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The paper considers a model of competition among firms that produce a homogeneous good in a networked

environment. A bipartite graph determines which subset of markets a firm can supply to. Firms compete à

la Cournot and decide how to allocate their production output to the markets they are directly connected

to. We provide a characterization of the production quantities at the unique equilibrium of the resulting

game for any given network. Our results identify a novel connection between the equilibrium outcome and

supply paths in the underlying network structure. We then proceed to study the impact of changes in the

competition structure, e.g., due to a firm expanding into a new market or two firms merging, on firms’ profits

and consumer welfare. The modeling framework we propose can be used in assessing whether expanding in a

new market is profitable for a firm, identifying opportunities for collaboration, e.g., a merger, joint venture,

or acquisition, between competing firms, and guiding regulatory action in the context of market design and

antitrust analysis.
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1. Introduction

Models of oligopolistic competition typically feature a number of firms operating in a single, well-

defined, isolated market. In many settings though, firms compete with one another across several

different markets. This is particularly prevalent in regional industries that have distinct geographi-

cal markets, such as electricity, natural gas, airlines, the cement industry, healthcare, and banking.

For example, constraints imposed by the natural gas pipeline network and the electricity grid imply

naturally that firms in these industries compete with one another in several distinct consumer mar-

kets. In fact, several papers aim to explore firms’ strategic behavior in deregulated power markets

by emphasizing the role of network structure on market outcomes (e.g., Borenstein, Bushnell, and

Knittel (1999), Wu, Bose, Wierman, and Mohesenian-Rad (2013), Bose, Cai, Low, and Wierman

(2014)). Similarly, airlines compete across several origin-destination pairs which can be viewed as
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distinct markets. In fact, the presence of strong multi-market contact effects has been empirically

verified for the US airline industry (Kim and Singal (1993), Evans and Kessides (1994)).

As another example, cement, due to its high weight-to-price ratio, can only be economically

transported by land or between export/import terminals by sea. Thus, the set of locations a

cement plant can supply to is inherently limited by its distance to potential customers and access

to waterways. Typically, cement firms own and operate several plants in different geographical

locations competing this way in many consumer markets (Jans and Rosenbaum (1997) provide

extensive empirical evidence supporting the effect of multi-market contact on prices in the cement

industry). Regional competition is also starting to play an important role in healthcare. Networks of

providers compete with one another over customers that may have a strong preference towards easy

access to care. The past few years have witnessed an increasing number of mergers, acquisitions,

and consolidations in the healthcare space that aim to enable providers expand their geographical

reach. Finally, although we present our model and results for a single homogeneous good that is

sold by a set of firms across different markets, our analysis is relevant for large conglomerate firms

competing with one another in several distinct product markets.1

These examples motivate the study of oligopoly models in which firms strategically interact with

one another across several markets. Interestingly, although, as mentioned above, there is strong

empirical evidence that multi-market competition is prevalent in many industries and single-market

models are inadequate to provide an accurate description of the strategic interactions in such

environments, to the best of our knowledge, there is very little analytical work that explicitly

accounts for the competition structure among firms. Our paper presents one step towards this

direction. In particular, we consider a model where the competition structure is given by a general

bipartite graph that represents the set of markets each firm can supply to. We emphasize that we do

not require any assumptions on the number of firms and markets or the structure of the competition

among them. Firms compete à la Cournot in each of the markets, i.e., price is determined as a

function of the aggregate production quantity supplied to the market, and their cost of production

is convex, thus their supply decisions in different markets are coupled.

We begin our analysis by showing that there exists a unique equilibrium for any given network

and general concave inverse demand and convex cost functions. Then, we focus on linear inverse

demands and quadratic costs and provide a characterization of the equilibrium flows, i.e., produc-

tion quantities, in terms of supply paths in the network. This assumption which is prevalent in

the literature is essential for clearly bringing out the role of the network structure in equilibrium

1 Relatedly, an infographic created by French blog Convergence Alimentaire clearly illustrates the extent to which the
entire consumer goods industry is dominated by ten multinational firms that compete with one another in several
different product categories (http://www.convergencealimentaire.info/map.jpg).
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decision making. In particular, we show that the price-impact matrix that can be written explic-

itly as a function of the underlying competition structure succinctly summarizes the effect of each

firm-market pair on production quantities, firms’ profits, and consumer welfare. Specifically, this

matrix allows us to compute the impact on the price of any market that results from an increase

in the quantity associated with a firm-market pair.

Armed with a characterization of equilibrium supply decisions in terms of the price-impact

matrix, we explore the effect of changes in the network structure on firms’ profits and consumer

welfare. First, we study the question of a firm entering a new market. We show that entry may

not be beneficial for either the firm or welfare on aggregate as such a move affects the entire

vector of production quantities. The firm may face aggressive competition in its original markets

after expanding into a new market. The extent to which a firm’s competitors respond to the event

of entry depends on the paths connecting the new market with the rest of the markets the firm

supplies to and, thus, even distant markets (in a network sense) may have a first order impact

on the firm’s profits. We explicitly quantify the network effect on the competitors’ response to

entry and establish that the net benefit associated with expanding into a new market (even in the

absence of fixed entry costs) decreases as the chain of competition increases and may in fact turn

out to be negative.2

Furthermore, the effect on other firms and consumers also depends on their location in the

network. A subset of firms and consumers may benefit while others may not. This is in stark

contrast with standard results in Cournot oligopoly where entry directly implies more competition

in the market and thus higher consumer welfare and lower profits for all the firms. Thus, our results

have important implications for market design since regulatory measures that facilitate expansion

to new markets may not necessarily lead to an increase in aggregate welfare.

Similarly, the effect of a merger between two firms on profits and overall welfare largely depends

on the structure of competition in the original networked economy. In particular, we show that

insights from analyzing mergers in a single market do not carry over in a networked environment.

Market concentration indices are insufficient to correctly account for the network effect of a merger

and one should not restrict attention only to the set of markets that the firms participating in the

merger supply to. We highlight that even if two firms do not share a market in the original pre-

merger economy they can exert market power by coordinating their supply decisions and lead to a

decrease in consumer welfare unlike what traditional merger analysis would predict. Interestingly,

2 There are several instances of firms that “spread themselves too thin’’ by entering seemingly profitable markets and
as a result ended up facing fierce competition in their home markets. For example, many claim that Frontier airlines
invited aggressive competition in its primary hub, Denver, by expanding to a large number of new routes (see also
Bulow, Geanakoplos, and Klemperer (1985)). Similarly, Kmart was not able to fend off competition from its major
rival, Walmart, presumably because of over-diversifying its product portfolio.
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Kim and Singal (1993) highlight the importance of taking the competition structure into account

when considering the welfare effects of a merger by empirically studying the wave of mergers that

followed the Deregulation Act in the airline industry.

1.1. Related Literature

Bulow, Geanakoplos, and Klemperer (1985) serves as one of the main motivations behind our

study. They analyze the strategic interactions between two firms that compete in two markets (a

monopoly and a duopoly) and show that strategic complementarity and substitutability between

the firms’ actions determine the effect of exogenous changes in the markets on profits. We extend

their environment by considering an arbitrary network of firms and markets and properly generalize

the notion of strategic complementarity and substitutability to account for the network interactions

among the firms. Our multi-market environment allows us to consider firms merging or expanding

into new markets as well as to study the role of the competition structure in determining how

welfare and profits are affected.

In addition to the papers discussed above, a different strand of literature studies bilateral trading

of indivisible goods among agents in a network. Kranton and Minehart (2001) model competition

among buyers of a single, indivisible good as an ascending price auction and study whether the

resulting pattern of trades is efficient. Corominas-Bosch (2004) considers a non-cooperative bar-

gaining game and provides conditions for the equilibrium of the bargaining game to coincide with

the Walrasian outcome. More recently, Nakkas and Xu (2015) examine the role of heterogeneity

in the buyers’ valuations on the efficiency of realized trades as well as equilibrium pricing. Addi-

tionally, Ostrovsky (2008), Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013), and

Ashlagi, Braverman, and Hassidim (2014) study equilibrium stability in a model where agents can

trade via bilateral contracts and a network determines the set of feasible relationships.

Relatedly, Manea (2011) study decentralized bargaining and provide insights on how an agent’s

bargaining power relates to her position in the network that represents the set of feasible trades.

Nguyen (2015) analyzes a non-cooperative bargaining model with a general coalitional structure

and provides a characterization of the set of equilibira via a convex program. Elliott (Forthcom-

ing) studies markets in which there are heterogeneous gains from trade and relationship specific

investments are necessary for trade to take place whereas Ashlagi, Kanoria, and Leshno (2015)

study the effect of competition on the size of the core in large matching markets. Manea (2015)

studies intermediation in markets that feature an underlying network structure and explores ineffi-

ciencies in trade that may be the result of hold-up or local competition. 3 Closest to the questions

3 Several other papers, e.g., Blume, Easley, Kleinberg, and Tardos (2009) and Choi, Galeotti, and Goyal (2015), study
trading among agents that are connected by a network structure.
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we explore, Nava (2015) considers a model of quantity competition in which agents endogenously

decide whether to assume the role of a buyer, seller, or intermediary. He establishes that in the

limit, when the economy grows large, competition leads to (approximately) efficient outcomes.

Furthermore, our work is related to an earlier series of papers on spatial competition over bipar-

tite networks, e.g., Kyparisis and Qiu (1990) and Qiu (1991). The setup studied in this line of work

features firms supplying to the entire set of markets albeit at a different (transportation) cost per

market. The main objective is to identify conditions under which an equilibrium exists and provide

efficient algorithms to compute equilibria. Finally, independently from our contribution, Abolhas-

sani, Bateni, Hajiaghayi, Mahini, and Sawant (2014) study a model of Cournot competition in

networks similar to ours but their goal is to derive algorithms that compute the pure strategy Nash

equilibria (as opposed to providing characterizations of equilibrium production quantities, profits,

and welfare, which is the main focus of our study).

Also relevant are the recent contributions by Perakis and Roels (2007), Kluberg and Perakis

(2012), Perakis and Sun (2014), and Federgruen and Hu (2015a) which study competition among

firms that offer multiple products under various assumptions on the extent of substitution between

the products. Their focus is on equilibrium existence and the extent of efficiency loss due to non-

cooperative decision making. Cho (2013) studies horizontal mergers in multitier supply chains in

which firms in tier i supply to all firms in tier i−1, i.e., the network between two tiers is complete,

and interestingly concludes that the effect of a merger depends on whether the tier in which the

merger occurs acts as a leader. Finally, Corbett and Karmarkar (2001), Adida and DeMiguel (2011),

and Federgruen and Hu (2015b) study competition in multi-tier supply chains mainly showing the

existence of equilibria and studying their efficiency properties. The papers cited above focus on

structures where firms have access to all consumers, i.e., the network is complete. Thus, their focus

is very different than ours which is establishing a connection between equilibrium outcomes and

the underlying structure of competition among the firms.

Allon and Federgruen (2009) explore competition in service industries where providers cater to

multiple customer segments, i.e., markets, using shared facilities. Although their model of compe-

tition is different than ours (they are looking at competition in prices and services level guarantees

among queuing facilities), theirs is essentially another instance of multi-market competition (albeit

one in which firms have access to all markets, i.e., the network is complete).

Our analysis of mergers extends the work of Farrel and Shapiro (1990) to the setting where firms

compete with one another in multiple markets. Specifically, they study mergers in a single market,

whereas our focus is on how the structure of competition affects the way profits and consumer

welfare change after the merger. Importantly, our analysis establishes that the entire network

structure plays a first-order role in determining whether a merger has a positive or negative effect



Authors: Cournot Competition in Networked Markets
6

on overall welfare and market concentration indices that have been widely used in antitrust analysis

cannot accurately capture the welfare effect of a merger.

Finally, our paper is also related to a recent stream of papers that study games among agents that

are embedded on a network structure. Ballester, Calvó-Armengol, and Zenou (2006) identify a close

relation between an agent’s equilibrium action in a game that features local positive externalities

and her position in the network structure as captured by her Katz-Bonacich centrality. Candogan,

Bimpikis, and Ozdaglar (2012) study the pricing problem of a monopolist that is selling a divisible

good to a population of agents and provide a characterization of the optimal pricing policies as a

function of the social network structure of agents.

2. Model

Consider an economy with n firms F = {f1, . . . , fn} producing a perfectly substitutable good and

competing in m markets M = {m1, . . . ,mm}. A bipartite graph G= (F ∪M,E), where E is a set

of edges from the set of firms (F ) to the set of markets (M), represents the subset of markets a

firm can supply to. Finally, Fi = {mk ∈M
∣∣(fi,mk)∈E} denotes the set of markets firm fi supplies

to and Mk = {fi ∈ F
∣∣(fi,mk)∈E} denotes the set of firms that supply to market mk. An example

of the economy described above is depicted in Figure 1.

A B C D

1 2 3 4 5 6

Markets, set M

Firms, set F

Figure 1 The structure of competition as a bipartite graph.

Firms compete in quantities, i.e., they decide how to allocate their aggregate production among

the markets they supply to. Let qik denote the quantity firm fi supplies to market mk and qi

denote the vector of production quantities of firm fi. Then, the price at market mk is given by

Pk
(∑

j∈Mk
qjk

)
. We assume that Pk(·) is a twice differentiable, strictly decreasing, and concave

function for every k. Finally, the cost of production for firm fi is given by Ci
(∑

j∈Fi
qij

)
, where Ci

is a twice differentiable, strictly increasing, and convex function for every i. Thus, firm fi’s profit

is given by the following expression:

πi(q) =
∑
mk∈Fi

qik · Pk
( ∑
j∈Mk

qjk

)
−Ci

(∑
j∈Fi

qij

)
.
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Quite importantly, firm fi’s profit function is not separable in the markets it participates in for

a general convex function Ci(·) and the marginal profit from increasing qik is decreasing in firm

fi’s aggregate production. This non-separability couples the markets a firm operates in, i.e., if

costs were linear the environment would be equivalent to a set of markets that could be studied in

isolation.4 Given graph G firm fi solves the following optimization problem:

maximize
qi

πi(qi, q−i)

subject to qik ≥ 0 for k ∈ Fi

qik = 0 for k /∈ Fi,

where q−i = {qjk for (fj,mk) ∈ E and j 6= i}, denotes the vector of production quantities of its

competitors. We denote the resulting game by CG
(
{Pk}1≤k≤m,{Ci}1≤i≤n,G

)
. In section 3 we show

that game CG has a unique equilibrium for general concave Pk’s and convex Ci’s. Then, we proceed

to provide a characterization of the production quantities at equilibrium as a function of the

underlying network structure. We state our characterization results for inverse linear demands and

quadratic production costs as this allows us to bring out the role of graph G in the clearest and

most transparent way, i.e., we consider

Pk = αk−βk ·
∑
j∈Mk

qjk and Ci = ci ·
(∑
k∈Fi

qik

)2

,

where αk, βk, ci > 0. Although many of our qualitative insights carry over to the general concave-

convex framework, it is worthwhile to note that both inverse linear demand functions and quadratic

costs are fairly common assumptions in the literature (e.g., Singh and Vives (1984), Vives (2011)

for general quantity competition models, and Yao, Adler, and Oren (2008), Bose, Cai, Low, and

Wierman (2014) for studies specific to electricity networks).

Finally, given graph G, we define its line graph (denoted by L(G)) as the graph that has a node

corresponding to every edge in G and an edge between two nodes in L(G) if their corresponding

edges in the original graph G share an endpoint (see Figure 2 for an illustrative example). The line

graph helps keeping track of how the production quantities on different links influence one another.

3. Equilibrium Analysis

Lemma 1 establishes that game CG defined above has a unique equilibrium.

Lemma 1. Game CG
(
{Pk}1≤k≤m,{Ci}1≤i≤n,G

)
has a unique Nash equilibrium when

{Pk(·)}1≤k≤m are twice differentiable, concave, and strictly decreasing, and {Ci(·)}1≤i≤n are twice

differentiable, convex, and increasing.

4 Note that although, in the interest of analytical tractability, we incorporate this feature through a convex cost
function (which is a standard assumption in many oligopoly models), our analysis provides qualitative insights for
settings in which this coupling arises due to the firm having limited resources that it shares among its markets and/or
fixed capital to finance its operations.
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1,A 2,A

4,A 6,A

2,D

6,D 5,D

3,B

5,B

4,C 6,C

Figure 2 The line graph associated with the economy depicted in Figure 1. Each node corresponds to

a firm-market pair in the original graph G. Red dashed edges connect nodes (firm-market pairs) that

share a market whereas blue solid edges connect nodes that share a firm. Finally, the weight of a blue

solid edge is equal to 2ci, where ci is the cost parameter of the corresponding firm and the weight of a

red dashed edge is equal to βk. For example, the weight of the edge connecting nodes (5,B) and (5,D)

is equal to 2c5 and the weight of the edge connecting nodes (2,A) and (6,A) is equal to βA.

We provide a proof of Lemma 1 that is based on Rosen (1965). Harker (1986) establishes a similar

result using a variational inequality characterization.

The remainder of the section provides a characterization of the production quantities at equi-

librium as a function of the structure of competition among the firms. To clearly bring out the

role of network G, we focus on linear inverse demands and quadratic production costs. We also

let CG(α,β,c,G) denote the corresponding game where α= [α1, · · · , αm]T , β= [β1, · · · , βm]T , and

c= [c1, · · · , cn]T . Finally, we let ᾱ denote a |E|×1 column vector such that for every link (i, k)∈E

we have ᾱik = αk.

First, we provide Lemma 2 which states that the unique equilibrium of CG(α,β,c,G) is given by

the solution to a linear complementarity problem. In particular, let LCP (w,Q) denote the problem

of finding vector z ≥ 0 such that Qz+w≥ 0 and zT (Qz+w) = 0. Then, we have

Lemma 2. The unique equilibrium q of CG(α,β,c,G) is given by the unique solution of

LCP (−α,D), where D is the following |E| × |E| matrix

Dik,j` =


2(βk + ci) if i= j, k= `

2ci if i= j, k 6= `

βk if i 6= j, k= `

0 otherwise.

. (1)

Let q∗E denote the column vector of equilibrium production quantities for each firm-market pair,

i.e., edges of graph G, where the edges are ordered lexicographically. Note that a subset of edges

may carry zero flow, i.e., q∗ik = 0 even though (fi,mk)∈E. The results that follow are stated for the

set of active edges, i.e., the subset of edges for which the corresponding production quantities are

strictly positive. Lemma 3 below states that we can ignore the inactive edges, which we denote by
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Z(q∗E) = {(fi,mk)
∣∣[q∗E]ik = 0}, without any loss of generality since they are strategically redundant

and play no role in determining the equilibrium.

Lemma 3. Consider game CG(a,β,c,G) and let q∗E denote the vector of production quantities at

equilibrium for this game. Also, let G′ = (F ∪M,E′) with E′ =E \Z(q∗E) and q′ be the equilibrium

of game CG(a,β,c,G′). Then, q∗E\Z(q∗) = q′.

For the remainder of the paper we focus on networks G for which the resulting equilibria only have

active edges. Finally, although not critical for the results, we state Theorem 1 for symmetric games

CG(α,β,c,G), i.e., games for which firms have the same production technology (ci = cj = c, for all

fi, fj ∈ F ), and markets have the same demand slope (βk = β` = β, for all mk,m` ∈M). This way

asymmetry between the firms arises only due to the structure of G. Before stating the result we

define |E| × |E| matrix W as

wi1k1,i2k2
=


2c if i1 = i2, k1 6= k2
β if i1 6= i2, k1 = k2
0 otherwise.

(2)

Note that matrix W is a weighted adjacency matrix associated with the line graph L(G) of graph

G. In particular, the rows and columns of W correspond to the links in graph G. If two links

are connected in G via a firm, then their weight in W is 2c whereas if they are connected via a

market, then their weight is β. For the links which do not share a node in G, the weight is 0. The

non-zero entries of W are equal to the change in the marginal profit from production corresponding

to a firm-market pair that results from an infinitesimal increase in the quantity corresponding to

another firm-market pair. For example, for links originating from the same firm (i1 = i2) this value

is equal to 2c (thus capturing the increase in the marginal cost of production for the firm) whereas

for edges ending up in the same market it is equal to β (thus capturing the marginal decrease in

the market’s price). We obtain the following characterization:

Theorem 1. The unique Nash equilibrium of the symmetric game CG(α,β,c,G) is given by

q∗ = [I + γW ]
−1
γᾱ, (3)

where γ = (2(c+β))−1. Furthermore, if λmax(γW )< 1, Expression (3) can be rewritten as

q∗ =

[
∞∑
k=0

(γW )2k−
∞∑
k=0

(γW )2k+1

]
γᾱ. (4)
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Theorem 1 implies that production quantity q∗ik, i.e., the quantity that firm fi supplies to market

mk at equilibrium, can be written as a weighted sum of the sizes of all the markets (vector α),

where the weights are given by matrix [I + γW ]
−1

. In particular, the weights depend on the location

of link (i, k) within the network through the paths that start from link (i, k) and end up in the

nodes representing the different markets.

Consider the production quantity that firm fi supplies to market mk, i.e., qik. The weight that

corresponds to market m` in the expression for qik is increasing (decreasing) with the weights of

even (odd) paths from link (i, k) to market m`.
5 This insight is most apparent in Equation (4), as

the even (odd) power terms correspond directly to paths of even (odd) length. In informal terms,

Equation (4) is driven by the intuition that “the enemy of my enemy is my friend.’’ 6

Bulow, Geanakoplos, and Klemperer (1985) find that the main driver in determining how changes

in one market affect a firm’s prospects in a second market is whether competitors view their actions

as strategic substitutes or complements. Theorem 1 provides a way to relate the degree of strategic

substitutability or complementarity between the actions of firms in two markets with the supply

paths that connect them, thus appropriately generalizing these notions to a networked environment.

Furthermore, the theorem implies that in order to determine whether a pair of actions are strategic

substitutes or complements, one may need to consider the entire competition structure (and not

just focus on the pair in isolation).

We can further exploit the simplicity of the equilibrium characterization in Equation (4) by using

the weighted adjacency matrix W of the line graph L(G). We show that the equilibrium production

quantities are closely related to the following measure of centrality of the nodes in graph L(G).

Definition 1. Given a weighted adjacency matrix W and a scalar ρ, the Katz-Bonacich cen-

trality of the nodes in the network is defined as the following vector

b(W,ρ) =
∞∑
t=0

(ρW )t1.

When all markets have the same size α1 = · · ·= αm = α, we obtain the following corollary.

Corollary 1. Suppose that λmax(γW ) < 1. Then, the unique Nash equilibrium of game

CG(α,β,c,G) when markets are symmetric is given by

q∗ = b(W,−γ)γα. (5)

5 For a formal proof of this fact, refer to Proposition 7 in the Appendix.

6 As a side remark, note that λmax(γW ) < 1 ensures that the infinite sum in Equation (4) converges. Lemma 5 in
the Appendix provides conditions under which λmax(γW )< 1. The conditions essentially require that the network is
sufficiently sparse.
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It is important to note that equilibrium production quantities in Corollary 1 are written in

terms of centrality vector b(W,−γ) that features a negative scalar. Thus, unlike traditional notions

of centrality for which nodes that are connected to central nodes are themselves central, this

intuition does not hold in our setting. In the context of trading/bargaining networks having many

direct connections (trading opportunities) contributes to centrality (bargaining power), however if

one’s connections themselves have many connections, centrality is reduced (as the agent’s potential

trading partners have many outside options). Similarly, in multi-market competition a firm’s direct

connections (and more generally paths of odd length) contribute negatively to the firm’s profits

while paths of length two (and more generally paths of even length) have a positive contribution.

Finally, we conclude this section with an alternative characterization of the equilibrium pro-

duction quantities that highlights their dependence on the “importance” of a firm-market pair, as

captured by the price-impact matrix Λ defined below. This characterization also illustrates that

even distant links (in a network sense) may have a considerable impact on the price that the

product is sold in a market. In particular, let Λ denote the following |E| ×m matrix

Λik,` =−β
∑
j∈M`

ψj`,ik
ψik,ik

∀(i, k)∈E and m` ∈M. (6)

As becomes apparent from Proposition 1 that follows in Section 4, entry (ik, `) of matrix Λ is equal

to the change in market m`’s price that results from a marginal increase in the production that

firm fi supplies to market mk. One can view the entries of Λ as a measure of the firms’ market

power, i.e., the larger their absolute values, the higher market power the corresponding firms have

in the underlying networked environment as changes in their actions have a large impact on market

prices (and consequently firms’ profits and consumer surplus).

Corollary 2. The equilibrium production quantities can be expressed as

q∗ =−V Λα
γ

β
,

where V =Diag(Ψ).

Interestingly, since V ≥ 0 and α≥ 0, Corollary 2 implies that q∗ ∝−Λ.

4. Changing the Structure of Competition

This section explores the effects on the firms’ profits and consumer welfare of changes in the struc-

ture of competition among the firms, i.e., changes in graph G. In particular, we study changes in

welfare when a firm enters a new market as well as when two firms merge and choose their produc-

tion quantities with the goal of maximizing their joint profit. Our main focus is on highlighting the

role of the underlying network structure and identifying how insights derived from the analysis of a
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single market differ due to significant network effects. For most of the section, we focus on the case

where firms supply to all the markets they operate in at equilibrium. This is a natural assumption

in this setting and allows us to express equilibrium quantities in closed form. Furthermore, it is

a ubiquitous assumption in the literature that studies games on networks as it allows focusing on

the interplay between the agents’ strategic interactions and the underlying network structure (e.g.,

Bulow, Geanakoplos, and Klemperer (1985) and Bramoulle, Kranton, and D’Amours (2014)).

Next, we describe how firms adjust their production quantities in response to an infinitesimal

shock dqik in qik, i.e., the production quantity that firm fi supplies to market mk. This shock may

be the result of a change in market mk, e.g., an increase in the market size or a tax break, or a

change in the cost structure of firm fi. Note that the requirement of the shock being sufficiently

small is necessary in order to ensure that the set of active edges, i.e., firm-market pairs for which

the equilibrium quantities are positive, remains unchanged in the equilibrium after the shock.

Proposition 1. Consider an exogenous shock dqik in the quantity firm fi supplies to market

mk. Then, in the new equilibrium firms adjust their production quantities according to the following

expression

dqj` =
ψik,j`
ψik,ik

dqik ∀(j, `)∈E, (7)

where recall that Ψ = [I + γW ]−1.

In particular, Proposition 1 implies that a change in the quantity firm fi supplies to market

mk has ripple effects to the entire network, i.e., it affects the supply decisions of the entire set of

competitors (even those that are not directly in competition with firm fi). Note that since Ψ is a

symmetric, positive semidefinite matrix with positive diagonal entries, according to Proposition 1

firms fi and fj view their actions in markets mk and m` respectively as strategic complements or

substitutes depending on the sign of ψik,j`. The latter is equal to the difference of the sums of the

weights of even and odd paths from link (i, k) to link (j, `). Thus, matrix Ψ allows us to determine

the level of strategic complementarity or substitutability between the actions corresponding to

two firm-market pairs and relate it to supply paths in the network structure of competition. This

result extends Bulow, Geanakoplos, and Klemperer (1985) by identifying the role of the structure

of competition on whether firms view their actions as strategic substitutes or complements.

The following example clearly demonstrates the second order network effects associated with a

change in a firm’s output.

Example 1. Consider the game defined over the graph in Figure 3(a) and assume that the

production quantity corresponding to edge (1,A) decreases by ε1 (e.g., due to small changes in firm

1’s cost of production). Then, firm f2 would respond by increasing its output in market A by ε2.

Next, consider the game defined over Figure 3(b) and assume again that the production quantity
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corresponding to edge (1,A) decreases by ε1. Then, clearly firm f2 would increase its supply to

market A. One would expect that the increase is smaller than ε2 in this case due to the fact that

firm f2 is also supplying to market B (and production costs are convex). However, this is not the

case: firm f2 ends up responding more aggressively to the same change in firm f1’s output. In

Figure 3(a), firm f2 can increase its supply to market A only by increasing its production and

hence its marginal cost whereas in Figure 3(b) firm f2 can divert supply from market B to market

A, without increasing its marginal cost.

It is worthwhile to note that this aspect of multi-market competition has been empirically demon-

strated in Jans and Rosenbaum (1997). As they show for the U.S. cement industry, a firm’s ability

to divert production from a market that it has “enough control over the price” to another market

allows the firm to respond more aggressively to its competitors.

A

1 2

(a)

A B

1 2

(b)

Figure 3 A change in firm f1’s production quantity leads to different responses from f2.

Thus, as Example 1 illustrates, the response from a firm’s competitors to changes in the quantity

it supplies to any of its markets may be amplified relative to the case of a single-isolated market

due to network effects.

4.1. Expanding into a New Market

This section explores the question of how equilibrium production quantities change when firm fi

enters market mk which in our setting is equivalent to adding edge (i, k) to graph G. Entry has

a direct effect on firm fi’s profit as the firm has to adjust the allocation of its production to the

markets it supplies to. In addition, there is a second order effect that relates to how changes in

firm fi’s production quantities across its markets affect the actions of its competitors and their

propagation through the network.

The following example illustrates how the competition structure among the firms may affect the

profits associated with entry and consequently determine whether entry is beneficial for the firm.

Example 2. Let firm f1 enter market B for the two network structures illustrated in Figure 4.

Then, in the first case (Figure 4(a)) it is profitable for firm f1 to enter market B, whereas in the

second (Figure 4(b)) it is not. This is due to the fact that when firm f1 enters market B, it shifts
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part of its production to B and thus decreases its supply to market A. Firm f2, on the other hand,

responds to a decrease in the level of competition in A by increasing its supply to this market

which results in a decrease in the profit for firm f1 in market A. The increase in f2’s output in A

depends on the level of strategic complementarity between edges (f1,B) and (f2,A). Utilizing the

results from Section 3, we obtain that firm f2 responds more aggressively, i.e., increases its supply

to market A by a higher amount, in the network of Figure 4(b) and as a consequence entry is less

profitable for f1 in this network (for the parameters of the example it is actually not profitable for

firm f1 to enter market B). It is important to note that the difference between the two networks

depicted in Figure 4 is not local for firm f1. It is actually straightforward to extend this example

in such a way that the difference between the two networks is arbitrarily far (in terms of network

distance) from firm f1, i.e., it involves firms and markets that seemingly should not affect firm

f1’s profits. Thus, one has to take into account the entire network topology in order to determine

the effect on the firm’s profits of expanding into a new market. Interestingly, if the economy takes

the form of a chain (e.g., Figure 4) then the profits associated with expanding on a new market

decrease with the length of the chain.

AB

1 2

(a)

AB C

1 2

(b)

Figure 4 In both games α= [0.5,1,1]T, β = 1, and c= 1. In (a) adding edge (1,B) leads to an increase in firm

f1’s aggregate profit, however in (b) the profit decreases.

The remainder of this subsection expands on the discussion above and provides a characterization

of the change in firm fi’s profits when it enters market mk, i.e., edge (i, k) is added to graph G.

We restrict attention to edges (i, k) that have positive marginal profit for firm fi. As one would

expect, this is without any loss of generality according to Lemma 4 below.

Lemma 4. If edge (i, k) has a negative marginal profit for q∗, i.e.,

Pk = αk−βk
(∑

j

q∗jk

)
< 2c, (8)

then the equilibrium does not change if firm fi enters market mk.

The lemma follows directly from the fact that the optimality conditions for the actions of all

agents remain unchanged if the new edge (i, k) is such that inequality (8) holds and thus the

equilibrium remains the same.
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Proposition 2 below provides a characterization of how a firm’s profits change as a result of the

firm entering a new market.

Proposition 2. Consider firm fi entering market mk and let q′ik denote the production quantity

that fi supplies to mk in the resulting post-entry equilibrium. Then,

(i) the aggregate production of firm fi in the post-entry equilibrium is higher than its production

in the pre-entry equilibrium.

(ii) the quantity firm fi supplies to each of its existing markets (other than market mk) is lower

in the post-entry equilibrium.

(iii) if the set of active links remains the same, then firm fi’s profits change as follows

∆πi = q′ik(Pk + Λ′ik,kq
′
ik)︸ ︷︷ ︸

∗

+ q′ik
∑
`∈Fi

(
ψ′i`,ik
ψ′ik,ik

P` + Λ′ik,`

(ψ′i`,ik
ψ′ik,ik

q′ik + qi`

))
︸ ︷︷ ︸

•

−∆Ci︸︷︷︸
‡

, (9)

where Ψ′ = [I + γW ′]
−1

, Λ′ik,` = −β
∑

j∈M`

ψ′j`,ik
ψ′
ik,ik

for every market m`, and W ′ denotes the

(|E|+ 1)× (|E|+ 1) weight matrix defined over graph G∪ (i, k).

Proposition 2 states that the effect of entry on firm fi’s profits can be decomposed in three terms.

First, term (∗) illustrates the direct effect of entry as q′ik(Pk + Λ′ik,kq
′
ik) is equal to the profit that

firm fi obtains in market mk (since the price at market k in the post-entry equilibrium is equal

to Pk + Λ′ik,kq
′
ik). Note that when firm fi enters market mk its competitors respond by decreasing

the production quantities they supply to mk. However, in total the price in market mk decreases

in the post-entry equilibrium and this is summarized by the fact that Λ′ik,k < 0. Larger values of

Λ′ik,k indicate that firm fi obtains a larger direct profit when entering market mk.
7

On the other hand, term (•) captures the change in firm fi’s profits from its operations in markets

other than mk. Note that according to part (ii), firm fi decreases its supply to each of its existing

markets, i.e., markets other than mk, and its profits from supplying to those markets are lower in

the post-entry equilibrium. Thus, term (•) is always negative and its exact value depends on how

aggressively firm fi’s competitors respond to the event of entry by increasing their production to

markets other than mk.

The extent to which competitors respond to the event of firm fi entering market mk is encapsu-

lated in the price-impact entry Λ′ik,` for m` ∈ Fi. A small value for Λ′ik,` implies that firms respond

aggressively in market m`. This may affect firm fi’s profit adversely, and thus make entry less

profitable than a setting where network effects were absent.8 For instance, entry for firm f1 to

7 Large values of Λ′ik,k indicate that firm-market pair fi −mk has a high level of strategic substitutability with the
rest of the links supplying to market mk.

8 Small values for Λik,`, ` 6= k imply high degree of strategic complementarity between the quantity firm fi supplies
to market mk and the quantities fi’s competitors supply to market m`.
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market B is profitable for the example depicted in Figure 4(a) whereas it is unprofitable for the

one in Figure 4(b). The difference between the two examples is edge (f2,C) which creates an addi-

tional path of even length between edges (f1,B) and (f2,A), thus increasing the level of strategic

complementarity between them (and leading to a more aggressive response from f2 in Figure 4(b)).

Finally, term (‡) is equal to the difference in production costs before and after entry and as we

show in the first part of Proposition 2 it is always positive, since the aggregate quantity that firm

fi supplies to the markets increases in the post-entry equilibrium.

The following example based on Figure 5 further illustrates the intuition behind Proposition 2. In

this example, the difference between the two networks is a single edge, i.e., the one connecting firm

f2 with market A. Edge (f2,A) increases the level of strategic complementarity between (f2,C) and

(f3,D), however it decreases the level of strategic complementarity between (f1,B) and (f3,D)9.

Market B is much larger than C (α2 >α3)and thus the latter effect dominates the former making

it profitable for firm f3 to enter market D only for the setting of Figure 5(b).

A B C D

1 2 3

(a)

A B C D

1 2 3

(b)

Figure 5 For both examples, α= [1,4,1,1.8]T , β = [1,2,1,1]T , and c= [1,1,1]T . Entering market D is not prof-

itable for firm f3 for the setting in Figure 5(a), whereas it is profitable for the one in Figure 5(b).

Having established that entering a new market may not be profitable for a firm due to an

aggressive response from its competitors in the rest of the firm’s markets, a natural question that

arises is with regards to how entry may affect consumer surplus and aggregate welfare. First, let

us formally define aggregate consumer surplus in this environment.

Definition 2. The aggregate consumer surplus for game CG(α, β, c,G) is defined as the sum of

the consumer surplus in all the markets

CS ,
m∑
k=1

(αk−Pk)2

2β
.

9 Edge (f2,A) creates a path of odd length between edges (f3,D) and (f1,B): (f3,D)→ (f3,C)→ (f2,C)→ (f2,A)→
(A,f1)→ (f1,B).
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In a single Cournot market adding a new competitor is always beneficial for consumers. However,

as the example in Figure 6(c) illustrates this is no longer true in a multi-market competition setting

as increasing the level of competition (by having firm 2 compete in market A) leads to a decrease in

the aggregate consumer surplus. The reason behind this can be roughly explained as follows: a new

edge (i, k) may “spread” the competition along the network structure, i.e., firms shift (part of) their

production away from an area of the network where consumers benefit from intense competition

to an area where competition is less intense.

Proposition 3 below provides a characterization of how consumer surplus changes in the event

of firm fi entering market mk. The result follows by noting that if we add edge (i, k) to G, and the

set of active links remains the same then the price in market ` in the resulting equilibrium is given

by

P ′` =P` + Λ′ik,`q
′
ik.

So the price in any market m` with positive Λ′ik,` increases, whereas the price in the rest of the

markets decrease.

Proposition 3. Consider firm fi entering market mk and let q′ik denote the production quantity

that fi supplies to mk in the resulting equilibrium. If the set of active links remains the same, then

the aggregate consumer surplus changes as follows

∆CS =−q
′
ik

2β

m∑
`=1

Λ′ik,`
(
2(α`−P`)−Λ′ik,`q

′
ik

)
. (10)

Proposition 3 implies that if link (i, k) has a positive price-impact in markets where the difference

between market size and price, i.e. α`−P`, is large then increasing firm fi’s production quantity

in market mk might lead to a decrease in the aggregate consumer surplus.

A natural question that arises at this point is with regards to the competition structure that

maximizes social welfare defined as the sum of the firms’ profits and the aggregate consumer

surplus. The preceding discussion illustrates that standard intuition from single Cournot markets

no longer applies and increasing the extent to which firms compete with one another may actually

lead to a decrease in aggregate consumer surplus and welfare.

However, we are able to show that in a symmetric economy, i.e., when all markets have the same

size, the network that maximizes social welfare is complete. This is no longer true though when

markets have different sizes as then a social planner may find a sparser structure optimal.

Proposition 4 states that in a symmetric economy the complete network maximizes aggregate

social welfare.

Proposition 4. In a symmetric economy, i.e., when firms and markets are symmetric, the

complete network maximizes social welfare.



Authors: Cournot Competition in Networked Markets
18

A B

1 2

36
209

649
209

655
209

SW = 41.029

(a)

A B

1 2

5
11

50
110

SW = 33.38

(b)

A B

1 2

2
17

2
17

53
17

53
17

SW = 41.027

(c)

Figure 6 In this example, there are two firms and two markets where αA = 1 and αB = 10. Also β = 1 for both

markets and c= 0.1 for both firms.

Finally, the example in Figure 6 illustrates that when the economy is asymmetric, then the

complete network may not maximize social welfare as the social planner finds it optimal to direct

competition to the markets with large size.

4.2. Horizontal Mergers

This subsection studies horizontal mergers between firms in the networked environment described

in Section 2. First, we study the effects of the merger on third parties and then analyze how the

firms participating in the merger, the “insiders”,10 coordinate their production levels and supply

decisions. Our analysis illustrates that the impact of a merger is shaped by the network structure

of the competition among the firms and that the intuition we have from the analysis of markets in

isolation does not hold true.

As the effect on the insiders’ profits should presumably be positive (otherwise the firms would

have no incentive to initiate the merger), the analysis is mostly concerned with the profits of

outsiders and the welfare of consumers in the equilibrium that is established after the merger.

Farrel and Shapiro (1990) study the same question in a single Cournot market and provide general

conditions under which mergers that are profitable for insider firms also lead to an increase in

aggregate welfare. However, their results do not generalize in a networked environment.

In particular, much of the antitrust analysis in real-world markets is centered around changes

in the level of market concentration that can be attributed to the merger. A reasonable way to

extend the analysis to a networked environment is to consider each of the markets in which both

firms participate and conclude that a merger should be allowed when the predicted change in

concentration in any of those markets is not too high. However, such an approach would essentially

treat each market in isolation and potentially overlook (significant) second order network effects.

Example 3 below illustrates this pitfall.

10 We borrow this terminology from Farrel and Shapiro (1990).
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Example 3. In the three market environment depicted in Figure 7, considering market A in

isolation (which is the only market that both insider firms supply to) would likely lead to a favorable

response regarding a potential merger between firms f3 and f4, since the market is sufficiently

competitive. However, this reasoning is somewhat misleading. Firms f5 and f6 would react to

less (more) aggressive competition in markets A (C) respectively and potentially create a captive

market in B. This second order network effect illustrates that considering each market in isolation

may be incomplete and motivates our discussion on mergers in a networked environment.

A B C

1 2 3 4 5 6 7 8 9

Figure 7 Let c= 1, β = 1, αA = 1, αB = 0.3, and αC = 1. Firms f5 and f6 supply the same quantity to market B

before the merger due to symmetry. If firms f3 and f4 merge then (i) their joint production decreases in market A;

(ii) f4 increases its production in C; (iii) f6 shifts a fraction of its production from C to B; (iv) f5 finds that market

A is more profitable than B. Thus, although consumer welfare in markets A and C does not decrease substantially,

competition in market B is significantly lower in the post-merger equilibrium and thus the overall effect of the

merger on welfare may be negative.

As should be evident from the example above, measuring the overall effect of a merger on

total welfare is not a straightforward task when firms compete across several markets. One would

potentially need to study how changes in firms’ actions propagate across the network. The goal

in the remainder of this section is to provide some insights towards this direction. First, following

Farrel and Shapiro (1990), we impose no assumptions on how a merger affects the insider firms,

i.e., their production costs, as this is typically hard to observe or predict. Instead, Proposition 5

provides an expression for the change in the production quantities of outsider firms in response

to a given change in the output of insiders. Let I denote the set of insider firms and assume that

their merger results in a change of their total output in market mk given by ∆qI,k. Moreover, let

O and GO =G \ I denote the rest of the firms (the outsiders), and their subnetwork respectively.

Also let WO be equal to WE(GO),E(GO), i.e., the sub-matrix of W corresponding to the rows and

columns of the outsiders links.

Proposition 5. Assume that insider firms, i.e., firms in set I, change the total output they

supply to market m` by ∆qI,`. Then, the production quantity that outsider firm fi supplies to market
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mk changes as follows in the post-merger equilibrium as long as the set of active edges remains the

same

∆qik =− β

2(c+β)

∑
m`

∣∣m`∈Fn for n∈I

∑
j∈O and j∈M`

ψOik,j`∆qI,`,

where ΨO = [I + γWO]−1.

Proposition 5 provides a relation between the post-merger production quantities of the insider

firms, i.e., the firms that participate in the merger, and those of the outsider firms. This relation

can be helpful for assessing the overall effect of a merger on welfare as it provides a closed form

expression for the changes in both prices and market concentration11. Concretely, the regulator can

use this relation to provide a set of constraints on the post-merger equilibrium supply of insider

firms that any merger has to satisfy. For instance, such constraints were imposed in the merger

between US-airways and American Airlines in 2013.12 In particular, the Department of Justice, as

a condition for allowing the merger, required that the two airlines gave up landing and takeoff slots

and gates at “seven key constrained airports.”, thus effectively limiting their post-merger presence

in those airports. The slots were to go to low cost airlines, “resulting in more choices and more

competitive airfares for consumers.”. We strongly believe that Proposition 5 can be useful in such

a setting as it allows one to quantify the effects of a merger taking also the network interactions

into account.

Finally, for the remainder of this section we consider the benchmark setting in which mergers do

not result in cost synergies between the two insider firms fi and fj, i.e., their production functions

do not change after the merger. Rather they benefit from jointly deciding how much to supply to

the markets they participate to maximize their aggregate profit, denoted by πij(·), i.e.,

πij(q̂) = πi(q̂) +πj(q̂),

where q̂ denotes the vector of post-merger equilibrium production quantities. This formulation

makes the analysis equivalent to the case of a multi-unit firm, owning more than one production

plants. Firms of this nature are common and they are the natural results of mergers in several

industries, including cement and concrete (Hortaçsu and Syverson (2007)).

Moreover, we focus on the (more challenging) case when firms fi and fj can only supply to

the markets they originally could supply to, i.e., firm fi can only produce for its original markets

irrespective of the markets firm fj supplies to. This formulation of a merger as a “change in

11 In particular, following Farrel and Shapiro (1990), this proposition enables us to study the external effect of a
merger on consumers and outsider firms.

12 For more information, see http://www.justice.gov/opa/pr/2013/November/13-at-1202.html.
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ownership” of the participating firms is a better fit for regional industries with high transportation

costs, e.g., gas, electricity, and cement. Note that the complementary case that firms can supply

to each other’s markets is simpler to analyze and we comment on how results differ in the two

settings as we describe our results.

Note that the post-merger payoff structure is different from our original framework. In particular,

the firm that results from the merger between fi and fj chooses its production quantities in order to

maximize πij(·). Thus, Proposition 1 does not apply directly to guarantee equilibrium uniqueness.

In fact, there are examples where the number of equilibria may be infinite. However, we can show

that an equilibrium always exists and it is generically unique. Moreover, when there are multiple

equilibria, they are all equivalent in the sense that they result in the same prices for all the markets

as well as the same profits for all the firms.

Definition 3. Post-merger equilibria q and q′ are called equivalent if and only if for every

market mk the following holds

qik + qjk = q′ik + q′jk,

where i, j are the insider firms.

Note that given the aggregate supply of insider firms in a market the response of outsider firms is

unique. Therefore, Definition 3 implies that if two post-merger equilibria q and q′ are equivalent,

then for any outsider firm ft and every market mk we have qtk = q′tk. The following theorem extends

our equilibrium existence and uniqueness results from Section 3 to the setting where firms fi, fj

merge their operations, i.e., they choose their production quantities so as to maximize their joint

profit.

Theorem 2. Suppose that firms fi and fj merge and their joint profit is given by

πij(q̂) = πi(q̂) +πj(q̂).

Then the following hold,

(i) A post-merger equilibrium always exists.

(ii) If fi and fj do not share a market, then the post-merger equilibrium is unique and coincides

with the pre-merger equilibrium.

(iii) If λmin(W ) 6=−(2c+β) the post-merger equilibrium is unique.

(iv) If multiple equilibria exist, they are all equivalent.

Given that the post-merger equilibrium exists and it is essentially unique, our goal in the remain-

der of this section is to provide a characterization of its properties. In particular, we show that it is

equivalent to the equilibrium of a game that has the form described in Section 2 and it is directly
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related to the original pre-merger game. Specifically, as we formally state in Proposition 6 it turns

out that the post-merger equilibrium can be computed as the equilibrium of one of two distinct

games (see also Figure 8 for illustrations of both types of post-merger equilibria).

Proposition 6. Any post merger equilibrium is equivalent to the equilibrium of one of the fol-

lowing two games:

(i) Firms fi and fj can be thought of a single firm fij (single node in the competition graph)

that is connected to the union of the markets that fi and fj were originally connected to. The cost

function of fij is given by the following expression

Cij(x) = 2C
(x

2

)
.

(ii) Firm fi and fj operate so as to maximize their own profit (as in the pre-merger environment)

and the competition graph is given as

G= {F ∪M,E−{(fi,mk)
∣∣(fi,mk)∧ (fj,mk)∈E}},

i.e., the competition graph is the same as the original G without the links from fi to the markets

it shares with fj.

A B C

1 2 3 4

(a) Pre-merger

A B C

1 2 3,4

(b) Post-merger

A B C D

1 2 3 4

(c) Pre-merger

A B C D

1 2 3 4

(d) Post-merger

Figure 8 For this example α= β = c= 1. The equilibria of the mergers corresponding to Figures 8(a), 8(c) are

the same as the equilibria of the games in Figures 8(b), 8(d).

Proposition 6 highlights that firms after a merger will necessarily behave in one of two distinct

ways. In particular, part (i) of the Proposition describes a post-merger equilibrium outcome where

the insider firms share the production equally and can be thought of as a single firm that has

access to the union of the markets the original firms had access to. This case arises when the

market access for the insider firms is similar in the pre-merger economy and they benefit from

splitting their aggregate production to minimize their joint cost. Part (ii) instead states that when

the firms have disparate market access, the post-merger equilibrium is equivalent to the outcome

of the competition where the insider firms act independently but only one of them has access

to the markets they share in the original network. The optimality of segregating their original
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markets is due to the difference in their supply connections. When one of the firms supplies to

many markets whereas the other only to a few, it is optimal to have only the latter supply to the

markets which they both participate in. The example in Figure 8 demonstrates the two cases; 8(a)

where the insider firms have the same number of connections and 8(c) where one supplies to more

markets than the other. This is a nice characterization result that allows us to compute the supply

quantities, profits, and welfare associated with the post-merger equilibrium in a straightforward

way given our characterization results from Section 3.

5. Conclusion

This paper studies a model of competition in a networked environment. A bipartite graph deter-

mines the set of potential supply relationships. We provide a characterization of the unique equilib-

rium that highlights the relation between production quantities and supply paths in the underlying

network structure. Using this characterization we derive several comparative statics results regard-

ing the effect on quantities, prices, and welfare of changes in the network structure that may be the

result of a firm expanding into a new market or a merger between two firms. Our results illustrate

that qualitative insights from the analysis of a single market do not generalize when firms compete

with one another in multiple markets. The modeling framework we propose nicely complements

the extensive empirical work that establishes the relevance of multi-market competition in firms’

decision making and it may have significant implications in assessing whether expanding in a new

market is profitable for a firm, identifying opportunities for collaboration, e.g., a merger, strategic

alliance, or acquisition,13 between competing firms, and guiding regulatory action in the context

of market design and antitrust analysis.

13 For a recent contribution on the study of revenue sharing in airline alliances refer to Hu et al. (2013). Incorporating
an explicit competition structure and looking at alliances other than the grand coalition is a fruitful direction for
future research.
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Appendix : Proofs

Proof of Lemma 1

First, note that each agent’s action space is convex, bounded, and closed. Second, we show that when the

strategies of other firms are fixed to q−i, then πi is concave in qi. This follows by showing that the Hessian

matrix below is negative semi-definite. Define the |Fi| × |Fi| Hessian matrix Hi as follows:

Hi =


∂2πi

∂qi,1,∂qi,1

∂2πi

∂qi,1∂qi,2
. . . ∂2πi

∂qi,1∂qi,m

...
...

∂2πi

∂qi,m,∂qi,1

∂2πi

∂qi,m,∂qi,2
. . . ∂2πi

∂qi,m,∂qi,m

 .
Also define the |Fi| × (m+ 1) matrix V as follows:

Vik,` =



√
−
(

2P ′k
(∑

j∈Mk
qjk

)
+ qikP ′′

(∑
j∈Mk

qjk

))
if `= k√

C′′
(∑

j∈Fi
qij

)
if `=m+ 1

0 otherwise.

Then, we obtain that

Hi =−V V T ,

and one can conclude that Hi is negative semi-definite. Thus, this is a concave game and has an equilibrium

according to Rosen (1965). To prove uniqueness, it is sufficient to show that the |E| × |E| matrix [G(x, r) +

GT (x, r)] defined below is negative definite for every x in the action space and some fixed and positive r. Let

r= 1 for the remainder of the proof. Then, for every vector of actions q we have

G(q,1) =


∂2π1

∂q1,1∂q1,1

∂2π1

∂q1,1∂q1,2
. . . ∂2π1

∂q1,1∂qn,m

...
...

∂2πn

∂qn,m∂q1,1,

∂2πn

∂qn,m∂q1,2
. . . ∂2πn

∂qn,m∂qn,m

 .
Each row of G(q,1) corresponds to an edge in the original competition graph. The entries corresponding to

edge (i, k) are equal to the cross derivatives of πi with respect to qik and qj` for all (j, `)∈E, i.e.,

∂2πi
∂qik∂qj`

=


2P ′k

(∑
j∈Mk

qjk

)
−C′′i

(∑
j∈Fi

qij

)
+ qikP

′′

k

(∑
j∈Mk

qjk

)
if i= j and k= `

−C′′i
(∑

j∈Fi
qij

)
if i= j and k 6= `

P ′k
(∑

j∈Mk
qjk

)
+ qikP

′′

k

(∑
j∈Mk

qjk

)
if i 6= j and k= `

0 otherwise.

Let ηk ≡−P
′

k

(∑
j∈Mk

qjk

)
and 2θi ≡C

′′

i

(∑
j∈Fi

qij

)
and define |E| × |E| matrices Ω and Φ as follows

Ωik,j` =


2(ηk + θi) if i= j, k= `

2θi if i= j, k 6= l

ηk if i 6= j, k= `

0 otherwise.

and Φik,j` =

{
(qik + qjk)P

′′

k

(∑
j∈Mk

qjk

)
if k= `

0 otherwise.
.

Then, G(q,1) +GT (q,1) = −2Ω + Φ. So to complete the proof, it is sufficient to show that Ω is positive

definite and Φ is negative semi-definite. We show the positive definiteness of Ω by providing a full rank
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matrix R such that Ω =RTR. In particular, let R be a (|E|+m+n)×|E| matrix that can be written in the

form of a block matrix as follows

R=

[
A
B

]
,

where A is an |E| × |E| diagonal matrix with

Aik,j` =

{√
ηk if i= j, k= `

0 otherwise,

and B is an (m+n)× |E| matrix with

Bt,(i,k) =


√

2θi if t≤ n, t= i
√
ηk if t > n, t= n+ k

0 otherwise.

Matrix R is full rank since A is a diagonal matrix with non-zero entries on its diagonal. It is also straight-

forward to check that Ω = RTR. This implies that Ω is positive-definite. Furthermore, matrix Φ can be

decomposed as follows

Φ = Φ1 + Φ2 + · · ·+ Φm,

where Φk is a matrix that corresponds to market mk. For every two edges (i, k) and (j, k) we have

Φk
ik,jk = qikP

′′

k

( ∑
j∈Mk

qjk

)
+ qjkP

′′

k

( ∑
j∈Mk

qjk

)
,

and so

Φk =P ′′k
( ∑
j∈Mk

qjk

)(
qk1

T
k + 1kq

T
k

)
,

where qk is a |E| × 1 vector, with qkj` = qj` if ` = k and 0 otherwise. Moreover, 1k is a |E| × 1 vector,

with1kj` = 1 if `= k and 0 otherwise. Thus, given that P(·) is concave, matrix Φk is negative semi-definite

for every k and this completes the proof. Q.E.D.

Proof of Lemma 2

First, note that the marginal profit associated with a firm-market pair has to be non-positive at equilibrium,

i.e.,

∂πi
∂qik
|q∗

ik
= αk−βkq∗ik−βk

∑
j∈Mk

q∗jk− 2ci
∑
l∈Fi

q∗i` ≤ 0. (11)

This set of equations can be rewritten in matrix form as

− ᾱ+Dq∗ ≥ 0, (12)

where recall that D is a |E| × |E| matrix defined in Equation (1).

Second, every firm-market pair for which the corresponding production quantity is strictly positive at

equilibrium has to satisfy Equation (11) with equality, i.e., if q∗ik > 0 then ∂πi

∂qik
|q∗

ik
= 0. So given that we

assume that all edges in E are active at equilibrium, we obtain the following

q∗(−ᾱ+Dq∗) = 0. (13)
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Finally, the supply at a firm-market pair has to be non-negative at equilibrium

q∗ ≥ 0. (14)

Conditions (12), (13), and (14) constitute a linear complementarity problem LCP (−ᾱ,D). According to the

results in Samelson, Thrall, and Wesler (1958), problem LCP (−ᾱ,D) has a unique solution if and only if

all the principal minors of D are positive. Positive definite matrices satisfy this condition and thus what

remains to be shown is that D is positive definite for every graph G, which follows by arguments similar to

the ones we used for the proof of the positive definiteness of matrix Ω in Theorem 1. Thus, the equilibrium

of game CG(α,β,c,G) can be characterized as the unique solution for LCP (−ᾱ,D). Q.E.D.

Proof of Lemma 3

Note that as we showed in Lemma 2 the equilibrium of game CG(α,β,c,G) is the unique solution of a linear

complementarity problem. Furthermore, note that production quantities that take value zero do not have

any effect in the linear complementarity problem, i.e., the solution of the LCP remains the same even when

they are omitted. Thus, the production quantities that take strictly positive values in the solution of the

linear complementarity problem corresponding to CG(α,β,c,G) take the same values in the solution of the

linear complementarity problem corresponding to CG(α,β,c,G′). Q.E.D.

Proof of Theorem 1

For every active edge (i, k) it should be the case that ∂πi(α,β,c,G)

∂q∗
ik

= 0, which implies that

q∗ik =
αk− 2c

∑
`∈Fi, 6̀=k

q∗i`−β
∑

j∈Mk
q∗jk

2(β+ c)
=

αk
2(β+ c)

−
∑

(j,`)∈E(G∗)

(γW )ik,j`q
∗
j`. (15)

This further implies that

q∗ = γᾱ− γWq∗⇒ q∗ = [I + γW ]−1γᾱ. (16)

To show the second part of the theorem, first note that Expression (16) can be rewritten as

q∗ = [I− (−γW )]−1γᾱ.

Matrix [I− (−γW )]−1 can be rewritten as the power series of matrix (−γW ) if and only if the spectral radius

of (−γW ) is less than 1, i.e., if and only if

−1<λmin(γW )≤ λmax(γW )< 1.

The final step in the proof involves showing that for every game λmin(γW ) > −1. To this end, define the

(n+m)× |E| edge incident matrix B for graph G as follows

Bv,(it,kt) =


√

2c
2(c+β)

if v≤ n, it = v,√
β

2(c+β)
if v > n, kt = v−n,

0 otherwise.

Then, it is straightforward to see that

γW =BTB− 2c+β

2(c+β)
I.
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Note that BTB is a positive semidefinite matrix and thus all of its eigenvalues are non-negative. Furthermore,

2c+β
2(c+β)

< 1 thus we conclude that

λmin(γW )≥− 2c+β

2(c+β)
>−1.

This concludes the proof since to be able to rewrite [I − (−γW )]−1 as in Expression (1) it suffices that

λmax(γW )< 1. Q.E.D.

Finally, to complete the picture we state and prove Lemma 5 below that provides a sufficient condition for

λmax(γW )< 1. The condition essentially implies that graph G is sufficiently sparse. We chose to state the

corollary for when the Cournot game is symmetric, but it readily extends to asymmetric games.

Lemma 5. Consider a symmetric CG game. Then, λmax(γW )< 1 if one of the following two conditions

holds

(i) The marginal cost of production is sufficiently low, i.e., 2c < β. Furthermore, each market can have at

most 2 suppliers and each firm supply to at most 3 markets.

(ii) The marginal cost of production is sufficiently high, i.e., 2c≥ β. Furthermore, each firm can supply

to at most 2 markets and each market can have at most 2 suppliers.

Proof: We provide a proof for the case where 2c < β (the proof for the other case is identical). Consider the

line graph L(G). Without loose of generality we can assume that G is connected and as a result L(G) is also

connected. Thus W is an irreducible matrix with non-negative entries, and by Perron-Frobenius theorem,

we have

λmax(γW )≤ max
(i,k)∈E

γ
∑

(j,`)∈E

wik,j`.

Now consider the case where 2c < β. In this case if each market have at most 2 supplies and each firm has at

most 3 suppliers, one can see that for any link (i, k) we have γ
∑

(j,`)∈E wik,j` ≤ 2 2c
2(c+β)

+ β

2(c+β)
< 1. Q.E.D.

Lemma 5 shows that sparsity is a sufficient condition to have λmax(γW )< 1. In the following lemma we show

that sparsity is also a necessary condition.

Lemma 6. Consider a symmetric CG game. Then, λmax(γW )< 1 only if one of the following two condi-

tions holds

(i) If the marginal cost of production is sufficiently high, i.e., 2c≥ β then each firm can supply to at most

10 markets and the total number of links connecting firms to markets is smaller than 4n.

(ii) If the marginal cost of production is sufficiently low, i.e., 2c < β then, each market can have at most

5 suppliers and the total number of links connecting firms to markets is smaller than 3m.

Proof: We provide a proof for the case when 2c≥ β (the proof for the case when β > 2c is identical). Consider

the line graph L(G) and remove the edges that have weight β (recall that edges in L(G) have weight equal

to 2c or β). Let W ′ denote the adjacency matrix of the resulting matrix. Every edge in the remaining line

graph has weight 2c so we have

W ′ = 2c×H,
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where H is a binary adjacency matrix. Note that λmax(γW ′)≤ λmax(γW )≤ 1, since removing edges always

decreases the maximum eigenvalue of a matrix. Furthermore,

λmax(γW ′) =
2c

2(c+β)
λmax(H)≥ 1

3
λmax(H).

Therefore, λmax(γW ) < 1 implies that λmax(H) ≤ 3 . Finally, note that for every unweighted graph corre-

sponding to adjacency matrix H we have

max
{√

degmax(H), deg(H)
}
≤ λmax(H),

where degmax(H), deg(H) are the maximum and average degrees of the graph corresponding to H respec-

tively. Thus, we obtain that degmax(H) ≤ 9. Finally, this implies that each firm can supply to at most 10

markets (since it can have at most 9 direct neighbors in the line graph L(G)). Similarly, deg(H)≤ 3 implies

that on average each firm can supply to at most 4 markets. This concludes the proof of the lemma.

Finally, Proposition 7 below confirms a basic feature of the equilibrium described in Theorem 1: equilibrium

production corresponding to a firm-market pair increases (decreases) with the weights of even (odd) paths

from the edge corresponding to the pair to any of the markets.

Proposition 7. Consider the unique Nash equilibrium q∗ of game CG(a,β,c,G). Then, the quantity firm

fi supplies to market mk at equilibrium, i.e., q∗ik is increasing (decreasing) with the weights of even (odd)

paths from edge (i, k) to a market m`.

We provide a proof for this proposition after the proof of Proposition 1 as we need a lemma that is stated

as part of the proof of Proposition 1.

Proof of Corollary 2

According to Theorem 1, we have q∗ = [I + γW ]
−1
γᾱ. So, for any link (i, k) we have:

q∗ik = γ
∑

(j,`)∈E

ψik,j`α` = γ
∑
`∈M

α`
∑
j∈M`

ψik,j`

=−γ
β
ψik,ik

∑
`∈M

α`
∑
j∈M`

−β ψik,j`
ψik,ik

=−γ
β
ψik,ik

∑
`∈M

α`Λik,`. (17)

The claim follows by writing Equation (17) in a matrix form. Q.E.D.

Proof of Proposition 1

Consider an exogenous change dqik in the production quantity corresponding to link (i, k) and denote by

dqj` the change in the production quantity corresponding to link (j, `) in the new equilibrium. The first order

optimality conditions imply the following equation for any link (j, `) 6= (i, k)

qj` + dqj` =
α`

2(β+ c)
−

∑
(j1,`1)∈E

(γW )j`,j1`1(qj1`1 + dqj1`1). (18)

By subtracting Equation (15) from Equation (18), we get the following equation:

dqj` =−
∑

(j1,`1)∈E\(i,k)

(γW )j`,j1`1dqj1`1 − (γW )j`,ikdqik. (19)
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Let W̃ =WE\(i,k),E\(i,k) and let ζ denote a vector such that for every link (j, `) 6= (i, k), we have ζj` = γwj`,ik.

Then, we can rewrite Equation (19) in a matrix form as follows:

dq=−[I + γW̃ ]−1ζdqik. (20)

Finally, let Ψ̃′ = [I + γW̃ ]−1. In order to make the calculations easier we define matrix Ψ̃ which constructed

by attaching one additional row and column corresponding to link (i, k), to the matrix Ψ̃′. The entries of

the new row and column are all zero except the entry on diagonal which is equal to 1. The following lemma

relates matrices Ψ and Ψ̃.

Lemma 7. Let W̃ =WE\(i,k),E\(i,k). Then, we have

Ψ = Ψ̃ +
Γ

1−C
, (21)

where

Γj1`1,j2,`2 =



 ∑
(j,`)∈E

ζj`ψ̃j`,j1`1

 ∑
(j,`)∈E

ζj`ψ̃j`,j2`2

 if (j1, `1) 6= (i, k) and (j2, `2) 6= (i, k),

−
∑

(j,`)∈E

ζj`ψ̃j`,j2`2 if (j1, `1) = (i, k) and (j2, `2) 6= (i, k),

−
∑

(j,`)∈E

ζj`ψ̃j`,j1`1 if (j1, `1) 6= (i, k) and (j2, `2) = (i, k),

C if (j1, `1) = (i, k) and (j2, `2) = (i, k),

(22)

and C =
∑

(j1,`1)∈E

∑
(j2`2)∈E ζj2`2 ψ̃j2`2,j1`1ζj1`1 .

Proof: Note that we have:

Ψ = [I + γW ]−1

= [I + γW̃ + eikζ
T + ζeTik]

−1

=

(
Ψ̃− Ψ̃ζeTikΨ̃

1 + eTikΨ̃ζ

)
−

(
Ψ̃− Ψ̃ζeTikΨ̃

1+eT
ik

Ψ̃ζ

)
eikζ

T
(

Ψ̃− Ψ̃ζeTikΨ̃

1+eT
ik

Ψ̃ζ

)
1 + ζT

(
Ψ̃− Ψ̃ζet

ik
Ψ̃

1+eT
ik

Ψ̃ζ

)
eik

=
(

Ψ̃− Ψ̃ζeTikΨ̃
)
−

(
Ψ̃− Ψ̃ζeTikΨ̃

)
eikζ

T
(

Ψ̃− Ψ̃ζeTikΨ̃
)

1−C

= Ψ̃ +
Γ

1−C

where the second equality follows from applying the Sherman-Morrisson formula twice.

Equation (21) implies that ψik,ik = 1 + C
1−C = 1

1−C . Also, again according to Equation (21), we obtain

ψik,j` =ψj`,ik =
Γik,j`
1−C

= Γik,j`ψik,ik. (23)

Finally using Equations (20) and (23) we obtain

dqj` =−
∑

(j1,`1)∈E

ψ̃j`,j1`1ζj1`1dqik =
ψj`,ik
ψik,ik

dqik,

which concludes the proof of the Proposition. Q.E.D.
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Proof of Proposition 7

Note that according to Theorem 1, at equilibrium q∗ik = γ
∑

`∈M α`
∑

j∈M`
ψik,j`. So in order to prove the

Proposition, it is enough to show the following claim:

Claim. In any network and for every two arbitrary links (i, k) and (j, `), ψik,j` is increasing (decreasing)

with the weights of even (odd) paths from edge (i, k) to edge (j, `).

Proof: We prove this claim by induction on the number of edges in the network. Obviously the claim holds

for the trivial network with only one link. Now assume that the claim holds for any network with |E|−1 links,

and we will prove it for a network with |E| links. Remove an arbitrary link (i, k), and let W̃ =WE\(i,k),E\(i,k),

then according to Lemma 7 we have

Ψ = Ψ̃ +
Γ

1−C
,

where Γ is a matrix defined in equation (22). According to the induction hypothesis entries of Ψ̃ satisfy the

claim. Also note that according to the proof of Lemma 7, ψik,ik = 1
1−C , and since Ψ is a positive definite

matrix, and thus all the diagonal entries are positive, we should have 1
1−C > 0. So it is enough to have the

entries of Γ satisfy the claim as well i.e. for every two arbitrary links (i, k) and (j, `), Γik,j` is increasing

(decreasing) with the weights of even (odd) paths from edge (i, k) to edge (j, `), which is obviously hold by

the definition of Γ.

Proof of Lemma 4

Let q and q′ denote the pre- and post-entry equilibrium respectively. Also recall that according to Lemma 2,

the equilibrium of any Cournot game is the unique solution to LCP (−ᾱ,D). Then if αk−βk
(∑

j∈Mk
q∗jk

)
<

2c, having q′j` = qj`,∀(j, `) 6= (i, k) and q′ik = 0 is the solution for LCP and thus is an equilibrium. Q.E.D.

Proof of Proposition 2

We prove each part of the proposition separately. For each firm fi we let si and s′i denote the total production

of firm fi in the pre- and post-entry equilibrium respectively. Also for each market mk we let dk and d′k

denote the total quantity supplied to market mk in the pre- and post-entry equilibrium.

Part (i) The following builds on the proof of Lemma 3.2 in Qiu (1991). Define sets M1, F1,M2 and F2 as

follows:
M1 , {m` : d′` ≤ d`} , M2 , {m` : d′` >d`} ,

F1 ,
{
fj : s′j ≤ sj

}
, F2 ,

{
fj : s′j > sj

}
.

In order to simplify the exposition below, we define for every i, k ∈ {1,2} the following quantities:

Qik ,
∑
j∈Fi

∑
`∈Mk

qj`, Q′ik ,
∑
j∈Fi

∑
`∈Mk

q′j`.

For the sake of contradiction assume that fi ∈ F1. Note that since for every fj ∈ F1 and m` ∈M1 we have

q′j` ≥ qj` 14 we obtain

Q′1,1 ≥Q1,1. (24)

14 Note that according to the first order optimality conditions we have

α`−β`d`− 2cjsj −βqj` = 0,

α`−β`d′`− 2cjs
′
j −βq′j` = 0,

and since s′j ≤ sj and d′` ≤ d`, we have q′j` ≥ qj`.
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Similarly, since for every fj ∈ F2 and m` ∈M2 we have q′j` ≤ qj`, we have

Q′2,2 ≤Q2,2. (25)

Also since the total quantity supplied to each of the markets in M1 did not increase we have:

Q′1,1 +Q′2,1 ≤Q1,1 +Q2,1, which implies that Q′2,1 ≤Q2,1. (26)

Similarly, since in the post-entry equilibrium the total supply of each firm in F2 has increased, we obtain

Q2,1 +Q2,2 <Q
′
2,1 +Q′2,2 which implies that Q′2,1 >Q2,1,

and it contradicts inequality (26). This in turn implies that we should have F2 = ∅. Furthermore, in the post-

entry equilibrium the total quantity supplied to each of the markets in M2 has increased in the post-entry

equilibrium, and thus Q1,2 +Q2,2 <Q
′
1,2 +Q′2,2, which in turn implies that Q′1,2 >Q1,2. Combining the last

inequality with inequality (25) contradicts the fact that the total output of F1 does not increase in the post

entry equilibrium. So we must have fi ∈ F2. Similarly we can prove that mi ∈M2.

Part (ii) Let us first prove the following lemma, which is central in the analysis for this part.

Lemma 8. Let q, q′ denote the pre- and post-entry equilibrium. Then, there cannot be a cycle on the edges

of G in which for every two consecutive edges (fi,mk) and (fj ,m`), i.e., edges for which either fi = fj or

mk =m`, we have q′ik > qik and q′j` < qj`.

Proof: Assume that firm fj increases the quantity it supplies to market m`1 whereas it decreases the quantity

it supplies to market m`2 , i.e., q′j`1 > qj`1 and q′j`2 < qj`2 . The first order optimality conditions for the firm’s

optimization problem imply the following equations:

P`1 − 2cjsj = βqj`1 , P`2 − 2cjsj = βqj`2

P ′`1 − 2cjs
′
j = βq′j`1 , P

′
`2
− 2cjs

′
j = βq′j`2

.

The equations above further imply {
P`1 −P`2 = β(qj`1 − qj`2)

P ′`1 −P
′
`2

= β(q′j`1 − q
′
j`2

)
.

However, by the assumption that q′j`1 > qj`1 and q′j`2 < qj`2 , we obtain P ′`1 −P
′
`2
> P`1 −P`2 . Now, for the

sake of contradiction assume that such cycle (i1, `1), (i2, `1), . . . , (it, `t), (i1, `t) exists. Then,

P ′`1 −P
′
`t
>P`1 −P`t

P ′`2 −P
′
`1
>P`2 −P`1

P ′`3 −P
′
`2
>P`3 −P`2

...

P ′`t −P
′
`t−1

>P`t −P`t−1

,

which in turn leads to a contradiction.

Before going on to complete the proof of Part (ii) we define sets M̄1, F̄1, M̄2, F̄2 as follows

M̄1 , {mk : d′k ≤ dk} , M̄2 , {m` 6=mk : d′` >d`} ,

F̄1 , {fi : s′i ≤ si} , F̄2 ,
{
fj 6= fi : s′j > sj

}
.
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mk m`1 m`2 m`3

fi fj1 fj2

M̄1

F̄2 F̄1

M̄2

Figure 9 In this figure firm fi enters market mk. In this figure flows of the links in the shadowed cycle fi→

m`1 → fj1 →m`2 → fj2 →m`3 → fi are decreasing/increasing alternatively.

For the sake of contradiction assume that firm fi increases its output to market m`1 6= mk. Note that we

must have m`1 ∈ M̄1, so since the total quantity supplied to markets in M̄1 does not increase, there must

exist another link (j1, `1) such that the flow in (j1, `1) decreases, i.e., q′j1`1 < qj1`1 . Similarly, we must have

fj1 ∈ F̄2, and since the total quantity produced by the firms in F̄2 increases there must exist another link

(j1, `2) for which m`2 ∈ M̄1 and q′j1`2 > qj1`2 .

Using the same argument as before (since the total quantity supplied to each of the markets in M̄1 has

increased in the post-entry equilibrium), there must exist a firm fr such that the quantity it supplies to

market m`2 decreases in the post-entry equilibrium. Since the environment has a finite number of firms

and markets the argument above implies that there cannot exist a cycle where the change in the flow of

consecutive links between the pre- and post-entry equilibrium has alternating signs (Figure 9 provides a

graphical illustration of the proof).

Part (iii) Note that by directly applying Proposition 1 we obtain the quantities in the new equilibrium

as follows:

q′j` = qj` +
ψ′j`,ik
ψ′ik,ik

q′ik ∀(j, `)∈G. (27)

So if for each firm fj and market m` we denote by C′j and P ′` the production cost of firm fj and the price at

market m` in the post-entry equilibrium respectively, then the profit for firm fi in the post-entry equilibrium

is given by

πi(q
′) = q′ikP ′k +

∑
`∈Fi

q′i`P ′`−C′i

= q′ikP ′k +
∑
`∈Fi

(qi` +
ψ′il,ik
ψ′ik,ik

q′ik)(P` + Λ′ik,`q
′
ik)−C′i

= πi + q′ik
(
Pk + Λ′ik,kq

′
ik

)
+ q′ik

∑
`∈Fi

(
ψ′i`,ik
ψ′ik,ik

P` + Λ′ik,`

(
ψ′i`,ik
ψ′ik,ik

q′ik + qi`

))
−∆Ci,

which completes the proof. Q.E.D.
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Proof of Proposition 3

The price in market m` in the post-entry equilibrium is equal to

P ′` =P` + Λ′ik,`q
′
ik.

So the aggregate consumer surplus CS′ in the post-entry equilibrium will be given by

CS′ =

m∑
`=1

(α`−P ′`)2

2β

=

m∑
`=1

(α`−P`−Λ′ik,`q
′
ik)

2

2β

=CS− q′ik
2β

m∑
`=1

Λ′ik,`
(
2(α`−P`)−Λ′ik,`q

′
ik

)
.

Thus, we conclude that ∆CS =− q′ik
2β

∑m

`=1 Λ′ik,`
(
2(α`−P`)−Λ′ik,`q

′
ik

)
. Q.E.D.

Proof of Proposition 4

In order to simplify the exposition, we let q(G) =
∑

(i,k)∈G qik(G) for any network G. In other words, q(G)

denotes the total quantity supplied by the firms in network G. The expression for the aggregate welfare

corresponding to a network G is as follows

Social Welfare =
∑
i

πi +CS

=
∑
i

(∑
k∈Fi

qik(G)
(
αk−β

∑
j∈Mk

qjk(G)
)
− c
(∑
k∈Fi

qik(G)
)2
)

+
∑
k

(αk−Pk)2

2β

=
∑
k

∑
i∈Mk

qik(G)αk−
β

2

∑
k

( ∑
i∈Mk

qik(G)
)2

− c
∑
i

(∑
k∈Fi

qik(G)
)2

.

Among all networks G and vector of quantities that satisfy the following condition:

α−β
∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)−βqik(G)≥ 0 ∀(i, k)∈G, (28)

we consider a network and quantities that maximize the social welfare:

SW (G) = αq(G)− β

2

∑
k

( ∑
j∈Mk

qjk(G)
)2

− c
∑
i

(∑
`∈Fi

qi`(G)
)2

.

Note that in the equilibrium for network G, the condition (28) has to be satisfied with equality. So quantity

SW (G) is an upper bound for the maximum social welfare at equilibrium. The proof of the proposition

consists of two parts:

Part (i) In the first part of the proof, we show that for any given graph G different than the complete

network, the total supply q(G) is less than the total supply that corresponds to the equilibrium in the

complete network. First, we show that for any (i, k) /∈G we have:

α−β
∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)≥ 0. (29)

For the sake of contradiction assume that there exists (i, k) /∈ G such that inequality (29) does not hold.

Then, we show that we can change the vector of quantities so that aggregate welfare increases. Note that
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mk′ mk

fi fi′

−ε +ε −ε

Figure 10

for every fi′ ∈Mk, we have
∑

`∈Fi′
qi′`(G) <

∑
`∈Fi

qi`(G) 15. So there exists a market mk′ ∈ Fi such that

qi′k′(G)< qik′(G), potentially such that (i′, k′) /∈G. Assume that we decrease qik′(G) and qi′k(G) by ε and

increase qi′k′(G) by ε (see Figure 10). For ε sufficiently small, condition (28) still holds and aggregate welfare

changes as follows

∆SW (G) = β
∑
j∈Mk

qjk(G)ε− β

2
ε2 + 2c

∑
`∈Fi

qi`(G)ε− cε2−αε

= ε

(
β
∑
j∈Mk

qjk(G) + 2c
∑
`∈Fi

qi`(G)−α

)
− ε2

(
β

2
+ c

)
.

We have assumed that

α−β
∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)< 0,

and thus we conclude that for small enough ε, we have ∆SW (G)> 0. This contradicts our choice of G as

the networks that maximizes social welfare.

Finally in order to show that q(G) is less than or equal to the total supply in the equilibrium at the

complete network, suppose that we distribute quantity q(G) equally among all markets, all firms, and all

firm-market pairs in the complete network. We only need to show that:

α−β q(G)

m
− 2c

q(G)

n
−β q(G)

mn
≥ 0.

To see why the above inequality holds, note that we have:

mn

(
α−β q(G)

m
− 2c

q(G)

n
−β q(G)

mn

)
=mnα−nβq(G)−m2cq(G)−βq(G)

=mnα−n
∑
k

β
∑
j∈Mk

qjk(G)−m
∑
i

2c
∑
`∈Fi

qi`(G)−β
∑

(i,k)∈G

qik(G).

Now by using inequality (28) the above expression is lower bounded by∑
fi∈F,mk∈M

(
α−β

∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)
)
−
∑

(i,k)∈G

(
α−β

∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)
)

=
∑

(i,k)/∈G

(
α−β

∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)
)
≥ 0,

where the last inequality follows from inequality (29).

15 Note that link (i′, k)∈G and thus according to condition (28) we have

α−β
∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi′

qi′`(G)−βqi′k(G)≥ 0.

Also since for sake of contradiction we have assumed that α− β
∑
j∈Mk

qjk(G)− 2c
∑
`∈Fi

qi`(G)< 0, we must have∑
`∈Fi′

qi′`(G) <
∑
`∈Fi

qi`(G). Otherwise, increasing qik(G) would have increased social welfare, contradicting our
choice of G.
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Part (ii) Next we show that the equilibrium corresponding to the complete network leads to higher

aggregate welfare. Let H be the complete network, and assume that the total supply at the equilibrium of

H is equal to q(H) = q(G) +x. Recall that according to part (i), we have x≥ 0. According to the first order

optimality condition we have:

α−β q(G) +x

m
− 2c

q(G) +x

n
−β q(G) +x

mn
= 0. (30)

Now let us write the social welfare that corresponds to the equilibrium of the complete network

SW (H) = α
(
q(G) +x

)
− β

2

∑
k∈M

(
q(G) +x

m

)2

− c
∑
i∈F

(
q(G) +x

n

)2

= αq(G)− β

2

∑
k

(
q(G)

m

)2

− c
∑
i

(
q(G)

n

)2

+αx− β

2

∑
k

2q(G)x+x2

m2
− c
∑
i

2q(G)x+x2

n2
. (31)

Note that we have

αq(G)− β

2

∑
k

(
q(G)

m

)2

− c
∑
i

(
q(G)

n

)2

≥ SW (G), (32)

so by combining equation (31) and inequality (32), it is enough to show that

αx− β

2

∑
k

2q(G)x+x2

m2
− c
∑
i

2q(G)x+x2

n2
> 0. (33)

We can rewrite expression (33) as

αx− β

2

∑
k

2q(G)x+x2

m2
− c
∑
i

2q(G)x+x2

n2
= αx− β

2

2q(G)x+x2

m
− c2q(G)x+x2

n

= x

(
α−β

q(G) + x
2

m
− 2c

q(G) + x
2

n

)
> 0,

and conclude that the inequality holds because of equation (30). Q.E.D.

Proof of Proposition 5

The first order optimality conditions for any outsider firm fj in the post-merger equilibrium imply that

qik + ∆qik =
α`

2(β+ c)
−
∑

(j,`)∈E

(γW )ik,j`(qj` + ∆qj`). (34)

Subtracting Equation (15), i.e., the equation that corresponds to the first order optimality conditions for

firm fj in the original equilibrium, from Equation (34) we obtain

∆qik =−
∑

(j,`)∈E

(γW )ik,j`∆qj` =−
∑

(j,`)∈E,j∈O

(γW )ik,j`∆qj`− γβ∆qI,k. (35)

Let us define vector η as follows:

ηj` = ∆qI,` ∀(j, `)∈E where j ∈O,

then we can rewrite Equation (35) as follows

∆qO =−γWO∆qO −βγη.

Thus we conclude that the changes in the production output for the outsider firms are given by

∆qO =−[I + γWO]−1βγη.

Finally by recalling that γ = 1
2(c+β)

, we get

∆qik =− β

2(c+β)

∑
m`

∣∣m`∈Fn for n∈I

∑
j∈O and j∈M`

ψOik,j`∆qI,`.

Q.E.D.
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Proof of Theorem 2

First, we prove the following lemma, which states that any equilibrium in the post-merger game is a solution

to an appropriately defined linear complementarity problem.

Lemma 9. Strategy profile q is an equilibrium for the game that results when firms fi and fj merge if and

only if q is a solution of the linear complementarity problemLCP (−α,D′), where D′ is a |E| × |E| matrix

defined as follows

D′i1k,j1` =



2(β+ c) if i1 = j1, k= `

2c if i1 = j1, k 6= `

β if i1 6= j1, k= ` and {i1, j1} 6= {i, j} or k /∈ Fi ∩Fj
2β if i1 6= j1, k= ` and {i1, j1}= {i, j} and k ∈ Fi ∩Fj
0 otherwise.

Proof: We follow the same approach as in the proof of Lemma 2. The first order optimality conditions

imply that any equilibrium strategy profile has to be a solution of the linear complementarity problem

LCP (−ᾱ,D′). Next, we show that the other direction holds as well, i.e., we show that any solution that

satisfies the first order optimality conditions is an equilibrium. To this end, first consider firm fi1 6= fi, fj .

Define the |Fi1 | × |Fi1 | Hessian matrix H i1 for fi1 ’s optimization problem as follows

H i1
i1k,i1`

=

{
−2(β+ c) if k= `

−2c if k 6= `
.

It is straightforward to see that H i1 is a negative definite matrix and thus outsider firm fi1 has no profitable

deviation. Similarly, for the firm that results from the merger of fi and fj , let H ij denote the Hessian matrix

associated with its optimization problem, i.e.,

H ij
i1k,j1l

=


−2(β+ c) if i1 = j1, k= `

−2β if i1 6= j1, k= `

−2c if i1 = j1, k 6= `

0 otherwise.

.

Hessian H ij is negative semi-definite (and furthermore higher order conditions involve 0 matrices), thus we

conclude that the insider firms have no incentive to deviate from their strategy and the joint strategy profile

that corresponds to the solution of the linear complementarity problem is an equilibrium.

Given Lemma 9 we can proceed with the proofs of parts (i)-(iv) of the Theorem. First, for part (ii) note

that when the two insider firms fi and fj do not share any markets, then D′ =D (matrix D was defined in

Equation (1)) and therefore the linear complementarity problem corresponding to the post-merger game is

exactly the same as the one corresponding to the game before the merger. This implies that the equilibrium

is unique and it is the same as the equilibrium for the pre-merger game.

Then, we turn our attention to parts (i) and (iii). Lemma 9 implies that if D′ is positive semi-definite, then

LCP (−ᾱ,D′) has a solution (albeit not necessarily unique). On the other hand, if D′ is positive definite

then LCP (−ᾱ,D′) has a unique solution. Note that D′ and D are related as follows

D′ =D+X,
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where X is the following |E| × |E| matrix

Xi1k,j1` =

{
β if {i1, j1}= {i, j} and k= `∈ Fi ∩Fj
0 otherwise.

According to Weyl’s theorem and noting that λmin(X) =−β, we obtain

λmin(D′)≥ λmin(D) +λmin(X) = λmin(D)−β.

So if we show that λmin(D) is at least equal to β then matrix D′ is positive semi-definite and thus an

equilibrium always exists. Furthermore, in the case that λmin(D) > β, D′ is positive definite and thus the

equilibrium is unique. Note that

D=
1

γ
BTB+βI,

where matrix B is defined in Equation (5). So since matrix 1
γ
BTB is symmetric positive semi-definite, one

can conclude that λmin(D)≥ β, and equilibrium always exists. Finally, note that

1

γ
BTB =W + (2c+β)I,

and thus again by Weyl’s theorem we obtain

λmin(
1

γ
BTB)≥ λmin(W ) + (2c+β).

So if λmin(W ) 6=−(2c+β) then λmin( 1
γ
BTB)> 0, matrix D′ is positive definite, and thus the equilibrium is

unique. This concludes the proof of parts (i) and (iii) of the Theorem, since the condition λmin(W ) 6=−(2c+β)

holds generically.

Next we show the last part of the Theorem. We say that the post-merger equilibrium q is balanced if the

aggregate production of firm fi is equal to the aggregate production of firm fj . Also, we call a post-merger

equilibrium connected if both firms fi and fj supply a strictly positive production quantity to at least one

of the markets they share. The proof follows from the following three lemmas.

Lemma 10. All balanced equilibria are equivalent.

Proof: Consider a balanced equilibrium q and let

G′ = {F ∪M,E ∪{(fi,mk)
∣∣mk ∈ Fj}∪ {(fj ,mk)

∣∣mk ∈ Fi}},

denote the network that results from G when we add the links from both firms fi and fj to all the markets

that at least one of them participates in the original networked economy represented by graph G. Then, we

claim that vector q′ with

q′j` =

{
0 if (j, `) is a link in G′ but not in G,

qj` otherwise,

is an equilibrium for the game defined over G′. Consider first a market mv ∈ Fi ∩Fj , i.e., a market that the

two insider firms share in the original network G. Note that

∂πij
∂qiv

= αv − 2βqiv − 2βqjv −β
∑

u∈Mv,u6=i,j

quv − 2c
∑
`∈Fi

qi` ≤ 0,

∂πij
∂qjv

= αv − 2βqjv − 2βqiv −β
∑

u∈Mv,u6=i,j

quv − 2c
∑
`∈Fj

qj` ≤ 0,
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and since the equilibrium is balanced, we have
∂πij

∂qiv
=

∂πij

∂qjv
. Next consider a market mv such that mv ∈ Fj

but mv /∈ Fi. Since q is an equilibrium for the game defined over G we have

∂πij
∂qjv

= αv − 2βqjv −β
∑

u∈Mv,u 6=i,j

quv − 2c
∑
`∈Fj

qj` ≤ 0.

Finally, consider the first order condition corresponding to link (i, v) in network G′

∂πij
∂qiv

= αv − 2βqiv − 2βqjv −β
∑

u∈Mv,u6=i,j

quv − 2c
∑
`∈Fi

qi`,

Since q is a balanced equilibrium, we have

∂πij
∂qiv
|q′ =

∂πij
∂qjv
|q′ ≤ 0,

so there is no incentive for firm fi to produce in market mv. Similarly, we obtain that firm fj has no incentive

to produce in market m` which is such that m` ∈ Fi but m` /∈ Fj . Putting all this together, we conclude that

vector q′ is an equilibrium of the game defined over G′.

The second case we need to consider is when the two insider firms participate in all of one another’s

markets in the original pre-merger economy. Then, we can rewrite the first order conditions that correspond

to their optimization problem after the merger as the first order conditions of a single firm that has cost

parameter equal to c
2
. The cost of production is convex, and thus it is straightforward to see that at any

equilibrium the aggregate output of firm fi must be equal to the aggregate output of firm fj . For any market

v ∈ Fi ∪Fj , define qxv = qiv + qjv, and replace firms fi and fj with a single firm fx connected to Fx , Fi ∪Fj
with cost parameter c

2
. Now consider the first order optimality conditions for firm fx

∂πx
∂qxv

= αv −βqxv −β
∑
u∈Mv

quv − c
∑
`∈Fx

qx`,

and note that at any equilibrium q′, we have

∂πx
∂qxv

|q′ =
∂πij
∂qiv
|q′ =

∂πij
∂qj
|q′ ≤ 0.

This implies that any equilibrium q′ for the post-merger game in a network that insider firms share all

their markets is equivalent to the unique equilibrium for the case when we replace them by a single firm

fx and can be derived by decomposing qxv into qiv and qjv. Consequently, all post-merger equilibria for the

case when insider firms share all their markets are equivalent. Finally, since we can convert any equilibrium

q of the original network to an equilibrium q′ in a network where insider firms share all their markets, we

conclude that all equilibria q in the original network are equivalent.

Lemma 11. Every connected equilibrium is balanced.

Proof: Assume that firms fi and fj both supply strictly positive production quantity to markets ki ∈ Fi∩Fj
and kj ∈ Fi∩Fj respectively. Then due to the strict convexity of their productions costs, the aggregate supply

of firms fi and fj should be equal in the post-merger equilibrium. Otherwise, if for example
∑

mk∈Fi
qik <∑

mk∈Fj
qjk, the two firms can reduce their production costs without decreasing their aggregate supply in

any of the markets by decreasing qjkj by (sufficiently small) ε while increasing qikj by the same amount. So,

in any connected equilibrium, the aggregate supply of both insider firms should be the same.
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Lemma 12. If there exists a connected equilibrium, then all equilibria are balanced.

Proof: Let q1 be a connected equilibrium and q2 be any other equilibrium. Since the solution space of a linear

complementarity problem is convex, q3 = γq2 + (1− γ)q1 is also a solution to the linear complementarity

problem for every γ ∈ (0,1). Now, note that since q1 is connected, equilibrium q3 should also be connected.

Thus, according to Lemmas 10 and 11, we conclude that q1 and q3 are equivalent and balanced and as a

result equilibrium strategy profiles q1 and q2 are also equivalent and balanced.

To conclude the proof it is sufficient to show that even when there is no connected equilibrium in the

post-merger game, then still all equilibria are equivalent. To this end, assume that there is no connected

post-merger equilibrium. This implies that there cannot exist two equilibria q1 and q2 such that in q1 firm

fi supplies a positive production quantity to a shared market whereas in q2 firm fj supplies a positive

production quantity to a shared market. If this was the case, a convex combination of q1 and q2 (which

would also be an equilibrium strategy profile) would be connected. Therefore, it has to be the case that one

of the firms, say fi, does not supply to any of markets it shares with firm fj . Equivalently, we can consider

the network that results from removing all links from firm fi to the markets it shares with firm fj , since

the equilibria in the post-merger game remain the same. However, according to part (ii) of the Theorem, in

this case the post-merger equilibrium is unique and it is same as the equilibrium in the pre-merger game.

Q.E.D.

Proof of Proposition 6

The proof follows directly from the proof of Theorem 2. In particular, according to Lemma 12, if there exists

a connected equilibrium then all equilibria are balanced and equivalent. Therefore, since in all balanced

equilibria, the two firms produce the same quantity on aggregate, it is equivalent to view them as a single

firm which is connected to the Fi∪Fj — union of the markets that fi and fj originally participate in — and

its cost function is equal to Cij(x) = 2C(x/2).

On the other hand, if there exists no connected equilibrium, then by definition one of the firms, say fi does

not supply at equilibrium to any of the markets that the insider firms share. Thus, we can remove the links

from firm fi to the markets that the insider firms share without affecting the equilibrium strategy profile.

Part (ii) of Theorem 2 implies that the post-merger equilibrium in this case coincides with the pre-merger

equilibrium for a graph G in which the two insider firms do not share any markets. Q.E.D.
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