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We propose and analyze a multi-server model that captures a
performance trade-off between centralized and distributed processing.
In our model, a fraction p of an available resource is deployed in a
centralized manner (e.g., to serve a most-loaded station) while the
remaining fraction 1 − p is allocated to local servers that can only
serve requests addressed specifically to their respective stations.

Using a fluid model approach, we demonstrate a surprising phase
transition in the steady-state delay scaling, as p changes: in the limit
of a large number of stations, and when any amount of centralization
is available (p > 0), the average queue length in steady state scales as
log 1

1−p

1
1−λ when the traffic intensity λ goes to 1. This is exponentially

smaller than the usual M/M/1-queue delay scaling of 1
1−λ , obtained

when all resources are fully allocated to local stations (p = 0). This in-
dicates a strong qualitative impact of even a small degree of resource
pooling.

We prove convergence to a fluid limit, and characterize both the
transient and steady-state behavior of the actual system, in the limit
as the number of stations N goes to infinity. We show that the se-
quence of queue-length processes converges to a unique fluid trajec-
tory (over any finite time interval, as N → ∞), and that this fluid
trajectory converges to a unique invariant state vI , for which a sim-
ple closed-form expression is obtained. We also show that the steady-
state distribution of the N -server system concentrates on vI as N
goes to infinity.
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1. Introduction. The tension between distributed and centralized pro-
cessing seems to have existed ever since the inception of computer networks.
Distributed processing allows for simple implementation and robustness,
while a centralized scheme guarantees optimal pooling of processing re-
sources, at the cost of implementation complexity and communication over-
head. A natural question is how performance varies with the degree of cen-
tralization, or resource pooling. Such understanding is of great interest in
the context of, for example, infrastructure planning (static) or task schedul-
ing (dynamic) in large server farms or cloud computing clusters, and can
provide insights on the trade-off between performance (e.g., delay) and cost
(e.g., communication infrastructure, energy consumption, etc.).

It is well known that resource pooling can drastically improve perfor-
mance, as exemplified by the comparison of M/M/1 and M/M/n queueing
systems with the same total arrival and service rates. The main message
of this paper is that even a small degree of resource pooling can deliver
significant benefits. We capture this effect by formulating and analyzing a
multi-server model with a limited level of centralization. We begin by de-
scribing informally two motivating applications.

1.1. Primary Motivation: Server Farm with Local and Central Servers.
Consider a server farm consisting of N stations, depicted in Figure 1. Each
station is fed with an independent stream of tasks, arriving at a rate of λ
tasks per second, with 0 < λ < 1,1 and is equipped with a local server with
identical performance; these servers are local in the sense that each one
can only serve its own station. All stations are also connected to a single
centralized server that always serves a task (if one exists) at a station with
the longest queue.

We consider an N -station system. The system designer is granted a total
amount N of divisible computing resources (e.g., a collection of processors).
In a loose sense (to be formally defined in Section 2.1), this means that the
system is capable of processing N tasks per second when fully loaded. The
system designer allocates computing resources to local and central servers.
Specifically, for some p ∈ (0,1), each of the N local servers is able to process
tasks at a maximum rate of 1 − p tasks per second, while the centralized
server, equipped with the remaining computing power, is capable of pro-
cessing tasks at a maximum rate of pN tasks per second. The parameter
p captures the amount of centralization in the system. Note that since the

1Without loss of generality, we normalize so that the largest possible arrival rate is 1.
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total arrival rate is λN , with 0 < λ < 1, the system is underloaded for any
value p ∈ (0,1).

When the arrival processes and task processing times are random, there
will be times when some stations are empty while others are loaded. Since
a local server cannot help another station process tasks, the total computa-
tional resources will be better utilized if a larger fraction is allocated to the
central server. However, a greater degree of centralization (corresponding to
a larger value of p) entails more frequent communications and data trans-
fers between the local stations and the central server, resulting in higher
infrastructure and energy costs.

How should the system designer choose the coefficient p? Alternatively, we
can ask an even more fundamental question: is there a significant difference
between having a small amount of centralization (a small but positive value
of p), and complete decentralization (no central server and p = 0)?

1.2. Secondary Motivation: Partially Centralized Scheduling. Consider a
system with N stations, depicted in Figure 2. The arrival assumptions are
the same as in Section 1.1. However, there is no local server associated with
a station; all stations are served by a single central server. Whenever the
central server becomes free, it chooses a task to serve as follows. With prob-
ability p, it processes a task from a most loaded station, with an arbitrary
tie-breaking rule. Otherwise, it processes a task from a station selected uni-
formly at random; if the randomly chosen station has an empty queue, the
current round is in some sense wasted (to be formalized in Section 2.1).

This second interpretation is intended to model a scenario where resource
allocation decisions are made at a centralized location on a dynamic basis,
but communications between the decision maker (central server) and local
stations are costly or simply unavailable from time to time. While it is intu-
itively obvious that longest-queue-first (LQF) scheduling is more desirable,
up-to-date state information (i.e., queue lengths at all stations) may not
always be available to the central server. Thus, the central server may be
forced to allocate its service blindly. In this setting, a system designer is
interested in a judicious choice of the frequency (p) at which global state
information is collected, so as to balance performance and communication
costs.

As we will see in the sequel, the system dynamics in the two applica-
tions are captured by the same mathematical structure under appropriate
stochastic assumptions on task arrivals and processing times, and hence will
be addressed jointly in this paper.
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Fig 1. Server farm with local and central servers.

Fig 2. Centralized scheduling with communication constraints.

1.3. Overview of Main Contributions. We provide here an overview of
the main contributions. Exact statements of the results will be provided in
Section 3 after the necessary terminology has been introduced.

Our goal is to study the performance implications of varying degrees of
centralization (or resource pooling), as expressed by the coefficient p. To
accomplish this, we use a so-called fluid approximation, whereby the queue
length dynamics at the local stations are approximated, as N → ∞, by
a deterministic fluid model, governed by a system of ordinary differential
equations (ODEs).

Fluid approximations typically involve results of two flavors: qualitative
results derived from the fluid model that give insights into the performance of
the original finite stochastic system, and technical convergence results (often
mathematically involved) that justify the use of such approximations. We
summarize our contributions along these two dimensions:
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1. On the qualitative end, we derive an exact expression for the in-
variant state of the fluid model, for any given traffic intensity λ and
centralization coefficient p, thus characterizing the steady-state distri-
bution of the queue lengths in the system as N → ∞. This enables a
system designer to use any performance metric and analyze its sensitiv-
ity with respect to p. In particular, we show a surprising exponential
phase transition in the scaling of average system delay as the load
approaches capacity (λ→ 1) (Corollary 3 in Section 3.2): when an ar-
bitrarily small amount of centralized computation is applied (p > 0),
the average queue length in the system scales as2

E(Q) ∼ log 1
1−p

1

1 − λ
, (1)

as the traffic intensity λ approaches 1. This is drastically smaller than
the 1

1−λ scaling obtained if there is no centralization (p = 0).3 This
suggests that for large systems, even a small degree of resource pooling
provides significant improvements in the system’s delay performance,
in the heavy traffic regime.

2. On the technical end, we show that:

(a) Given any finite initial queue sizes, and with high probability, the
evolution of the queue length process can be approximated (over
any finite time interval, and as N → ∞) by the unique solution
to a fluid model.

(b) All solutions to the fluid model converge to an invariant state, as
t →∞, which is the same for all finite initial conditions (unique-
ness and global stability).

(c) The steady-state distribution of the finite system converges to
the invariant state of the fluid model as N →∞.

The most notable technical challenge comes from the fact that the
longest-queue-first policy used by the centralized server causes discon-
tinuities in the drift in the fluid model (see Section 3.1 for details).
In particular, the classical approximation results for Markov processes
(see, e.g., [2]), which rely on a Lipschitz-continuous drift in the fluid
model, are hard to apply. Thus, in order to establish the finite-horizon
approximation result (a), we employ a sample-path based approach: we

2The ∼ notation used in this paper is to be understood as asymptotic closeness in the
following sense: [f (x) ∼ g (x) , as x→ 1]⇔ limx→1

f(x)
g(x) = 1.

3When p = 0, the system degenerates into N independent queues. The 1
1−λ scaling

comes from the mean queue length expression for M/M/1 queues.
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prove tightness of sample paths of the queue length process and char-
acterize their limit points. Establishing the convergence of steady-state
distributions in (c) also becomes non-trivial due to the presence of dis-
continuous drifts. To derive this result, we first establish the uniqueness
of solutions to the fluid model and a uniform (over a compact set of
initial conditions) speed of convergence of stochastic sample paths to
the solution of the fluid model.

1.4. Related Work. To the best of our knowledge, the proposed model for
the splitting of processing resources between local and central servers has not
been studied before. However, the fluid model approach used in this paper
is closely related to, and partially motivated by, the so-called supermarket
model of randomized load-balancing. In that literature, it is shown that by
routing tasks to the shorter queue among a small number (d ≥ 2) of randomly
chosen queues, the probability that a typical queue has at least i tasks

(denoted by si) decays as λ
di−1
d−1 (super-geometrically), as i → ∞ ([3],[4]);

see also the survey paper [8] and references therein. However, this sampling
approach to load-balancing seems to offer little improvement when adapted
to scheduling. In [5], a variant of the randomized load-balancing policy was
applied to a scheduling setting with channel uncertainties, where the server
always schedules a task from a longest queue among a finite number of
randomly selected queues. It was observed that si no longer exhibits super-
geometric decay and only moderate performance gain can be harnessed from
sampling more than one queue.

In our setting, the system dynamics causing the exponential phase transi-
tion in the average queue length scaling are significantly different from those
for the randomized load-balancing scenario. In particular, for any p > 0, the
steady-state tail probabilities si become zero for sufficiently large finite i,
which is markedly faster than the super-geometric decay in the supermarket
model.

On the technical side, arrivals and processing times used in supermarket
models are often memoryless (Poisson or Bernoulli) and the drifts in the fluid
model are typically continuous with respect to the underlying system state.
Hence convergence results can be established by invoking classical approxi-
mation results, based on the convergence of the generators of the associated
Markov processes. An exception is [7], where the authors generalize the su-
permarket model to arrival and processing times with general distributions.
Since the queue length process is no longer Markov, the authors rely on an
asymptotic independence property of the limiting system and use tools from
statistical physics to establish convergence.
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Our system is Markov with respect to the queue lengths, but a significant
technical difference from the supermarket model lies in the fact that the
longest-queue-first service policy introduces discontinuities in the drifts. For
this reason, we need to use a more elaborate set of techniques to establish
the connection between stochastic sample paths and the fluid model. More-
over, the presence of discontinuities in the drifts creates challenges even for
proving the uniqueness of solutions for the deterministic fluid model. (Such
uniqueness is used to establish convergence of steady-state distributions.)
Our approach is based on a state representation that is different from the
one used in the popular supermarket models, and which turns out to be
surprisingly more convenient to work with for establishing the uniqueness
of solutions to the fluid model.

Besides the queueing-theoretic literature, similar fluid model approaches
have been used in many other contexts to study systems with large pop-
ulations. Recent results in [6] establish convergence for finite-dimensional
symmetric dynamical systems with drift discontinuities, using a more prob-
abilistic (as opposed to sample path) analysis, carried out in terms of certain
conditional expectations. We believe that it is possible to prove our results
using the methods in [6], with additional work. However, the coupling ap-
proach used in this paper provides strong physical intuition on the system
dynamics, and avoids the need for additional technicalities from the theory
of multi-valued differential inclusions.

Resource pooling is known to improve performance [15, 16, 17, 18], but
much less is known on the impact of various degrees of pooling, or about
scaling behaviors in large-system limits. Some recent work in this area [19]
that studies limited pooling in a large-system limit is closer to our work in
spirit, but still differs significantly in terms of critical modeling assumptions
and dynamics. The notion of limited flexibility has also been studied in
manufacturing systems, such as the celebrated Long Chain design [9, 10]
and its variants [11]–[14]. However, models considered in this literature are
typically applied to static allocation problems (with a single or small number
of stages), whereas our system involves non-trivial queueing dynamics, where
resource allocation decisions have to be made repeatedly overtime.

Finally, there has been some work on the impact of service flexibility
in routing problems, motivated by applications such as multilingual call
centers. These date back to the seminal work of [20], with a more recent
numerical study in [21]. These results show that the ability to route a por-
tion of customers to a least-loaded station can lead to a constant-factor
improvement in average delay under diffusion scaling. This line of work is
very different from ours, but in a broader sense, both are trying to capture
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the notion that system performance in a random environment can benefit
significantly from even a small amount of centralized coordination.

1.5. Organization of the Paper. Section 2 introduces the precise model
to be studied, our assumptions, and the notation to be used throughout.
The main results are summarized in Section 3, where we also discuss their
implications along with some numerical results. The remainder of the paper
is devoted to establishing the technical results, and the reader is referred to
Section 4.1 for an overview of the proofs. The steps of some of the more tech-
nical proofs are outlined in the main text, with complete proofs relegated to
Appendix A. The procedure and parameters used for numerical simulations
are described in Appendix D.

2. Model and Notation. This section covers the modeling assump-
tions, system state representations, and mathematical notation that will be
used throughout the paper. We provide some intuition behind our modeling
choices and assumptions whenever possible, but if the ideas involved cannot
be made transparent at this stage, we point the reader to explanations that
will appear later in the paper.

2.1. Model. We present our model using terminology that corresponds to
the server farm application in Section 1.1. Time is assumed to be continuous.

1. System. The system consists of N parallel stations. Each station is
associated with a queue which stores the tasks to be processed. The
queue length (i.e., number of tasks) at station n at time t is denoted
by Qn(t), n ∈ {1,2, . . . ,N}, t ≥ 0.

2. Arrivals. Stations receive streams of incoming tasks according to in-
dependent Poisson processes with a common rate λ ∈ [0,1).

3. Task Processing. We fix a centralization coefficient p ∈ [0,1].
(a) Local Servers. The local server at station n is modeled by an

independent Poisson clock with rate 1−p (i.e., the times between
two clock ticks are independent and exponentially distributed
with mean 1

1−p). If the clock at station n ticks at time t, we say

that a local service token is generated at station n. If Qn(t) ≠ 0,
exactly one task from station n “consumes” the service token and
leaves the system immediately. Otherwise, the local service token
is “wasted” and has no impact on the future evolution of the
system.

(b) Central Server. The central server is modeled by an indepen-
dent Poisson clock with rate Np. If the clock ticks at time t at



10

the central server, we say that a central service token is gener-
ated. If the system is non-empty at time t (i.e., if ∑Nn=1Qn(t) > 0),
exactly one task from some station n, chosen uniformly at ran-
dom out of the stations with a longest queue at time t, consumes
the service token and leaves the system immediately. If the whole
system is empty, the central service token is wasted.

Physical interpretation of service tokens. We interpret Qn(t) as the
number of tasks whose service has not yet started. For example, if there
are four tasks at station n, one being served and three that are waiting,
then Qn(t) = 3. The use of local service tokens can be thought of as an
approximation to a work-conserving4 server with exponential service time
distribution in the following sense. Let tk be the kth tick of the Poisson clock
at the server associated with station n. If Qn(tk−) > 0,5 the ticking of the
clock can be thought of as the completion of a previous task, so that the
server “fetches” a new task from the queue to process, hence decreasing the
queue length by 1. Therefore, as long as the queue remains non-empty, the
time between two consecutive clock ticks can be interpreted as the service
time for a task. On the other hand, if the local queue is currently empty, i.e.,
Qn(tk−) = 0, then our modeling assumption implies that the local server does
nothing until the next clock tick at tk+1, even if some task arrives during
the period (tk, tk+1). Alternatively, this can be thought of as the server
creating a “virtual task” whenever it sees an empty queue, and pretending
to be serving the virtual task until the next clock tick. In contrast, a work-
conserving server would start serving the next task immediately upon its
arrival. We have chosen to use the service token setup, mainly because it
simplifies analysis, and because it can also be justified in the following ways.

1. Because of the use of virtual tasks, one would expect the resulting
queue length process under our setup to provide an upper bound on
the queue length process under a work-conserving server. We do not
formally prove such a dominance relation in this paper, but note that
a similar dominance result in GI/GI/n queues was proved recently
(Proposition 1 of [26]).

2. Since the discrepancy between the two setups only occurs when the
server sees an empty queue, one would also expect that the queue
length processes under the two cases become comparable as the traffic
intensity λ approaches 1, in which case the queue at a local server will

4A server is work-conserving if it is never idle when the queue is non-empty.
5Throughout the paper, we use the short-hand notation f(t−) to denote the left limit

lims↑t f(s).
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be non-empty most of the time.

The same physical interpretation applies to the central service tokens.

Mathematical equivalence between the two motivating applica-
tions. We note here that the scheduling application in Section 1.2 corre-
sponds to the same mathematical model. The arrival statistics to the sta-
tions are obviously identical in both models. For task processing, note that
we can equally imagine all service tokens as being generated from a single
Poisson clock with rate N . Upon the generation of a service token, a coin
is flipped to decide whether the token will be directed to fetch a task from
a random station for processing (corresponding to a local service token), or
from a station with a longest queue (corresponding to a central service to-
ken). Due to the Poisson splitting property, this produces identical statistics
for the generation of local and central service tokens as for the server farm
application.

2.2. System State. Let us fix N . Since all events (arrivals of tasks and
service tokens) are generated according to independent Poisson processes,
the queue length vector at time t, (Q1(t),Q2(t), . . . ,QN(t)), is Markov.
Moreover, the system is fully symmetric, in the sense that all queues have
identical and independent statistics for the arrivals and local service tokens,
and the assignment of central service tokens does not depend on the specific
identity of stations besides their queue lengths. Hence we can use a Markov
process {SNi (t)}∞

i=0 to describe the evolution of a system with N stations,
where

SNi (t) △= 1

N

N

∑
n=1

I[i,∞) (Qn(t)) , i ≥ 0. (2)

Each coordinate SNi (t) represents the fraction of queues with at least i
tasks. Note that SN0 (t) = 1, for all t and N , according to this definition.
We call SN (t) the normalized queue length process. We also define the
aggregate queue length process as

VN
i (t) △=

∞
∑
j=i

SNj (t) , i ≥ 0. (3)

Note that
SNi (t) = VN

i (t) −VN
i+1(t). (4)

In particular, this means that VN
0 (t) −VN

1 (t) = SN0 (t) = 1. Note also that

VN
1 (t) =

∞
∑
j=1

SNj (t) (5)
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is equal to the average queue length in the system at time t. More generally,
VN
i (t) can be interpreted as the average of excess queue lengths above i − 1

at time t, in the sense that6

VN
i (t) = E ((Xt − i + 1)+) , ∀i ≥ 1, (6)

where Xt is a random variable distributed according to the empirical queue
length distribution in the system at time t: P (Xt ≥ i) = SNi (t), for all i ≥ 0.

When the total number of tasks in the system is finite (hence all coor-
dinates of VN are finite), there is a straightforward bijection between SN

and VN . Hence VN(t) is Markov and also serves as a valid representation
of the system state. While the SN representation admits a more intuitive
interpretation as the “tail” probability of a typical station having at least
i tasks, it turns out the VN representation is significantly more convenient
to work with, especially in proving uniqueness of solutions to the associated
fluid model; the detailed reasons will become clear in the sequel (see Ap-
pendix B for an extensive discussion on this topic). For this reason, we will
be working mostly with the VN representation, but will in some places state
results in terms of SN , if doing so provides a better physical intuition.

2.3. Notation. Let Z+ be the set of non-negative integers. The following
sets will be used throughout the paper (where M is a positive integer):

S △= {s ∈ [0,1]Z+ ∶ 1 = s0 ≥ s1 ≥ ⋯ ≥ 0} , (7)

SM △= {s ∈ S ∶
∞
∑
i=1

si ≤M} , S∞ △= {s ∈ S ∶
∞
∑
i=1

si <∞} , (8)

VM △=
⎧⎪⎪⎨⎪⎪⎩
v ∶ vi =

∞
∑
j=i

sj , for some s ∈ SM
⎫⎪⎪⎬⎪⎪⎭
, (9)

V∞ △=
⎧⎪⎪⎨⎪⎪⎩
v ∶ vi =

∞
∑
j=i

sj , for some s ∈ S∞
⎫⎪⎪⎬⎪⎪⎭
, (10)

QN △= {x ∈ RZ+ ∶ xi =
Ki

N
, for some Ki ∈ Z+,∀i} . (11)

We define the weighted L2 norm ∥ ⋅ ∥w on RZ+ as

∥x − y∥2w =
∞
∑
i=0

∣xi − yi∣2

2i
, x,y ∈ RZ+ . (12)

6(x)+ △= max{0, x}.
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In general, we will be using bold letters to denote vectors and ordinary
letters for scalars, with the exception that a bold letter with a subscript (e.g.,
vi) is understood as a (scalar-valued) component of a vector. Upper-case
letters are generally reserved for random variables (e.g., V(0,N)) or stochastic
processes (e.g., VN(t)), and lower-case letters are used for constants (e.g.,
v0) and deterministic functions (e.g., v(t)). Finally, a function is in general
denoted by x(⋅), but is sometimes written as x(t) to emphasize the type of
its argument.

3. Summary of Main Results. In this section, we provide the exact
statements of our main results. The main approach of our work is to first
derive key performance guarantees using a simpler fluid model, and then
apply probabilistic arguments (e.g., Functional Laws of Large Numbers) to
formally justify that such guarantees also carry over to sufficiently large
finite stochastic systems. Section 3.1 gives a formal definition of the core
fluid model used in this paper, along with its physical interpretation. Section
3.2 contains results that are derived by analyzing the dynamics of the fluid
model, and Section 3.3 contains the more technical convergence theorems
that justify the accuracy of approximating a finite system using the fluid
model approach. The proofs for the theorems stated here will be developed
in later sections.

3.1. Definition of Fluid Model.

Definition 1. (Fluid Model) Given an initial condition v0 ∈ V∞, a
function v(t) ∶ [0,∞) → V∞ is said to be a solution to the fluid model
(or fluid solution for short) if:

(a) v(0) = v0;
(b) for all t ≥ 0,

v0(t) − v1(t) = 1, (13)

and 1 ≥ vi(t) − vi+1(t) ≥ vi+1(t) − vi+2(t) ≥ 0, ∀i ≥ 0; (14)

(c) for almost all t ∈ [0,∞), and for every i ≥ 1, vi(t) is differentiable and
satisfies

v̇i (t) = λ (vi−1 − vi) − (1 − p) (vi − vi+1) − gi (v) , (15)

where

gi (v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p, vi > 0,
min{λvi−1, p} , vi = 0,vi−1 > 0,
0, vi = 0,vi−1 = 0.

(16)
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We can write Eq. (15) more compactly as

v̇ (t) = F (v) , (17)

where

Fi (v) △= λ (vi−1 − vi) − (1 − p) (vi − vi+1) − gi (v) , i ≥ 1. (18)

We call F (v) the drift at point v.

Interpretation of the fluid model. A solution to the fluid model,
v(t), can be thought of as a deterministic approximation to the sample
paths of VN(t) for large values of N . Conditions (a) and (b) in Definition 1
correspond to initial and boundary conditions, respectively. The boundary
conditions reflect the physical constraints of the finite system. For example,
the condition that v0(t) − v1(t) = 1 corresponds to the fact that

VN
0 (t) −VN

1 (t) △= SN0 (t) = 1, (19)

where SN0 (t) is the fraction of queues with a non-negative queue length,
which is, by definition, 1. Similarly, the condition that

vi(t) − vi+1(t) ≥ vi+1(t) − vi+2(t), ∀i ≥ 0, (20)

is a consequence of

(VN
i (t) −VN

i+1(t)) − (VN
i+1(t) −VN

i+2(t))
△= SNi (t) − SNi+1(t) ∈ [0,1], (21)

where SNi (t)−SNi+1(t) is the fraction of queues at time t with exactly i tasks,
a number between 0 and 1.

We now provide some intuition for each of the drift terms in Eq. (15):
I. λ (vi−1 − vi): This term corresponds to arrivals. When a task arrives at

a station with i − 1 tasks, the system has one more queue with i tasks, and
SNi increases by 1

N . However, the number of queues with at least j tasks,

for j ≠ i, does not change. Thus, SNi is the only component of SN that gets

incremented. Since VN
i

△= ∑∞
k=i S

N
k , this implies that VN

i is increased by 1
N if

and only if a task arrives at a queue with at least i−1 tasks. Since all stations
have an identical arrival rate λ, the probability of VN

i being incremented
upon an arrival to the system is equal to the fraction of queues with at least
i− 1 tasks, which is VN

i−1(t)−VN
i (t). We take the limit as N →∞, multiply

by the total arrival rate, Nλ, and then multiply by the increment due to
each arrival, 1

N , to obtain the term λ (vi−1 − vi).
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II. (1 − p) (vi − vi+1): This term corresponds to the completion of tasks
due to local service tokens. The argument is similar to that for the first term.

III. gi (v): This term corresponds to the completion of tasks due to central
service tokens.

1. gi (v) = p, if vi > 0. If i > 0 and vi > 0, then there is a positive fraction
of queues with at least i tasks. Hence the central server is working
at full capacity, and the rate of decrease in vi due to central service
tokens is equal to the (normalized) maximum rate of the central server,
namely p.

2. gi (v) = min{λvi−1, p} , if vi = 0,vi−1 > 0. This case is more subtle.
Note that since vi = 0, the term λvi−1 is equal to λ(vi−1−vi), which is
the rate at which vi increases due to arrivals. Here the central server
serves queues with at least i tasks whenever such queues arise, trying to
keep vi at zero. Thus, the total rate of central service tokens dedicated
to vi tries to match the rate of increase of vi due to arrivals.7

3. gi (v) = 0, if vi = vi−1 = 0. Here, both vi and vi−1 are zero and there
are no queues with i− 1 or more tasks. Hence there is no positive rate
of increase in vi due to arrivals. Accordingly, the rate at which central
service tokens are used to serve stations with at least i tasks is zero.

Note that, as was mentioned in the introduction, the discontinuities in the
fluid model come from the term g(v), which reflects the presence of a central
server.

3.2. Analysis of the Fluid Model and Exponential Phase Transition. The
following theorem characterizes the invariant state for the fluid model. It will
be used to demonstrate an exponential improvement in the rate of growth
of the average queue length as λ→ 1 (Corollary 3).

Theorem 2. The drift F(⋅) in the fluid model admits a unique invariant

state vI (i.e., a state that satisfies F(vI) = 0). Letting sIi
△= vIi − vIi+1 for all

i ≥ 0, the exact expressions for the invariant state are as follows:

(1) If p = 0, then sIi = λi, ∀i ≥ 1.
(2) If p ≥ λ, then sIi = 0, ∀i ≥ 1.

7Technically, the minimization involving p is not necessary: if λvi−1(t) > p, then
vi(t) cannot stay at zero and will immediately increase after t. We keep the mini-
mization just to emphasize that the maximum rate of increase in vi due to central
service tokens cannot exceed the central service capacity p.
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(3) If 0 < p < λ and λ = 1 − p, then8

sIi =
⎧⎪⎪⎨⎪⎪⎩

1 − ( p
1−p) i, 1 ≤ i ≤ ĩ∗ (p, λ) ,

0, i > ĩ∗ (p, λ) ,

where ĩ∗ (p, λ) △= ⌊1−pp ⌋.
(4) If 0 < p < λ and λ ≠ 1 − p, then

sIi =
⎧⎪⎪⎨⎪⎪⎩

1−λ
1−(p+λ) (

λ
1−p)

i
− p

1−(p+λ) , 1 ≤ i ≤ i∗ (p, λ) ,
0, i > i∗ (p, λ) ,

where

i∗ (p, λ) △= ⌊log λ
1−p

p

1 − λ
⌋ , (22)

Proof. The proof consists of simple algebra to compute the solution to
F(vI) = 0. The proof is given in Section 6.1.

Case (4) in the above theorem is particularly interesting, as it reflects the
system’s heavy-traffic performance (λ close to 1) for any given value of p.
Note that since sI1 represents the probability of a typical queue having at
least i tasks, the quantity

vI1
△=

∞
∑
i=1

sIi (23)

represents the average queue length. The following corollary, which charac-
terizes the average queue length in the invariant state for the fluid model,
follows from Case (4) in Theorem 2 by some straightforward algebra.

Corollary 3. (Phase Transition in Average Queue Length Scal-
ing) If 0 < p < λ and λ ≠ 1 − p, then

vI1
△=

∞
∑
i=1

sIi =
(1 − p) (1 − λ)
(1 − p − λ)2

[1 − ( λ

1 − p
)
i∗(p,λ)

] − p

1 − p − λ
i∗ (p, λ) , (24)

with i∗ (p, λ) = ⌊log λ
1−p

p
1−λ⌋. In particular, for any fixed p > 0, vI1 scales as

vI1 ∼ i∗ (p, λ) ∼ log 1
1−p

1

1 − λ
, as λ→ 1. (25)

8Here ⌊x⌋ is defined as the largest integer that is less than or equal to x.
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The scaling of the average queue length in Eq. (25) with respect to the ar-
rival rate λ is contrasted with (and is exponentially better than) the familiar
1

1−λ scaling when no centralized resource is available (p = 0).

Intuition for Exponential Phase Transition. Taking a closer look at
the expressions for sI , we notice that that for any p > 0, the tail probabilities
sI have a finite support: sIi “dips” down to 0 as i increases to i∗(p, λ),
which is even faster than a super-geometric decay. Since 0 ≤ sIi ≤ 1 for all

i, it is then intuitive that vI1 = ∑i
∗(p,λ)
i=1 sIi is upper-bounded by i∗(p, λ),

which scales as log 1
1−p

1
1−λ as λ → 1. Note that such tail probabilities with

finite-support imply that the fraction of stations with more than i∗(p, λ)
tasks decreases to zero as N → ∞. For example, we may have a strictly
positive fraction of stations with, say, 10 tasks, but stations with more than
10 tasks hardly exist. While this may appear counterintuitive, it is a direct
consequence of centralization in the resource allocation schemes. Since a
fraction p of the total resource is constantly going after the longest queues,
it is able to prevent long queues (i.e., queues with more than i∗(p, λ) tasks)
from even appearing. The thresholds i∗(p, λ) increasing to infinity as λ→ 1
reflects the fact that the central server’s ability to annihilate long queues is
compromised by the heavier traffic loads; our result essentially shows that
the increase in i∗(λ, p) is surprisingly slow.

Numerical Results: Figure 3 compares the invariant state vectors for
the case p = 0 (stars) and p = 0.05 (diamonds). When p = 0, sIi decays
exponentially as λi, while when p = 0.05, sIi decays much faster, and reaches
zero at around i = 40. Figure 4 demonstrates the exponential phase transition
in the average queue length as the traffic intensity approaches 1, where
the solid curve, corresponding to a positive p, increases significantly slower
than the usual 1

1−λ delay scaling (dotted curve). Simulations show that the
theoretical model offers good predictions for even a moderate number of
servers (N = 100). The detailed simulation setup can be found in Appendix
B. Table 1 gives examples of the values for i∗(p, λ); note that these values
in some sense correspond to the maximum delay an average customer could
experience in the system.

Theorem 2 characterizes the invariant state of the fluid model, without
revealing whether and how a solution of the fluid model reaches it. The next
two results state that given any finite initial condition, the solution to the
fluid model is unique and converges to the unique invariant state as time
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Fig 3. Values of sIi , as a function of i, for p = 0 and p = 0.05, with traffic intensity λ = 0.99.

p = / λ = 0.1 0.6 0.9 0.99 0.999
0.002 2 10 37 199 692
0.02 1 6 18 68 156
0.2 0 2 5 14 23
0.5 0 1 2 5 8
0.8 0 0 1 2 4

Table 1
Values of i∗(p, λ) for various combinations of (p, λ).

goes to infinity.

Theorem 4. (Uniqueness of Solutions to Fluid Model) Given any
initial condition v0 ∈ V∞, the fluid model has a unique solution v(v0, t),
t ∈ [0,∞).

Proof. See Section 6.2.

Theorem 5. (Global Stability of Fluid Solutions) Given any initial
condition v0 ∈ V∞, and with v(v0, t) the unique solution to the fluid model,
we have

lim
t→∞

∥v (v0, t) − vI∥
w
= 0, (26)

where vI is the unique invariant state of the fluid model given in Theorem 2.

Proof. See Section 6.4.
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Fig 4. Illustration of the exponential improvement in the average queue length, from
O( 1

1−λ) to O(log 1
1−λ), as λ→ 1, when we compare p = 0 to p = 0.05.

3.3. Convergence to a Fluid Solution - Finite Horizon and Steady State.
The two theorems in this section justify the use of the fluid model as an
approximation to the finite stochastic system. The first theorem states that
as N → ∞ and with high probability, the evolution of the aggregate queue
length process VN(t) is uniformly close, over any finite time horizon [0, T ],
to the unique solution of the fluid model.

Theorem 6. (Convergence to Fluid Solutions over a Finite Hori-
zon) Consider a sequence of systems, with the number of servers N in-
creasing to infinity. Fix any T > 0. If for some v0 ∈ V∞,

lim
N→∞

P (∥VN (0) − v0∥w > γ) = 0, ∀γ > 0, (27)

then

lim
N→∞

P
⎛
⎝

sup
t∈[0,T ]

∥VN (t) − v (v0, t) ∥w > γ
⎞
⎠
= 0, ∀γ > 0. (28)

where v (v0, t) is the unique solution to the fluid model given initial condition
v0.

Proof. See Section 6.3.

Note that if we combine Theorem 6 with the convergence of v(t) to vI

in Theorem 5, we see that the finite system (VN ) is approximated by the
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invariant state of the fluid model vI after a fixed time period. In other words,
we now have

lim
t→∞

lim
N→∞

VN(t) = vI , in distribution. (29)

If we switch the order in which the limits over t and N are taken in Eq. (29),
we are then dealing with the limiting behavior of the sequence of steady-state
distributions (if they exist) as the system size grows large. Indeed, in practice
it is often of great interest to obtain a performance guarantee for the steady
state of the system, if it were to run for a long period of time. In light of
Eq. (29), we may expect that

lim
N→∞

lim
t→∞

VN(t)=vI , in distribution. (30)

The following theorem shows that this is indeed the case, i.e., that a unique
steady-state distribution of vN(t) (denoted by πN ) exists for all N , and that
the sequence πN concentrates on the invariant state of the fluid model (vI)
as N grows large.

Theorem 7. (Convergence of Steady-state Distributions to vI)
For any N , the process VN(t) is positive recurrent and admits a unique
steady-state distribution πN .9 Moreover,

lim
N→∞

πN = δvI , in distribution, (31)

where δvI is the Dirac measure concentrated on vI .

Proof. The proof is based on the tightness of the sequence of steady-
state distributions πN , and a uniform rate of convergence of VN(t) to v(t)
over any compact set of initial conditions. The proof is given in Section 7.

Figure 5 summarizes the relationships between the convergence to the
solution of the fluid model over a finite time horizon (Theorem 6), the con-
vergence of the fluid solution to the invariant state (Theorem 5), and the
convergence of the sequence of steady-state distributions (Theorem 7).

4. Probability Space and Coupling. Starting from this section, the
remainder of the paper will be devoted to proving the results summarized
in Section 3. We begin by giving an outline of the main proof techniques, as

9This probability distribution is defined on the Borel sets of V∞ under the topology
induced by the metric ∥ ⋅ ∥w.
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Fig 5. Relationships between convergence results.

well as the relationships among them, in Section 4.1. The remainder of the
current section focuses on constructing probability spaces and appropriate
couplings of stochastic sample paths, which will serve as the foundation for
later analysis.

4.1. Overview of Technical Approach. We begin by coupling the sample
paths of processes of interest (e.g., VN(⋅)) with those of two fundamental
processes that drive the system dynamics (Section 4.2). This approach al-
lows us to link deterministically the convergence properties of the sample
paths of interest to those of the fundamental processes, on which proba-
bilistic arguments are easier to apply (such as the Functional Law of Large
Numbers). Using this coupling framework, we show in Section 5 that almost
all sample paths of VN(⋅) are “tight” in the sense that, as N →∞, they are
uniformly approximated by a set of Lipschitz-continuous trajectories, which
we refer to as the fluid limits, and that all such fluid limits are valid solu-
tions to the fluid model. This result connects the finite stochastic system
with the deterministic fluid solutions. Section 6 studies the properties of the
fluid model, and provides proofs for Theorem 4 and 5. Note that Theorem
6 (convergence of VN(⋅) to the unique fluid solution, over a finite time hori-
zon) now follows from the tightness results in Section 5 and the uniqueness
of fluid solutions (Theorem 4). The proof of Theorem 2 stands alone, and
will be given in Section 6.1. Finally, the proof of Theorem 7 (convergence of
steady state distributions to vI) is given in Section 7.

The goal of the current section is to formally define the probability spaces
and stochastic processes that we will be working with in the rest of the paper.
Specifically, we begin by introducing two fundamental processes, from which
all other processes of interest (e.g., VN(⋅)) can be derived on a per sample
path basis.
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4.2. Definition of Probability Space.

Definition 8. (Fundamental Processes and Initial Conditions)

(1) The Total Event Process, {W (t)}t≥0, defined on a probability space
(ΩW ,FW ,PW ), is a Poisson process with rate λ + 1, where each jump
marks the time when an “event” takes place in the system.

(2) The Selection Process, {U(n)}n∈Z+, defined on a probability space
(ΩU ,FU ,PU), is a discrete-time process, where each U(n) is independent
and uniformly distributed in [0,1]. This process, along with the current
system state, determines the type of each event (i.e., whether it is an
arrival, a local token generation, or a central token generation).

(3) The (Finite) Initial Conditions, {V(0,N)}N∈N, is a sequence of ran-
dom variables defined on a common probability space (Ω0,F0,P0), with
V(0,N) taking values10 in V∞ ∩QN . Here, V(0,N) represents the initial
queue length distribution.

For the rest of the paper, we will be working with the product space

(Ω,F ,P) △= (ΩW ×ΩU ×Ω0,FW ×FU ×F0,PW × PU × P0). (32)

With a slight abuse of notation, we use the same symbols W (t), U(n) and

V(0,N) for their corresponding extensions on Ω, i.e., W (ω, t) △= W (ωW , t),
where ω ∈ Ω and ω = (ωW , ωU , ω0). The same holds for U and V(0,N).

4.3. A Coupled Construction of Sample Paths. Recall the interpretation
of the fluid model drift terms in Section 3.1. Mimicking the expression
for v̇i(t) in Eq. (15), we would like to decompose VN

i (t) into three non-
decreasing right-continuous processes,

VN
i (t) = VN

i (0) +AN
i (t) −LNi (t) −CN

i (t), i ≥ 1, (33)

so that AN
i (t), LNi (t), and CN

i (t) correspond to the cumulative changes
in VN

i due to arrivals, local service tokens, and central service tokens, re-
spectively. We will define processes AN(t),LN(t), CN(t), and VN(t) on
the common probability space (Ω,F ,P), and couple them with the sample
paths of the fundamental processes W (t) and U(n), and the value of V(0,N),
for each sample ω ∈ Ω. First, note that since the N -station system has N
independent Poisson arrival streams, each with rate λ, and an exponential

10For a finite system of N stations, the measure induced by VN
i (t) is discrete and takes

positive values only in the set of rational numbers with denominator N .
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server with rate N , the total event process for this system is a Poisson pro-
cess with rate N(1 + λ). Hence, we define WN(ω, t), the Nth normalized
event process, as

WN(ω, t) △= 1

N
W (ω,Nt), ∀t ≥ 0, ω ∈ Ω. (34)

Note that WN(ω, t) is normalized so that all of its jumps have a magnitude
of 1

N .

Fig 6. Illustration of the partition of [0,1] for constructing VN(ω, ⋅).

The coupled construction is intuitive: whenever there is a jump inWN(ω, ⋅),
we decide the type of event by looking at the value of the corresponding se-
lection variable U(ω,n) and the current state of the system VN(ω, t). Fix
ω in Ω, and let tk, k ≥ 1, denote the time of the kth jump in WN(ω, ⋅).

We first set all of AN , LN , and CN to zero for t ∈ [0, t1). Starting from
k = 1, repeat the following steps for increasing values of k. The partition of
the interval [0,1] used in the procedure is illustrated in Figure 4.3.

(1) If U(ω, k) ∈ λ
1+λ [0,VN

i−1(ω, tk−) −VN
i (ω, tk−)) for some i ≥ 1, the event

corresponds to an arrival to a station with at least i − 1 tasks. Hence
we increase AN

i (ω, t) by 1
N at all such i.

(2) If U(ω, k) ∈ λ
1+λ +

1−p
1+λ [0,VN

i (ω, tk−) −VN
i+1(ω, tk−)) for some i ≥ 1, the

event corresponds to the completion of a task at a station with at least
i tasks due to a local service token. We increase LNi (ω, t) by 1

N at all
such i. Note that i = 0 is not included here, reflecting the fact that if a
local service token is generated at an empty station, it is immediately
wasted and has no impact on the system.

(3) Finally, if U(ω, k) ∈ λ
1+λ +

1−p
1+λ + [0, p

1+λ) = [1 − p
1+λ ,1), the event corre-

sponds to the generation of a central service token. Since the central
service token is alway sent to a station with the longest queue length, we
will have a task completion at a most-loaded station, unless the system
is empty. Let i∗(t) be the last positive coordinate of VN(ω, t−), i.e.,
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i∗(t) = sup{i ∶ VN
i (ω, t−) > 0}. We increase CN

j (ω, t) by 1
N for all j such

that 1 ≤ j ≤ i∗(tk).

To finish, we set VN(ω, t) according to Eq. (33), and keep the values of

all processes unchanged between tk and tk+1. We set VN
0

△= VN
1 + 1, so as to

stay consistent with the definition of VN
0 .

5. Fluid Limits of Stochastic Sample Paths. In this section, we
establish the connections between the stochastic sample paths (VN(⋅)) and
the solutions to the fluid model (v(⋅)). Through two important technical re-
sults (Propositions 11 and 12), we show that, as N →∞ and almost surely,
any subsequence of {VN(⋅)}

N≥1 contains a further subsequence that con-
vergences uniformly to a solution of the fluid model, over any finite horizon
[0, T ]. However, note that the results presented in this section do not imply
the converse, that any solution to the fluid model corresponds to a limit
point of some sequence of stochastic sample paths. This issue will be re-
solved in the next section where we show the uniqueness of fluid solutions,
which, together with the results in this section, establishes that the fluid
solutions fully characterize the transient behavior of VN(⋅), for sufficiently
large N , over any finite time horizon [0, T ].

In the sample-path wise construction in Section 4.3, all randomness is
attributed to the initial condition V(0,N) and the two fundamental processes
W (⋅) and U (⋅). Everything else, including the system state VN(⋅) that we
are interested in, can be derived from a deterministic mapping, given a
particular realization of V(0,N), W (⋅), and U(⋅). With this in mind, the
approach we will take to prove convergence to a fluid limit (i.e., a limit
point of {VN(⋅)}

N≥1), over a finite time interval [0, T ], can be summarized
as follows.

(1) (Lemma 9) We define a subset C of the sample space Ω, such that P (C) =
1 and the sample paths ofW and U are sufficiently “nice” for every ω ∈ C.

(2) (Proposition 11) We show that for all ω in this nice set, the derived sam-
ple paths VN(⋅) are also “nice”, and contain a subsequence converging
to a Lipschitz-continuous trajectory v(⋅), as N →∞.

(3) (Proposition 12) We characterize the derivative at any regular point11

of v(⋅) and show that it is identical to the drift in the fluid model. Hence
v(⋅) is a solution to the fluid model.

The proofs will be presented according to the above order.

11Regular points are points where derivative exists along all coordinates of the trajec-
tory. Since the trajectory is Lipschitz-continuous along every coordinate, almost all points
are regular.
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5.1. Tightness of Sample Paths over a Nice Set. We begin by proving
the following lemma which characterizes a “nice” set C ⊂ Ω whose elements
have desirable convergence properties.

Lemma 9. Fix T > 0. There exists a measurable set C ⊂ Ω such that
P (C) = 1 and for all ω ∈ C,

lim
N→∞

sup
t∈[0,T ]

∣WN (ω, t) − (1 + λ) t∣ = 0, (35)

lim
N→∞

1

N

N

∑
i=1

I[a,b) (U (ω, i)) = b − a, if a < b and [a, b) ⊂ [0,1]. (36)

Proof. Based on the Functional Law of Large Numbers for Poisson pro-
cesses, we can find CW ⊂ ΩW , with PW (CW ) = 1, over which Eq. (35) holds.
For Eq. (36), we invoke the Glivenko-Cantelli lemma12, which states that
the empirical measures of a sequence of i.i.d. random variables converge
uniformly almost surely, i.e.,

lim
N→∞

sup
x∈[0,1]

∣ 1

N

N

∑
i=1

I[0,x) (U (i)) − x∣ = 0, almost surely. (37)

This implies the existence of some CU ⊂ ΩU , with PU (CU) = 1, over which
Eq. (36) holds. (This is stronger than the ordinary Strong Law of Large
Numbers for i.i.d. uniform random variables on [0,1], which states conver-
gence for a fixed set [0, x).) We finish the proof by taking C = CW × CU ×Ω0.

Definition 10. We call the 4-tuple, XN △= (VN ,AN ,LN ,CN), the Nth
system. Note that all four components are infinite-dimensional processes.13

Consider the space of functions from [0, T ] to R that are right-continuous-
with-left-limits (RCLL), denoted by D[0, T ], and let it be equipped with the
uniform metric, d (⋅, ⋅):

d (x, y) △= sup
t∈[0,T ]

∣x (t) − y (t)∣ , x, y ∈D[0, T ]. (38)

Denote by D∞[0, T ] the set of functions from [0, T ] to RZ+ that are RCLL
on every coordinate. Let dZ+(⋅, ⋅) denote the uniform metric on D∞[0, T ]:

dZ+ (x,y) △= sup
t∈[0,T ]

∥x (t) − y (t)∥w , x,y ∈DZ+[0, T ], (39)

12For an introduction to the Glivenko-Cantelli lemma, see [27] and references therein.
13If necessary, XN can be enumerated by writing it explicitly as XN =

(VN
0 ,A

N
0 ,L

N
0 ,C

N
0 ,V

N
1 ,A

N
1 , . . .) .
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with ∥ ⋅ ∥w defined in Eq. (12).
The following proposition is the main result of this section. It shows that

for sufficiently large N , the sample paths are sufficiently close to some ab-
solutely continuous trajectory.

Proposition 11. Fix T > 0. Assume that there exists some v0 ∈ V∞

such that
lim
N→∞

∥VN (ω,0) − v0∥w = 0, (40)

for all ω ∈ C. Then for all ω ∈ C, any subsequence of {XN (ω, ⋅)} contains

a further subsequence, {XNi (ω, ⋅)}, that converges to some coordinate-wise
Lipschitz-continuous function x (t) = (v (t) ,a (t) , l (t) ,c (t)), with v (0) =
v0, a(0) = l(0) = c(0) = 0 and

∣xi (a) − xi (b)∣ ≤ L∣a − b∣, ∀a, b ∈ [0, T ], i ∈ Z+, (41)

where L > 0 is a universal constant, independent of the choice of ω, x, and T .
Here the convergence refers to dZ+(VNi ,v), dZ+(ANi ,a), dZ+(LNi , l), and
dZ+(CNi ,c) all converging to 0, as i→∞.

For the rest of the paper, we will refer to such a limit point x, or any
subset of its coordinates, as a fluid limit.

Proof outline: Here we outline the main steps of the proof; interested
readers are referred to Appendix A.1 for a complete proof. We first show
that for all ω ∈ C, and for every coordinate i, any subsequence of {XN

i (ω, ⋅)}
has a convergent subsequence with a Lipschitz-continuous limit. We then use
the coordinate-wise limit to construct a limit point in the space DZ+ . To es-
tablish coordinate-wise convergence, we use a tightness technique previously
used in the literature on multiclass queueing networks (see, e.g., [1]). A key
realization in this case, is that the total number of jumps in any derived pro-
cess AN , LN , and CN cannot exceed that of the event process WN(t) for
any particular sample path. Since AN , LN , and CN are non-decreasing, we
expect their sample paths to be “smooth” for large N , due to the fact that
the sample path of WN(t) does become “smooth” for large N , for all ω ∈ C
(Lemma 9). More formally, it can be shown that for all ω ∈ C and T > 0,
there exist diminishing positive sequences MN ↓ 0 and γN ↓ 0, such that
the sample path along any coordinate of XN is γN -approximately-Lipschitz
continuous with a uniformly bounded initial condition, i.e., for all i,

∣XN
i (ω,0) − x0i ∣ ≤MN ,

and ∣XN
i (ω, a) −XN

i (ω, b)∣ ≤ L∣a − b∣ + γN , ∀a, b ∈ [0, T ],
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where L is the Lipschitz constant, and T <∞ is a fixed time horizon. Using a
linear interpolation argument, we then show that sample paths of the above
form can be uniformly approximated by a set of L-Lipschitz-continuous func-
tion on [0, T ]. We finish by using the Arzela-Ascoli theorem (sequential com-
pactness) along with closedness of this set, to establish the existence of a
convergent further subsequence along any subsequence (compactness) and
that any limit point must also be L-Lipschitz-continuous (closedness). This
completes the proof for coordinate-wise convergence. With the coordinate-
wise limit points, we then use a diagonal argument involving nested subse-
quences to construct the limit points of XN in the space DZ+[0, T ], and this
completes the proof.

5.2. Derivatives of the Fluid Limits. The previous section established
that any sequence of “good” sample paths ({XN(ω, ⋅)} with ω ∈ C) even-
tually stays close to some Lipschitz-continuous, and therefore absolutely
continuous, trajectory. In this section, we will characterize the derivatives
of v(⋅) at all regular (differentiable) points of such limiting trajectories. We
will show, as we expect, that they are the same as the drift terms in the
fluid model (Definition 1). This means that all fluid limits of VN(⋅) are in
fact solutions to the fluid model.

Proposition 12. (Fluid Limits and Fluid Model) Fix ω ∈ C and T >
0. Let x be a limit point of some subsequence of XN(ω, ⋅), as in Proposition
11. Let t be a point of differentiability of all coordinates of x. Then, for all
i ∈ N,

ȧi(t) = λ (vi−1(t) − vi(t)) , (42)

l̇i(t) = (1 − p) (vi(t) − vi+1(t)) , (43)

ċi(t) = gi (v(t)) , (44)

where g was defined in Eq. (16), with the initial condition v(0) = v0 and
boundary condition v0(t) − v1(t) = 1,∀t ∈ [0, T ]. In other words, all fluid
limits of VN(⋅) are solutions to the fluid model.

Proof. We fix some ω ∈ C and for the rest of this proof we will sup-
press the dependence on ω in our notation. The existence of Lipschitz-
continuous limit points for the given ω ∈ C is guaranteed by Proposition
11. Let {XNk(⋅)}∞

k=1 be a convergent subsequence such that

limk→∞ d
Z+(XNk(⋅),x) = 0. We now prove each of the three claims (Eqs.

(42)-(44)) separately. The index i is always fixed unless otherwise stated.
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Claim 1: ȧi(t) = λ(vi−1(t)−vi(t)). Consider the sequence of trajectories
{ANk(⋅)}∞

k=1. By construction, AN
i (t) receives a jump of magnitude 1

N at
time t if and only if an event happens at time t and the corresponding selec-
tion random variable, U(⋅), falls in the interval λ

1+λ [0,VN
i−1(t−) −VN

i (t−)).
Therefore, we can write, for any given ε > 0,

ANk
i (t + ε) −ANk

i (t) = 1

Nk

NkW
Nk(t+ε)
∑

j=NkWNk(t)
IIj(U(j)), (45)

where Ij
△= λ

1+λ [0,VNk
i−1(t

Nk
j −) −VNk

i (tNkj −)) and tNj is defined to be the time

of the jth jump in WN(⋅), i.e.,

tNj
△= inf {s ≥ 0 ∶WN(s) ≥ j

N
} . (46)

Note that by the definition of a fluid limit, we have that

lim
k→∞

(ANk
i (t + ε) −ANk

i (t)) = ai(t + ε) − ai(t). (47)

The following lemma bounds the change in ai(t) on a small time interval.

Lemma 13. Fix i and t. For all sufficiently small ε > 0

∣ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t))∣ ≤ 2ε2L. (48)

Proof. While the proof involves heavy notation, it is based on the fact
that ω ∈ C: using Lemma 9, Eq. (48) follows from Eq. (45) by applying the
convergence properties of WN(t) (Eq. (35)) and U(n) (Eq. (36)).

For the formal proof, fix some ω ∈ C. Also, fix i ≥ 1, t > 0, and ε > 0.
Since the limiting function x is L-Lipschitz-continuous on all coordinates by
Proposition 11, there exists a non-increasing sequence γn ↓ 0 such that for
all s ∈ [t, t + ε] and all sufficiently large k,

VNk
j (s) ∈ [vj(t) − (εL + γNk),vj(t) + (εL + γNk)), j ∈ {i − 1, i, i + 1}. (49)

The above leads to:14

[0,VNk
i−1(s) −VNk

i (s)) ⊃ [0, [vi−1(t) − vi(t) − 2(εL + γNk)]
+ ),

and [0,VNk
i−1(s) −VNk

i (s)) ⊂ [0,vi−1(t) − vi(t) + 2(εL + γNk)), (50)

14Here [x]+ △= max{0, x}.



29

for all sufficiently large k.
Define the sequence of set-valued functions {ηn(t)} as

ηn(t) △= λ

1 + λ
[0,vi−1(t) − vi(t) + 2(εL + γn)) . (51)

Note that since γn ↓ 0,

ηn(t) ⊃ ηn+1(t) and
∞
⋂
n=1

ηn(t) = λ

1 + λ
[0,vi−1(t) − vi(t) + 2εL] . (52)

We have for all sufficiently large k, and any l such that 1 ≤ l ≤ Nk,

ANk
i (t + ε) −ANk

i (t)

≤ 1

Nk

NkW
Nk(t+ε)
∑

j=NkWNk(t)+1
IηNk(t) (U(j))

≤ 1

Nk

NkW
Nk(t+ε)
∑

j=NkWNk(t)+1
Iηl(t) (U(j))

= 1

Nk

⎛
⎝

NkW
Nk(t+ε)
∑
j=1

Iηl(t) (U(j)) −
NkW

Nk(t)
∑
j=1

Iηl(t) (U(j))
⎞
⎠
, (53)

where the first inequality follows from the second containment in Eq. (50),
and the second inequality follows from the monotonicity of {ηn(t)} in Eq. (52).

We would like to show that for all sufficiently small ε > 0,

ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t)) ≤ 2ε2L. (54)

To prove the above inequality, we first claim that for any interval [a, b) ⊂
[0,1],

lim
N→∞

1

N

NWN (t)
∑
i=1

I[a,b) (U(i)) = (λ + 1)t(b − a). (55)

To see this, rewrite the left-hand side of the equation above as

lim
N→∞

1

N

NWN (t)
∑
i=1

I[a,b) (U(i))

= lim
N→∞

(λ + 1)t 1

(λ + 1)Nt

(λ+1)Nt
∑
i=1

I[a,b) (U(i))

+ lim
N→∞

(λ + 1)t 1

(λ + 1)Nt
⎛
⎝

NWN (t)
∑
i=1

I[a,b) (U(i)) −
(λ+1)Nt
∑
i=1

I[a,b) (U(i))
⎞
⎠
.

(56)
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Because the magnitude of the indicator function I{⋅} is bounded by 1, we
have that

RRRRRRRRRRRR

NWN (t)
∑
i=1

I[a,b) (U(i)) −
(λ+1)Nt
∑
i=1

I[a,b) (U(i))
RRRRRRRRRRRR
≤ N ∣(λ + 1)t −WN(t)∣ . (57)

Since ω ∈ C, by Lemma 9 we have that

lim
N→∞

∣(λ + 1)t −WN(t)∣ = 0, (58)

lim
N→∞

1

(λ + 1)Nt

(λ+1)Nt
∑
i=1

I[a,b) (U(i)) = b − a, (59)

for any t <∞. Combining Eqs. (56)−(59), we have that

lim
N→∞

1

N

WN (t)
∑
i=1

I[a,b) (U(i))

= (λ + 1)t lim
N→∞

1

(λ + 1)Nt

(λ+1)Nt
∑
i=1

I[a,b) (U(i))

+ lim
N→∞

1

(λ + 1)t
∣(λ + 1)t −WN(t)∣

= (λ + 1)t(b − a), (60)

which establishes Eq. (55). By the same argument, Eq. (60) also holds when
t is replaced by t + ε. Applying this result to Eq. (53), we have that

ai(t + ε) − ai(t)
= lim

k→∞
(ANk

i (t + ε) −ANk
i (t))

≤ (t + ε − t)(λ + 1) λ

λ + 1
[vi(t) − vi−1(t) + 2(εL + γl)]

= ελ(vi−1(t) − vi(t)) + λ(2ε2L + 2εγl)
< ελ(vi−1(t) − vi(t)) + 2ε2L + 2εγl, (61)

for all l ≥ 1, where the last inequality is due to the fact that λ < 1. Taking
l →∞ and using the fact that γl ↓ 0, we have established Eq. (54).

Similarly, changing the definition of ηn(t) to

ηn(t) △= λ

1 + λ
[0, [vi−1(t) − vi(t) − 2(εL + γn)]+ ), (62)

we can obtain a similar lower bound

ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t)) ≥ −2ε2L, (63)
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which together with Eq. (54) proves the claim. Note that if vi(t) = vi−1(t),
the lower bound trivially holds because ANk

i (t) is a cumulative arrival pro-
cess and is hence non-decreasing in t by definition.

Since by assumption a(⋅) is differentiable at t, Lemma 13 implies that

ȧi(t)
△= limε↓0

ai(t+ε)−ai(t)
ε = λ(vi−1(t) − vi(t)), which establishes Claim 1.

Claim 2: l̇i(t) = (1 − p)(vi(t) − vi+1(t)). Claim 2 can be proved using
an identical approach to the one used to prove Claim 1. The proof is hence
omitted.

Claim 3: ċi(t) = gi (v (t)). We prove Claim 3 by considering separately
the three cases in the definition of v.

(1) Case 1: ċi(t) = 0, if vi−1 = 0,vi = 0. Write

ċi(t) = ȧi(t) − l̇i(t) − v̇i(t). (64)

We calculate each of the three terms on the right-hand side of the above
equation. By Claim 1, ȧi(t) = λ(vi−1(t) − vi(t)) = 0, and by Claim 2,
l̇i(t) = λ(vi(t) − vi+1(t)) = 0. To obtain the value for v̇i(t), we use the
following trick: since vi(t) = 0 and vi is non-negative, the only possibility
for vi(t) to be differentiable at t is that v̇i(t) = 0. Since ȧi(t), l̇i(t), and
v̇i(t) are all zero, we have that ċi(t) = 0.

(2) Case 2: ċi(t) = min{λvi−1(t), p}, if vi(t) = 0,vi−1(t) > 0.
In this case, the fraction of queues with at least i tasks is zero, hence vi
receives no drift from the local portion of the service capacity by Claim 2.
First consider the case vi−1(t) ≤ p

λ . Here the line of arguments is similar
to the one in Case 1. By Claim 1, ȧi(t) = λ(vi−1(t) − vi(t)) = λvi−1(t),
and by Claim 2, l̇i(t) = λ(vi(t) − vi+1(t)) = 0. Using again the same
trick as in Case 1, the non-negativity of vi(t) and the fact that vi(t) = 0
together imply that we must have v̇i(t) = 0. Combining the expressions
for ȧi(t), l̇i(t), and v̇i(t), we have

ċi(t) = −v̇i(t) + ȧi(t) − l̇i(t) = λvi−1 (t) . (65)

Intuitively, here the drift due to random arrivals to queues with i −
1 tasks, λvi−1(t), is “absorbed” by the central portion of the service
capacity.
If vi−1(t) > p

λ , then the above equation would imply that ċi(t) = λvi−1(t) >
p, if ċi(t) exists. But clearly ċi(t) ≤ p. This simply means that if
vi(t) = 0,vi−1(t) > p

λ , then vi(t) cannot be differentiable at time t.
Hence we have the claimed expression.
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(3) Case 3: ċi(t) = p, if vi > 0,vi+1 > 0.
Since there is a positive fraction of queues with more than i tasks, it
follows that VN

i is decreased by 1
N whenever a central token becomes

available. Formally, for some small enough ε, there exists K such that
VNk
i (s) > 0 for all k ≥ K, s ∈ [t, t + ε]. Given the coupling construction,

this implies for all k ≥K, s ∈ [t, t + ε],

CNk
i (s) −CNk

i (t) = 1

Nk

NkW
Nk(s)
∑

j=NkWNk(t)
I[1− p

1+λ ,1)
(U(j)) .

Using the same arguments as in the proof of Lemma 13, we see that
the right-hand side of the above equation converges to (s− t)p+ o(ε) as

k →∞. Hence, ċi(t) = limε↓0 limk→∞
C
Nk
i (t+ε)−CNki (t)

ε = p.

Finally, note that the boundary condition v0(t)−v1(t) = 1 is a consequence

of the fact that VN
0 (t) −VN

1 (t) △= SN1 (t) = 1 for all t. Similarly, the bound-
ary condition (14) is automatically satisfied. This concludes the proof of
Proposition 12.

6. Properties of the Fluid Model. In this section, we establish sev-
eral key properties of the fluid model. We begin by proving Theorem 2 in
Section 6.1, which states that the fluid model admits a unique invariant
state for each pair of p and λ. Section 6.2 is devoted to proving that the
fluid model admits a unique solution v(⋅) for any initial condition v0 ∈ V∞.
As a corollary, we show that the fluid solution, v(⋅), depends continuously on
the initial condition v0, which will be used for proving the steady-state con-
vergence theorem in the next section. Using the uniqueness of fluid solutions
and the results from the last section, Theorem 6 is proved in Section 6.3,
which establishes the convergence of stochastic sample paths to the unique
solution of the fluid model over any finite time horizon, with high probabil-
ity. Finally, in Section 6.4 we prove that the solutions to the fluid model are
globally stable (Theorem 5): any fluid solution v(t) converges to the unique
invariant state vI as t → ∞. This suggests that the qualitative properties
derived from the invariant state vI serve as a good approximation for the
transient behavior of the system, as t→∞. We note that by the end of this
section, we will have established all transient approximation results, which
correspond to the path

VN(t) N→∞Ð→ v(t) t→∞Ð→ vI , (66)

as was illustrated in Figure 5 of Section 3. The other path in Figure 5,
namely, the approximation of the steady-state distributions of VN(⋅) by vI ,
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will be dealt with in the next section.

6.1. Invariant State of the Fluid Model. In this section we prove The-
orem 2, which gives explicit expressions for the (unique) invariant state of
the fluid model.

Proof. (Theorem 2) In this proof we will be working with both vI

and sI , with the understanding that sIi
△= vIi −vIi+1,∀i ≥ 0. It can be verified

that the expressions given in all three cases are valid invariant states, by
checking that F(vI) = 0. We show they are indeed unique.

First, note that if p ≥ λ, then F1(v) < 0 whenever v1 > 0. Since vI1 ≥ 0, we
must have vI1 = 0, which by the boundary conditions implies that all other
vIi must also be zero. This proves case (2) of the theorem.

Now suppose that 0 < p < λ. We will first prove case (4). We observe
that F1(v) > 0 whenever v1 = 0. Hence vI1 must be positive. By Eq. (16)
this implies that g1(vI) = p. Substituting g1(vI) in Eq. (15), along with the
boundary condition vI0 − vI1 = sI0 = 1, we have

0 = λ ⋅ 1 − (1 − p)sI1 − p, (67)

which yields that sI1 = λ−p
1−p . Repeating the same argument, we obtain the

recursion that sIi = λsIi−1−p
1−p , for as long as sIi (and therefore, vIi ) remains

positive. Combining this with the expression for sI1, we have

sIi =
1 − λ

1 − (p + λ)
( λ

1 − p
)
i

− p

1 − (p + λ)
, 1 ≤ i ≤ i∗ (p, λ) , (68)

where i∗ (p, λ) △= ⌊log λ
1−p

p
1−λ⌋ marks the last coordinate where sIi remains

non-negative. This proves uniqueness of sIi up to i ≤ i∗ (p, λ). We can then
use the same argument as in case (2), to show that sIi must be equal to
zero for all i > i∗ (p, λ). Cases (1) and (3) can be established using similar
arguments as those used in proving case (4). This completes the proof.

Remark: a finite-support property of v(⋅): As was discussed in Sec-
tion 3.2, Theorem 2 shows that for all p > 0, the unique invariant state vI

admits a finite support (i.e., vIi = 0 for all i ≥ i∗ for some i∗ < ∞). It turns
out that, when p > 0, this finite-support property also holds for the fluid
solution v(t) at all t > 0. For a more elaborate discussion on this topic, see
Appendix C.
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6.2. Uniqueness of Fluid Limits & Continuous Dependence on Initial
Conditions. We now prove Theorem 4, which states that given an initial
condition v0 ∈ V∞, a solution to the fluid model exists and is unique. As a
direct consequence of the proof, we obtain an important corollary, that the
unique solution v(⋅) depends continuously on the initial condition v0.

The uniqueness result justifies the use of the fluid approximation, in the
sense that the evolution of the stochastic system is close to a single trajec-
tory. The uniqueness along with the continuous dependence on the initial
condition will be used to prove convergence of steady-state distributions to
vI (Theorem 7).

We note that, in general, the uniqueness of solutions is not guaranteed
for a differential equation with a discontinuous drift (see, e.g., [22]). In our
case, F(⋅) is discontinuous on the domain V∞ due to the drift associated
with central service tokens (Eq. (18)).

Proof. (Theorem 4) The existence of a solution to the fluid model
follows from the fact that VN has a limit point (Proposition 11) and that
all limit points of VN are solutions to the fluid model (Proposition 12). We

now show uniqueness. Define ip(v) △= sup{i ∶ vi > 0}.15 Let v(t),w(t) be two
solutions to the fluid model such that v(0) = v0 and w(0) = w0, with v0,w0 ∈
V∞. At any regular point t ≥ 0, where all coordinates of v(t),w(t) are
differentiable, without loss of generality, assume ip(v(t)) ≤ ip(w(t)), with
equality if both are infinite. Let av(⋅) and aw(⋅) be the arrival trajectories
corresponding to v(⋅) and w(⋅), respectively, and similarly for l and c. Since
v0(t) = v1(t) + 1 for all t ≥ 0 by the boundary condition (Eq. (13)), and
v̇1 = ȧv

1 − l̇v1 − ċv1 , for notational convenience we will write

v̇0 = ȧv
0 − l̇v0 − ċv0 , (69)

where
ȧv
0
△= ȧv

1 , l̇v0
△= l̇v1 , and ċv0

△= ċv1 . (70)

The same notation will be used for ẇ(t).
15ip(v) can be infinite; this happens if all coordinates of v are positive.
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We have,16

d

dt
∥v −w∥2w

△= d

dt

∞
∑
i=0

∣vi −wi∣2

2i
(a)=

∞
∑
i=0

(vi −wi) (v̇i − ẇi)
2i−1

=
∞
∑
i=0

(vi −wi) [(ȧv
i − l̇vi ) − (ȧw

i − l̇wi )]
2i−1

−
∞
∑
i=0

(vi −wi) (ċvi − ċwi )
2i−1

(b)
≤ C ∥v −w∥2w −

∞
∑
i=0

(vi −wi) (ċvi − ċwi )
2i−1

= C ∥v −w∥2w −
ip(v)
∑
i=0

1

2i−1
(vi −wi) (p − p)

− 1

2ip(v)
(0 −wip(v)+1)(min{λvip(v), p} − p)

−
ip(w)
∑

i=ip(v)+2

1

2i−1
(0 −wi)(0 − p)

−
∞
∑

j=ip(w)+1

1

2i−1
(0 − 0) (ċvi − ċwi )

≤ C ∥v −w∥2w , (71)

where C = 6(λ + 1 − p). We first justify the existence of the derivative
d
dt ∥v −w∥2w and the exchange of limits in (a). Because vi(t) and wi(t) are
L-Lipschitz-continuous for all i, it follows that there exists L′ > 0 such that

for all i, h(i, s) △= ∣vi(s) −wi(s)∣2 is L′-Lipschitz-continuous in the second
argument, within a small neighborhood around s = t. In other words,

∣h(i, t + ε) − h(i, t)
ε

∣ ≤ L′ (72)

for all i and all sufficiently small ε. Then,

d

dt
∥v −w∥2w = lim

ε↓0

∞
∑
i=0

2−i
h(i, t + ε) − h(i, t)

ε

= lim
ε↓0 ∫i∈Z+

h(i, t + ε) − h(i, t)
ε

dµN, (73)

where µN is a measure on Z+ defined by µN(i) = 2−i, i ∈ Z+. By Eq. (72)
and the dominated convergence theorem, we can exchange the limit and

16For notational convenience, we remove the dependence on t throughout this deriva-
tion, with the convention that all derivatives are taken with respect to t.
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integration in Eq. (73) and obtain

d

dt
∥v −w∥2w = lim

ε↓0 ∫i∈Z+
h(i, t + ε) − h(i, t)

ε
dµN

= ∫
i∈Z+

lim
ε↓0

h(i, t + ε) − h(i, t)
ε

dµN

=
∞
∑
i=0

(vi −wi) (v̇i − ẇi)
2i−1

, (74)

which justifies step (a) in Eq. (71). Step (b) follows from the fact that ȧ and
l̇ are both continuous and linear in v (see Eqs. (42)–(44)).

The specific value of C can be derived after some straightforward algebra,
which we isolate in the following claim:

Claim 14.

∞
∑
i=0

(vi −wi) [(ȧv
i − l̇vi ) − (ȧw

i − l̇wi )]
2i−1

≤ 6(λ + 1 − p) ∥v −w∥2w , (75)

Proof. See Appendix A.2.

Now suppose that v(0) = w(0). By Gronwall’s inequality17 and Eq. (71),
we have

∥v(t) −w(t)∥2w ≤ ∥v(0) −w(0)∥2w e
Ct = 0, ∀t ∈ [0,∞), (76)

which establishes the uniqueness of fluid limits on [0,∞).

The following corollary is an easy, but important, consequence of the
uniqueness proof.

Corollary 15. (Continuous Dependence on Initial Conditions)
Denote by v(v0, ⋅) the unique solution to the fluid model given initial con-
dition v0 ∈ V∞. If wn ∈ V∞ for all n, and ∥wn − v0∥w → 0 as n →∞, then
for all t ≥ 0,

lim
n→∞

∥v(wn, t) − v(v0, t)∥w = 0. (77)

Proof. The continuity with respect to the initial condition is a direct
consequence of the inequality in Eq. (76): if v(wn, ⋅) is a sequence of fluid

17We use a special case of Gronwall’s inequality, which states that if u̇(t) ≤ Cu(t) on
t ∈ [a, b], then u(t) ≤ u(a)eCt for all t ∈ [a, b]. For an introduction to Gronwall’s inequality,
see [28] and references therein.
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solutions with initial conditions wn ∈ V∞ and if ∥wn − v0∥2w → 0 as N →∞,
then for any t ∈ [0,∞),

∥v(v0, t) − v(wn, t)∥2
w
≤ ∥v0 −wn∥2

w
eCt → 0, as n→∞.

This completes the proof.

Remark: v(⋅) versus s(⋅), and the Uniqueness of Fluid Limits.
As was mentioned in Section 2.2, we have chosen to work primarily with
the aggregate queue length process, VN(⋅) (Eq. (2)), instead of the normal-
ized queue length process, SN(⋅) (Eq. (3)). Recall that for any finite N , the
two processes are related by simple transformations, namely, for all i ≥ 0,

VN
i (t) △= ∑∞

j=i S
N
j (t) , and SNi (t) △= VN

i (t)−VN
i+1(t). Therefore, there seems

to be no obvious reason to favor one representation over the other when N
is finite. However, in the limit of N → ∞, it turns out that the fluid model
associated with VN(⋅) is much easier to work with in establishing uniqueness
of fluid solutions (Theorem 4).

A key to the the proof of Theorem 4 is a contraction of the drifts (Eq. (71)),
which, surprisingly, would have failed if we had used the the alternative state
representation si(t) = vi(t)−vi+1(t). The uniqueness result should still hold,
but the proof would be much more difficult. The intuitive reason is that the
sum of the drifts of the si’s provided by the centralized service remains
constant as long as the system is non-empty; hence, by adding up all the
coordinates of si, we eliminate many of the drift discontinuities. The fact
that such a simple linear transformation can greatly simplify the analysis of
an otherwise much more complex dynamical system may be of independent
interest.

A more elaborate discussion on this topic, along with a counterexample,
is provided in Appendix B.

6.3. Convergence to a Fluid Solution over a Finite Horizon. We now
prove Theorem 6.

Proof. (Theorem 6) The proof follows from the sample-path tight-
ness in Proposition 11 and the uniqueness of fluid limits from Theorem 4.
By assumption, the sequence of initial conditions V(0,N) converges to some
v0 ∈ V∞, in probability. Since the space V∞ is separable and complete under
the ∥ ⋅∥w metric, by Skorohod’s representation theorem, we can find a proba-
bility space (Ω0,F0,P0) on which V(0,N) → v0 almost surely. By Proposition
11 and Theorem 4, for almost every ω ∈ Ω, any subsequence of VN(ω, t) con-
tains a further subsequence that converges to the unique fluid limit v(v0, t)
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uniformly on any compact interval [0, T ]. Therefore for all T <∞,

lim
N→∞

sup
t∈[0,T ]

∥VN(ω, t) − v(v0, t)∥
w
= 0, P−almost surely, (78)

which implies convergence in probability, and Eq. (28) holds.

6.4. Convergence to the Invariant State vI . We will prove Theorem 5 in
this section. We switch to the alternative state representation, s(t), where

si(t)
△= vi+1(t) − vi(t), ∀i ≥ 0, (79)

to study the evolution of a fluid solution as t →∞. It turns out that a nice
monotonicity property of the evolution of s(t) induced by the drift structure
will help establish the convergence to the invariant state. We recall that
s0(t) = 1 for all t, and note that for all points where v is differentiable,

ṡi(t) = v̇i(t) − v̇i+1(t) = λ(si−1 − si) − (1 − p)(si − si+1) − gsi (s),

for all i ≥ 1, where gsi (s)
△= gi(v) − gi+1(v). Throughout this section, we will

use both representations v(t) and s(t) to refer to the same fluid solution,
with their relationship specified in Eq. (79).

The approach we will be using is essentially a variant of the convergence
proof given in [3]. The idea is to partition the space S∞ into dominating
classes, and show that (i) dominance in initial conditions is preserved by
the fluid model, and (ii) any solution s(t) to the fluid model with an ini-
tial condition that dominates, or is dominated by, the invariant state sI

converges to sI as t → ∞. Properties (i) and (ii) together imply the con-
vergence of the fluid solution s(t) to sI , as t → ∞, for any finite initial
condition. It turns out that such dominance in s is much stronger than a
similarly defined relation for v. For this reason we do not use v but instead
rely on s to establish the result.

Definition 16. (Coordinate-wise Dominance) For any s, s′ ∈ S∞,
we write

1. s ⪰ s′ if si ≥ s′i, for all i ≥ 0;
2. s ≻ s′ if s ≠ s′, s ⪰ s′ and si > s′i, for all i ≥ 1 for which s′i > 0.18

The following lemma states that ⪰-dominance in initial conditions is pre-
served by the fluid model.

18We need the condition s ≠ s′ in order to rule out the case where s = s′ = 0.
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Lemma 17. Let s1(⋅) and s2(⋅) be two solutions to the fluid model such
that s1(0) ⪰ s2(0). Then s1(t) ⪰ s2(t),∀t ≥ 0.

Proof. By the continuous dependence of a fluid limit on its initial con-
dition (Corollary 15), it suffices to verify that s1(t) ⪰ s2(t),∀t ≥ 0, whenever
s1(0) ≻ s2(0) (strictly dominated initial conditions).

Let t1 be the first time that there exists a coordinate for which s1(t) and
s2(t) are equal and positive:

t1
△= inf {t ≥ 0 ∶ s1(t1) ≠ s2(t1), s1i (t) = s2i (t) > 0, for some i ≥ 1} , (80)

If t1 =∞, one of the following must be true:

(1) s1(t) ≻ s2(t), for all t ≥ 0, in which case the claim holds.
(2) s1(t′) = s2(t′) at some t′ < ∞. By the uniqueness of solutions, s1(t) =

s2(t) for all t ≥ t′, in which case the claim also holds.

Hence, we assume t1 < ∞. Let k be the smallest coordinate index such
that s1(t1) and s2(t1) are equal at k, but differ on at least one of the two
adjacent coordinates, k − 1 and k + 1:

k
△= min{i ≥ 0 ∶ s1i (t1) = s2i (t1) > 0, max

j∈{1,−1}
{s1i+j(t1) − s2i+j(t1)} > 0} (81)

Since s1(t) ≻ s2(t), at all regular points t < t1 that are close enough to t1,

ṡ1k(t) − ṡ2k(t) = λ(s
1
k−1 − s2k−1) − (1 − p)(s2k+1 − s1k+1) − (gsk(s

1) − gsk(s
2)), (82)

where

gsk(s
1) − gsk(s

2)
≤ 0 ⋅ I{s2k+1 > 0} + [(p −min{p, λs1k}) − (p −min{p, λs2k})] ⋅ I{s2k+1 = 0}
= 0, (83)

and where the last equality comes from the fact that s1k(t) = s2k(t) by the
definition of k. Because s1(t) and s2(t) are continuous functions of t in every
coordinate, we can find a time t0 < t1 such that s1k(t0) > s2k(t0) and

ṡ1k(t) − ṡ2k(t) > 0, (84)

for all regular t ∈ (t0, t1). Since s1k(t1) − s2k(t1) = s1k(t0) − s2k(t0) + ∫
t1
t0

(ṡ1k(t) −
ṡ2k(t))dt, this contradicts the fact that s1k(t1) = s2k(t1), and hence proves the
claim.
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We are now ready to prove Theorem 5.

Proof. (Theorem 5) Let s(⋅), su(⋅), and sl(⋅) be three fluid limits with
initial conditions in S∞ such that su(0) ⪰ s(0) ⪰ sl(0) and su(0) ⪰ sI ⪰ sl(0).
By Lemma 17, we must have su(t) ⪰ sI ⪰ sl(t) for all t ≥ 0. Hence it suffices
to show that limt→∞ ∥su(t) − sI∥

w
= limt→∞ ∥sl(t) − sI∥

w
= 0. Recall that for

any regular t > 0,

v̇i(t) = λ(vi−1(t) − vi(t)) − (1 − p)(vi(t) − vi+1(t)) − gi(v(t))
= λsi−1(t) − (1 − p)si(t) − gi(v(t))

= (1 − p)(λsi−1(t) − gi(v(t))
1 − p

− si) . (85)

Recall, from the expressions for sIi in Theorem 2, that sIi+1 ≥
λsIi −p
1−p , ∀i ≥ 0.

From Eq. (85) and the fact that su0 = sI0 = 1, we have

v̇u1(t) = (1 − p)(λ − g1(v
u(t))

1 − p
− su1(t)) ≤ (1 − p) (sI1 − su1(t)) , (86)

for all regular t ≥ 0. To see why the above inequality holds, note that

λ − g1(vu(t))
1 − p

= λ − p
1 − p

≤ sI1, (87)

whenever su1(t) > 0, and

λ − g1(vu(t))
1 − p

= su1(t) = 0, (88)

whenever su1(t) = sI1 = 0.
We argue that Eq. (86) implies that

lim
t→∞

∣sI1 − su1(t)∣ = 0. (89)

To show this, we use the following technical lemma. The proof is elemen-
tary and is omitted.

Lemma 18. Let f(t) ∶ [0,∞) → R be non-negative and L-Lipschitz con-
tinuous. If f(t) is integrable, then limt→∞ f(t) = 0.

Let f1(t)
△= su1(t) − sI1. By Eq.(86), we have that v̇u1(t) = −(1 − p)f1(t).

Since vu1(t) is non-negative for all t, we have that f1(t) is integrable. We
then invoke Lemma 18, which yields that

lim
t→∞

∣sI1 − su1(t)∣ = lim
t→∞

f1(t) = 0. (90)
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We now continue by induction. Let fi(t)
△= sui (t) − sIi , and suppose that

fi(t) is integrable. By Eq. (85), we have that

v̇ui+1(t) = (1 − p)(
λsui (t) − gi(vu(t))

1 − p
− sui+1(t))

= (1 − p) [
λsIi − gi(vu(t))

1 − p
− sui+1(t) +

λ

1 − p
(sui (t) − sIi )]

≤ −(1 − p)fi+1(t) + λfi(t), (91)

where the last inequality follows by an argument parallel to the one used in
Eqs. (86)-(88). Since vui+1(t) is non-negative for all t, by Eq. (91), we have
that [−(1 − p)fi+1(t) + λfi(t)] is integrable. Since fi(t) is integrable by the
induction hypothesis, this implies that fi+1(t) is also integrable. Now, we
again invoke Lemma 18, and we have that

lim
t→∞

∣sui+1(t) − sIi+1∣ = lim
t→∞

fi+1(t) = 0. (92)

This establishes the convergence of su(t) to sI along all coordinates. Using
also the fact that 0 ≤ sui (t) ≤ 1 for all i and t, it is not hard to show that
this coordinate-wise convergence also implies that

lim
t→∞

∥su(t) − sI∥
w
= 0. (93)

Using the same set of arguments, we can show that limt→∞ ∥sl(t) − sI∥
w
= 0.

This completes the proof.

7. Convergence of Steady-State Distributions. We will prove The-
orem 7 in this section, which states that, for allN , the Markov process VN(t)
converges to a unique steady-state distribution, πN , as t→∞, and that the
sequence {πN}N≥1 concentrates on the unique invariant state of the fluid
model, vI , as N → ∞. This result is of practical importance, as it guaran-
tees that key quantities, such as the average queue length, as derived from
the expressions for vI , also serve as accurate approximations for the steady
state of the actual (finite) stochastic system.

Note that by the end of this section, we will have established our steady-
state approximation results, i.e.,

VN(t) t→∞Ð→ πN
N→∞Ð→ vI , (94)

as illustrated in Figure 5 of Section 3. Together with the transient approxi-
mation results established in the previous sections, these conclude the proofs
of all approximation theorems in this paper.
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Before proving Theorem 7, we first give an important proposition which
strengthens the finite-horizon convergence result stated in Theorem 6: we
establish a uniform speed of convergence over any compact set of initial
conditions. This proposition will be critical to the proof of Theorem 7 which
will appear later in the section.

7.1. Uniform Rate of Convergence to the Fluid Limit. Let the probabil-
ity space (Ω1,F1,P1) be the product space of (ΩW ,FW ,PW ) and (ΩU ,FU ,PU).
Intuitively, (Ω1,F1,P1) captures all exogenous arrival and service informa-

tion. Fixing ω1 ∈ Ω1 and v0 ∈ VM∩QN , denote by VN(v0, ω1, t) the resulting
sample path of VN given the initial condition VN(0) = v0. Also, denote by
v (v0, t) the solution to the fluid model for a given initial condition v0. We
have the following proposition.

Proposition 19. (Uniform Rate of Convergence to the Fluid

Limit) Fix T > 0 and M ∈ N. Let KN △= VM ∩QN . We have

lim
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω1, ⋅),v(v0, ⋅)) = 0, P1-almost surely, (95)

where the metric dZ+(⋅, ⋅) was defined in Eq. (39).

Proof. The proof highlights the convenience of the sample-path based
approach. By the same argument as in Lemma 9, we can find sets CW ⊂ ΩW

and CU ⊂ ΩU such that the convergence in Eqs. (35) and (36) holds over CW
and CU , respectively, and such that PW (CW ) = PU(CU) = 1. Let C1

△= CW ×CU .
Note that P1(C1) = 1.

To prove the claim, it suffices to show that

lim
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω1, ⋅),v(v0, ⋅)) = 0, ∀ω1 ∈ C1. (96)

We start by assuming that the above convergence fails for some ω̃1 ∈ C1,
which amounts to having a sequence of “bad” sample paths of VN that are
always a positive distance away from the corresponding fluid solution with
the same initial condition, as N → ∞. We then find nested subsequences
within this sequence of bad sample paths, and construct two solutions to the
fluid model with the same initial condition, contradicting the uniqueness of
fluid model solutions.

Assume that there exists ω̃1 ∈ C1 such that

lim sup
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω̃1, ⋅),v(v0, ⋅)) > 0. (97)
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This implies that there exist ε > 0, {Ni}∞i=1 ⊂ N, and {v(0,Ni)}∞
i=1 with

v(0,Ni) ∈KNi , such that

dZ+ (VN(v(0,Ni), ω̃1, ⋅),v(v(0,Ni), ⋅)) > ε, (98)

for all i ∈ N. We make the following two observations:

1. The set VM is closed and bounded, and the fluid solutions v(v(0,Ni), ⋅)
are L-Lipschitz-continuous for all i. Hence the sequence of functions
{v(v(0,Ni), ⋅)}∞i=1 are equicontinuous and uniformly bounded on [0, T ].
We have by the Arzela-Ascoli theorem that there exists a subsequence
{N2

i }
∞
i=1 of {N1

i }
∞
i=1 such that

dZ+ (v (v(0,N2
i ), ⋅) , ṽa(⋅))→ 0, (99)

as i → ∞, for some Lipschitz-continuous function ṽa(⋅) with ṽa(0) ∈
VM . By the continuous dependence of fluid solutions on initial con-
ditions (Corollary 15), ṽa(⋅) must be the unique solution to the fluid
model with initial condition ṽa(0), i.e.,

ṽa(t) = v (ṽa(0), t) , ∀t ∈ [0, T ]. (100)

2. Since ω1 ∈ C1, by Propositions 11 and 12, there exists a further sub-

sequence {N3
i }

∞
i=1 of {N2

i }
∞
i=1 such that VN3

i (v(0,N3
i ), ω̃1,⋅) → ṽb(⋅)

uniformly over [0, T ] as i → ∞, where ṽb(⋅) is a solution to the fluid
model. Note that since {N3

i }
∞
i=1 ⊂ {N2

i }
∞
i=1, we have ṽb(0) = ṽa(0).

Hence,
ṽb(t) = v (ṽa(0), t) , ∀t ∈ [0, T ]. (101)

By the definition of ω̃1 (Eq. (97)) and the fact that ω̃1 ∈ C1, we must have
supt∈[0,T ] ∥ṽa(t) − ṽb(t)∥

w
> ε, which, in light of Eqs. (100) and (101), con-

tradicts the uniqueness of the fluid limit (Theorem 4). This completes the
proof.

The following corollary, stated in terms of convergence in probability,
follows directly from Proposition 19. The proof is straightforward and is
omitted.

Corollary 20. Fix T > 0 and M ∈ N. Let KN △= VM ∩QN . Then, for
all δ > 0,

lim
N→∞

P1 (ω1 ∈ Ω1 ∶ sup
v0∈KN

dZ+ (VN (v0, ω1, ⋅) ,v(v0, ⋅)) > δ) = 0. (102)
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7.2. Proof of Theorem 7. We first state a tightness result that will be
needed in the proof of Theorem 7.

Proposition 21. For every N < ∞ and p ∈ (0,1], VN(t) is positive-
recurrent and VN(t) converges in distribution to a unique steady-state dis-
tribution πN,p as t → ∞. Furthermore, the sequence {πN,p}∞N=1 is tight, in
the sense that for any ε > 0, there exists M > 0 such that

πN,p (VM) △= πN,p (VN
1 ≤M) ≥ 1 − ε, ∀N ≥ 1. (103)

Proof Sketch. The proposition is proved using a stochastic dominance
argument, by coupling with the case p = 0. While the notation may seem
heavy, the intuition is simple: when p = 0, the system degenerates into a
collection of M/M/1 queues with independent arrivals and departures (but
possibly correlated initial queue lengths), and it is easy to show that the
system is positive recurrent and that the resulting sequence of steady-state
distributions is tight as N →∞. The bulk of the proof is to formally argue
that when p > 0, the system behaves “no worse” than when p = 0 in terms of
positive recurrence and tightness of steady-state distributions. See Appendix
A.3 for a complete proof using this stochastic dominance approach.

Remark. It is worth mentioning that the tightness of πN,p could alterna-

tively be established by defining a Lyapunov function on VN and checking its
drift with respect to the underlying embedded discrete-time Markov chain.
By applying the Foster-Lyapunov stability criterion, one should be able to
prove positive recurrence of VN and give an explicit upper-bound on the
expected value of VN

1 in steady state.19 If this expectation is bounded as
N →∞, we will have obtained the desirable result by the Markov inequality.
We do not pursue this direction in this paper, because we believe that the
stochastic dominance approach adopted here provides more insight by ex-
ploiting the monotonicity in p of the steady-state queue length distribution.

Proof. (Theorem 7) For the rest of the proof, since p is fixed, we
will drop p in the super-script of πN,p. By Proposition 21, the sequence of
distributions πN is tight, in the sense that for any ε > 0, there exists M(ε) ∈ N
such that for all M ≥ M(ε), πN (VM) ≥ 1 − ε, for all N. (This is the same

as the usual notion of tightness, because the set VM is compact.)

19For an overview of the use of the Foster-Lyapunov criterion in proving stability of
queueing networks, see, e.g., [25].
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The rest of the proof is based on a classical technique based on continuous
test functions (see Section 4 of [2]). The continuous dependence on initial
conditions and the uniform rate of convergence established previously will
be used here. Let C be the space of bounded continuous functions from V∞

to R. Define the mappings TN(t) and T (t) on C by:

(TN(t)f) (v0) △= E [f (VN(t)) ∣ VN(0) = v0] ,

(T (t)f) (v0) △= E [f (v(t)) ∣ v(0) = v0] = f(v(v0, t)), for f ∈ C.

With this notation, πN being a steady-state distribution for the Markov
process VN(t) is equivalent to having for all t ≥ 0, f ∈ C,

∫
v0∈V∞∩QN

(TN(t)f)(v0)dπN = ∫
v0∈V∞∩QN

f(v0)dπN . (104)

Since {πN} is tight, it is sequentially compact under the topology of weak
convergence, by Prokhorov’s theorem. Let π be the weak limit of some sub-
sequence of {πN}. We will show that for all t ≥ 0, f ∈ C,

∣∫
v0∈V∞

(T (t)f)(v0)dπ(v0) − ∫
v0∈V∞

f(v0)dπ(v0)∣ = 0. (105)

In other words, π is also a steady-state distribution for the deterministic fluid
limit. Since by Theorem 2, the invariant state of the fluid limit is unique,
Eq. (105) will imply that π (vI) = 1, and this will prove the theorem.

To show Eq. (105), we write

∣∫ T (t)f dπ − ∫ f dπ∣ ≤ lim sup
N→∞

∣∫ T (t)f dπ − ∫ T (t)f dπN ∣

+ lim sup
N→∞

∣∫ T (t)f dπN − ∫ TN(t)f dπN ∣

+ lim sup
N→∞

∣∫ TN(t)f dπN − ∫ f dπ∣ (106)

We will show that all three terms on the right-hand side of Eq. (106)
are zero. Since v(v0, t) depends continuously on the initial condition v0

(Corollary 15), we have T (t)f ∈ C,∀t ≥ 0, which along with πN ⇒ π implies
that the first term is zero. For the third term, since πN is the steady-state
distribution of VN , we have that ∫ TN(t)fdπN = ∫ fdπN , ∀t ≥ 0, f ∈ C.
Since πN ⇒ π, this implies that the last term is zero.



46

To bound the second term, fix some M ∈ N and let K = VM . We have

lim sup
N→∞

∣∫ T (t)fdπN − ∫ TN(t)fdπN ∣

≤ lim sup
N→∞

∣∫
K
T (t)fdπN − ∫

K
TN(t)fdπN ∣

+ lim sup
N→∞

∣∫
Kc
T (t)fdπN − ∫

Kc
TN(t)fdπN ∣

(a)
≤ lim sup

N→∞
∫
K

∣TN(t)f − T (t)f ∣dπN + lim sup
N→∞

2 ∥f∥πN(Kc)

(b)= lim sup
N→∞

2 ∥f∥πN(Kc) , (107)

where Kc △= V∞ −K and ∥f∥ △= supv∈V∞ ∣f(v)∣. The inequality (a) holds be-

cause T (t) and TN(t) are both conditional expectations and are hence con-
traction mappings with respect to the sup-norm ∥f∥. Equality (b) (lim supN→∞
∫K ∣TN(t)f − T (t)f ∣dπN = 0) can be shown using an argument involving in-
terchanges of the order of integration, which essentially follows from the
uniform rate of convergence to the fluid limit over the compact set K of
initial conditions (Corollary 20). We isolate equality (b) in the following
claim:

Claim 22. Let K be a compact subset of V∞, we have

lim sup
N→∞

∫
K

∣TN(t)f − T (t)f ∣dπN = 0 (108)

Proof. Fix some δ > 0. There exists N(δ) > 0 such that for all N ≥ N(δ),
we have

∫
K

∣T (t)f − TN(t)f ∣ dπN

= ∫
v0∈K

∣f(v(v0, t)) −E [f (VN(t)) ∣VN(0) = v0] ∣dπN(v0)

≤ ∫
v0∈K

(∫
vt∈V∞∩QN

∣f (v(v0, t)) − f (vt)∣ dPVN (t)∣VN (0) (vt ∣ v0)) dπN(v0)

(a)
≤ ∫

v0∈K
sup

vt∈V∞,∥vt−v(v0,t)∥w≤δ
∣f(v(v0, t)) − f(vt)∣ dπN(v0)

≤ ωf(Kδ, δ),

where Kδ is the δ-extension of K,

Kδ △= {x ∈ V∞ ∶ ∥x − y∥w ≤ δ for some y ∈K} , (109)
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and ωf(X,δ) is the modulus of continuity of f restricted to set X:

ωf(K,δ)
△= sup

x,y∈X,∥x−y∥w≤δ
∣f(x) − f(y)∣ . (110)

To see why inequality (a) holds, recall that by Corollary 20, starting
from a compact set of initial conditions, the sample paths of a finite system
stay uniformly close to a fluid limit on a compact time interval, with high
probability. Inequality (a) then follows from Eq. (102) and the fact that f

is bounded. Because K is a compact set, it is not difficult show that Kδ0 is
also compact for any fixed δ0 > 0. Hence f is uniformly continuous on Kδ0 ,
and we have

lim sup
N→∞

∣∫
K
T (t)fdπN − ∫

K
TN(t)fdπN ∣ ≤ lim sup

δ→0
ωf(Kδ0 , δ) = 0, (111)

which establishes the claim.

Going back, since Eq. (107) holds for any K = VM , M ∈ N, we have, by
the tightness of πN , that the middle term in Eq. (106) is also zero. This
shows that any limit point π of {πN} is indeed the unique invariant state of

the fluid model (vI). This completes the proof of Theorem 7.

8. Conclusions and Future Work. The overall objective of this pa-
per is to study how the degree of centralization in allocating computing
or processing resources impacts performance. This investigation was moti-
vated by applications in server farms, cloud centers, as well as more general
scheduling problems with communication constraints. Using a fluid model
and associated convergence theorems, we showed that any small degree
of centralization induces an exponential performance improvement in the
steady-state scaling of system delay, for sufficiently large systems. Simu-
lations show good accuracy of the model even for moderately-sized finite
systems (N = 100).

There are several interesting and important questions which we did not
address in this paper. We have left out the question of what happens when
the central server adopts a scheduling policy different from the Longest-
Queue-First (LQF) policy considered in this paper. Since scheduling a task
from a longest queue may require significant global communication overhead,
other scheduling policies that require less global information may be of great
practical interest. Some alternatives include

1. (Random k-Longest-Queues) The central server always serves a task
from a queue chosen uniformly at random among the k most loaded
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queues, where k ≥ 2 is a fixed integer. Note that the LQF policy is a
sub-case, corresponding to k = 1.

2. (Random Work-Conserving) The central server always serves a task
from a queue chosen uniformly at random among all non-empty queues.

It will be interesting to see whether a similar exponential improvement in
the delay scaling is still present under these other policies. Based on the
analysis done in this paper, as well as some heuristic calculations using the
fluid model, we conjecture that in order for the phase transition phenomenon
to occur, a strictly positive fraction of the central service tokens must be used
to serve a longest queue. Hence, between the two policies listed above, the
former is more likely to exhibit a similar delay scaling improvement than
the latter.

Assuming that the LQF policy is used, another interesting question is
whether a non-trivial delay scaling can be observed if p, instead of being
fixed, is a function of N and decreases to zero as N → ∞. This is again of
practical relevance, because having a central server whose processing speed
scales linearly with N may be expensive or infeasible for certain applica-
tions.

On the modeling end, some of our current assumptions could be restric-
tive for practical applications. For example, the transmission delays between
the local and central stations are assumed to be negligible compared to pro-
cessing times; this may not be true for data centers that are separated by
significant geographic distances. Also, the arrivals and services are mod-
eled by Poisson processes, while in reality more general traffic distributions
(e.g., heavy-tailed traffic) are observed. Further work to extend the current
model by incorporating these realistic constraints could be of great interest,
although obtaining theoretical characterizations seems quite challenging.

Last, the surprisingly simple expressions in our results make it tempting to
ask whether similar performance characterizations can be obtained for other
stochastic systems with partially centralized control laws; insights obtained
here may find applications beyond the realm of queueing theory.
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APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Proposition 11. Here we will follow a line of argu-
ment in [1] to establish the existence of fluid limits. We begin with some
definitions. Recall the uniform metric, d(⋅, ⋅), defined on D[0, T ]:

d(x, y) △= sup
t∈[0,T ]

∣x(t) − y(t)∣ , x, y ∈D[0, T ]. (112)

Definition 23. Let Ec be a non-empty compact subset of D[0, T ]. A
sequence of subsets of D[0, T ], E = {EN}N≥1, is said to be asymptotically
close to the set Ec if the distance to Ec of any element in E decreases to zero
uniformly, i.e., if

lim
N→∞

sup
x∈EN

d (x,Ec) = 0, (113)

where the distance from a point to a set is defined as

d (x,Ec)
△= inf
y∈Ec

d (x, y) . (114)

Definition 24. A point y ∈ D[0, T ] is said to be a cluster point of a
sequence {xN}N≥1 if

lim inf
N→∞

d (xN , y) = 0. (115)

A point y ∈D[0, T ] is a cluster point of a sequence of subsets E = {EN}N≥1,
if it is a cluster point of some {xN}N≥1 such that:

xN ∈ EN , ∀N ≥ 1. (116)

Lemma 25. Let C (E) be the set of cluster points of E = {EN}N≥1. If E
is asymptotically close to a compact set Ec, then

1. E is asymptotically close to C (E).
2. C (E) ⊂ Ec.

Proof. Suppose that the first claim is false. Then, there exists a subse-
quence {xNi}i≥1, where xNi ∈ ENi ,∀i, such that

d (xNi ,C (E)) = γ > 0, ∀i ≥ 1. (117)

However, since E is asymptotically close to Ec by assumption, there exists
a sequence {yi} ⊂ Ec such that

d (xNi , yi)→ 0, as i→∞. (118)
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Since Ec is compact, {yi} has a convergent subsequence with limit ỹ. By
Eq. (118), ỹ is a cluster point of {xNi}, and hence a cluster point of E ,
contradicting Eq. (117). This proves the first claim.

The second claim is an easy consequence of the closedness of Ec. Let x̃ be
any point in C (E). There exists a subsequence {xNi}, where xNi ∈ ENi ,∀i,
such that limi→∞ d (xNi , x̃) = 0, by the definition of a cluster point. By the
same reasoning as in the first part of the proof (Eq. (118)), there exists a
sequence {yi} ⊂ Ec which also converges to x̃. Since Ec is closed, x̃ ∈ Ec.

We now put the above definition into our context. Define E = {EN}N≥1
to be a sequence of subsets of D[0, T ] such that

EN = {x ∈D[0, T ] ∶ ∣x (0) − x0∣ ≤MN , and

∣x (a) − x (b) ∣ ≤ L∣a − b∣ + γN , ∀a, b ∈ [0, T ]} , (119)

where x0 is a constant, MN ↓ 0 and γN ↓ 0 are two sequences of diminishing
non-negative numbers. We first characterize the set of cluster points of the
sequence E . Loosely speaking, E represents a sequence of sample paths that
get increasingly “close” to the set of L-Lipschitz continuous functions, in
that all elements of E are “γN -approximately” Lipschitz-continuous. The
definition below and the lemma that follows formalize this notion.

Define Ec as the set of Lipschitz-continuous functions on [0, T ] with Lip-
schitz constant L and initial values bounded by a positive constant M :

Ec
△= {x ∈D[0, T ] ∶ ∣x (0) ∣ ≤M, and ∣x (a) − x (b) ∣ ≤ L∣a − b∣,∀a, b ∈ [0, T ]} .

(120)
We have the following property of Ec.

Lemma 26. Ec is compact.

Proof. Ec is a set of L-Lipschitz continuous functions x(⋅) on [0, T ] with
initial values contained in a closed and bounded interval. By the Arzela-
Ascoli theorem, every sequence of elements of Ec contains a further subse-
quence which converges to some x∗(⋅) uniformly on [0, T ]. Since all elements
in Ec are L-Lipschitz continuous, x∗(⋅) is also Lipschitz-continuous on [0, T ].
It is clear that x∗(⋅) also satisfies x∗(0) ≤M . Hence, x∗(⋅) ∈ Ec.

Lemma 27. E is asymptotically close to Ec.

Proof. The proof involves an elementary but tedious interpolation ar-
gument; see Appendix A.1 of [29] for the details of this argument.
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Finally, the following lemma states that all sample paths XN (ω, ⋅) with
ω ∈ C belong to EN , with appropriately chosen {MN}N≥1 and {γN}N≥1.

Lemma 28. Suppose that there exists v0 ∈ V∞ such that for all ω ∈ C

∥VN (ω,0) − v0∥
w
≤ M̃N , (121)

for some M̃N ↓ 0. Then for all ω ∈ C and i ∈ Z+, there exist L > 0 and
sequences MN ↓ 0 and γN ↓ 0 such that

XN
i (ω, ⋅) ∈ EN , (122)

where EN is defined as in Eq. (119).

Proof. Intuitively, the lemma follows from the uniform convergence of
scaled sample paths of the event process WN (ω, t) to (1 + λ) t (Lemma 9),
because jumps along any coordinate of the sample path have a magnitude
of 1

N , and because all coordinates of XN are dominated in terms of W and
the total number of jumps.

Based on our coupling construction (cf. Section 4.3), each coordinate of
AN ,LN , and CN is monotonically non-decreasing, with a positive jump at
time t of magnitude 1

N only if there is a jump of same size at time t in
W (ω, ⋅). Hence for all i ≥ 1,

∣AN
i (ω, a) −AN

i (ω, b)∣ ≤ ∣WN (ω, a) −WN (ω, b)∣ , ∀a, b ∈ [0, T ]. (123)

The same inequalities hold for LN and CN . Since by construction,

VN
i (ω, t) = VN

i (ω,0) +AN
i (ω, t) −LNi (ω, t) −CN

i (ω, t) , ∀i ≥ 1, (124)

we have, for all i ≥ 1,

∣XN
i (ω, a) −XN

i (ω, b)∣ ≤ 3 ∣WN (ω, a) −WN (ω, b)∣ , ∀a, b ∈ [0, T ]. (125)

Since ω ∈ C, WN (ω, ⋅) converges uniformly to (λ + 1) t on [0,T] by Lemma
9. This implies that there exists a sequence γ̃N ↓ 0 such that for all N ≥ 1,

∣WN (ω, a) −WN (ω, b)∣ ≤ (λ + 1) ∣a − b∣ + γ̃N , ∀a, b ∈ [0, T ], (126)

which, in light of Eq. (125), implies that

∣XN
i (ω, a) −XN

i (ω, b)∣ ≤ 3 (λ + 1) ∣a − b∣ + 3γ̃N , ∀a, b ∈ [0, T ], i ≥ 1. (127)

Finally, note that all coordinates of XN (ω,0) except for VN (ω,0) are equal
to 0 by definition. The proof is completed by setting MN = 2iM̃N , γN = 3γ̃N ,
and L = 3 (λ + 1).
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We are now ready to prove Proposition 11.

Proof. (Proposition 11) Let us first summarize the key results we
have so far:

1. (Lemma 26) Ec is a set of L-Lipschitz continuous functions with bounded
values at 0, and it is compact and closed.

2. (Lemma 27) E = {EN}N≥1, a sequence of sets of γN -approximate L-
Lipschitz-continuous functions with convergent initial values, is asymp-
totically close Ec.

3. (Lemma 28) For all ω ∈ C, XN (ω, ⋅) is in EN for all N ≥ 1.

The rest is straightforward: Pick any ω ∈ C. By the above statements, for any
i ∈ Z+ one can find a subsequence {XNj (ω, ⋅)}∞

j=1 and a sequence {yj}∞j=1 ⊂ Ec
such that

d (XNj
i (ω, ⋅) , yj)Ð→ 0, as j →∞. (128)

Since by Lemma 26 (statement 1 above), Ec is compact and closed, {yj}∞j=1
has a limit point y∗ in Ec, which implies that a further subsequence of

{X
Nj
i (ω, ⋅)}

∞

i=1
converges to y∗. Moreover, since VN(ω,0)→ v0 andAN(ω,0) =

LN(ω,0) = CN(ω,0) = 0, y∗(0) is unique. This proves the existence of a L-
Lipschitz-continuous limit point y∗(⋅) at any single coordinate i of XN(⋅).

Starting with the coordinate-wise limit points, we then use a diagonal
argument to construct the limit points of XN in the DZ+[0, T ] space. Let
v1(t) be any L-Lipschitz-continuous limit point of VN

1 , so that a subsequence

V
N1
j

1 (ω, ⋅) → v1 as j → ∞ in d(⋅, ⋅). Then, proceed recursively by letting

vi+1(t) be a limit point of a subsequence of {V
N i
j

i+1(ω, ⋅)}
∞

j=1
, where {N i

j}∞j=1
are the indices for the ith subsequence. Finally, define

vi = vi, ∀i ∈ Z+. (129)

We claim that v is indeed a limit point of VN in the dZ+(⋅, ⋅) norm. To see
this, first note that for all N ,

VN
1 (ω, t) ≥ VN

i (ω, t) ≥ 0, ∀i ≥ 1, t ∈ [0, T ]. (130)

Since we constructed the limit point v by repeatedly selecting nested sub-
sequences, this property extends to v, i.e.,

v1(t) ≥ vi(t) ≥ 0, ∀i ≥ 1, t ∈ [0, T ]. (131)
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Since v1(0) = v0
1 and v1(t) is L-Lipschitz-continuous, we have that

sup
t∈[0,T ]

∣vi(t)∣ ≤ sup
t∈[0,T ]

∣v1(t)∣ ≤ ∣v0
1∣ +LT, ∀i ∈ Z+. (132)

Set N1 = 1, and let

Nk = min{N ≥ Nk−1 ∶ sup
1≤i≤k

d(VN
i (ω, ⋅),vi) ≤

1

k
} , ∀k ≥ 2. (133)

Note that the construction of v implies Nk is well defined and finite for all
k. From Eqs. (132)-(133), we have for all k ≥ 2,

dZ+ (VNk(ω, ⋅),v) = sup
t∈[0,T ]

¿
ÁÁÁÀ∞
∑
i=0

∣VNk
i (ω, t) − vi(t)∣

2

2i

≤ 1

k
+

¿
ÁÁÀ(∣v0

1∣ +LT)2
∞
∑
i=k+1

1

2i

= 1

k
+ 1

2k/2
(∣v0

1∣ +LT) (134)

Hence dZ+ (VNk(ω, ⋅),v) → 0 as k → ∞. The existence of the limit points
a(t), l(t), and c(t) can be established by an identical argument. This com-
pletes the proof.

A.2. Proof of Claim 14.

Proof. (Claim 14) Let mi
△= vi −wi. Note that for all i ≥ 1

(vi −wi) [(ȧv
i − l̇vi ) − (ȧw

i − l̇wi )]
= (vi −wi) [λ(vi−1 −wi−1) − λ (vi −wi) − (1 − p) (vi −wi) + (1 − p) (vi+1 −wi+1)]
= mi (λmi−1 − λmi − (1 − p)mi + (1 − p)mi+1)

≤ λ

2
(m2

i−1 +m2
i ) − (λ + 1 − p)m2

i +
1 − p

2
(m2

i +m2
i+1)

≤ λm2
i−1 + (1 − p)m2

i+1 −
λ + 1 − p

2
m2
i

≤ λm2
i−1 + (1 − p)m2

i+1. (135)

For i = 0, by Eq. (70), we have

(v0 −w0) [(ȧv
0 − l̇v0 ) − (ȧw

0 − l̇w0 )] = (v1 −w1) [(ȧv
1 − l̇v1 ) − (ȧw

1 − l̇w1 )]
≤ λm2

0 + (1 − p)m2
2. (136)
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Combining Eqs. (135) and (136), we have

∞
∑
i=0

(vi −wi) [(ȧv
i − l̇vi ) − (ȧw

i − l̇wi )]
2i−1

≤ 2(λm2
0 + (1 − p)m2

2) +
∞
∑
i=1

1

2i−1
(λm2

i−1 + (1 − p)m2
i+1)

≤ 6(λ + 1 − p)(
∞
∑
i=0

1

2i
m2
i ) (137)

= 6(λ + 1 − p)∥v −w∥2w.

This proves the claim.

A.3. Proof of Proposition 21.

Proof. (Proposition 21) Fix N > 0 and p ∈ (0,1]. Let {VN [n]}n≥0 be
the discrete-time embedded Markov chain for VN(t), defined by

VN [n] △= VN(tn), n ≥ 0, (138)

where tn, n ≥ 1, as defined previously, is the time of the nth event taking
place in the system (i.e., the time of the nth jump in WN(⋅)), with the
convention that t0 = 0. Let also UN(t) be the sample path obtained if we
set p to zero, and let UN [n] be the corresponding embedded chain.

Definition 29. (Stochastic Dominance) Let {X[n]}n≥0 and {Y [n]}n≥0
be two discrete-time stochastic processes taking values in RZ+. We say that
{X[n]}n≥0 is stochastically dominated by {Y [n]}n≥0, denoted by {X[n]}n≥0 ⪯st
{Y [n]}n≥0, if there exist random processes {X ′[n]}n≥0 and {Y ′[n]}n≥0 de-
fined on a common probability space (Ω,F ,P), such that

1. X ′ and Y ′ have the same distributions as X and Y , respectively.
2. X ′[n] ≤ Y ′[n], ∀n ≥ 0, P−almost surely.

We have the following lemma:

Lemma 30. Fix any p ∈ (0,1]. If VN [0] = UN [0], then {VN
1 [n]}n≥0 ⪯st

{UN
1 [n]}n≥0.

Proof. We will first interpret the system with p > 0 as that of an op-
timal scheduling policy with a time-varying channel. The result will then
follow from the classical result in Theorem 3 of [23], with a slightly modified
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arrival assumption, but almost identical proof steps. Recall the Secondary
Motivation described in Section 1.2. Here we will use a similar but modified
interpretation: instead of thinking of the central server as deciding between
serving a most-loaded station versus serving a random station, imagine that
the central server always serves a most-loaded station among the ones that
are connected to it. The channel between the central server and local sta-
tions, represented by a set of connected stations, evolves according to the
following dynamics and is independent across different time slots:

1. With probability p, all N stations are connected to the central server.
2. Otherwise, only one station, chosen uniformly at random from the N

stations, is connected to the central server.

It is easy to see that, under the above channel dynamics, a system in which
a central server always serves a most-loaded stations among connected sta-
tions will produce the same distribution for VN [n] as our original system.
Note that the case p = 0 is equivalent to scheduling tasks under the same
channel condition just described, but with a server that servers a station
chosen uniformly at random among all connected stations. The advantage
of the above interpretation is that it allows us to treat VN [n] and UN [n]
as the resulting aggregate queue length processes by applying two differ-
ent scheduling policies to the same arrival, token generation, and channel
processes. In particular, VN

1 [n] corresponds to the resulting normalized to-

tal queue length process (VN △= 1
N ∑

N
i=1Qi(tn)), when a longest-queue-first

policy is applied, and UN
1 [n] corresponds to the normalized total queue

length process, when a fully random scheduling policy is applied. Theorem
3 of [23] states that when the arrival and channel processes are symmet-
ric with respect to the identities of stations, the total queue length process
under a longest-queue-first policy is stochastically dominated by all other
causal policies (i.e., policies that use only information from the past). Since
the arrival and channel processes are symmetric in our case, and a random
scheduling policy falls under the category of causal policies, the statement
of Theorem 3 of [23] implies the validity of our claim.

There is, however, a minor difference in the assumptions of Theorem 3
of [23] and our setup that we note here. In [23], it is possible that both
arrivals and service occur during the same slot, while in our case, each
event corresponds either to an arrival to a queue or the generation of a
service token, but not both. This technical difference can be handled easily
by discussing separately, whether the current slot corresponds to an arrival or
a service. The structure of the proof for Theorem 3 in [23] remains unchanged
after this modification, and is hence not repeated here.
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Having established a stochastic dominance relation between the two (discrete-
time) embedded Markov chains, and using the fact that the continuous-time
chains V(t) and U(t) have transitions at the jump times of the common
underlying Poisson process W (t), it is elementary to check that V(t) is
stochastically dominated by U(t); see Appendix A.2 in [29] for the details
of this argument.

We now look at the behavior of UN(t). When p = 0, only local service
tokens are generated. Hence, it is easy to see that the system degenerates
into N individual M/M/1 queues with independent and identical statistics
for arrivals and service token generation. In particular, for any station i,
the arrival follows a Poisson process of rate λ and the generation of service
tokens follows a Poisson process of rate 1. Since λ < 1, it is not difficult
to verify that the process UN(t) is positive recurrent, and admits a unique
steady-state distribution, denoted by πN,0, which satisfies:

πN,0 (V1 ≤ x) = P( 1

N

N

∑
i=1
Ei ≤ x) , ∀x ∈ R, (139)

where {Ei}Ni=1 is a set of i.i.d. geometrically distributed random variables,
with

P(Ei = k) = λk(1 − λ), ∀k ∈ Z+, (140)

Since the process VN(t) is dominated by UN(t), it is easily verified that
the former is also positive recurrent. In particular, VN(t) converges in dis-
tribution to a unique steady-state distribution πN,p as t → ∞. Combining
this with the dominance relation between the two processes, we have that
for any initial distribution of V̂ N(0),

πN,p(VM) △= πN,p(VN
1 ≤M)

= lim
t→∞

P (VN(t) ≤M)

≥ lim
t→∞

P (UN(t) ≤M)

= πN,0(VN
1 ≤M)

= P( 1

N

N

∑
i=1
Ei ≤M) , (141)

where the last equality follows from Eq. (139). Since the Ei’s are i.i.d. geo-
metric random variables, by Markov’s inequality,

πN,p(VM) ≥ 1 − P( 1

N

N

∑
i=1
Ei ≥M) ≥ 1 − E(E1)

M
= 1 − λ

(1 − λ)M
,(142)
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for all M > E(E1) = λ
1−λ , which establishes the tightness of {πN,p}∞N=1. This

completes the proof of Proposition 21.

APPENDIX B: V(⋅) VERSUS S(⋅), AND THE UNIQUENESS OF
FLUID LIMITS

In this section, we offer some justification for having chosen to work pri-
marily with the aggregate queue length process, VN(⋅) (Eq. (2)), instead of
the normalized queue length process, SN(⋅) (Eq. (3)). The high-level reason
is that the fluid model corresponding to the aggregate queue length process,
expressed in terms of v(⋅), admits a nice contraction property which does
not hold for the fluid model expressed in s(⋅).

A key to the proof of Theorem 4 (uniqueness of fluid solutions) is a con-
traction property of the drift associated with v(⋅) (Eq. (71)), also known as
the one-sided Lipschitz continuity (OSL) condition in the dynamical systems
literature (see, e.g., [22]). We first give a definition of OSL that applies to
our setting.

Definition 31. Let the coordinates of R∞ be indexed by Z+ so that
x = (x0, x1, x2, . . .) for all x ∈ R∞. A function H ∶ R∞ → R∞ is said to be
one-sided Lipschitz-continuous (OSL) over a subset D ⊂ R∞, if there exists
a constant C, such that for every x,y ∈D,

⟨x − y,H(x) −H(y)⟩w ≤ C ∥x − y∥2w , (143)

where the inner product ⟨ ⋅ , ⋅ ⟩w on R∞ is defined by

⟨x,y⟩w
△=

∞
∑
i=0

xiyi
2i

. (144)

What is the usefulness of the above definition in the context of proving
uniqueness of solutions to a fluid model? Recall that F(⋅) is the drift of the
fluid model, as in Eq. (18), i.e.,

v̇ (t) = F (v(t)) , (145)

whenever v(⋅) is differentiable at t. Let v(⋅) and w(⋅) be two solutions to the
fluid model such that both are differentiable at t, as in the proof of Theorem
4. We have

d

dt
∥v(t) −w(t)∥2w = 2 ⟨v(t) −w(t),F(v(t)) −F(w(t))⟩w . (146)
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Therefore, if F(⋅) is one-sided Lipschitz-continuous, as defined by Eq. (143),
we immediately obtain the key inequality in Eq. (71), from which the unique-
ness of fluid solutions follows. The computation carried out in Eq. (71) was
essentially verifying the OSL condition of F(⋅) on the domain V∞.

For the state representation based on s(⋅), can one use the same proof
technique to show the uniqueness of s(⋅) by working directly with the drift
associated with s(⋅)? Recall that

si(t)
△= vi(t) − vi+1(t), ∀i ≥ 0, (147)

so that at all t where v(t) is differentiable, the drift ṡ(t) is given by

Hi(s(t)) = ṡi(t) = v̇i(t)−v̇i+1(t) = λ(si−1−si)−(1−p)(si−si+1)−gsi (s), (148)

for all i ≥ 1, where gsi (s)
△= gi(v) − gi+1(v), i.e.,

gsi (s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, si > 0, si+1 > 0,
p −min{λsi, p} , si > 0, si+1 = 0,
min{λsi−1, p} , si = 0, si−1 > 0,
0, si = 0, si−1 = 0.

(149)

Interestingly, it turns out that the drift H(⋅), defined in Eq. (148), does
not satisfy the one-sided Lipschitz continuity condition in general. We show
this fact by inspecting a specific example. To keep the example as simple as
possible, we consider a degenerate case.

Claim 32. If λ = 0 and p = 1, then H(⋅) is not one-sided Lipschitz-
continuous on its domain S∞, where S∞ was defined in Eq. (8) as

S∞ △= {s ∈ S ∶
∞
∑
i=1

si <∞} .

Proof. We will look at a specific instance where the condition (143)
cannot be satisfied for any C. For the rest of the proof, a vector s ∈ S∞ will
be written explicitly as s = (s0, s1, s2, . . .). Consider two vectors

sa = (1, α,0,0, . . .) and sb = (1, α + ε, β,0,0, . . .), (150)

where 1 ≥ α + ε ≥ β > 0, 1 ≥ α > 0, and sai = sbi = 0 for all i ≥ 3. Note that
sai , s

b
i ∈ S

∞
.

To prove the claim, it suffices to show that for any value of C, there exist
some values of α, β, and ε such that

⟨sb − sa,H(sb) −H(sa)⟩
w
> C ∥sb − sa∥2

w
. (151)
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Since λ = 0 and p = 1, by the definition of H(⋅) (Eqs. (148) and (149)), we
have

H(sa) = (0,−1,0,0, . . .) and H(sb) = (0,0,−1,0,0, . . .). (152)

Combining Eqs. (150) and (152), we have

sb − sa = (0, ε, β,0,0, . . .),
and H(sb) −H(sa) = (0,1,−1,0,0, . . .),

which yields

⟨sb − sa,H(sb) −H(sa)⟩
w
= 1

2
ε − 1

4
β. (153)

Since

C ∥sb − ss∥2
w

△= C
∞
∑
i=0

1

2i
(sbi − sai )

2 = C (1

2
ε2 + 1

4
β2) , (154)

we have that for all C and all ε < 1
C ,

⟨sa − sb,H(sb) −H(sa)⟩
w
= 1

2
ε − 1

4
β > C (1

2
ε2 + 1

4
β2) = C ∥sa − sb∥2

w
, (155)

for all sufficiently small β, which proves Eq. (151). This completes the proof
of the claim.

Claim 32 indicates that a direct proof of uniqueness of fluid solutions
using the OSL property of the drift will not work for s(⋅). The uniqueness of
s(⋅) should still hold, but the proof can potentially be much more difficult,
requiring an examination of all points of discontinuity of H(⋅) on the domain
S∞.

We now give some intuition as for why the discontinuity in Claim 32
occurs for H(⋅), but not for F(⋅). The key difference lies in the expressions
of the drifts due to central service tokens in two fluid models, namely, g(⋅)
(Eq. (16)) for v(⋅) and gs(⋅) (Eq. (149)) for s(⋅). For gs(⋅), note that

gsi (s) = 0, if si > 0 and si+1 > 0, (156)

and gsi (s) = p −min{λsi, p} , if si > 0 and si+1 = 0. (157)

In other words, the ith coordinate of s(t), si(t) receives no drift due to the
central service tokens if there is a strictly positive fraction of queues in the
system with at least i+1 tasks, that is, if si+1(t) > 0 (Eq. (156)). However, as
soon as si+1(t) becomes zero, si(t) immediately receives a strictly positive
amount of drift due to the central service tokens (Eq. (157)), as long as
λsi(t) < p. Physically, since the central server always targets the longest
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queues, this means that when si+1(t) becomes zero, the set of queues with
exactly i tasks becomes the longest in the system, and begins to receive a
positive amount of attention from the central server. Such a sudden change
in the drift of si(t) as a result of si+1(t) hitting zero is a main cause of the
failure of the OSL condition, and this can be observed in Eq. (155) as β → 0.
In general, the type of discontinuity that was exploited in the proof of Claim
32 can happen at infinitely many points in S∞. The particular choices of
λ = 0 and p = 1 were non-essential, and were only chosen to simplify the
calculations.

We now turn to the expression for g(⋅), the drift of v(⋅) due to the central
service tokens. We have that

gi(v) = p, whenever vi > 0. (158)

Note that the above-mentioned discontinuity in gs(⋅) is not present in g(⋅).
This is not surprising: since vi(t)

△= ∑∞
j=i sj(t), vi(t) receives a constant

amount of drift from the central service token as long as vi(t) > 0, regardless
of the values of vj(t), j ≥ i + 1. By adding up the coordinates sj(⋅), j ≥ i, to
obtain vi(⋅), we have effectively eliminated many of the drift discontinuities
in s(⋅). This is a key reason for the one-sided Lipschitz continuity condition
to hold for F(⋅).

To illustrate this “smoothing” effect, consider again the examples of sa

and sb in Eq. (150). In terms of v, we have

va = (1 + α,α,0,0, . . .) and vb = (1 + α + ε + β,α + ε + β,β,0,0, . . .). (159)

We then have

F(va) = (−1,−1,0,0, . . .) and F(vb) = (−1,−1,−1,0,0, . . .). (160)

Combining Eqs. (159) and (160), we have

vb − va = (ε + β, ε + β,β,0,0, . . .),
and F(vb) −F(va) = (0,0,−1,0,0, . . .).

This implies that for all C ≥ 0,

⟨va − vb,F(vb) −F(va)⟩
w
= −1

4
β ≤ C ∥va − vb∥2

w
, (161)

for all β ≥ 0. Contrasting Eq. (161) with Eq. (155), notice that the 1
2ε term

is no longer present in the expression for the inner product, as a result of
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the additional “smoothness” of F(⋅). Therefore, unlike in the case of H(⋅),
the OSL condition for F does not break down at va and vb.

The difference in drift patterns described above can also be observed
in finite systems. The two graphs in Figure B display the same sample
path of the embedded discrete-time Markov chain, in the representations
of SN and VN , respectively. Here N = 10000, p = 1, and λ = 0.5, with
an initial condition SN [0] = (1,0.1,0.1,0,0, . . .) (i.e., 100 queues contain 2
tasks and the rest of queues are empty). Notice that when SN2 [n] hits zero,
SN1 [n] immediately receives an extra amount of downward drift. On the
other hand, there is no change in drift for VN

1 [n] when VN
2 [n] hits zero.

This is consistent with the previous analysis on the fluid models.
In summary, the difficulty of proving the uniqueness of fluid solutions is

greatly reduced by choosing an appropriate state representation, v(⋅). The
fact that such a simple (linear) transformation from s(⋅) to v(⋅) can create
one-sided Lipschitz continuity and greatly simplify the analysis may be of
independent interest.

APPENDIX C: A FINITE-SUPPORT PROPERTY OF FLUID
SOLUTION AND ITS IMPLICATIONS

In this section, we discuss a finite-support property of the fluid solution
v(⋅). Although this property is not directly used in the proofs of other results
in our work, we have decided to include it here because it provides important,
and somewhat surprising, qualitative insights into the system dynamics.

Proposition 33. Let v0 ∈ V∞, and let v(v0, ⋅) be the unique solution
to the fluid model with initial condition v(v0,0) = v0. If p > 0, then v(v0, t)
has a finite support for all t > 0, in the sense that

sup{i ∶ vi(v0, t) > 0} <∞, ∀t > 0. (162)

Before presenting the proof, we observe that the finite-support property
stated in Proposition 33 is independent of the size of the support of the
initial condition v0; even if all coordinates of v(t) are strictly positive at
t = 0, the support of v(t) immediately “collapses” to a finite number for any
t > 0.

A critical assumption in Proposition 33 is that p > 0, i.e., that the system
has a non-trivial central server. The “collapse” of v(⋅) into a finite support is
essentially due to the fact that the central server always allocates its service
capacity to the longest queues in the system. Proposition 33 illustrates that
the worst-case queue-length in the system is well under control at all times,
thanks to the power of the central server.
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Proposition 33 also sheds light on the structure of the invariant state of
the fluid model, vI . Recall from Theorem 2 that vI has a finite support
whenever p > 0. Since by the global stability of fluid solutions (Theorem 4),
we have that

lim
t→∞

∥v (t) − vI∥
w
= 0, (163)

the fact that v(t) admits a finite support for any t > 0 whenever p > 0 pro-
vides strong intuition for and partially explains the finite-support property
of vI .

We now prove Proposition 33.

Proof. (Proposition 33) We fix some v0 ∈ V∞, and for the rest of the
proof we will write v(⋅) in place of v(v0, ⋅). It is not difficult to show, by
directly inspecting the drift of the fluid model in Eq. (4), that if we start
with an initial condition v0 with a finite support, then the support remains
finite at all times. Hence, we now assume v0

i > 0 for all i. First, the fact that
v0 ∈ V∞ (i.e., v0

1 <∞) implies

lim
i→∞

v0
i = 0. (164)

This is because all coordinates of the corresponding vector s0 are non-
negative, and

v0
i = v0

1 −
i−1
∑
j=1

s0j , (165)

where the second term on the right-hand side converges to v0
1.

Assume that vi(t) > 0 for all i, over some small time interval t ∈ [0, s].
Since the magnitude of the drift on any coordinate vi is uniformly bounded
from above by λ + 1, and limi→∞ v0

i = 0, for any ε > 0 we can find s′,N > 0
such that for all i ≥ N and t ∈ [0, s′],

v̇i(t) = λ(vi−1 − vi) − (1 − p)(vi − vi+1) − gi(v) ≤ ε − gi(v) = −p + ε. (166)

Since limi→∞ v0
i = 0, Eq. (166) shows that it is impossible to find any

strictly positive time interval [0, s] during which the fluid trajectory v(t)
maintains an infinite support. This proves the claim.

APPENDIX D: SIMULATION SETUP

The simulation results shown in Figure 4 for a finite system with 100
stations were obtained by simulating the embedded discrete-time Markov
chain, {Q[n]}n∈N, where the vector Q[n] ∈ Z100

+ records the queue lengths
of all 100 queues at time step n. Specifically, we start with Q[1] = 0, and,
during each time step, one of the following takes place:
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1. With probability λ
1+λ , a queue is chosen uniformly at random from all

queues, and one new task is added to this queue. This corresponds to
an arrival to the system.

2. With probability 1−p
1+λ , a queue is chosen uniformly at random from all

queues, and one task is removed from the queue if the queue is non-
empty. If the chosen queue is empty, no change is made to the queue
length vector. This corresponds to the generation of a local service
token.

3. With probability p
1+λ , a queue is chosen uniformly at random from the

longest queues, and one task is removed from the chosen queue if the
queue is non-empty. If all queues are empty, no change is made to the
queue length vector. This corresponds to the generation of a central
service token.

To make the connection between the above discrete-time Markov chain Q[n]
and the continuous-time Markov process Q(t) considered in this paper, one
can show that Q(t) is uniformized and hence the steady-state distribution
of Q(t) coincides with that of the embedded discrete-time chain Q[n].

To measure the steady-state queue length distribution seen by a typical
task, we sampled from the chain Q[n] in the following fashion: Q[n] was
first run for a burn-in period of 1,000,000 time steps, after which 500,000
samples were collected with 20 time steps between adjacent samples, where
each sample recorded the current length of a queue chosen uniformly at
random from all queues. Denote by S the set of all samples. The average
queue length, as marked by the symbol “×” in Figure 4, was computed by
taking the average over S. The upper (UE) and lower (LE) ends of the 95%
confidence intervals were computed by:

UE
△= min{x ∈ S ∶ there are no more than 2.5%

of the elements of S that are strictly greater than x},

LE
△= max{x ∈ S ∶ there are no more than 2.5%

of the elements of S that are strictly less than x}.

Note that this notion of confidence interval is meant to capture the concen-
tration of S around the mean, and is somewhat different from that used in
the statistics literature for parameter estimation.

A separate version of the above experiment was run for each value of λ
marked in Figure 4, while the the level of centralization p was fixed at 0.05
across all experiments.
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