What it means to be a subject
Evidence from a syntactically ergative language

Ksenia Ershova
Stanford University
7 February 2020
The main claim

SUBJECT is not a syntactic primitive
The main claim

- **SUBJECT** is not a syntactic primitive
- **syntactically ergative** languages provide particularly good evidence for this
The main claim

- **SUBJECT** is not a syntactic primitive
- **syntactically ergative** languages provide particularly good evidence for this

Syntactic ergativity:
The main claim

- **SUBJECT** is not a syntactic primitive
- **syntactically ergative** languages provide particularly good evidence for this

Syntactic ergativity:

2 subject positions
The main claim

- **SUBJECT** is not a syntactic primitive
- syntactically ergative languages provide particularly good evidence for this

Syntactic ergativity:

2 subject positions + occupied by 2 distinct nominals
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound

 The cat washed herself.
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound

 The cat washed herself.

 [BINDING]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound

\[
\text{The cat} \quad \text{washed} \quad \text{herself.}
\]

SUBJECT
BINDING

\[
\text{No one} \quad \text{saw} \quad \text{anything.}
\]

NEG
NPI
ANYONE
Saw
NPI
NEG

\[
\text{Anyone} \quad \text{saw} \quad \text{nothing.}
\]

NPI
ANYONE
Saw
NEG
NPI
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound

\[\text{The cat} \text{ washed } \text{herself}.\]

\[\text{SUBJECT} \quad \text{BINDING} \]

\[\ast \text{ Herself} \text{ washed } \text{the cat}.\]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

1. binds reflexive pronouns and cannot itself be bound

```
<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cat</td>
<td>washed</td>
<td>herself</td>
</tr>
<tr>
<td>Herself</td>
<td>washed</td>
<td>the cat</td>
</tr>
</tbody>
</table>
```

BINDING
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

2. is PRO in control constructions
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

2. is PRO in control constructions

The cat wants \textit{PRO} to catch \textit{the mouse}.
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

2. is PRO in control constructions

\[
\text{SUBJECT} \quad \downarrow \\
\text{PRO}
\]

The cat wants \text{PRO} to catch \text{the mouse}.

\[
\text{The mouse wants PRO to catch the cat.}
\]

4. etc.

Introduction
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

2. is PRO in control constructions

```
SUBJECT

The cat wants [PRO] to catch the mouse.

* The mouse wants the cat to catch [PRO].
```
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

2. is PRO in control constructions

\[
\text{SUBJECT} \downarrow
\]

The cat wants \text{PRO} to catch \text{the mouse}.

* The mouse wants \text{the cat} to catch \text{PRO}

\[
\times \text{SUBJECT}
\]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

 No one saw anything.
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

No one saw anything.

NEG > NPI
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

\[
\text{No one saw anything.}
\]

\[
\text{NEG > NPI}
\]

\[
* \quad \text{Anyone saw nothing.}
\]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

\[
\text{No one saw anything.} \\
\text{NEG > NPI} \\
* \text{Anyone saw nothing.} \\
\text{NPI < NEG}
\]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

\[
\text{No one} \quad \text{saw} \quad \text{anything.}
\]

\[
\text{Anyone}
\begin{array}{c}
\text{saw} \\
\text{nothing.}
\end{array}
\]

\[
\text{NEG} > \quad \text{NPI}
\]

\[
\text{NPI} < \quad \text{NEG}
\]
What is a subject?

Usually defined as the constituent displaying a constellation of syntactic properties (e.g. Keenan 1976):

3. takes wider scope than other elements

\[
\text{SUBJECT} \quad \text{NEG} \quad \text{NPI} \\
\text{No one} \quad \text{saw} \quad \text{anything.} \quad \text{Anyone} \quad \text{saw} \quad \text{nothing.} \\
\text{NPI} \quad \text{<} \quad \text{NEG} \\
\]

4. etc.
What is a subject?

In tree-geometric terms, implemented as **structural prominence**:

![Diagram of tree structure with labels DP1, DP2, DP3, SUBJECT]
What is a subject?

In tree-geometric terms, implemented as **structural prominence**:
What is a subject?

In tree-geometric terms, implemented as *structural prominence*:

\[
\text{DP}_1 \quad \text{SUBJECT} \quad \text{DP}_2 \quad \text{DP}_3
\]
Deconstructed subjecthood

- Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains **several subject positions**.
Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains **several subject positions**.
Deconstructed subjecthood

- Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains **several subject positions**.
- The subject **moves through them** in the course of the derivation.

![Diagram of subject positions](image.png)
Deconstructed subjecthood

- Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains several subject positions.
- The subject moves through them in the course of the derivation.

\[
\begin{array}{c}
\text{Subj}_1 \\
\downarrow \\
\text{Subj}_2 \\
\downarrow \\
\text{Subj}_3 \\
\downarrow \\
\text{DP} \\
\end{array}
\]
Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains several subject positions.

The subject moves through them in the course of the derivation.
Deconstructed subjecthood

- Harley (1995); Bobaljik and Jonas (1996); McCloskey (1997), a.o.: A clause contains **several subject positions**.
- The subject **moves through them** in the course of the derivation.
Subjecthood properties are distributed across several positions.
Subjecthood properties are distributed across several positions.

Introduction

February 2020
Subjecthood properties are distributed across several positions.

A nominal "collects" subjecthood properties by moving through the different positions (e.g. Poole 2015).

\[
\begin{pmatrix}
\text{property } \alpha \\
\text{property } \beta \\
\text{property } \gamma
\end{pmatrix}
\]

A single nominal moves through the subject positions obscures the connection between syntactic position and subjecthood properties.

Introduction
Subjecthood properties are distributed across several positions

- A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).

```
Subjecthood properties are distributed across several positions

- A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).

```

```
Introduction

```

```
Introduction

```
Subjecthood properties are distributed across several positions

- A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).
Subjecthood properties are distributed across several positions

- A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).

\[
\begin{pmatrix}
\text{property } \alpha \\
\text{property } \beta \\
\text{property } \gamma
\end{pmatrix}
\]

single nominal moves through the subject positions obscures connection between syntactic position and subjecthood properties
Subjecthood properties are distributed across several positions

- A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).

Diagram:

```
  Subj₁
     ↓
   DP
     ↓
Subj₂ <DP> Subj₃
     ↓
   <DP>

property α
property β
property γ
```

single nominal moves through the subject positions
Subjecthood properties are distributed across several positions

A nominal “collects” subjecthood properties by moving through the different positions (e.g. Poole 2015).

single nominal moves through the subject positions

obscures connection between syntactic position and subjecthood properties
A subject is not defined by its syntactic position

A subject acquires subjecthood properties by moving through several syntactic positions.
A subject is not defined by its syntactic position

A subject acquires subjecthood properties by moving through several syntactic positions.

A subject cannot be defined by a single syntactic position.
A subject is not defined by its syntactic position

A subject acquires subjecthood properties by moving through several syntactic positions.

A subject cannot be defined by a single syntactic position.

The next question:
Can a subject be defined as a single nominal within a given clause?
A subject is not defined by its syntactic position

A subject acquires subjecthood properties by moving through several syntactic positions.

A subject cannot be defined by a single syntactic position.

The next question:
Can a subject be defined as a single nominal within a given clause?

[clause DP_1 DP_2 DP_3 ...]
A subject is not defined by its syntactic position

A subject acquires subjecthood properties by moving through several syntactic positions.

A subject cannot be defined by a single syntactic position.

The next question:
Can a subject be defined as a single nominal within a given clause?
A prediction of deconstructed subjecthood

- Generally, a single nominal moves through the different subject positions.
Generally, a single nominal moves through the different subject positions.
Generally, a single nominal moves through the different subject positions.
A prediction of deconstructed subjecthood

- Generally, a single nominal moves through the different subject positions.
- **BUT** what if the subject positions are occupied by different nominals?
A prediction of deconstructed subjecthood

- Generally, a single nominal moves through the different subject positions.
- **BUT** what if the subject positions are occupied by different nominals?
Subjecthood properties are distributed across several nominals

\[<\text{DP}_2> \]

\[\text{Subj}_2 \]
\[\text{DP}_2 \]

\[\text{Subj}_1 \]
\[\text{DP}_1 \]
Subjecthood properties are distributed across several nominals.
If this is possible:

- **confirmation** for distributed subjecthood properties
Different nominals in different subject positions

If this is possible:

- **confirmation** for distributed subjecthood properties
- subject \neq single syntactic position
- subject \neq single nominal
Different nominals in different subject positions

If this is possible:

- confirmation for distributed subjecthood properties
- subject \(\neq \) single syntactic position
- subject \(\neq \) single nominal

\[\Downarrow \]

Subject is not a theoretically meaningful notion.
Main claim

Syntactically ergative languages confirm this prediction.
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

highest argument in clause \neq highest argument in thematic domain
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

highest argument in clause \neq \text{highest argument in thematic domain}

\uparrow

ERGATIVE
Different nominals in different subject positions

Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

highest argument in clause \(\neq \) highest argument in thematic domain

\[\uparrow \]

ERGATIVE

A: transitive subject
Different nominals in different subject positions

Main claim
Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

highest argument in clause \(\neq\) highest argument in thematic domain

\[\uparrow\]

ABSOLUTIVE \(\uparrow\) ERGATIVE

A: transitive subject
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

highest argument in clause \neq highest argument in thematic domain

\[
\text{ABSOLUTIVE} \quad \uparrow \quad \text{ERGATIVE}
\]

S: intransitive subject \quad \text{A}: transitive subject
Different nominals in different subject positions

Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

\[
\begin{align*}
\text{highest argument in clause} & \neq \text{highest argument in thematic domain} \\
\uparrow & \\
\text{ABSOLUTIVE} & \uparrow \\
S: \text{intransitive subject} & \text{ERGATIVE} \\
O: \text{transitive object} & \text{A: transitive subject}
\end{align*}
\]

See e.g. Bittner and Hale (1996); Coon et al. (2014); Deal (2016, 2017); Polinsky (2016, 2017); Yuan (2018) on syntactic ergativity effects.
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

- Subj$_2$
 - DP$_2$
- Subj$_1$
 - DP$_1$
- $<$DP$_2>$
Different nominals in different subject positions

Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

```
  <DP_2>
   ↑
  ABSOLUTIVE
  DP_2
  ↑
  Subj_2

  ↓
  ERGATIVE
  DP_1
  ↑
  Subj_1

  ↓
  <DP_2>
```
Different nominals in different subject positions

Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

2 subject positions
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

2 subject positions + occupied by 2 distinct nominals
Main claim

Syntactically ergative languages confirm this prediction.

Syntactic ergativity:

2 subject positions + occupied by 2 distinct nominals

⇒ **SUBJECT** is not a theoretically meaningful notion

See e.g. Bittner and Hale (1996); Coon et al. (2014); Deal (2016, 2017); Polinsky (2016, 2017); Yuan (2018) on syntactic ergativity effects.
West Circassian (or Adyghe):
West Circassian (or Adyghe):

- Northwest Caucasian
Case Study: West Circassian

West Circassian (or Adyghe):

- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia
Case Study: West Circassian

West Circassian (or Adyghe):

- Northwest Caucasian
- primarily spoken in the Republic of Adygea, Russia

Data from fieldwork on **Temirgoy dialect** in the Shovgenovsky district of Adygea, collected during three trips in 2017-2019.
West Circassian is polysynthetic

Agglutinating prefixal and suffixal morphology:

I was able to make you turn a somersault (Lander and Testelets 2017:952)
Agglutinating prefixal and suffixal morphology:

$wəqəzereʂ̃həpəɾəz̃hewək^wəɾeječ^ež^eš^wəkəber$

$wə- qə- zere- ʂ̃ha- pə- rə- z- be-
2SG.ABS- DIR- FACT- head- LOC- TRANS- 1SG.ERG- CAUS-
wək^wəɾeje -č^e ᾨ- z^e -ș^wə -va -be -r$

fall -go.out -RE -POT -PST -PST -ABS

‘that I was able to make you turn a somersault’
(Lander and Testelets 2017:952)
West Circassian is polysynthetic

Head marking and pro-drop:

'He showed me to them for your sake.' (Korotkova and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

$səqəpfarjəveλeβ\text{wə}b$

`sə- qə- p-f- a-r- jə- bë-
1SG.ABS- DIR- 2SG.IO+BEN- 3PL.IO+DAT- 3SG.ERG- CAUS-
λeβ\text{wə} -b
see -PST

‘He showed me to them for your sake.’
(Korotкова and Lander 2010:301)
West Circassian is polysynthetic

Head marking and pro-drop:

\[səqəpfarjəvelebe^{wəb}\]

me \hspace{1cm} for your sake \hspace{1cm} to them \hspace{1cm} he

so-\hspace{1cm} qə-\hspace{1cm} p-f-\hspace{1cm} a-r-\hspace{1cm} jə-\hspace{1cm} ve-

1SG.ABS-\hspace{1cm} DIR-\hspace{1cm} 2SG.IO+ BEN-\hspace{1cm} 3PL.IO+ DAT-\hspace{1cm} 3SG.ERG-\hspace{1cm} CAUS-

lebe^{wə} -v

see \hspace{1cm} -PST

‘He showed me to them for your sake.’

(Korotkova and Lander 2010:301)
Verbal agreement is ergative

w- a-de- s- š’àb
2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them’ (Rogava and Keraševa 1966:160)
Verbal agreement is ergative

\[
\begin{array}{ccc}
O & \text{IO} & A \\
\text{w-} & \text{a-de-} & \text{s-} & \text{š’aį́ǝ}
\end{array}
\]

2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them’ (Rogava and Keraševa 1966:160)
Verbal agreement is ergative

O IO A
w- a-de- s- š’aβ
2SG.ABS- 3PL.IO-COM- 1SG.ERG- bring.PST

‘I brought you with them’ (Rogava and Keraševa 1966:160)

wə- q- a-fe- k’wəβ
2SG.ABS- DIR- 3PL.IO+BEN- go.PST

‘You went for them.’ (Rogava and Keraševa 1966:138)
Verbal agreement is ergative

\[O \quad \text{IO} \quad \text{A} \]
\[w^- \quad \text{a-de-} \quad s^- \quad \text{š’ab} \]
\[2\text{SG.ABS-} \ 3\text{PL.IO-COM-} \ 1\text{SG.ERG-} \ \text{bring.PST} \]

‘I brought you with them’ (Rogava and Keraševa 1966:160)

\[S \quad \text{IO} \]
\[w^- \quad q^- \quad \text{a-fe-} \quad \text{k’wab} \]
\[2\text{SG.ABS-} \ \text{DIR-} \ 3\text{PL.IO+BEN-} \ \text{go.PST} \]

‘You went for them.’ (Rogava and Keraševa 1966:138)
Verbal agreement is ergative

\[O \quad IO \quad A \]
\[w- \quad a-de- \quad s- \quad š’aβ \]
\[2SG.ABS- \quad 3PL.IO-COM- \quad 1SG.ERG- \quad bring.PST \]

‘I brought you with them’ (Rogava and Keraševa 1966:160)

\[S \quad IO \]
\[wə- \quad q- \quad a-fe- \quad kʷaβ \]
\[2SG.ABS- \quad DIR- \quad 3PL.IO+BEN- \quad go.PST \]

‘You went for them.’ (Rogava and Keraševa 1966:138)
Case marking is ergative

- r (abs): subject of intransitive verb (S)
- m (obl): object of transitive verb (O)
- -: subject of transitive verb (A)
- : applied object (IO)
Case marking is ergative

- r (ABS):
Case marking is ergative

-\(r \) (ABS):
 - subject of intransitive verb (S)

\[\text{mə p̥åše-r daxew qåsʷe} \]
\[\text{this girl-ABS well dances} \]

‘This girl(S) dances well.’
Case marking is ergative

-\textit{r} (\textit{ABS}):
 - subject of intransitive verb (\textit{S})
 - object of transitive verb (\textit{O})

sab\text{\textecdot}jxe-\textit{m} haxe-\textit{r} qale\text{\textecdot}eb\text{\textecdot}w\text{\textecdot}eb
children-\textit{OBL} dogs-\textit{ABS} saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

-r (ABS):

▶ subject of intransitive verb (S)
▶ object of transitive verb (O)

-m (OBL):

sabəjxe-m haxe-r qaλεβ wəv
children-OBL dogs-ABS saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

-\texttt{r (ABS)}:
 - subject of intransitive verb (S)
 - object of transitive verb (O)

-\texttt{m (OBL)}:
 - subject of transitive verb (A)

\texttt{sabəjxe-m haxe-r qəlebʷəb}
children-\texttt{OBL} dogs-\texttt{ABS} saw

‘The children(A) saw the dogs(O).’
Case marking is ergative

- **r (ABS):**
 - subject of intransitive verb (S)
 - object of transitive verb (O)

- **m (OBL):**
 - subject of transitive verb (A)
 - applied object (IO)

\[\text{žeɡwə-m səpəʃ’əşwə̚əp} \]

wedding-[OBL] I didn’t dance

‘I didn’t dance at the wedding(IO).’
Subjecthood diagnostics in West Circassian single out (at least) two positions:

```
       TP
      /   \
DP₁    ... 
       /   \  
       vP  DP₂ 
          /  \  
          ... ...
```
Subjecthood diagnostics in West Circassian single out (at least) two positions:

- the highest nominal in the theta-domain
Subjecthood diagnostics in West Circassian single out (at least) two positions:
- the highest nominal in the theta-domain νP

```
TP
  /  
/    
DP₁  ... 
  /  
  /       
νP  ... 
  /     
   /     
 DP₂   ... 
```
Subjecthood diagnostics in West Circassian single out (at least) two positions:

- the highest nominal in the theta-domain \(\nu P \)
- the highest nominal in the A-domain \(TP \)

![Diagram showing syntactic structures]
Distributed subjecthood and syntactic ergativity

Subj ecthood diagnostics in West Circassian single out (at least) two positions:

- the highest nominal in the theta-domain vP
- the highest nominal in the A-domain TP
Subjecthood diagnostics in West Circassian single out (at least) two positions:

- the highest nominal in the theta-domain νP
- the highest nominal in the A-domain TP

A-domain $\equiv TP$
reciprocals
parasitic gaps

theta-domain $\equiv \nu P$
reflexives
control
Subjecthood diagnostics in West Circassian single out (at least) two positions:

- the highest nominal in the theta-domain
- the highest nominal in the A-domain

$\text{A-domain} = \text{TP}$

reciprocals
parasitic gaps

\downarrow

S/O

$\text{theta-domain} = \nu P$

reflexives
control

\downarrow

S/A
Subjecthood diagnostics in West Circassian single out (at least) **two positions**:

- the highest nominal in the theta-domain \(\nu P \)
- the highest nominal in the A-domain \(TP \)

\[\text{A-domain} = TP \]
\[\text{theta-domain} = \nu P \]

- reciprocals
- parasitic gaps
- reflexives
- control

\[\downarrow \]
\[\text{S/O} \]
\[\text{ABS} \]
\[\text{S/A} \]
\[\text{ERG} \]
High absolutive and two subjects

E.g. for a transitive (ERG-ABS) verb:

```
TP
  ---
  T'
   ---
   vP
     ---
     v'
       ---
       v
         ---
         v
           ---
           v
             ---
             v
               ---
               v
```
High absolutive and two subjects

E.g. for a transitive (ERG-ABS) verb:

```
TP

DP(ABS)

T'

vP

DP(ERG)

v'

VP

v

<DP(ABS)> V
```
High absolutive and two subjects

E.g. for a transitive (ERG-ABS) verb:

```
TP
  \(\text{DP(ABS)}\)

  SUBJECT

  \(\text{vP}\)

    \(\text{DP(ERG)}\)

    SUBJECT

    \(\text{VP}\)

      \(\langle\text{DP(ABS)}\rangle\)

      \(\text{V}\)
```
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
- parasitic gaps
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
- parasitic gaps
- reflexives
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
- parasitic gaps
- reflexives
- control
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
- parasitic gaps
- reflexives
- control

\{ A-domain \\
\} theta-domain
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals
- parasitic gaps
- reflexives
- control

\{ A-domain \\
 \{ theta-domain \} }
Reciprocals provide evidence that ABS is the subject.
Reciprocals and syntactic ergativity

Reciprocals provide evidence that ABS is the subject.
Reciprocal binding is diagnosed morphologically.
Reciprocal binding is diagnosed morphologically

ABS external argument binds IO
Reciprocal binding is diagnosed morphologically

ABS external argument binds **IO**
⇒ **REC** replaces **IO** agreement

\[\hat{s}^w q\hat{e} d de \hat{s}^w e s't \]
\[2\text{PL.ABS- DIR- 1\text{PL.IO- COM- dance.FUT}} \]

‘You(pl) will dance with us’
Reciprocal binding is diagnosed morphologically

ABS external argument binds **IO**

⇒ REC replaces IO agreement

You **with us**

‘You(pl) will dance with us’
Reciprocal binding is diagnosed morphologically

ABS external argument binds **IO**

\Rightarrow REC replaces IO agreement

you **with each other**

$q\varnothing$- \(\text{ze-} \) \(\text{de-} \) \(\hat{s}^w\text{eš’t} \)

2PL.ABS- DIR- REC.IO- COM- dance.FUT

‘You(pl) will dance with each other’
Reciprocal binding is established via c-command

ABS external argument binds **IO**:
Reciprocal binding is established via c-command

ABS external argument binds **IO**:

```
νP

DP_{ABS} [νP] [ν']

AppI P [AppI']

DP_{IO} [AppI']
```
Reciprocal binding is established via c-command.

ABS external argument binds **IO**:

```
νP
  /   
 /     
ν' ApP  ν
     /   
    /    
   /     
  /      
/       
/  DP_{ABS}  
/           
antecedent
```

```
νP
  /   
 /     
ν' ΔP_{IO}  ν
     /   
    /    
   /     
  /      
/       
/  DP_{IO}  
/           
reciprocal
```

Syntactic ergativity in West Circassian

7 February 2020
Reciprocals provide evidence for high absolutive:
Reciprocals provide evidence for high absolutive:
- reciprocals are bound by a c-commanding antecedent
Reciprocals and syntactic ergativity

Reciprocals provide evidence for high absolutive:

- Reciprocals are bound by a c-commanding antecedent
- ABS binds ERG \Rightarrow ABS c-commands ERG
Reciprocals provide evidence for high absolutive:

- Reciprocals are bound by a c-commanding antecedent
- **ABS** binds **ERG** \Rightarrow **ABS** c-commands **ERG**
- **ABS** is the subject
Reciprocals provide evidence for high absolutive:

- Reciprocals are bound by a c-commanding antecedent
- ABS binds ERG ⇒ ABS c-commands ERG
- ABS is the subject

ABS binds ERG:

\[\hat{s}^{w\omega} - t - \lambda e \hat{e}^{w\omega} \]

2PL.ABS- 1PL.ERG- see.PST

'You saw us(pl).'
Reciprocals provide evidence for high absolutive:

- Reciprocals are bound by a c-commanding antecedent
- ABS binds $\text{ERG} \Rightarrow \text{ABS}$ c-commands ERG
- ABS is the subject

ABS binds ERG:

```
you  we
\downarrow \hspace{1cm} \downarrow
\hat{sw} \omega \hspace{1cm} t-
\lambda \text{eb} w \omega \text{eb}
```

- 2PL.ABS - 1PL.ERG - see.PST

‘We saw you(pl).’
Reciprocals and syntactic ergativity

Reciprocals provide evidence for high absolutive:

- reciprocals are bound by a c-commanding antecedent
- **ABS** binds **ERG** \Rightarrow **ABS** c-commands **ERG**
- **ABS** is the subject

ABS binds **ERG**:

we \[\downarrow\] each other
\[\downarrow\]
tə-\[\downarrow\] zere-\[\downarrow\] λeb^{w}əə
1PL.ABS- REC.ERG- see.PST

‘We saw each other.’
\textbf{ABS} binds reciprocals in \textbf{ERG} and \textbf{IO} positions:
Reciprocals and syntactic ergativity

ABS binds reciprocals in **ERG** and **IO** positions:
Reciprocals and syntactic ergativity

ABS binds reciprocals in **ERG** and **IO** positions:

- **DP**
- **TP**
- **vP**
- **v'**
- **ApplP**
- **DP**
- **Antecedent**
- **Reciprocal**

Syntactic ergativity in West Circassian

7 February 2020
Absolutive as the clause-level subject

Reciprocals \rightarrow ABS c-commands ERG and IO \downarrow other clause-level phenomena should single out abs as the subject. Parasitic gaps confirm subjecthood of absolutive.
Absolutive as the clause-level subject

- reciprocals \rightarrow **ABS** c-commands **ERG** and **IO**
Absolutive as the clause-level subject

- reciprocals \rightarrow **ABS** c-commands **ERG** and **IO**

 \Downarrow

- other clause-level phenomena should single out **ABS** as the subject
Absolutive as the clause-level subject

▶ reciprocals \rightarrow **ABS** c-commands **ERG** and **IO**

⇓

▶ other clause-level phenomena should single out **ABS** as the subject

Parasitic gaps confirm subjecthood of absolutive.
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals ✓
- parasitic gaps
- reflexives
- control

\{ A-domain
 \} theta-domain
Parasitic gaps as a subjecthood diagnostics

Anti-C-Command Condition (Engdahl 1983:22):
“A parasitic gap may not be c-commanded by the real gap.”

See also Engdahl (1983); Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
Parasitic gaps as a subjecthood diagnostics

Anti-C-Command Condition (Engdahl 1983:22):
“A parasitic gap may not be c-commanded by the real gap.”

See also Engdahl (1983); Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
Parasitic gaps as a subjecthood diagnostics

Anti-C-Command Condition (Engdahl 1983:22):
“A parasitic gap may not be c-commanded by the real gap.”

See also Engdahl (1983); Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.
Parasitic gaps as a subjecthood diagnostics

Anti-C-Command Condition (Engdahl 1983:22):
“A parasitic gap may not be c-commanded by the real gap.”

See also Engdahl (1983); Aoun and Clark (1985); Chomsky (1986); Contreras (1987), a.o.

![Diagram](attachment:diagram.png)
E.g. in English:

object doesn’t c-command adjunct \Rightarrow can license parasitic gap
Parasitic gaps as a subjecthood diagnostic

E.g. in English:

\textbf{object} doesn’t c-command adjunct \Rightarrow can license parasitic gap

\[
\begin{array}{c}
\text{CP} \\
\text{QP} \\
\quad \text{which articles}_i \\
\text{C} \\
\quad \text{did} \\
\quad \text{DP} \\
\quad \text{John} \\
\quad \text{T} \\
\quad \text{vP} \\
\quad \text{vP} \\
\quad \text{XP} \\
\quad \text{file } t_i \\
\end{array}
\]
Parasitic gaps as a subjecthood diagnostic

E.g. in English:

subject c-commands adjunct → cannot license parasitic gap
Parasitic gaps as a subjecthood diagnostic

E.g. in English:

subject c-commands adjunct ⇒ cannot license parasitic gap

*

```
CP
  QP
    which articles
  C'
    C
      T
        t_i
          T'
            T
              got
                vP
                  vP
                    XP
                      filed by John
                      without him reading _X_PG
```
Possessor parasitic gaps in West Circassian (Ershova 2019a)

The cat who doesn't eat its food

Op

wh-trace
wh-movement
wh-agreement
pronoun
co-reference
PG
PG
z-
wh.
poss-

Syntactic ergativity in West Circassian

7 February 2020

28
Possessor parasitic gaps in West Circassian (Ershova 2019a)

wh-movement triggers wh-agreement on the predicate

\[\text{četəwewi [pro} _1 \ 0- \ jəšxən] \ t_i \ 0- \ zə- \ məšxərer} \]

cat \quad 3\text{SG.POSS- food} \quad 3\text{ABS- WH.ERG- NEG.eat.DYN.ABS}

‘the cat who doesn't eat its food’
wh-movement triggers wh-agreement on the predicate

\[\text{wh-movement} \quad \text{wh-agreement} \]

\[\text{cat} \quad [\text{pro} \quad \text{Ø-} \quad \text{jəšxən}] \quad t_i \quad \text{Ø-} \quad \text{zə-} \quad \text{məšxərər} \]

3SG.Poss- food \quad 3ABS- WH.ERG- NEG.eat.DYN.ABS

‘the cat who doesn’t eat its food’
wh-movement triggers wh-agreement on the predicate

\[
\text{\textit{wh-movement}} \quad \Downarrow \quad \text{Op}_i \quad \text{wh-trace}_i
\]

\[
\text{četəwewi} \quad [\text{pro}_i \quad \emptyset- \quad \text{jəşxən}] \quad t_i \quad \emptyset- \quad \text{zə-} \quad \text{məşxərər}
\]

cat \quad 3SG.PSS- \quad \text{food} \quad 3ABS- \quad \text{WH.ERG-} \quad \text{NEG.eat.DYN.ABS}

‘the cat who doesn’t eat its food’
wh-movement triggers wh-agreement on the predicate

\[\text{wh-movement} \rightarrow \text{wh-agreement} \]

\[\text{wh-trace}_i \]

\[\text{Op}_i \]

\[\text{četəwew}_i \quad [\text{pro}_i \quad \emptyset- \quad \text{jəʃxən}] \quad t_i \quad \emptyset- \quad \text{zə-} \quad \text{məʃxərər} \]

\[\text{cat} \quad 3\text{SG.POSS-} \quad \text{food} \quad 3\text{ABS- WH.ERG-} \quad \text{NEG.eat.DYN.ABS} \]

‘the cat who doesn’t eat its food’
wh-movement triggers wh-agreement on the predicate

if there is a co-referent possessor pronoun

\[\text{wh-movement} \xrightarrow{\text{co-reference}} \text{pronoun}_i \]

\[\text{wh-trace}_i\]

\[\text{četəwew}_i \ [\text{pro}_i \ Ø- \ jəšxən] t_i \ Ø- \ zə- \ məšxərer\]

cat \quad 3\text{SG.Poss}- \text{food} \quad 3\text{ABS}- \textbf{WH.ERG}- \text{NEG.eat.DYN.ABS}

‘the cat who doesn’t eat its food’
Possessor parasitic gaps in West Circassian (Ershova 2019a)

- wh-movement triggers wh-agreement on the predicate
- if there is a co-referent possessor pronoun it may be replaced by parasitic gap

\[
\begin{array}{c}
\text{wh-movement} \\
\Downarrow \\
\text{co-reference} \\
\Downarrow \\
\text{wh-trace}_i
\end{array}
\]

\[
\begin{array}{c}
\text{Op}_i \\
\text{PG}_i \\
\text{wh-trace}_i
\end{array}
\]

\[
\text{četəwewi} \ [_\text{PG} \ z^- \ \text{jəʃxən}] \ t_i \ \Ø^- \ zə^- \ \text{məʃxərer}
\]

\[
\text{cat} \quad \text{WH.Poss} \quad \text{food} \quad 3\text{ABS}^- \quad \text{WH.ERG}^- \quad \text{NEG.eat.DYN.ABS}
\]

‘the cat who doesn’t eat its food’
Possessor parasitic gaps in West Circassian (Ershova 2019a)

- wh-movement triggers wh-agreement on the predicate
- if there is a co-referent possessor pronoun, it may be replaced by parasitic gap
- parasitic gap triggers additional wh-agreement

\[\text{co-reference}\]

\[\text{Op}_i \quad \text{PG}_i \quad \text{wh-trace}_i\]

\[\text{četəwew}_i \ [_\text{PG} \ (Z-) \ jəšxən] \ t_i \ Ø- \ zə- \ məšxərər\]

\[\text{cat} \quad \text{WH.Poss} \quad \text{food} \quad 3\text{ABS- WH.ERG- NEG.eat.DYN.ABS}\]

‘the cat who doesn’t eat its food’
Parasitic gaps are subject to the anti-c-command condition

ERG or IO trace can license a parasitic gap in ABS DP:

```
CP
   ──────┐
      C'   
   ────┐   
    TP   C
   ────┐
     T'   
    ────┐
     vP   T
     ────┘
     v'
   ────┐
   vP   
   ────┘
     ApplP
   ────┐
   v    
   ────┘
     Appl'
```

Syntactic ergativity in West Circassian

7 February 2020
Parasitic gaps are subject to the anti-c-command condition

ERG or IO trace can license a parasitic gap in ABS DP:
Parasitic gaps are subject to the anti-c-command condition. ERG or IO trace can license a parasitic gap in ABS DP:

\[
\text{DP(ABS)} \quad \text{DP(ERG)}
\]

Syntactic ergativity in West Circassian

7 February 2020
Parasitic gaps are subject to the anti-c-command condition.

ABS trace cannot license a parasitic gap in **ERG** or **IO** DP:
Parasitic gaps are subject to the anti-c-command condition.

ABS trace cannot license a parasitic gap in ERG or IO DP:

\[
\begin{array}{c}
\text{CP} \\
\text{TP} \\
\Lambda P \\
\text{DP(ERG)} \\
\end{array}
\]
Parasitic gaps are subject to the anti-c-command condition

ABS trace cannot license a parasitic gap in **ERG** or **IO** DP:

```plaintext
CP
   ___
  /    \  \
 OPi   C'
    /    \  \
   TP    C
      /    \  \
     T'    T
          /    \  \
         vP    v
             /    \  \
            v'    \
               \    \  \
               ApplP  \

DP(ERG)

DP(IO)  Appl'
    \    \  \
     \    \  \
      \    \  \
       \    \  \
        PG
```
Absolutive trace cannot license parasitic gaps in clausemate DPs
Absolutive trace cannot license parasitic gaps in clausemate DPs

ABS theme cannot license parasitic gap in **ERG** DP:

* Op$_i$ \(t_i \) \[_{PG} z- \] jane] \(\emptyset - _ - \) məbašxere

\(\text{WH.Poss} \)- mother \(\text{WH.Abs} \)- 3sg.erg- neg. feed. dyn

hažwəš'ərxem

puppies

Intended: ‘the puppies whom their mother doesn’t feed’
Absolutive trace cannot license parasitic gaps in clausemate DPs

ABS theme cannot license parasitic gap in **ERG** DP:

```
ABS  ERG

* Op  t  

[__PG  z-  jane]  Ø-  ø-  məvašxere

WH.Poss- mother  WH.ABS- 3SG.ERG- NEG.feed.DYN

hažwəš’ərxem
puppies
```

Intended: ‘the puppies whom their mother doesn’t feed’
Absolutive trace cannot license parasitic gaps in clausemate DPs

ABS agent cannot license parasitic gap in IO DP:

* hawi \(t_1(\text{ABS}) \) [*_PG z- jəx\text{wezjajən}]

\text{dog} \text{WH.POSS- owner}

Ø- Ø- jeceqež’əbem

\text{WH.ABS- 3SG.IO- bite.PST.OBL}

Intended: ‘the dog that bit its owner’
Absolutive trace cannot license parasitic gaps in clausemate DPs

ABS agent cannot license parasitic gap in **IO** DP:

\[
\begin{array}{cccc}
\text{ABS} & \text{ABS} & \text{IO} \\
* \text{haw}_1 & t_1(\text{ABS}) & \left[*_\text{PG} \right. \\
\text{dog} & & z- \text{jex}^w \text{ejaj} \text{jen} \\
\emptyset- & \emptyset- & \text{weq} \text{jeq}^z \text{em} \\
\text{WH.ABS}- & \text{3sg.io-} & \text{bite.pst.obl} \\
\end{array}
\]

Intended: ‘the dog that bit its owner’
Parasitic gaps confirm subjecthood of absolutive DP

ABS trace cannot license parasitic gaps in ERG or IO DPs

⇒ ABS c-commands ERG and IO

ABS is the clause-level subject
Parasitic gaps confirm subjecthood of absolutive DP

ABS trace cannot license parasitic gaps in ERG or IO DPs
Parasitic gaps confirm subjecthood of absolutive DP

- **ABS** trace cannot license parasitic gaps in **ERG** or **IO** DPs
- \Rightarrow **ABS** c-commands **ERG** and **IO**
Parasitic gaps confirm subjecthood of absolutive DP

- ABS trace cannot license parasitic gaps in ERG or IO DPs
- ⇒ ABS c-commands ERG and IO
- ABS is the clause-level subject
The clause-level subject position can be diagnosed by reciprocals and parasitic gaps.

Diagnostics for the lower subject position – the highest position in the theta-domain:

▶ reflexives
▶ control constructions
The clause-level subject position can be diagnosed by reciprocals and parasitic gaps.
Diagnosing the lower subject

The **clause-level subject position** can be diagnosed by reciprocals and parasitic gaps.

Diagnostics for the lower subject position – the highest position in the theta-domain:

- reflexives
- control constructions
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals ✓
- parasitic gaps ✓
- reflexives
- control

\{ A-domain
\} \{ theta-domain \}
Reflexives contrast with reciprocals

\[
\text{RECIPROCALS} \rightarrow \text{ABS} \text{ binds } \text{ERG}
\]

\[
\begin{align*}
\text{you} & \quad \downarrow \\
\hat{s}^w & \hat{w} & t^- & \lambda e^w \hat{w} \\
2\text{PL.ABS} & \quad 1\text{PL.ERG} & \text{see.PST} \\
\end{align*}
\]

‘We saw you(pl).’

BASELINE
Reflexives contrast with reciprocals

\[
\text{RECIPROCALS} \quad \rightarrow \quad \text{ABS binds ERG}
\]

\[
\begin{align*}
\text{we} & \quad \text{each other} \\
\text{tə-} & \quad \text{zere-} & \quad \Lambda e^w\text{əb} \\
\text{1PL.ABS-} & \quad \text{REC.ERG-} & \quad \text{see.PST}
\end{align*}
\]

‘We saw each other.’
Reflexives contrast with reciprocals

Reciprocals → **ABS** binds **ERG**

Reflexives → **ERG** binds **ABS**

\[
t_\theta- \quad z_{\text{ere}}- \quad \lambda e_{\text{w}_{\text{erb}}}
\]

1PL.ABS- REC.ERG- see.PST

We saw each other.
Reflexives contrast with reciprocals

Reciprocals bind ERG
Reflexives bind ABS

ourselves we

\[\text{2PL.ABS-} \quad \text{1PL.ERG-} \quad \text{see.PST} \]

\('We saw ourselves.'\)
Conflicting results for subjecthood diagnostics

- Reciprocals and parasitic gaps → ABS c-commands ERG + ABS is the subject
- Reflexives → ERG c-commands ABS + ERG is the subject
Reciprocals and parasitic gaps → ABS c-commands ERG +
ABS is the subject

Reflexives → ERG c-commands ABS + **ERG is the subject**

The explanation:
Conflicting results for subjecthood diagnostics

- Reciprocals and parasitic gaps \rightarrow ABS c-commands ERG + ABS is the subject
- Reflexives \rightarrow ERG c-commands ABS + ERG is the subject

The explanation:

Reflexives are local subject oriented
Reciprocals and parasitic gaps → ABS c-commands ERG + ABS is the subject
Reflexives → ERG c-commands ABS + ERG is the subject

The explanation:
Reflexives are local subject oriented
must be bound by highest DP in the theta-domain
Local subject oriented reflexives

- See e.g. Rizzi (1986); Lidz (1996, 2001); Labelle (2008); Sportiche (2014); Ahn (2015); Bhatia and Poole (2016)

- Reflexives must be bound by highest argument in vP.

\[
\begin{align*}
&vP \\
&\quad \downarrow
\\
&\quad DP(\text{ERG}) \\
&\quad \downarrow
\\
&\quad v' \\
&\quad \quad \downarrow
\\
&\quad \quad ApplP \\
&\quad \quad \downarrow
\\
&\quad \quad DP(\text{IO}) \\
&\quad \quad \downarrow
\\
&\quad \quad Appl' \\
&\quad \quad \downarrow
\\
&\quad \quad VP \\
&\quad \quad \downarrow
\\
&\quad \quad DP(\text{ABS}) \\
&\quad \quad \downarrow
\\&\quad \quad V
\end{align*}
\]
Local subject oriented reflexives

- See e.g. Rizzi (1986); Lidz (1996, 2001); Labelle (2008); Sportiche (2014); Ahn (2015); Bhatia and Poole (2016)
- Reflexives must be bound by highest argument in νP.
Local subject oriented reflexives

- See e.g. Rizzi (1986); Lidz (1996, 2001); Labelle (2008); Sportiche (2014); Ahn (2015); Bhatia and Poole (2016)
- Reflexives must be bound by highest argument in νP.

\[
\begin{array}{c}
\text{vP} \\
\downarrow \\
\text{DP(\text{ERG})} \\
\downarrow \\
\check{\text{antecedent}} \\
\downarrow \\
\text{DP(\text{IO})} \\
\downarrow \\
\times \text{antecedent} \\
\downarrow \\
\text{DP(\text{ABS})} \\
\downarrow \\
\text{REFL} \\
\end{array}
\]
Local subject oriented reflexives

- See e.g. Rizzi (1986); Lidz (1996, 2001); Labelle (2008); Sportiche (2014); Ahn (2015); Bhatia and Poole (2016)
- Reflexives must be bound by highest argument in vP.

Diagram:

```
  νP
 /   \
|     |
v'    ν
 /   \
|     |
ApplP
 /   \
|     |
v
 /   \
|     |
Appl'
 /   \\
|     |
VP    Appl

/   \
|     |
DP(ABS) V
```

Reflexives must be bound by highest argument in vP.
Local subject oriented reflexives

- See e.g. Rizzi (1986); Lidz (1996, 2001); Labelle (2008); Sportiche (2014); Ahn (2015); Bhatia and Poole (2016)
- Reflexives must be bound by highest argument in νP.
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (ERG-IO-ABS):
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (ERG-IO-ABS):

- reflexive in ABS position

```
ABS  IO  ERG
z-   a-  fe-  s-  thač’əv
REFL.ABS- 3PL.IO- BEN- 1SG.ERG- wash.PST
```
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (ERG-IO-ABS):

- reflexive in ABS position
- ERG binds the reflexive

✓BINDING

ABS IO ERG
z- a- fe- s- thač’əb
REFL.ABS- 3PL.IO- BEN- 1SG.ERG- wash.PST

‘I washed myself for them’

✓ ERG binds ABS
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (\textsf{ERG-IO-ABS}):

- reflexive in \textsf{ABS} position
- \textsf{ERG} binds the reflexive
- \textsf{IO} cannot bind reflexive

\textbf{\times BINDING}

\[
\begin{array}{ccc}
\text{ABS} & \text{IO} & \text{ERG} \\
\text{z-} & \text{a-} & \text{fe-} & \text{s-} & \text{thač’əb} \\
\text{REFL.ABS-} & \text{3PL.IO-} & \text{BEN-} & \text{1SG.ERG-} & \text{wash.PST} \\
\end{array}
\]

* ‘I washed for them \textbf{themselves}.’ \quad \times \text{IO binds \textsf{ABS}}
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (**ERG-IO-ABS**):
- reflexive in **IO** position

```
ABS   IO   ERG
Ø-    zə-  fe-  s-  thač’əŋ
3ABS- REFL.IO- BEN- 1SG.ERG- wash.PST
```
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (ERG-IO-ABS):
 ▶ reflexive in IO position
 ▶ ERG binds the reflexive

\[\begin{array}{c}
\text{ABS} & \text{IO} & \text{ERG} \\
\emptyset & \text{že} & \text{fe} & \text{s} & \text{thač’ěb} \\
3\text{ABS- REFL.IO- BEN- 1SG.ERG- wash.PST}
\end{array}\]

‘I washed them for myself’

✓ ERG binds IO
Only highest argument in theta-domain can bind reflexive

E.g. ditransitive verb (ERG-IO-ABS):

- reflexive in IO position
- ERG binds the reflexive
- ABS cannot bind reflexive

\[\text{\texttt{ABS}}\quad \text{\texttt{IO}}\quad \text{\texttt{ERG}}\]

\[\emptyset \quad \text{\texttt{z\\@-}}\quad \text{\texttt{fe-}}\quad \text{\texttt{s-}}\quad \text{\texttt{tha\\@-}}}\]

\[3\text{ABS- REFL.IO- BEN- 1SG.ERG- wash.PST}\]

* ‘I washed them for themselves.’

\[\times \text{ABS binds IO}\]
reflexives must be bound by highest nominal in νP
Highest nominal in theta-domain as the subject

- reflexives must be bound by highest nominal in νP
- \Rightarrow highest nominal in νP behaves as the subject
reflexives must be bound by highest nominal in νP

\Rightarrow highest nominal in νP behaves as the subject
The explanation

Reflexive binding is constrained by Voice0.

▶ See e.g. Labelle 2008; Ahn 2015; Bhatia and Poole 2016.
Reflexive Voice
Reflexive Voice

- selects for νP

The lower subject
Reflexive Voice

- selects for νP
- agrees with highest DP in νP

![Diagram of reflexive voice structure]
Reflexive Voice

- selects for νP
- agrees with highest DP in νP → antecedent

The lower subject
Reflexive Voice

- selects for vP
- agrees with highest DP in vP \rightarrow antecedent
- licenses the reflexive pronoun
Reflexive Voice

- Selects for νP
- Agrees with highest DP in νP
- Licenses the reflexive pronoun

\rightarrow antecedent
\rightarrow reflexive
Reflexive Voice

- selects for νP
- agrees with **highest DP in νP**
- licenses the reflexive pronoun
- imposes co-identity on the two arguments

$\nu P \rightarrow$ antecedent

\rightarrow reflexive

\[
\text{VoiceP} \\
\text{Voice}_{\text{REFL}} \\
\text{DP(ERG)} \\
\text{DP(ERG)} = \text{REFL(ABS)} \\
\text{VP} \\
\text{ApplP} \\
\text{Appl'} \\
\text{REFL(ABS)} \\
\text{V}
\]
Voice selects for $vP = \theta$-domain
Voice agrees with highest DP in theta-domain
reflexives single out highest DP in theta-domain as the subject

reflexives must be licensed by \textbf{Voice}
reflexives must be licensed by *Voice*

Voice selects for $\nu P =$ theta-domain
Voice and the theta-domain

reflexives must be licensed by **Voice**

Voice selects for $\nu P = \text{theta-domain}$

Voice agrees with **highest DP in theta-domain**
Voice and the theta-domain

reflexives must be licensed by **Voice**

Voice selects for \(\nu P = \) theta-domain

Voice agrees with **highest DP in theta-domain**

reflexives single out **highest DP in theta-domain** as the subject
Returning to contrast with reciprocals

The question: Why do reflexives and reciprocals behave differently?
The question: Why do reflexives and reciprocals behave differently?

<table>
<thead>
<tr>
<th>RECIPROCALS</th>
<th>REFLEXIVES</th>
</tr>
</thead>
</table>

Reciprocals are not licensed by Voice \Rightarrow they are only sensitive to clause-level prominence.
The question: Why do reflexives and reciprocals behave differently?

RECIPROCALS
ABS binds ERG

REFLEXIVES
ERG binds ABS
The question: Why do reflexives and reciprocals behave differently?

RECIPROCALS
ABS binds ERG
A-domain

REFLEXIVES
ERG binds ABS
theta-domain

The lower subject
The question: Why do reflexives and reciprocals behave differently?

<table>
<thead>
<tr>
<th>RECIPROCALS</th>
<th>REFLEXIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS binds ERG</td>
<td>ERG binds ABS</td>
</tr>
<tr>
<td>A-domain</td>
<td>theta-domain</td>
</tr>
</tbody>
</table>

The answer: Reciprocals are not licensed by Voice
The question: Why do reflexives and reciprocals behave differently?

RECIPROCALS
ABS binds ERG
A-domain

REFLEXIVES
ERG binds ABS
theta-domain

The answer: Reciprocals are not licensed by Voice
⇒ they are only sensitive to clause-level prominence
Any c-commanding nominal can bind reciprocal

E.g. for ditransitive verb (ERG-IO-ABS):
Any c-commanding nominal can bind reciprocal

E.g. for ditransitive verb (ERG-IO-ABS):

- ABS theme may bind reciprocal IO

```
TP
  vP
    v'
      ApplP
        v
          DP_{10}
            reciprocal
          Appl'
    DP_{ERG}
      DP_{ABS}
        ✓ antecedent
```
Any c-commanding nominal can bind reciprocal

E.g. for ditransitive verb \((\text{ERG-IO-ABS})\):

- **ABS** theme may bind reciprocal **IO**
- **IO** may not bind **ABS** theme
Absolutive theme can bind applied object

ABS- IO- ERG-
tə- ze- f- jə- š’ab
1PL.ABS- REC.IO- BEN- 3SG.ERG- bring.PST

‘S/he brought us to each other (= together).’
Absolutive theme can bind applied object

‘S/he brought **us** to each other (= together).’
Applied object cannot bind absolutive reciprocal

ABS- IO- ERG-
* ze- t- f- jә- ř’ә
REC.ABS- 1PL.IO- BEN- 3SG.ERG- bring.PST

Intended: ‘S/he brought to us each other.’
Applied object cannot bind absolutive reciprocal

Intended: ‘S/he brought to us each other.’
Reflexives versus reciprocals: summary

Reflexives are licensed by Voice
Reciprocals are not licensed by Voice

\begin{tabular}{|c|c|}
\hline
\textbf{RECIPROCALS} & \textbf{REFLEXIVES} \\
\hline
bound by c-commanding & bound by highest DP in \textit{vP} \\
\hline
\end{tabular}

\begin{itemize}
\item Next level: theta-domain subjecthood is confirmed by parasitic gaps
\item Next level: theta-domain subjecthood is confirmed by control constructions
\end{itemize}
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
- reciprocals are not licensed by Voice
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
- reciprocals are not licensed by Voice
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
- reciprocals are not licensed by Voice

RECIPROCALS
bound by c-commanding antecedent

REFLEXIVES
bound by highest DP in vP
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
- reciprocals are not licensed by Voice

RECIPROCALS
- bound by c-commanding antecedent
- A-domain

REFLEXIVES
- bound by highest DP in vP
- theta-domain
Reflexives versus reciprocals: summary

- reflexives are licensed by Voice
- reciprocals are not licensed by Voice

RECIPROCALS
- bound by c-commanding antecedent
- A-domain

REFLEXIVES
- bound by highest DP in vP
- theta-domain

- clause-level (A-domain) subjecthood is confirmed by parasitic gaps
Reflexives versus reciprocals: summary

- Reflexives are licensed by Voice
- Reciprocals are not licensed by Voice

RECIPROCALS
- bound by c-commanding antecedent
- A-domain

REFLEXIVES
- bound by highest DP in vP
- theta-domain

- Clause-level (A-domain) subjecthood is confirmed by parasitic gaps
- **NEXT:** theta-domain subjecthood is confirmed by control constructions
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals ✓
- parasitic gaps ✓
- reflexives ✓
- control

A-domain

θ-domain
Control singles out highest nominal in theta-domain

The explanation:

Control is mediated by Voice

parallels between reflexives and control

▶ confirms importance of Voice in subjecthood diagnostics

▶ explains lack of sensitivity to clause-level structural prominence
Control singles out highest nominal in theta-domain

The explanation:
Control is mediated by Voice
Control singles out highest nominal in theta-domain

The explanation:
Control is mediated by Voice

parallels between reflexives and control
Control singles out highest nominal in theta-domain

The explanation:
Control is mediated by Voice

parallels between reflexives and control

- confirms importance of Voice in subjecthood diagnostics
Control singles out highest nominal in theta-domain

The explanation:
Control is mediated by Voice

parallels between reflexives and control

- confirms importance of Voice in subjecthood diagnostics
- explains lack of sensitivity to clause-level structural prominence
Control singles out ergative agent as subject

▶ (Ershova 2019b): control verbs embed CP with high ABS

\[\text{DP} \rightarrow \text{vP} \rightarrow \text{TP} \rightarrow \text{DP(ABS)} \rightarrow \text{vP} \rightarrow \text{DP(ERG)} \rightarrow v' \]
(Ershova 2019b): control verbs embed CP with high \textit{ABS}

for transitive verb (\textit{ERG-ABS}):
Control singles out ergative agent as subject

- (Ershova 2019b): control verbs embed CP with high ABS
- for transitive verb (ERG-ABS):
 - ERG is controlled

\[
\begin{align*}
\text{DP} & \quad \text{vP} \\
& \quad \cdots \\
& \quad \text{TP} \\
& \quad \text{DP(ABS)} \\
& \quad \cdots \\
& \quad \text{vP} \\
& \quad \text{DP(ERG)} \\
& \quad \text{v'}
\end{align*}
\text{CONTROL}
Control singles out ergative agent as subject

▶ (Ershova 2019b): control verbs embed CP with high **ABS**
▶ for transitive verb (**ERG-ABS**):
 ▶ **ERG** is controlled
 ▶ **ABS** cannot be controlled
The teacher began to count the children.
Control cannot target absolutive theme of transitive verb

* č’alexem
boys.OBL
began

rañež’ař

lit. ‘The children began for the teacher to count [them].’

[controller] → ABS × ERG

[ČP PRO_i(ABS) č’elejebaže-m(ERG) ələtenew]
teacher-OBL to count

The lower subject
Why does control target the ergative agent?

- Why is ERG eligible for control?
- why doesn’t ABS act as an intervener?

Control is mediated by Voice
Control is mediated by Voice

- Voice is aligned with the nominal in the highest nominal in the phrase.
- Nominals above Voice 0 are invisible to control.

The lower subject
Control is mediated by Voice

- Voice\(^0\) agrees with highest nominal in \(vP\)
Control is mediated by Voice

- Voice⁰ agrees with highest nominal in vP
Control is mediated by Voice

- Voice0 agrees with highest nominal in νP
- the controller agrees with Voice0 (à la Landau 2000)
Control is mediated by Voice

- Voice0 agrees with highest nominal in vP
- the controller agrees with Voice0 (à la Landau 2000)
Control is mediated by Voice

- Voice⁰ agrees with highest nominal in vP
- the controller agrees with Voice⁰ (a lá Landau 2000)
- nominals above Voice⁰ are invisible to control
Parallels between control and reflexives

Control singles out highest argument in theta-domain as subject
Parallels between control and reflexives

Control singles out highest argument in theta-domain as subject

Reflexives single out highest argument in theta-domain as subject
Parallels between control and reflexives

Control singles out highest argument in theta-domain as subject

Reflexives single out highest argument in theta-domain as subject

Both are constrained by Voice
Parallels between control and reflexives

Control singles out highest argument in theta-domain as subject

Reflexives single out highest argument in theta-domain as subject

Both are constrained by Voice

support from parallel behavior with two-place unaccusative verbs
Two-place unaccusative verbs

E.g. ʂ’əwʷəpšen ‘forget’:

me \(\rightarrow\) sə- ISG.ABS- 1SG.ABS-

you \(\rightarrow\) p- 2SG.IO- forget.PST

‘You forgot about me.’
Absolutive theme and applied argument are equidistant from Voice

- Absolutive theme moves to Spec, ApplP (McGinnis 2000, 2001)
Absolutive theme and applied argument are equidistant from Voice

- Absolutive theme moves to Spec, ApplP (McGinnis 2000, 2001)
Absolutive theme and applied argument are equidistant from Voice

- Absolutive theme moves to Spec,ApplP (McGinnis 2000, 2001)
- both **ABS** and **IO** are in Spec,ApplP
Absolutive theme and applied argument are equidistant from Voice

- Absolutive theme moves to Spec,ApplP (McGinnis 2000, 2001)
- both ABS and IO are in Spec,ApplP
- \Rightarrow they are equidistant from Voice

Absolutive theme moves to Spec,ApplP (McGinnis 2000, 2001)

- both ABS and IO are in Spec,ApplP
- \Rightarrow they are equidistant from Voice

VoiceP

\[\begin{array}{c}
\text{Voice} \\
\text{vP} \\
\text{ApplP} \\
\text{Appl'} \\
\text{VP} \\
\text{Appl} \\
\langle \text{DP(ABS)} \rangle \end{array} \]
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from **Voice**
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in \(vP \)
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in νP
- ⇒ either argument can serve as antecedent for reflexive
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in νP
- \Rightarrow either argument can serve as antecedent for reflexive

IO binds **ABS**:

$$\text{zə- s- š’əw’əpšez’əw}$$

REFL.ABS- 1SG.IO- forgot.PST

‘I forgot about myself.’
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in **νP**
- ⇒ either argument can serve as antecedent for reflexive

IO binds **ABS**:

```
myself                  I
  \downarrow              \downarrow
 z焓              s焓
 REFL.ABS-  1SG.IO-  forgot.PST
```

‘I forgot about myself.’
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in \(\nu P \)
- ⇒ either argument can serve as antecedent for reflexive

ABS binds **IO**:

\[
\text{sə- z- š’əbwəpšež’əb} \\
1\text{SG.ABS- REFL.IO- forgot.PST}
\]

lit. ‘Myself forgot about me.’
Both absolutive theme and applied argument can bind reflexive

- **ABS** and **IO** are equidistant from Voice
- + there is no higher DP in \(vP \)
- \(\Rightarrow \) either argument can serve as antecedent for reflexive

ABS binds **IO**:

\[
\text{me} \quad \text{myself}
\]

\[
\text{š’ωb[w]pšež’ωb} \quad \text{ISG.ABS- REFL.IO- forgot.PST}
\]

lit. ‘Myself forgot about me.’
Absolutive theme and applied argument are equidistant for control

ABS and **IO** are equidistant from Voice
Absolutive theme and applied argument are equidistant for control

ABS and IO are equidistant from Voice

Voice mediates control

VoiceP
 └── Voice
 └── vP
 ├── ApplP
 │ └── ν
 └── v
 ├── Appl′
 │ └── DP(IO)
 └── Appl′
 └── DP(ABS)
 └── Appl
 └── VP
Absolutive theme and applied argument are equidistant for control.

ABS and **IO** are equidistant from Voice.

Voice mediates control.

```
VoiceP
  Voice
  vP
    vP
      ApplP
        Appl'
          DP(IO)
            Appl'
              Appl
                VP
      DP(ABS)
```
Absolutive theme and applied argument are equidistant for control

ABS and **IO** are equidistant from Voice

Voice mediates control

ABS and **IO** are equidistant for control
Absolutive theme and applied argument are equidistant for control

▶ **IO** may be controlled

\[
\text{pro}_i [\text{CP } \text{sjənəbž’əč’eb}^w\text{əm qəsš’əșəexe-r}] (\text{ABS}) \quad \text{PRO}_i (\text{IO})
\]

my childhood \quad \text{happenings-ABS}

sš’əb^wəpšenew] \quad \text{jesəbaž’e}

to forget \quad \text{I am beginning}

‘I am starting to forget events from my childhood.’
Absolutive theme and applied argument are equidistant for control

▶ **IO** may be controlled

\[
\text{CONTROL} \\
pro_i [\text{my childhood} \quad \text{happenings-ABS} \\
s\text{e} \text{e} \text{p} \text{s} \text{e} \text{n} \text{e} \text{w} \text{e}] \quad \text{jese} \text{ba} \text{ž} \text{e} \\
to forget \quad \text{I am beginning}
\]

‘I am starting to forget events from my childhood.’
Absolutive theme and applied argument are equidistant for control

- **IO** may be controlled
- **ABS** may be controlled

\[\text{g}^w \text{əš’əʔeč’əhaxem}_i \quad [\text{CP PRO}_i(\text{ABS}) \quad \text{sš’əv}^w \text{əpšenew }] \]

long words

to forget

\[\text{rahež’ab} \]

they are beginning

lit. ‘Long words are beginning for me to be forgetting [them].’
Absolutive theme and applied argument are equidistant for control

▶ **IO** may be controlled
▶ **ABS** may be controlled

CONTROL

\[g^{w\text{ә}š’ә?еč’әhaxem}_i \quad \text{[CP } \text{PRO}_i^{(ABS)} \quad \text{sš’әв}^{wәршәnew} \text{]} \]

long words
raеež’аб]
they are beginning

lit. ‘Long words are beginning for me to be forgetting [them].’
Control and reflexives versus reciprocals

- control and reflexives are constrained by Voice
control and reflexives are constrained by Voice

- in two-place unaccusative verbs, **ABS** and **IO** are equidistant to Voice
control and reflexives are constrained by Voice

- in two-place unaccusative verbs, **ABS** and **IO** are equidistant to Voice
- \(\Rightarrow \) either argument can be controlled or bind a reflexive
control and reflexives are constrained by Voice

in two-place unaccusative verbs, ABS and IO are equidistant to Voice

⇒ either argument can be controlled or bind a reflexive

Contrast with reciprocals → only sensitive to full clause structure
Reciprocals: absolutive theme binds applied argument

- at level of TP, \textbf{ABS} asymmetrically c-commands \textbf{IO}

\[
\begin{array}{c}
\text{TP} \\
\text{DP(ABS)} \\
\text{...} \\
\text{ApplP} \\
<\text{DP(ABS)}> \\
\text{Appl'} \\
\text{DP(IO)} \\
\text{Appl'} \\
\end{array}
\]
Reciprocals: absolutive theme binds applied argument

- at level of TP, \textbf{ABS} asymmetrically c-commands \textbf{IO}
- \Rightarrow \textbf{ABS} may bind \textbf{IO} reciprocal
Reciprocals: absolutive theme binds applied argument

- at level of TP, \textbf{ABS} asymmetrically c-commands \textbf{IO}
- \(\Rightarrow\) \textbf{ABS} may bind \textbf{IO} reciprocal
- \textbf{IO} may not bind \textbf{ABS} reciprocal

\[\text{DP(ABS)} \downarrow \text{reciprocal} \]

\[\text{TP} \]

\[\text{ApplP} \]

\[\langle \text{DP(ABS)} \rangle \]

\[\text{Appl}' \]

\[\text{DP(IO)} \]

\[\text{Appl}' \]

\[\times \text{antecedent} \]
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:
 ▶ **ABS** can bind reciprocal in **IO** position

\[
\begin{array}{c}
tə- \quad \text{ze-} \quad š’əb^wə̂pšež’əb \\
1PL.ABS- \; \text{REC.IO-} \; \text{forget.PST}
\end{array}
\]

‘We forgot about each other.’
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:

- **ABS** can bind reciprocal in **IO** position

```
we  each other
↓  ↓
tə- ze- š’əbʷəpšež’əb
IPL.ABS- REC.IO- forget.PST
```

‘We forgot about each other.’
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:

► **ABS** can bind reciprocal in **IO** position
► **IO** cannot bind reciprocal in **ABS** position

* ze- t- ſ’әәʷәрәѣз’әә
 REC.ABS- 1PL.IO- forget.PST

Intended: ‘We forgot about each other.’
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:

- **ABS** can bind reciprocal in **IO** position
- **IO** cannot bind reciprocal in **ABS** position
- ⇒ reciprocals are only sensitive to clause-level c-command

```
* ze-  t-  š’əwⁿəpšež’əkw
  REC.ABS-  1PL.IO-  forget.PST
```

Intended: ‘We forgot about each other.’
Reciprocals: absolutive theme binds applied argument

Two-place unaccusative verbs:

- **ABS** can bind reciprocal in **IO** position
- **IO** cannot bind reciprocal in **ABS** position
- \(\Rightarrow \) reciprocals are only sensitive to clause-level c-command
- **CONTRAST** with reflexives and control

each other *we*

\[*\text{ze-} \quad \text{t-} \quad \text{ŋəwəpʃež'əv} \]
\[\text{REC.ABS-} \quad \text{1PL.IO-} \quad \text{forget.PST} \]

Intended: ‘We forgot about each other.’
Voice and subjecthood: Recap

- sensitivity to c-command in theta-domain (vP) is conditioned by Voice
Voice and subjecthood: Recap

- sensitivity to c-command in theta-domain (vP) is conditioned by Voice
- control and reflexives employ Voice
sensitivity to c-command in theta-domain (vP) is conditioned by Voice
control and reflexives employ Voice ⇒ single out highest DP in vP as subject

Implications:
Voice and subjecthood: Recap

- sensitivity to c-command in theta-domain (vP) is conditioned by **Voice**
- control and reflexives employ Voice \Rightarrow single out highest DP in vP as subject

Implications:
- confirms importance of **Voice** for subjecthood diagnostics
Voice and subjecthood: Recap

- sensitivity to c-command in theta-domain (vP) is conditioned by **Voice**
- control and reflexives employ Voice \Rightarrow single out highest DP in vP as subject

Implications:
- confirms importance of **Voice** for subjecthood diagnostics
- accounts for distribution of subjecthood properties across several positions
sensitivity to c-command in theta-domain (vP) is conditioned by \textbf{Voice}

control and reflexives employ Voice \Rightarrow single out highest DP in vP as subject

Implications:

- confirms importance of \textbf{Voice} for subjecthood diagnostics
- accounts for distribution of subjecthood properties across several positions
- possible explanation for rarity of syntactic ergativity in control and binding (see e.g. Dixon 1994; Deal 2016; Polinsky 2016)
Subject is not a theoretically meaningful notion

Roadmap: distributed subjecthood in West Circassian

- reciprocals ✓
- parasitic gaps ✓
- reflexives ✓
- control ✓

\[\begin{align*}
\text{A-domain} & \quad \text{theta-domain} \\
\end{align*} \]
In West Circassian, there are at least two subject positions:

- highest DP in the A-domain (TP)

E.g. for a transitive (ERG-ABS) verb:

```
Conclusion

In West Circassian, there are at least two subject positions:
  ◀ highest DP in the A-domain (TP)

E.g. for a transitive (ERG-ABS) verb:

```
```
In West Circassian, there are at least two subject positions:
- highest DP in the A-domain (TP)

E.g. for a transitive (ERG-ABS) verb:
In West Circassian, there are at least two subject positions:
- highest DP in the A-domain (TP)
- highest DP in the theta-domain (vP)

E.g. for a transitive (ERG-ABS) verb:
In West Circassian, there are at least two subject positions:

- highest DP in the A-domain (TP)
- highest DP in the theta-domain (vP)

E.g. for a transitive (ERG-ABS) verb:

```
TP
 \[DP(\text{ABS})\]
 SUBJECT

TP
 T'
 vP
 v
 \[DP(\text{ERG})\]
 SUBJECT

TP
 T
 v
 \[DP(\text{ABS})\]
 V

\[\langle DP(\text{ABS})\rangle\]
```
Subject defined in terms of structural prominence

Correlates with how subjecthood diagnostics operate:
Subject defined in terms of structural prominence

Correlates with how subjecthood diagnostics operate:

▶ Anaphors must be bound by a **c-commanding antecedent**:
Subject defined in terms of structural prominence

Correlates with how subjecthood diagnostics operate:

- Anaphors must be bound by a **c-commanding antecedent**: antecedent cannot be defined by semantic role or specific syntactic position
Subject defined in terms of structural prominence

Correlates with how subjecthood diagnostics operate:

- Anaphors must be bound by a **c-commanding antecedent**: antecedent cannot be defined by semantic role or specific syntactic position

- Conditions on parasitic gap licensing are stated in terms of **c-command**
Subject defined in terms of structural prominence

Correlates with how subjecthood diagnostics operate:

▶ Anaphors must be bound by a **c-commanding antecedent**: antecedent cannot be defined by semantic role or specific syntactic position

▶ Conditions on parasitic gap licensing are stated in terms of **c-command**

▶ Control is sensitive to **structural prominence** rather than syntactic position.
The high position of the absolutive argument is:
Implications for syntactic ergativity

The high position of the absolutive argument is:
- derived
The high position of the absolutive argument is:
- derived
- a **subject** position (=A-position)
Implications for syntactic ergativity

The high position of the absolutive argument is:

- derived
- a subject position (=A-position)

- support for previous analyses of derived high absolutive (Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2008; Coon et al. 2014; Yuan 2018, a.o.)
Implications for syntactic ergativity

The high position of the absolutive argument is:

- derived
- a subject position (=A-position)

- support for previous analyses of derived high absolutive (Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2008; Coon et al. 2014; Yuan 2018, a.o.)
- novel evidence for A-position status of high absolutive
The notion of subjecthood

As a syntactically ergative language, West Circassian:
The notion of subjecthood

As a syntactically ergative language, West Circassian:

**provides support for theories of distributed subjecthood**
The notion of subjecthood

As a syntactically ergative language, West Circassian:

- **provides support for theories of distributed subjecthood**

- **in syntactically accusative languages**, the same nominal moves through the different subject positions
The notion of subjecthood

As a syntactically ergative language, West Circassian:

**provides support for theories of distributed subjecthood**

*In syntactically accusative languages*, the same nominal moves through the different subject positions

⇒ effects of distributed subjecthood only observable in limited contexts
The notion of subjecthood

As a syntactically ergative language, West Circassian:

provides support for theories of distributed subjecthood

- in **syntactically accusative languages**, the same nominal moves through the different subject positions
  $\Rightarrow$ effects of distributed subjecthood only observable in limited contexts

- in **syntactically ergative languages**, the different subject positions are systematically occupied by distinct nominals
As a syntactically ergative language, West Circassian:

- provides support for theories of distributed subjecthood

- in syntactically accusative languages, the same nominal moves through the different subject positions
  ⇒ effects of distributed subjecthood only observable in limited contexts

- in syntactically ergative languages, the different subject positions are systematically occupied by distinct nominals
  ⇒ fruitful testing ground for distribution of subjecthood properties
The notion of subjecthood

As a syntactically ergative language, West Circassian:

provides evidence for a radical decomposition of subjecthood
The notion of subjecthood

As a syntactically ergative language, West Circassian:

**provides evidence for a radical decomposition of subjecthood**

2 subject positions
The notion of subjecthood

As a syntactically ergative language, West Circassian:

- provides evidence for a radical decomposition of subjecthood

  2 subject positions + occupied by 2 distinct nominals
The notion of subjecthood

As a syntactically ergative language, West Circassian:

- **provides evidence for a radical decomposition of subjecthood**

  2 subject positions + occupied by 2 distinct nominals

  $\rightarrow$ **SUBJECT** is not a theoretically meaningful notion
Voice plays an important role in two classic subjecthood diagnostics:
Voice plays an important role in two classic subjecthood diagnostics:

- reflexives
Voice plays an important role in two classic subjecthood diagnostics:

- reflexives
- control
Voice plays an important role in two classic subjecthood diagnostics:

- reflexives
- control

- best observed in syntactically ergative languages
Voice plays an important role in two classic subjecthood diagnostics:

- reflexives
- control

- best observed in syntactically ergative languages
- in syntactically accusative languages, can be seen in limited contexts:
Voice plays an important role in two classic subjecthood diagnostics:

- reflexives
- control

- best observed in syntactically ergative languages
- in syntactically accusative languages, can be seen in limited contexts:
  - local subject oriented reflexives
    (Labelle 2008; Sportiche 2014; Ahn 2015, a.o.)
The role of Voice in subjecthood diagnostics

Voice plays an important role in the two classic subjecthood diagnostics:

▶ reflexives
▶ control

▶ best observed in syntactically ergative languages
▶ in syntactically accusative languages, can be seen in limited contexts:
  ▶ local subject oriented reflexives (Labelle 2008; Sportiche 2014; Ahn 2015, a.o.)
  ▶ quirky subjects (Poole 2015)
Local subject orientation of reflexives is reduced to constraints on locality.
Local subject orientation and locality

Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses
  (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.):
Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.): *any argument may be antecedent*, if it is the highest in the theta-domain
Local subject orientation and locality

Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.): **any argument may be antecedent**, if it is the highest in the theta-domain
- confirms implicit prediction of Voice-based analyses:
Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.): any argument may be antecedent, if it is the highest in the theta-domain
- confirms implicit prediction of Voice-based analyses:
  - in syntactically accusative languages, antecedent must be both deep and surface subject
Local subject orientation and locality

Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.): **any argument may be antecedent**, if it is the highest in the theta-domain

- confirms implicit prediction of Voice-based analyses:
  
  - in syntactically accusative languages, antecedent must be **both deep and surface subject**
  - this is epiphenomenal to syntax of Voice
Local subject orientation of reflexives is reduced to constraints on locality.

- support for locality-based analyses 
  (Sportiche 2014; Ahn 2015; Bhatia and Poole 2016, a.o.): any argument may be antecedent, if it is the highest in the theta-domain

- confirms implicit prediction of Voice-based analyses:
  - in syntactically accusative languages, antecedent must be both deep and surface subject
  - this is epiphenomenal to syntax of Voice
  - in syntactically ergative languages, antecedent need not be the surface subject
cross-linguistically, control very rarely (if at all) displays syntactic ergativity effects
See e.g. Dixon (1994); Deal (2016); Polinsky (2016).
Control and syntactic ergativity

▶ cross-linguistically, control very rarely (if at all) displays syntactic ergativity effects
See e.g. Dixon (1994); Deal (2016); Polinsky (2016).
▶ explained by role of Voice in control:
Control and syntactic ergativity

- cross-linguistically, control very rarely (if at all) displays syntactic ergativity effects
  See e.g. Dixon (1994); Deal (2016); Polinsky (2016).
- explained by role of Voice in control:
  control is only sensitive to the organization of arguments in vP
Broader connections: typology of anaphor binding

Contrast between reflexives and reciprocals in binding restrictions is common: even in the same language, reflexives are often subject-oriented and reciprocals are not.

West Circassian anaphors fit into this general typology.

The bigger question: why this contrast between reflexives and reciprocals?
Broader connections: typology of anaphor binding

- contrast between reflexives and reciprocals in binding restrictions is common:
Broader connections: typology of anaphor binding

- contrast between reflexives and reciprocals in binding restrictions is common:
  even in same language, reflexives are often subject-oriented and reciprocals are not
Broader connections: typology of anaphor binding

- contrast between reflexives and reciprocals in binding restrictions is common: even in same language, reflexives are often subject-oriented and reciprocals are not
- West Circassian anaphors fit into this general typology
Broader connections: typology of anaphor binding

- contrast between reflexives and reciprocals in binding restrictions is common: even in same language, reflexives are often subject-oriented and reciprocals are not
- West Circassian anaphors fit into this general typology
- **The bigger question:** why this contrast between reflexives and reciprocals?
Tagalog: subjecthood properties are distributed across two nominals
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals

  ⇒ two types of subjects:
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals
  
  \[\Rightarrow\] two types of subjects:
  
  - grammatical subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

Current proposal:

- contribution to the empirical landscape
  
  \[\Rightarrow\] dichotomy of subject types is not necessary
  
  - subjecthood properties are defined by structural prominence and syntactic domain, not as primitives
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals
  
  - two types of subjects:
    - grammatical subject
    - argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

Current proposal:

- contribution to the empirical landscape
- dichotomy of subject types is not necessary
  - subjecthood properties are defined by structural prominence and syntactic domain, not as primitives
Tagalog: subjecthood properties are distributed across two nominals

⇒ two types of subjects:
  - grammatical subject
  - argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals
  - two types of subjects:
    - grammatical subject
    - argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

Current proposal:
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals
  - two types of subjects:
    - grammatical subject
    - argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

**Current proposal:**
- contribution to the empirical landscape
Broader connections: Austronesian subjects

- Tagalog: subjecthood properties are distributed across two nominals

  - two types of subjects:
    - grammatical subject
    - argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

**Current proposal:**

- contribution to the empirical landscape
- dichotomy of subject types is not necessary
Tagalog: subjecthood properties are distributed across two nominals

⇒ two types of subjects:

- grammatical subject
- argument structure subject

See e.g. Schachter (1977); Guilfoyle et al. (1992); Manning (1996).

Current proposal:

- contribution to the empirical landscape
- dichotomy of subject types is not necessary
- subjecthood properties are defined by structural prominence and syntactic domain, not as primitives
Thank you!

- West Circassian consultants: Svetlana K. Alishaeva, Saida Gisheva, Susana K. Khatkova, and Zarema Meretukova
- Karlos Arregi, Nikita Bezkurov, Cleo Condoravdi, Itamar Francez, Vera Gribanova, Boris Harizanov, Paul Kiparsky, Yury Lander, Beth Levin, Jason Merchant, Yakov G. Tstelets, Michelle Yuan

- Funding sources:
  - Dissertation Research Improvement Grant from the National Science Foundation (BCS-1749299)
  - Association for Slavic, East European, and Eurasian Studies Dissertation Research Grant
Ahn, Byron. 2015. Giving reflexivity a voice: Twin reflexives in English. PhD diss, UCLA.


Harley, Heidi. 1995. Subjects, events and licensing. PhD diss, MIT.


Poole, Ethan. 2015. Deconstructing quirky subjects. In *Proceedings of NELS 45*, eds. Thuy Bui and Deniz Özyü Idız, 247–256. GLSA.


