WH.IO- DAT- NEG.hit.ADV} \\
\text{ti} & \quad \emptyset- \quad \text{z\`e-} \quad \text{de-} \quad \text{\`eg\`ew\`erer} \\
& \quad \text{3ABS- WH.IO- COM- play.DYN.ABS}
\end{align*}
\]

‘the one Aslan plays with ___ all day [ without hitting ___ ]’
Possessor parasitic gaps

A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

\[ \text{četəwew}_i \ [ \text{pro}_i \ z- \ jəšxən ] \ t_i \ Ø- \ zə- \ məšxərər \]

\begin{align*}
\text{cat} & \quad \text{WH.Poss-} \quad \text{food} \\
\text{3ABS-} & \quad \text{WH.ERG-} \quad \text{NEG.eat.DYN.ABS}
\end{align*}

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

‘the cat who doesn’t eat its food’
Possessor parasitic gaps

A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

\[
\text{Pri}\text{mary WH-agreement}
\]

\[
\text{Parasitic WH-agreement}
\]

\[
\text{the cat who doesn’t eat its food’}
\]
Possessor parasitic gaps

A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

The parasitic gap triggers **parasitic possessor wh-agreement**.

\[
\text{četəwew}_{i} \left[ \text{____PG} \right] ^{z-} \text{jəšxən} \begin{array}{c} t_{i} \end{array} ^{\emptyset-} ^{z-} \text{məšxərər} \rightarrow \text{WH.POSS-} \text{food} \quad 3\text{ABS- WH.ERG- NEG.eat.DYN.ABS}
\]

‘the cat who doesn’t eat its food’
A relativized participant may license a parasitic gap in place of a bound possessor in a clausemate DP.

The parasitic gap triggers \textit{parasitic possessor wh-agreement}.

\[ \text{PARASITIC WH-AGREEMENT} \]

\[ \text{PRIM. WH-AGREEMENT} \]

\[ \text{\textbf{PARASITIC WH-AGREEMENT}} \]

\[ \text{\textbf{PRIM. WH-AGREEMENT}} \]

\[ \text{\textbf{\textit{PARASITIC WH-AGREEMENT}}} \]

\[ \text{\textbf{\textit{PRIM. WH-AGREEMENT}}} \]
An ABS trace cannot license parasitic gaps in clausemate NPs
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alewĩ $t_i$ [ __PG $z\emptyset$ š ] $\emptyset$ qədekʷaₜer
boy WH.POSS-brother WH.ABS-3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
ABS and the anti-c-command condition

An **ABS** trace cannot license parasitic gaps in clausemate NPs

* č’alew₁ \( t₁ \) [ \( \_	ext{PG} \) zə- ʃ ] Ø- qədeka₃wæber
boy \( \text{WH.POSS-} \) brother \( \text{WH.ABS-} \) 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’
An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alew₁  tᵢ [ ⎯PG ⎯ ]  z∅-  ṣ ]  Ø-  q∅dekwaɾer
boy  WH.POSS-  brother  WH.ABS-  3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

* č’alew₁ \( t_i \) [ \( _{\text{PG}} \) ] zə- ʁ s \( _{\text{WH.POSS}} \) brother ʁədek’wa’er

boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS

‘the boy who arrived together with his brother’

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

⇒ ABS c-commands the possessor
ABS and the anti-c-command condition

An ABS trace cannot license parasitic gaps in clausemate NPs

\[ \text{C-COMMAND} \]

\[ \ast \text{'alew}_i t_i [ \_PG ] z\ddash s ] \text{Ø- qadjekwa'ber} \]

\[ \text{boy WH.POSS- brother WH.ABS- 3SG.IO+COM.go.PST.ABS} \]

‘the boy who arrived together with his brother’

Anti-C-Command Condition (Engdahl 1983:22)

“A parasitic gap may not be c-commanded by the real gap.”

⇒ ABS c-commands the possessor
Absolutive trace cannot license parasitic gaps
**ABS** theme cannot license parasitic gap in **ERG** DP:

Intended: ‘the puppies whom their mother doesn’t feed’
**ABS** theme cannot license parasitic gap in **ERG** DP:

Intended: ‘the puppies whom their mother doesn’t feed’
Absolutive trace cannot license parasitic gaps

**ABS** theme cannot license parasitic gap in **ERG** DP:

\[
\begin{array}{c}
\star \\
\text{CP} \\
\text{Op}_i \\
\text{vP} \\
\text{DP}_{\text{ERG}} \\
\star \\
\text{WH.POSS-} \text{ jane} \\
\text{WH.ABS-} \text{ 3SG.ERG.NEG.feed.DYN} \\
\end{array}
\]

Intended: ‘the puppies whom their mother doesn’t feed’
**ABS** agent cannot license parasitic gap in **IO** DP:

Intended: ‘the dog that bit its owner’
Absolutive trace cannot license parasitic gaps

**ABS** agent cannot license parasitic gap in **IO** DP:

\[
\text{haw}_i \quad \text{dog} \quad t_i \quad vP \quad \text{ApplP} \quad \text{DP}_{\text{IO}} \quad \text{DP}_{\text{IO}} \quad \text{DP}_{\text{IO}} \quad \text{DP}_{\text{IO}}
\]

\[
\text{\_\_PG} \quad \text{Z-} \quad j\varepsilon\\weczj\varepsilon\text{jan} \quad \text{\_\_WH.POSS-} \quad \text{owner} \quad \text{\_\_WH.ABS-} \quad \text{jeceqež’\varepsilonem} \quad \text{3SG.IO.bite.PST.OBL}
\]

Intended: ‘the dog that bit its owner’
Absolutive trace cannot license parasitic gaps

**ABS** agent cannot license parasitic gap in **IO** DP:

```
* CP
 haw_i
 dog
 t_i
 vP
 ApplP
 DP_{IO}
 *__PG__ Z- jəxʷezjəxən
 WH.POSS- owner
 Ø- jeceqəʔəˈwəm
 WH.ABS- 3SG.IO.bite.PST.OBL
```

Intended: ‘the dog that bit its owner’
ERG trace licenses parasitic gap in ABS DP

\[
\begin{array}{c}
\text{DP}_{\text{ERG}} \\
\text{DP}_{\text{ABS}} \\
\text{vP} \\
\text{CP}
\end{array}
\]

\[
\begin{array}{c}
\text{četəwewi} \\
\text{cat} \\
\_\text{PG} \\
\text{WH.Poss-} \\
\text{food} \\
\text{3ABS- WH.ERG-} \\
\text{NEG.eat.DYN.ABS}
\end{array}
\]

‘the cat who doesn’t eat its food’
ERG trace licenses parasitic gap in ABS DP

\[
\text{DP}_{\text{ERG}} \rightarrow \text{CP} \\
\text{DP}_{\text{ABS}} \rightarrow \text{vP}
\]

\[
\begin{align*}
\text{\textit{če}t\textit{ěwew}_1} & \quad \text{\textit{DP}_{\text{ABS}}} \\
\text{cat} & \quad \text{jěšxěn} \\
\_\text{PG} & \quad \text{z-} \\
\text{WH.POSS-} & \quad \text{food} \\
\text{\textit{t}_1} & \quad \text{Ø-} \quad \text{zě-} \\
3\text{ABS-} & \quad \text{WH.ERG-} \quad \text{NEG.eat.DYN.ABS} \\
\text{měšxěrer} & \\
\end{align*}
\]

‘the cat who doesn’t eat its food’
ERG trace licenses parasitic gap in ABS DP

‘the cat who doesn’t eat its food’
IO trace licenses parasitic gap in ABS DP

‘the boy whom his brother always hits’
IO trace licenses parasitic gap in \textsc{abs} \textsc{dp}

\textit{\textquoteleft the boy whom his brother always hits\textquoteright}
IO trace licenses parasitic gap in ABS DP

‘the boy whom his brother always hits’
Summary: parasitic gaps and syntactic ergativity

- A pronoun that is bound by a relativized participant may be replaced by a parasitic gap.
- The parasitic gap triggers parasitic wh-agreement.
- ERG or IO trace can license parasitic gaps in ABS.
- ABS trace cannot license parasitic gaps in ERG or IO DPs.
- Per the anti-c-command condition, ABS c-commands ERG and IO.
- Parasitic gaps provide evidence for a high absolutive syntax.
a pronoun that is bound by a relativized participant may be replaced by a parasitic gap.
a pronoun that is bound by a relativized participant may be replaced by a parasitic gap

the parasitic gap triggers parasitic wh-agreement
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

the parasitic gap triggers **parasitic wh-agreement**

**ERG** or **IO** trace can license parasitic gaps in **ABS**
a pronoun that is bound by a relativized participant may be replaced by a parasitic gap

the parasitic gap triggers parasitic wh-agreement

ERG or IO trace can license parasitic gaps in ABS

ABS trace cannot license parasitic gaps in ERG or IO DPs
Summary: parasitic gaps and syntactic ergativity

- A pronoun that is bound by a relativized participant may be replaced by a parasitic gap.
- The parasitic gap triggers parasitic wh-agreement.
- ERG or IO trace can license parasitic gaps in ABS.
- ABS trace cannot license parasitic gaps in ERG or IO DPs.
- Per the anti-c-command condition.
Parasitic gaps and syntactic ergativity

- A pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**.
- The parasitic gap triggers **parasitic wh-agreement**.
- **ERG** or **IO** trace can license parasitic gaps in **ABS**.
- **ABS** trace cannot license parasitic gaps in **ERG** or **IO** DPs.
- Per the anti-c-command condition:
  - **ABS** c-commands **ERG** and **IO**.

Parasitic gaps provide evidence for a high absolutive syntax.
a pronoun that is bound by a relativized participant may be replaced by a **parasitic gap**

- the parasitic gap triggers **parasitic wh-agreement**

- **ERG** or **IO** trace can license parasitic gaps in **ABS**

- **ABS** trace cannot license parasitic gaps in **ERG** or **IO** DPs

- Per the anti-c-command condition
  \[ \Rightarrow \text{ABS c-commands ERG and IO} \]

Parasitic gaps provide evidence for a high absolutive syntax.
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- Conclusion and implications
Deconstructing syntactic ergativity: Roadmap

- Predictions of high absolutive syntax
- Background on West Circassian
- Case study: parasitic gaps
- **Conclusion and implications**
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing: The absolutive trace cannot license parasitic gaps in io or erg due to the anti-c-command condition.

Other syntactic ergativity effects:

- Possessor extraction is only possible from absolutive, not ergative or intransitive.
- Absolutive binds ergative and intransitive reciprocals, not vice versa.

Taken together, these generalizations form a unified picture: The absolutive DP moves high. But no ergative extraction constraint!

Conclusion and implications
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

- The absolutive trace cannot license parasitic gaps in erg or ion due to the anti-c-command condition.
- Possessor extraction is only possible from absolutive, not ergative or intransitive.
- Absolutive binds ergative and intransitive reciprocals, not vice versa.

Taken together, these generalizations form a unified picture: The absolutive DP moves high. But no ergative extraction constraint!

Conclusion and implications
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The **ABS** trace cannot license parasitic gaps in **IO** or **ERG** due to the **anti-c-command condition**.
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The ABS trace cannot license parasitic gaps in IO or ERG due to the anti-c-command condition.

Other syntactic ergativity effects:
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The *ABS* trace cannot license parasitic gaps in *IO* or *ERG* due to the **anti-c-command condition**.

Other syntactic ergativity effects:

- possessor extraction is only possible from *ABS*, not *ERG* or *IO*
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The ABS trace cannot license parasitic gaps in IO or ERG due to the anti-c-command condition.

Other syntactic ergativity effects:

- possessor extraction is only possible from ABS, not ERG or IO
- ABS binds ERG and IO reciprocals, not vice versa
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The **ABS** trace cannot license parasitic gaps in **IO** or **ERG** due to the **anti-c-command condition**.

Other syntactic ergativity effects:

- possessor extraction is only possible from **ABS**, not **ERG** or **IO**
- **ABS** binds **ERG** and **IO** reciprocals, not vice versa

*Taken together*, these generalizations form a unified picture:
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The ABS trace cannot license parasitic gaps in IO or ERG due to the anti-c-command condition.

Other syntactic ergativity effects:

- possessor extraction is only possible from ABS, not ERG or IO
- ABS binds ERG and IO reciprocals, not vice versa

Taken together, these generalizations form a unified picture:

The absolutive DP moves high.
Fitting parasitic gaps into the bigger picture

Syntactic ergativity effect in parasitic gap licensing:

The *ABS* trace cannot license parasitic gaps in IO or ERG due to the anti-c-command condition.

Other syntactic ergativity effects:

- possessor extraction is only possible from *ABS*, not ERG or IO
- *ABS* binds ERG and IO reciprocals, not vice versa

**Taken together**, these generalizations form a unified picture:

> The absolutive DP moves high.

**But no ergative extraction constraint!**
Syntactic ergativity and ergative extraction

**Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)**

ERG may not undergo Ā-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.*
Syntactic ergativity and ergative extraction

Ergative Extraction Constraint (Aissen 2017; Coon et al. 2021)

ERG may not undergo Ā-movement.

*See also Aldridge (2004, 2008); Coon et al. (2014, 2021); Deal (2016); Polinsky (2016, 2017); Tollan and Clemens (2021), a.o.

Q’ANKOB’AL (MAYAN):

* Maktxel max y-il ___ERG ix ix?
  who PFV A3-see CLF woman

Intended: ‘Who saw the woman?’

(Coon et al. 2021)
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages.
The status quo: the ergative extraction constraint is a trademark property of high absolutive languages & high absolutive syntax is required to derive the ergative extraction constraint
**The status quo:** the ergative extraction constraint is a trademark property of high absolutive languages

& high absolutive syntax is **required** to derive the ergative extraction constraint

(but see Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
High absolutive and ergative extraction

**The status quo:** the ergative extraction constraint is a trademark property of high absolutive languages

& high absolutive syntax is **required** to derive the ergative extraction constraint

(but see Otsuka 2006, 2017; Deal 2016; Polinsky 2016)

**This talk**

The ergative extraction constraint is not necessarily **predicted** by high absolutive syntax, nor necessarily **predicts** high absolutive syntax.
The movement of $\text{ABS}$ to a position higher than $\text{ERG}$ does not straightforwardly predict the ergative extraction constraint.
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:
The movement of $\text{ABS}$ to a position higher than $\text{ERG}$ does not straightforwardly predict the ergative extraction constraint. Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint. Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
- constraint on crossing dependencies (Tollan and Clemens 2021)
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint.

Additional assumptions are required:

- relativized wh-probe (Coon et al. 2021)
- constraint on crossing dependencies (Tollan and Clemens 2021)

This is a desirable prediction.
The movement of ABS to a position higher than ERG does not straightforwardly predict the ergative extraction constraint. Additional assumptions are required:

▶ relativized wh-probe (Coon et al. 2021)
▶ constraint on crossing dependencies (Tollan and Clemens 2021)

This is a desirable prediction.

West Circassian is a high absolutive language without an ergative extraction constraint.
Ergative extraction constraint $\not\Rightarrow$ high absolutive

Raised ABS is not the only way to derive the ban on ergative wh-movement.
Raised $\text{ABS}$ is not the only way to derive the ban on ergative wh-movement.

**Approaches based on properties of **$\text{ERG}$:**

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Ergative extraction constraint ⇔ high absolutive

Raised ABS is not the only way to derive the ban on ergative wh-movement.

**Approaches based on properties of ERG:**
- ERG cannot move because of case or structural position

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Ergative extraction constraint $\not\Rightarrow$ high absolutive

Raised $\text{ABS}$ is not the only way to derive the ban on ergative wh-movement.

**Approaches based on properties of $\text{ERG}$:**
- $\text{ERG}$ cannot move because of case or structural position
- $\text{ABS}$ remains low and does not interact with ergative extraction

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)
Ergative extraction constraint $\not\Rightarrow$ high absolutive

Raised $\text{ABS}$ is not the only way to derive the ban on ergative wh-movement.

**Approaches based on properties of $\text{ERG}$:**

- $\text{ERG}$ cannot move because of case or structural position
- $\text{ABS}$ remains low and does not interact with ergative extraction

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)

**The main takeaway**

- The Ergative Extraction Constraint is possible in low absolutive languages.
Ergative extraction constraint $\not\Rightarrow$ high absolutive

Raised ABS is not the only way to derive the ban on ergative wh-movement.

**Approaches based on properties of ERG:**
- ERG cannot move because of case or structural position
- ABS remains low and does not interact with ergative extraction

(Otsuka 2006, 2017; Deal 2016; Polinsky 2016)

**The main takeaway**
- The Ergative Extraction Constraint is possible in low absolutive languages.
- High absolutive syntax does not predict the Ergative Extraction Constraint.
Thank you!

- West Circassian consultants: Svetlana K. Alishaeva, Saida Gisheva, Susana K. Khatkova, and Zarema Meretukova
- Karlos Arregi, Cleo Condoravdi, Itamar Francez, Vera Gribanova, Boris Harizanov, Ana Ilievska, Paul Kiparsky, Yury Lander, Beth Levin, Jason Merchant, and Yakov G. Testelets
- Funding sources:
  - Dissertation Research Improvement Grant from the National Science Foundation (BCS-1749299)
  - Association for Slavic, East European, and Eurasian Studies Dissertation Research Grant
  - Andrew W. Mellon Fellowship of Scholars in the Humanities at Stanford University


References (cont.)


