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Abstract

A novel space-user approach to multiple-input-single-output (MISO)1 OFDM peak-to-average-power ratio (PAPR)

reduction is examined. We propose two techniques that significantly reduce PAPR for MISO-OFDM at various user-

loads. The first exploits the degrees of freedom in the channel’s null-space (transmit weight optimization), while the

second provides a more robust and higher reduction by further relaxing the constraint on the constellation domain

(constellation-beam modification) with modest computational overhead. Both methods can be implemented by low-

complexity projection-onto-convex-set (POCS) iterations, have no data rate loss, and are fully compatible with various

constellation choices and receiver structure in practical systems. The algorithms proposed achieve up to 6.65 dB reduction

in peak power for an 8-antenna MISO transmitter.

Index Terms

Orthogonal frequency multiplexing (OFDM), peak-to-average-power ratio (PAPR), multiple-input-single-output

(MISO), beamforming.

I. INTRODUCTION

The combination of beamforming multiple-input-single-output (MISO) and orthogonal frequency multiplexing

(OFDM) provides a robust communications link in fading environments by maximizing received signal strength via

beam-steering, and has been incorporated in standards such as WiMAX and 3GPP Long Term Evolution. A MISO-

OFDM system is often characterized by a single base station with multiple antennas transmitting simultaneously to

a number of individual users. Like single-input-single-out (SISO) OFDM, MISO-OFDM suffers from a potentially

high peak-to-average power ratio (PAPR) at the transmit antennas, caused by the superposition of multiple sub-channel

signals in the time domain. A high PAPR requires the power amplifier at the transmitter to be built with a larger

back-off, resulting in greater power consumption and energy inefficiency.

A. Related work

A number of PAPR reduction techniques have been proposed for PAPR reduction in SISO OFDM systems [3]. The

tone-reservation technique inserts signals into unused subchannels in order to cancel the time-domain peaks in the

data-bearing channels, while sacrificing data rates due to the reduction in data-bearing channels [1][2]. In a wireless

1The MISO scheme considered in this paper refers to the situation where a single base station transmits simultaneously to multiple mobiles.
Technically, some may consider this a multi-user multiple-input-multiple-ouput (MU-MIMO) system but we use the term MISO to emphasize that
the mobiles all have a single receive antenna.



setting, however, it is often inefficient to reserve a fixed set of tones due to the time-varying characteristics of the

channel. Some methods utilize the pre-known phase knowledge to improve PAPR via encoding: the selected mapping

(SLM) method multiplies the original data block by pseudo-random phase-shift sequences, and selects the one with the

lowest PAPR [4]. The partial transmit sequence (PTS) method, like SLM, scrambles the data bits across frequencies

to avoid combinations with high PAPR [6]. However, SLM and PTS both require side information for the receiver to

decode, and an optimal search in PTS can be quite computationally expensive. The active constellation extension (ACE)

method allows the outer-most constellation points to be moved outward into several allowable regions of extension,

while the constellation can still be correctly detected by a standard maximum likelihood receiver [13][14]. ACE is

able to reduce PAPR without sacrificing data rate at the cost of an increased average power due to the extensions in

constellations.

There has also been work on PAPR reduction for multiple-input-multiple-output (MIMO) systems. A number

of papers have generalized SLM and PTS methods to MIMO-OFDM, obtaining up to 2 to 3 dB PAPR reduction

[7][8][9][10]. A mode-reservation algorithm extends the tone-reservation concept to MIMO-OFDM by exploiting

unused eigenmodes for PAPR reduction, achieving a PAPR reduction of 3 dB in one iteration when allowing a

10% increase in average transmit power [12]. The ACE scheme was extended to MIMO in [15]. Fewer works have

been devoted specifically to MISO-OFDM systems. In [11], an extension of PTS to MISO with antenna selection is

proposed, which requires SNR loss to achieve reduction in PAPR.

B. Our approach

While many methods have been developed for OFDM PAPR reduction, most lack practicality due to a high

computational complexity, data rate loss or the requirement for additional side information, as mentioned in the previous

section. In addition, most existing methods fail to address the fact that the number of users served by the base station

varies with time in a real MISO system (e.g. mobile users joining and leaving the coverage of the base station), which

requires the consistency of performance across all possible user loads to be guaranteed.

We propose two novel techniques, which exploit the unique space-user characteristics of MISO-OFDM systems,

achieving significant and user-load-stable performance with zero data rate loss, low computational complexity, and no

modification at the receivers. The main contributions of this paper are as follows:

1) The transmit weight optimization (TWO) algorithm for MISO-OFDM is proposed and analyzed, which exploits

the degrees of freedom (DoF) in the null-space of the channel matrix. TWO achieves significant PAPR reduction

when the number of users is less than the number of antennas (as much as 6.65 dB). An early version of this

technique was first reported in [18].

2) Inspired by TWO, we identify a critical space-user trade-off, intrinsic to all MISO-OFDM systems. More

specifically, the performance of a PAPR reduction algorithm applied to MISO-OFDM can be significantly affected



as the number of users served by a based station changes, which in reality could occur frequently due to a time-

varying service load. To address this challenge, we propose the constellation-beam modification (CBM) method to

overcome TWO’s performance decrease as the number of users increases. By simultaneously exploiting degrees

of freedom in both the channel’s null-space and the constellation domains, CBM provides consistently high PAPR

reduction at all user-loads with negligible computational overhead.

3) We provide a computationally efficient smart-gradient-project (SGP) algorithm for practical implementations of

CBM. The SGP algorithm consists of a projection-onto-convex-set (POCS) iteration with a fast step-size search

and converges quickly in 3 to 4 iterations.

The remainder of the paper is organized as follows: Section II reviews the structure and terminologies for a

beamforming MISO-OFDM system and formally defines the problem of peak-power reduction in MISO-OFDM

examined in this paper. Section III presents the method of transmit weight optimization (TWO), where we also briefly

analyze the performance of the algorithm in relation to the trade-off between the available spatial freedom in a MISO

channel and the number of users served by the base, referred to as the space-user trade-off. Based on the observation

from Section III, we analyze in Section IV how one could cope with the performance degradation of TWO in high-

user-number regimes by exploiting complementary degrees of freedom in the constellation domain, leading to the

constellation-beam modification (CBM) technique. We proceed to formally describe the method of CBM in Section V

and present two algorithms for CBM in Section VI. Simulation results are presented and discussed in Section VII.

II. MODEL FOR BEAMFORMING MISO-OFDM AND PROBLEM FORMULATION

A. Signal Model for Beamforming MISO-OFDM

Consider a beamforming multiple-input-single-output (MISO) system where P transmit antennas are present at the

base with B beams to be transmitted, one for each user. Each user is assumed to have only one antenna2. The number of

users, B, is allowed to vary with time from 1 to P . Note that this time-varying feature of a MISO system distinguishes

it from a beamforming MIMO scenario, where the numbers of transmit and receiving antennas are fixed.

Let the number of total OFDM subcarriers be N . For the k-th subcarrier, the frequency-antenna-domain symbol to

be transmitted at the p-th antenna, zp,k, can be represented by

zp,k = wT
p,kxk, (1)

where xk is the B × 1 OFDM frequency-user-domain data vector, and wp,k is the B × 1 antenna weight for the p-th

antenna. In matrix form, the P × 1 transmit vector at all P antennas for subcarrier k can be written as

zk = WT
k xk, (2)

2Our method does not preclude the use of more than one receiver antenna, but the weights have to be designed to just one of the antennas.



where Wk is the P ×B transmit weight matrix for subcarrier k, and Wk = [w1,k w2,k ... wP,k].

Assuming the base station has perfect channel knowledge, which is represented by the set of B×P channel matrices

for all N subcarriers {Hk, 1 ≤ k ≤ N}, the received signal at the b-th user, 1 ≤ b ≤ B, can be written as

yk,b = (HkWT
k xk + nk)b, (3)

where nk denotes the B × 1 noise vector introduced by the channel at subcarrier k, and by (x)b we mean the b-th

element of vector x.

Note that the zero-crosstalk constraint is enforced in Tx-SDMA and MRT (i.e. B = 1) systems, or equivalently,

I = HkWT
k ,∀k ∈ {1, 2..., N} , (4)

where I is the B ×B identity matrix. This can be achieved by having the transmit weight matrix take the form

Wk =
(HH

k Hk)−1HH
k√

trace
(
(HH

k Hk)−1
) (5)

where the denominator of (5) is a normalizing constant [18].

B. Peak-power Reduction for Beamforming MISO-OFDM

The peak-to-average-power ratio (PAPR) is widely used in measuring the degree to which peaks in time-domain

signals occur. Since we are concerned about reducing the analog time-domain peaks at all antennas, PAPR is defined

as follows within the context of beamforming MISO-OFDM:

Definition 1. Let ap be the (NL)× 1 time-domain signal at the p-th antenna, i.e.

ap = interpL (IFFT (zp)) , (6)

where interpL(·) is an interpolation that up-samples the time-domain signal by a factor of L in order to approximate

the continuous waveforms at the antenna, and zp is the frequency-domain transmit signal at the p-th antenna. The

peak-to-average-power ratio (PAPR) is defined by:

PAPR (a) =
maxp,n |ap [n]|2

1
NLP

∑
p

∑
n |ap [n]|2

, (7)

where a is the vector of time-antenna-domain signals from all antennas, a =
[
aT1 aT2 ... aTP

]T
.

Reduction in PAPR versus reduction in peak power: While the value of PAPR for a given signal is widely

adopted as a standard metric in the literature, it is often dangerous to overly trust the reduction in PAPR. When a

PAPR reduction algorithm increases the average power of the signal, which is common to many existing techniques [3],

the reduction of the actual peak power is often well below the reported reduction in PAPR values. Since the reduction



of peak power is what truly reduces the power consumption of an amplifier, we choose to measure only the reduction

in peak power when evaluating algorithms, which is more conservative yet realistic.

C. Problem Formulation

Following the discussion above regarding PAPR versus peak power, we introduce the quantity peak-to-original-

average-power ratio (POAPR), defined as follows:

Definition 2. Let a and â be the original and the modified NLP × 1 time-antenna-domain signals, respectively. The

peak-to-original-average-power ratio (POAPR) between a and â is defined by the function:

POAPR (â,a) =
maxp,n |âp [n]|2

1
NLP

∑
p

∑
n |ap [n]|2

(8)

By comparing (7) and (8), one sees that the only difference lies in that POAPR is defined with respect to the

average power of the original signal, which stays constant. Hence any reduction in the value of POAPR is essentially

equivalent to the reduction of peak power, scaled by a constant. We now define our goal as solving a general

optimization problem to minimize the value of POAPR between the modified signal and the original signal.

Problem formulation

Given an OFDM signal block to be transmitted, a =
[
aT1 aT2 ... aTP

]T
. Let ∆a be an additive change to the original

signal a. We solve for:

∆a∗ = arg min
∆a

POAPR (a + ∆a,a), (9)

with the constraint that no increase in bit-error-rate (BER) is permitted.

Comments:

• The constraint of no bit-error-rate increase prevents trivial solutions where peak power can be reduced by

decreasing overall transmit power or introducing signal distortions.

• The constraint in the problem formulation does not include average power, which could become an area of concern

for applications where the allowed average radiation power is confined by regulatory constraints. The issue of

average radiation power will be discussed and examined in Section VII.

III. METHOD OF TRANSMIT WEIGHT OPTIMIZATION

We now present our first result, the transmit weight optimization (TWO) method for peak-power reduction. Consider

again a beamforming MISO-OFDM system with P base antennas transmitting to B users. Observe that when the

number of users B is less than the number of antennas P , the B × P channel matrix for each subcarrier has a

(P−B)−dimensional null-space, in which the transmit power is completely eliminated by the channel and not received



by any users. In other words, when B < P the set of all possible transmit weights W lies in a (P −B)−dimensional

subspace.

The idea of TWO is to find an optimal transmit weight matrix which minimizes the peak power at the base antennas.

Because such modifications of transmit weight lie strictly in the null-space of the channel matrix, changes at the base

will have no impact on the received signals at the users, hence the technique carries no BER increase.

Peak-power reduction using TWO is accomplished by successively clipping the time-domain signals and projecting

the modifications in the transmit weight matrix to the linear subspace of all beamformers that enforce zero-crosstalk

among users. Since both the peak-limited time-domain signals and the linear subspace for all possible transmit weight

matrices are convex, such an algorithm is guaranteed to converge to a solution if it exists, based on the theory of

projection-onto-convex-sets (POCS) [5]. Relating to the optimization formulation described in Section II-C, TWO

essentially minimizes the peak power over the set of zero-forcing beamformers defined as follows:

Definition 3. (TWO Constraints) Let ∆z = FFT (∆a). TWO solves the optimization problem in Section II-C over the

constraint set ST , defined by:

ST =
{
∆a ∈ CNLP : Hk∆zk = 0,∀1 ≤ k ≤ N

}
(10)

Note that for notational consistency with later parts of the paper, updates are expressed as additive changes to the

transmitted frequency-antenna-domain signals z, which is equivalent to modifying the transmit weight matrix W . The

outline of the algorithm is presented as follows.

POCS Algorithm for TWO

For each subcarrier k, let Wk be the P × B transmit weight matrix and Hk be the channel matrix, as defined in

Section II-A.

1) Assign frequency-user-domain constellation points, xik, for all B users, where i is the iteration number. Construct

the initial P × 1 frequency-antenna-domain data by z0
k = Wkx0

k. Set i = 0.

2) Reconstruct the time-antenna-domain data ai =
[
ai1
T ai2

T
... aiP

T
]T

by applying a zero-padded inverse FFT on

each antenna,

aip = interp
(
IFFT

(
zip
))
,∀p ∈ {1, 2, ..., P}. (11)

3) Clip the magnitudes of samples in ai that exceed a predetermined limit, Gmax, to get âi.

4) Project the changes in the frequency-antenna-domain data onto the null-space of the channel matrix Hk and

update z,

zi+1
k =

(
I−WkW

pinv
k

) (
ẑik − zik

)
+ zik, (12)



where Wpinv
k is a pseudo-inverse of Wk and ẑik is the frequency-antenna-domain data after clipping, i.e.

ẑik = FFT
(
âi
)

(13)

5) Let i = i + 1, return to Step 2 and repeat until a minimum PAPR is achieved or the number of iterations is

exhausted.

Value of Gmax: The clipping limit Gmax in Step (3) of the algorithm can be either set to a fixed value, or adjusted

between the POCS iterations. The problem with a fixed threshold is that one does not know beforehand what an optimal

threshold might be: setting Gmax to be too large will limit the reduction of peak value (The POCS algorithm will end

after the peak magnitude falls below Gmax), while setting Gmax to be too small may cause the algorithm to never

converge, because there simply may not exist such a modified signal that satisfies the TWO constraint and has a peak

magnitude less that Gmax. Hence, we choose to use an adjusted Gmax which is automatically increased whenever an

increase in peak power is observed after a POCS iteration. The rules we used for updating Gmax will be presented in

detail in Section VII.

Performance of TWO: Figure 2(a) in Section VII plots the reduction in peak power from TWO for an 8-antenna

base transmitting to 1 through 8 users. Although TWO is very efficient in reducing peak power when the number of

users is low, achieving a 6.65 dB reduction (14 iterations) at B = 1 (MRT), its performance degrades quickly as the

number of users increases, due to the decreasing degrees of freedom in the channel’s null-space. Finally, TWO fails

to yield any reduction when P = B.

IV. SPACE-USER TRADE-OFF

A. Space-User Trade-off of MISO-OFDM

The dependency of TWO’s performance on the number of users reflects a critical difference between MISO-OFDM

and other wireless OFDM systems such as SISO and MIMO: in MISO-OFDM, the spatial dimensionality of the channel

changes as the number of users served by the base varies. Relating to the problem of peak-power reduction, since the

physical properties of amplifiers cannot simply change when the number of users served by a base changes, this means

that the usefulness of any peak-power reduction algorithm is in some sense limited by its worst-case performance

across all user-loads.

While TWO yields impressive reduction results when the number of users is low, we would like to take a step

further and find a simple algorithm that achieves significant peak-power reduction for all numbers of users. Since the

performance degradation of TWO essentially results from diminishing degrees of freedom in the constraints, a natural

solution is to seek a second constraint space in which the degrees of freedom increase as the number of users increases.

The hope is that if the optimization is performed over both constraint sets simultaneously, we achieve not only more

reduction for a given user number, due to the relaxed constraint, but more importantly, a consistently high reduction



performance across all numbers of users thanks to the complementary degrees of freedom of the constraint sets.

B. Solution: Relaxing ACE Constraints

Observe that the amount of constellation symbols in the frequency-user domain increases linearly with the number

of users. Hence, we chose to incorporate the additional degrees of freedom in constellations, which is utilized by the

active constellation extension (ACE) methods previously developed for PAPR reduction in SISO and MIMO systems

[13], [14], [15]. The idea of ACE is to allow the outer-most constellation points to be extended outward, demonstrated

graphically in Figure 1. It has been shown that the allowable regions of extension in ACE are so structured that the

modified constellations can in fact result in a reduced bit-error-rate with a proper OFDM receiver design [16]. This can

be explained by the fact that a constellation point, if moved, becomes further away any other constellation points than

when in its original position, hence increasing the probability of correct detection by a standard maximum likelihood

receiver. Therefore, the addition of the constellation modifications would satisfy our initial constraint of no bit-error-rate

increase.

Fig. 1. Allowable regions of extensions in QPSK and 16-QAM constellations, represented by the gray areas and arrows.

The constraint set over which ACE optimizes is defined as follows:

Definition 4. (ACE Constraints) ACE solves the optimization problem in Section II-C over the constraint set SA, which

is the set of all time-antenna-domain modifications ∆a ∈ CNPL, of which the corresponding constellation modifications

fall under the allowable regions of extension on the constellation domain, for which the complete definition can be

found in [13].

Since the regions of extension as defined in [13] form a convex set, ACE can also be efficiently implemented using

an iterative POCS algorithm similar to that of TWO. Here we extend the ACE-POCS algorithm developed for SISO

[13] and MIMO [15] to MISO systems, accomplished by incorporating the user-antenna transformation, expressed by

the antenna weight matrices Wk.

POCS Algorithm for ACE

For each subcarrier k, let Wk be the P × B transmit weight matrix and Hk be the channel matrix, as defined in

Section II-A.



1)-3) Same as that of the POCS algorithm for TWO in Section III.

4) Reconstruct the frequency-user-domain data x̂ik by inverting the beamforming transformation:

x̂ik = Wpinv
k ẑik (14)

where Wpinv
k is a pseudo-inverse of Wk and ẑik is the frequency-antenna-domain data after clipping, i.e.

ẑik = FFT
(
âi
)

(15)

5) Apply active constellation constraints to x̂ik on all OFDM frequencies and all antennas, by preserving the modified

constellations that stay within the allowable regions of extensions, and projecting those which do not onto the

boundaries of the regions [13]. Label the resulting user-frequency constellations as xi+1
k .

6) Apply the transmit weight matrix to the updated constellation to obtain the new frequency-antenna-domain signal:

zi+1
k = Wkxi+1

k (16)

7) Let i = i + 1, return to Step 2 and repeat until a minimum PAPR is achieved or the number of iterations is

exhausted.

Performance of ACE. Figure 2(a) in Section VII shows the performance of the ACE algorithm applied to MISO-

OFDM. It can be observed that the reduction performance does increase as the number of users increases from 1 to 8

users, which agrees with our intuition of the additional degrees of freedom due to more constellation symbols. There

is however a performance degradation when the number of users reaches 8. We conjecture such a phenomenon is due

to the high condition numbers of square matrices with i.i.d. Gaussian entries. This is, however, beyond the scope of

this paper.

V. METHOD OF CONSTELLATION-BEAM MODIFICATION

The interesting complementary behavior of TWO and ACE as the number of users changes motivates us to optimize

jointly over the union of the constraint sets from both TWO and ACE, which we call the constellation-beam modification

(CBM) method.

Definition 5. (CBM Constraints) CBM solves the optimization problem in Section II-C over the constraint set SC ,

SC = ST ∪ SA (17)

where SA and ST are defined in Definition 3 and Definition 4, respectively.

It is important to note that the TWO and ACE constraint sets are independent, so a joint modification preserves

an undistorted signal reception at the receivers. This orthogonality between the constraint sets allows for a combined



algorithm to be implemented very efficiently, since any combined adjustment can be perceived as one additive change

to the original signal that simultaneously encapsulates the effects of TWO and ACE.

For any given user number, the CBM algorithm essentially optimizes over a higher-dimensional convex set with

looser constraints, thus offering better peak-power reduction than either ACE or TWO alone.

VI. EFFICIENT ALGORITHMS FOR CONSTELLATION-BEAM MODIFICATION

Similar to TWO and ACE, it was shown in Section V that CBM can also be framed as an optimization over a

convex set. In this section, we first present a POCS implementation for CBM. Since the TWO and ACE constraints

are essentially orthogonal, the constraint enforcement for CBM becomes two simple projections onto the ACE and

TWO constraint sets which can be performed sequentially in the frequency domain. We then describe a more efficient

smart-gradient-project (SGP) algorithm, which incorporates a fast stepsize search in each step, and converges quickly

in only about three iterations (see Section VII).

The performance of CBM is deferred to the next section for more in-depth analysis.

A. Projection-onto-convex-sets (POCS)

The POCS for CBM is similar to that of TWO and ACE, described as below.

POCS Algorithm for CBM

1)-3) Same as that of the POCS algorithm for TWO in Section III.

4) Reconstruct the frequency-user-domain data x̂ik by inverting the beamforming transformation:

x̂ik = Wpinv
k ẑik (18)

where Wpinv
k is a pseudo-inverse of Wk and ẑik is the frequency-antenna-domain data after clipping, i.e.

ẑik = FFT
(
âi
)

(19)

5) Apply active constellation constraints to x̂ik on all OFDM frequencies and all antennas. Label the resulting

user-frequency constellation as xi+k . Denote the frequency-user-domain descent vector by ∆xik = xi+k − xik.

6) Project the frequency-antenna-domain clipping (ẑik−zik) onto the null-space of the channel matrix. Combine the

result with the frequency-user-domain descent vector to form the frequency-antenna-domain descent vector:

∆zik =
(
I −WkW

pinv
k

)
(ẑik − zik) + Wk∆xik (20)

7) Update both frequency-antenna and frequency-user-domain signals:

zi+1
k = zik + ∆zik

xi+1
k = xik + ∆xik



8) Let i = i + 1, return to Step 2 and repeat until a minimum PAPR is achieved or the number of iterations is

exhausted.

Computational complexity of POCS: The computational costs of the POCS algorithm for CBM, ACE and TWO

are the same in the asymptotic sense with respect to the OFDM block size: the major cost is induced by two FFT/IFFT

operations (per antenna) performed in each POCS iteration with a complexity of O(N logN), where N is the size of the

OFDM block, while the rest of the operations, including peak clipping, enforcement of ACE constraints and projection

onto the null-space, all have a complexity O(N). As N grows large, the overall complexity becomes O(N logN).

B. Smart gradient project (SGP)

If we consider the frequency-antenna-domain update ∆zk in Step 6 of the CBM-POCS algorithm as a descent

direction, the POCS algorithm is essentially a projected gradient descent algorithm with a constant unit stepsize [14].

Naturally, we can expect to improve the rate of convergence significantly with an optimal stepsize search along the

gradient direction in each iteration. To do so, two questions need to be answered: 1) how can the stepsize search be

done in a computationally efficient manner and 2) how to ensure the constraints are not violated when a stepsize > 1

is taken.

1) Fast Stepsize Search with Smart Gradient Project: We address the first challenge by generalizing to a MISO

setting the technique of smart-gradient-project (SGP), which was first proposed for PAPR reduction in SISO-OFDM

[13].

Let ∆a be an interpolated time-antenna-domain descent vector across all antennas, obtained from a CBM-POCS

iteration:

∆a = interpL [IFFT (∆z)] , (21)

based on which an optimal stepsize µ∗ can be expressed as:

µ∗ = arg min
µ
‖a + µ∆a‖ , (22)

where a is the current time-domain signal across all antennas.

Let amax(µ) = maxn |a[n] + µ∆a[n]|. Note that as we increase the value of µ starting from µ = 0, amax(µ)

decreases while the magnitudes of some other samples in |a[n] + µ∆a| increase. At some point the amax will reach

a balancing with that of the second-largest sample(s), and the peak magnitude of the given block is minimized. To see

why, note that further increasing µ by any positive amount will break the balancing by increasing the magnitude of

the second-largest sample, resulting in a higher peak level.

As was shown in [13], solving (22) exactly involves computing the solutions of NLP (NLP−1) quadratic equations

for the optimal balancing that minimizes the peak magnitude among all possible combinations of two time-domain

samples. This could be prohibitively expensive as the OFDM block size N becomes large. SGP greatly reduces the



amount of computation by making the following two approximations:

• It is assumed that the optimal balancing will involve the sample nmax that has the largest initial magnitude,

namely nmax = arg maxn |a[n]|, hence reducing the number of comparisons from NLP (NLP − 1) down to

NLP − 1. This is a reasonable assumption based on the analysis of amax(µ) given in the previous paragraph.

• To find the stepsize that will lead to a balancing between two time-domain samples i, j, one needs to solve for

µ in the quadratic equation:

|a[i] + µ∆a[i]|2 = |a[j] + µ∆a[j]|2 , (23)

Instead, in SGP each sample in ∆a is projected onto the phase angle of a to avoid solving quadratic equations.

This linearization reduces the computation of µ∗ to simply (assuming |a[i]| > |a[j]|):

µ =
|a[i]| − |a[j]|

∆aproj[j]−∆aproj[i]
, (24)

where

∆aproj[i] =
Re {a[i]∆a[i]∗}

|a[i]|
. (25)

2) Constraints on Descent Vector: Regarding the concern of constraint enforcement with an arbitrary stepsize,

note that the descent direction ∆zik consists of two components: an update that lies in the channel’s null-space,(
I −WkW

pinv
k

)
(ẑik − zik), and an update that modifies the constellation, Wk∆xik. The null-space update is not of

concern, since any scaled version of the vector will still lie in the same linear subspace of the channel as before. The

constellation update needs to be carefully handled, by making sure that the real and imaginary parts of the modification

vector ∆xik have the same signs as that of the original constellation. In other words, the constellation points are now

only allowed to be extended outward in every iteration, so that any positive scaling will keep the points within the

allowable regions of extensions.

Note that in POCS, constellation points are allowed to move inward in any given iteration, so long as the resulting

position still conform with the constraints. Theoretically this implies that POCS could explore the constellation domain

more thoroughly than SGP. However, in actual simulations, we will see that SGP’s efficiency gained by the stepsize

search greatly overrules the small loss of freedom in the constellation domain.

The algorithm for stepsize search using SGP is described as the following (starting from Step 6 of CBM-POCS):

Algorithm for SGP Stepsize Search

1) Construct the time-antenna-domain descent vector and find the index, nmax, of the peak sample:

∆a = interpL [IFFT (∆z)] ,

nmax = arg maxn |a[n] + µ∆a[n]| . (26)



2) For every sample nt in ∆a, including nt = nmax, compute the projection of the descent vector along the phase

angle of a[nt]:

∆aproj[nt] =
Re {a[nt]∆a[nt]∗}

|a[nt]|
.. (27)

3) If ∆aproj[nmax] > 0, terminate the algorithm, since any positive stepsize would increase the current peak level.

Otherwise, for every ∆aproj[nt] > 0, nt 6= nmax, calculate the stepsize, µ[nt], which will result in a balancing

between ∆a[nt] and ∆a[nmax]:

µ[nt] =
|a[nmax]| − |a[nt]|

∆aproj[nt]−∆aproj[nmax]
, (28)

4) Select the minimum among all positive µ[n] as the the optimal stepsize µ∗, i.e.:

µ∗ = min
1≤n≤NLP,n 6=nmax,µ[n]>0

µ[n] (29)

5) Update the frequency-antenna, frequency-user, and time-antenna-domain data:

zi+1
k = zik + µ∗∆zik

xi+1
k = xik + µ∗∆xik

ai+1 = ai + µ∗∆a (30)

Computational overhead of SGP: Since the SGP algorithm examines each sample of the time-domain descent

vector exactly once, the search for the optimal stepsize is achieved in O(N), where N is the OFDM block size.

Compared to the dominant computational costs of two FFT/IFFT operations inside each POCS iteration, the additional

expense of SGP is small, especially when the size of the data block N becomes large. The reader may wonder why

the IFFT in Step 1 of the SGP algorithm is not taken into account as part of the analysis. This is because in the next

iteration we will no longer need an IFFT before clipping the peak, essentially replacing the IFFT in Step 2 of a POCS

iteration.

VII. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Parameters

All simulations in this section are performed over 10000 OFDM blocks with 128 subchannels, 8 antennas, and 1

through 8 users with no unused subchannels. While QPSK is used as the main constellation setting when comparing

across different peak-power-reduction schemes, simulations are also conducted for 16-QAM and 64-QAM using CBM.

The analog waveform at the transmit antennas is approximated using an up-sampling factor L = 4. All POAPR reduction

values reported are measured at 0.1% clipping probability.

We use two channel models to capture the extreme conditions to give some sense of performance limits for the



algorithms in reality. Let hi,jk denote an entry of the channel matrix for subfrequency k, Hk. The Random Gaussian

model generates every element hi,jk across all subfrequencies as i.i.d. complex Gaussian random variables, such that

∀i, j:

Re
(
hi,jk

)
, Im

(
hi,jk

)
∼ N (0, 1),∀k.

In the Flat Gaussian model, we first generate one random Gaussian channel matrix, and apply it to all subfrequencies,

such that ∀i, j:

Re
(
hi,jk

)
, Im

(
hi,jk

)
∼ N (0, 1), k = 1,

hi,jk = hi,j1 ,∀k ≥ 2.

The Random Gaussian model is meant to simulate a rich-scattering environment with varying channel gains across

frequencies, while the Flat Gaussian captures the opposite case where all channels have highly correlated gains; the

reality should fall somewhere in between.

The clipping threshold Gmax is expressed as a ratio of the peak of the current time-domain signal,

Gmax = βmax
n
|a [n] | (31)

In order to ensure the convergence of the POCS algorithms, we increase β (with a decreasing increment) if and only

if the previous iteration resulted in a peak growth. Specifically, β is updated according to:

β0 = 0.7, c0 = 0.5,

βi+1 = βi + ci(1− βi), ci+1 = ci − 0.05

B. POAPR Reduction Performance with QPSK Constellations

1) Channel Model I - Random Gaussian: Figure 2(a) illustrates the performance for CBM, TWO and ACE using

QPSK constellations and 8 base antennas using POCS.

We report CBM’s reduction with 14 POCS iterations as our primary result, while the reduction results with 4

iterations are also included for comparison. At 14 iterations, CBM yields a maximum POAPR reduction of 6.65 dB

with 1 user, and a minimum reduction of 1.06 dB with 8 users. CBM’s advantages over both ACE and TWO are

evident at 5 to 7 users. In particular, CBM in the 6-user case yields an additional 0.97 dB reduction compared to

any of the other methods alone. When the number of users is close to 1 or 8, CBM offers little benefits, due to the

diminishing degrees of freedom in either TWO or ACE, respectively.

It is also interesting to notice the pattern of the evolution of performance: CBM shows a significant advantage over

both TWO and ACE when the number of iteration is low (4 itr), indicating very efficient reduction during the initial

iterations thanks to the increased degrees of freedom. CBM is caught up by TWO as the iteration number increases.
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(a) Random Gaussian channel model
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(b) Flat Gaussian channel model

Fig. 2. POAPR reduction of CBM, ACE and TWO using QPSK with 8 antennas (POCS). The left plots show the algorithms with 4 iterations and
the right plots show the algorithms with 14 iterations.

In the convergent case (14 itr), TWO performs almost as well as CBM in low-user-number regimes, although CBM’s

additional degrees of freedom still yields an additional 1.05 dB reduction over TWO when the number of users is 7.

2) Channel Model II - Flat Gaussian: Based on the results from the Random Gaussian channel, it seems that

compared to TWO, ACE makes limited, although noticeable, contribution to CBM’s POAPR reduction performance.

Before drawing this conclusion, however, it is important to realize that TWO’s exploitation of the channel’s spatial

freedom may be favored by the Random Gaussian model, where every single entry of the channel matrix for all

subfrequencies are generated independently, providing ample spatial freedom for TWO.

Figure 2(b) illustrates POAPR reduction using the Flat Gaussian model, where the freedom in the channel’s null-space

is reduced by having the same channel matrix for all subcarriers. In both plots, CBM shows significant advantage over

both ACE and TWO. More importantly, while both ACE and TWO’s POAPR reduction varies drastically as the number

of users changes, CBM’s performance remains stable across all user numbers. Also, contrary to the Random Gaussian

case, the relative performance among CBM, TWO and ACE remain almost identical as the number of iterations varies.
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Fig. 3. POAPR comparison between CBM-POCS and CBM-SGP with QPSK constellations.
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Fig. 4. Convergence comparison between CBM-POCS and CBM-SGP for 6 users with QPSK constellations.

C. Convergence: POCS vs. SGP

Implementing CBM using SGP shows outstanding convergence performance compared to using POCS. It can be

seen from Figure 3 that on average SGP is able to achieve the same POAPR reduction with only one third the number

of iterations of POCS.

Figure 4 plots the convergence comparison for the six-user case. The first two iterations of SGP shows impressive

performance: the POAPR reduction achieved in the first two iterations (∼ 4 dB) accounts for 89% of the total reduction

(∼ 4.5 dB).

D. Extensions to Higher Constellations

When CBM is used for larger constellations, ACE contributes less to the total reduction, since the outer-most

points now constitute a smaller portion of the entire constellation. Figure 5 compares CBM’s performance across three

constellation settings: 16-QAM and 64-QAM show similar performance to QPSK, while the reduction with 5 to 8
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Fig. 5. Performance comparison of CBM using QPSK,16-QAM and 64-QAM constellations.
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Fig. 6. Increase in average power with QPSK constellations.

users decreases by an average of 0.8 dB.

E. Issue of Average Power

The average transmit power does increase in all three methods (Figure 6). In TWO, additional energy is injected

into the channel null space, which leads to a increase in average power, while in ACE it is mainly due to the extension

of constellations. Both of these effects contribute jointly to the average power increase in CBM.

For the simulated QPSK system with an up-sampling factor L = 4, CBM increases the average power by a minimum

of 0.89 dB (3 users) and a maximum of 1.84 dB (7 users). However, since the power consumption will be dominated

by the maximum power capacity in systems with linear amplifiers, the effects of such an increased average power are

more than offset by the benefits of a significantly reduced peak power.



VIII. CONCLUSION

We presented in this paper two efficient peak-power reduction schemes for beamforming MISO systems, the transmit

weight optimization (TWO) and constellation-beam modification (CBM). TWO utilizes the degrees of freedom in the

channel’s null-space, which performs extremely well when the number of users is small compared to the number of

base antennas, but has a degraded performance as the number of users increases. The performance variation of TWO is

characterized as an intrinsic space-user trade-off of MISO-OFDM, where the spatial freedom in the channel necessarily

decreases as the service load increases. This leads to CBM, which builds upon TWO by exploiting adjustments in the

constellation domain, compensating the loss in spatial freedom with the increasing number of constellation points to

be modified.

Based on the simulations, CBM offers a significant advantage over TWO in high-user-number regimes. When the

number of users is small, CBM offers limited benefits compared to TWO in a rich scattering environment (modeled by

the Random Gaussian channel). However, when the channel has limited spatial diversity among subcarriers (modeled

by the Flat Guassian channel), CBM provides significantly higher and more robust reduction performance compared

to ACE and TWO across different numbers of users.

Both TWO and CBM can be implemented with an iterative projection-onto-convex-set (POCS) algorithm with

N log(N) complexity, which is due to the FFT/IFFT operation during each iteration. We also provided an O(N)

step-search algorithm (SGP) to hasten the speed of convergence. While both POCS and SGP have similar limiting

performance, SGP is able to achieve an approximately three-fold speed-up, which makes it very attractive for practical

implementations of CBM.
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