
Principles for Statistical Analysis in Dynamic Service Systems

Gal Mendelson
Stanford University

Kuang Xu
Stanford University

Abstract
Resource allocation control mechanisms and statistical
analysis play key roles in the operation of dynamic service
systems. Control is used to achieve desired performance
and analysis is used for statistical tasks such as fault de-
tection and parameter estimation. While control and anal-
ysis have been studied separately to a large extent, little is
known on the interplay between the two.

In this paper we derive principles for performing online
detection of server slowdown in dynamic service systems.
We show that the choice of control has a drastic impact
on the subsequent statistical analysis. Specifically, we
show that congestion based statistics fail to detect server
slowdown when applied to the data generated by systems
which use popular adaptive control schemes.

We propose using the controller’s action data as a new
statistic for analysis and prove its effectiveness. Finally,
we show that small changes to the control, such as how to
break ties, can result in substantial gains in the effective-
ness of the subsequent statistical analysis.

1 Introduction
Service systems typically involve the dynamic allocation
of resources to serve incoming demand. These systems
must meet stringent quality of service requirements, usu-
ally measured in timely service and availability. This can
be achieved by proper capacity planning and good re-
source allocation schemes, which must take into account
the fact that service systems, especially large scale ones,
are susceptible to frequent abrupt changes that may hurt
performance if left unattended, such as faults, server slow-
downs and traffic intensity spikes.

Alongside the control of such systems, it is therefore
critical to quickly detect these changes to inform subse-

quent decisions, such as diagnosing and fixing faulty com-
ponents. This can be done in the framework of statistical
analysis of the available data that is generated by the sys-
tem.

For example, consider a system such as a cloud service
processing HTTP requests, or jobs, generated by users.
In this system there are many servers, each with its own
queue, which serve the incoming jobs. The control mech-
anism decides to which queue to send each job upon its
arrival. Suppose that the statistical task is to quickly de-
tect a sudden server slowdown.

A reasonable statistic commonly used in practice for
this purpose is looking at the queue lengths at the servers.
If a queue starts to build up in one of them, a possible
slowdown is declared. If the control randomly assigns
jobs to servers, this method will work. However, if the
control is adaptive, e.g. always sends an incoming job to
the shortest queue, then queues will not build up and the
method fails.

As demonstrated by this example, and as we later show,
the choice of the control mechanism has a profound im-
pact on the generated data and consequently may render
the subsequent statistical analysis ineffective. In fact, it
may seem that control and statistical analysis are conflict-
ing with one another: on the one hand, statistical analysis
performs best when the change in the data following an
event is most noticeable. On the other hand, good adap-
tive control is designed to minimize the impact of such
events on the performance, e.g. by rerouting traffic based
on congestion signals. This may mask the change in the
system and reflect less in the data.

While resource allocation schemes and statistical anal-
ysis of service systems data have been separately studied
to a large extent, much less is known about the interplay
between these two processes. Given the importance of
good control and subsequent analysis, it is useful to have

1

(a) Actions (routing choices for arriving jobs) empirical averages. (b) Queue lengths empirical averages.

Figure 1: Comparing Actions (routing choices for arriving jobs) and queue lengths empirical averages in a system with 30 servers over 9
consecutive time windows. The routing policy is Join the Shortest Queue and the load is 95%. Action data is very informative for slowdown
detection in this case. Clearly, server number 15 slowed down in window 4. Queue lengths are noisy and are uninformative for slowdown
detection in this case.

a coherent framework that incorporates both, i.e., one that
lets us understand how to perform statistical analysis in
the presence of dynamic scheduling and resource alloca-
tion. We do that in this paper.

For concreteness, we focus on the statistical task of
online detection of service slowdown in a parallel-server
system with a single dispatcher. This problem is mainly
motivated by detecting mail-functioning servers in data
centers, but also has applications in systems such as
healthcare systems and ride-sharing systems. Our goal is
to reason about how to do online slowdown detection in
dynamical service systems and derive principles that can
be used to guide the development and implementation of
control and statistical analysis in practice.

Our main research questions are:

1. What type of information and summary statistics are
useful for drawing statistical insight?

2. How does control impact statistical analysis? For
instance, will a change in a routing policy alter the
usefulness of a certain statistic? Should it change the
inference algorithm?

We use two types of statistics to test for server slow-
down: (1) Queue lengths, and (2) Action data. The ac-
tion data is comprised of the previous routing decisions
made by the dispatcher. To the best of our knowledge,

action data was not considered before for the purpose
of online detection. We consider three routing policies,
which differ by their degree and nature of their adaptiv-
ity: (1) Random Routing (non-adaptive), (2) Proportional
Random (rate-adaptive), and (3) Join the Shortest Queue
(queue-adaptive).

We prove that a server slowdown must reflect in a
change in the relative distributions of queue lengths, ac-
tions, or both, thus motivating their use as informative
statistics. However, we also show that care must be taken
when using either for detection.

Table 1 summarizes our main findings. We can see
that the choice of control can drastically impact the sub-
sequent statistical analysis and that congestion informa-
tion such as queue lengths can be uninformative. On the
other hand, the control’s action data can be very powerful
for statistical analysis. Figures 1a and 1b illustrate these
points.

Finally, we further investigate the nature of action data
and find that control decisions, such as what to do when
queue lengths are tied, can introduce bias and/or noise.
We prove that under any control policy the probability of
ties is large and introduce a new tie breaking algorithm
intended to eliminate biases and noise in the action data.

To summarize, our main contributions are:

1. We propose a framework to perform statistical anal-

2

Queue length data Action data

Queue-Adaptive No detection in heavy traffic Good in heavy traffic
Rate-Adaptive No detection in any traffic Good in any traffic
Non-Adaptive No detection in heavy traffic No detection at any traffic

Table 1: Comparing detection potential using queue lengths and action data for different policies.

ysis in dynamic service systems. It consists of two
interconnected stages. In one, an engineer conducts
scheduling and control. In the other, an analyst uses
the resulting data to draw statistical insight.

2. Using this framework, we show that congestion
based statistics fail to detect server slowdowns when
applied to the data generated by systems which use
popular adaptive control schemes.

3. We propose using the controller’s action data as a
new statistic for analysis and prove its effectiveness.

4. We show that small changes to the control can result
in substantial gains in the effectiveness of the subse-
quent statistical analysis.

2 Control and statistical analysis
framework

2.1 System and Model
We consider a parallel service system working in dis-
crete time t ∈ N, comprised of K servers labeled
{1, . . . ,K} := [K] and a single dispatcher. Each server
has its own dedicated buffer in which a queue can form.
At each time a job arrives at the dispatcher with proba-
bility λ, which must immediately route it to one of the
servers. We assume that service times are geometrically
distributed such that the service duration of a job pro-
cessed by server i is distributed Geom(µi), with 0 < µi <
1. Servers serve jobs according to the FIFO rule.

Denote by Qi(t) the queue length at server i at time
t, before any arrival or departure. The order of events at
time t is as follows:

1. With probability λ a job arrives to the dispatcher,
which then routes it to one of the servers.

2. For all i, if Qi(t) > 0, then there is a departure with
probability µi.

Notice that we do not allow a server to work on a job that
had just arrived.

Denote by A(t) the potential action of the dispatcher at
time t. Namely, A(t) encodes the routing decision at time
t if a job arrives. The policies we consider may use cur-
rent queue length information and randomization. Thus,
A(t) maps the current queue lengths and an additional in-
dependent random variable to a server in [K]. Define:

1i(t) =

{
1 if A(t) = i
0 else

The evolution of the queue lengths processes can be
written using the following recursion:

Qi(t+ 1) = Qi(t)− 1si1{Qi(t)>0} + 1a1i (1)

where 1si is the service indicator random variable (RV)
which equals 1 w.p. µi and zero otherwise, 1a is the
arrival indicator RV and 1i is the routing decision RV
which equals 1 if the arrival was sent to server i by the
dispatcher.

For simplicity we have suppressed the dependence of
these RVs on time, and we assume that the arrival and
service RVs are drawn from independent i.i.d sequences.

Denote the system load by:

ρ :=
λ∑
µi

.

We assume that ρ < 1 before and after a possible server
slow-down. Moreover, we assume that the control poli-
cies we consider are still able to stabilize the system after
a server slowdown.

This queueing system is characterized by an observable
process X(t), which evolves according to some law. This

3

is the process that encompasses all measurable quantities
over time, such as previous and current queue lengths, idle
times and arrivals.

2.2 Agents

There are two agents which interact with the system
though the observable process X(t).

Controller: Determines the dispatching policy. The Con-
troller may use X(t) to make routing decisions. For
example, it may look at the current queue lengths and
decide to route an incoming job to the server with the
shortest queue. A key observation is that the Controller
also changes the evolution of the observable process X(t)
through its decisions.

In this paper we consider three prevalent dispatching
policies, which are representative of three classes of poli-
cies, differing by their adaptivity nature and degree:

1. Queue adaptive: Join the shortest queue (JSQ).
An incoming job is sent to the server with the mini-
mal queue length. Ties are broken by some rule, e.g.
uniformly at random. In what follows, we show that
the choice of this tie breaking rule can have a signif-
icant impact on analysis.

2. Rate adaptive: Proportional random routing. An
incoming job is sent to server i w.p. µi/

∑
µj .

Notice that to implement this policy the dispatcher
needs to know the actual service rates, even after a
possible slowdown. We assume that the dispatcher
has this knowledge either explicitly or implicitly
using some automatic convergence mechanism, for
example by obtaining service times measurements
from servers. Importantly, we assume this informa-
tion is not available for the statistical analysis.

3. Non adaptive: Random routing. An incoming job
is sent to a server chosen uniformly at random.

Analyst: Performs statistical analysis by using data from
the observable process X(t). The goal of the analysis can
be to infer system parameters such as traffic intensity or
average waiting time. It can also be to detect changes in
server speeds beyond some threshold, which is our focus
in this work.

We allow the Analyst to use two types of data which
are different functions of X(t): Queue lengths {Q(t)}
and Actions {A(t)}. The relationship between these two
conceptually different statistics is interesting and depends
on the model, routing policy and what functions of these
statistics are used for the statistical tests.

If arrival and service cannot occur at the same time
(e.g. continuous time model), then one could reconstruct
the action data based on the upward jumps of the queue
lengths. The other direction is not true since action data
does not contain information on service. In our model
however, this reconstruction is impossible since actions
can be masked by service completions.

But, regardless of the model, designing tests that use
entire sample paths of queue lengths is difficult, possi-
bly even intractable. Since our focus in this work is on
practical simple and efficient tests, we will use empirical
distributions as means for detection, which rule out such
reconstructions.

Still, how different is queue lengths data from action
data really? For routing policies that do not rely on queue
lengths (e.g. rate or non adaptive) there is no direct con-
nection between the two. Even for JSQ, Q(t) uniquely
determines A(t) only when there are no ties and we later
prove that ties happen often under any policy. We proceed
with laying out the statistical framework the Analyst uses
for detection.

2.3 Statistical analysis

In general, the goals of the statistical analysis determine
what statistics to use and which tests to perform. We out-
line these in our context next.

Statistical task: Detect changes in system parameters.
In this paper, we are specifically interested in detecting
server slowdown using the framework of hypothesis test-
ing, i.e. determining whether there is a slowdown of a
certain magnitude or not. We distinguish between two
types of tasks:

• The detection task: decide whether there was a
server slowdown.

• The identification task: given there was a slowdown,
identify which server slowed down.

4

In this preliminary report, we are interested in the latter,
i.e. the identification task.

Choice of statistic / measurement: This is a function of
the observable X(t) which is used to perform the hypoth-
esis testing. As mentioned above, we focus on two such
statistics: (1) Queue lengths {Q(t)}: how long queues
have been up to (and including) time t, which gives us pre-
vious and current congestion information. Queue lengths
are widely used for adaptive control, as well as for analy-
sis. (2) Action data {A(t)}: controller data information,
which is the routing choices the dispatcher makes.

Window based online detection: To detect a change in
queue lengths or actions caused by a sudden slowdown
of a server, the Analyst gathers statistical information
within disjoint consecutive windows of length L, and tests
whether there was a change between consecutive win-
dows.

Empirical distributions as means for detection: In gen-
eral, the Analyst can use the temporal sample path in-
formation in each window, which contains the maximal
amount of information for the observable statistics. How-
ever, as previously mentioned, the dimension of time
complicates the tests’ design considerably, as well as re-
duces the tractability of the entire procedure. It also re-
quires understanding how the sample path changes after a
slowdown event, which can be tricky.

Thus, instead of using the sample path, we can use the
empirical distribution of the statistics over the window.
These are defined as:

P̂Q(t, x) =
1

L

t∑
s=t−L+1

1{Q(s)=x}, ∀x ∈ ZK
+

P̂A(t, i) =
1

L

t∑
s=t−L+1

1{A(s)=i}, ∀i ∈ [K].

There are two main motivations for this choice. The
first is that it considerably simplifies the test design and
execution. Second, in the system we consider, by ergod-
icity, as L increases, the empirical distributions converge
to steady state distributions, which we denote by P∞

Q and
P∞
A .
Now, we prove in Conservation Theorem 3.1 that server

slowdown must manifest in relative changes among the
observables’ steady state distributions. I.e, if server i

slows down, it must be that the steady state distributions
of Qi and/or 1i change. Therefore, by association, it must
manifest in changes in the empirical distributions P̂Q and
P̂A as well.

Marginal empirical queue length distributions: Fi-
nally, even after moving from sample path to empirical
distributions, P̂Q is sill very complicated to work with be-
cause it keeps track of all possible combinations of queue
values separately. While it might be useful to capture de-
pendencies between the queues this way, we are able to
show, for the model we consider, that when P̂Q is poten-
tially informative for detection, then so is the much sim-
pler marginal empirical distributions of the queues. These
are defined as:

P̂Qi
(t, x) =

1

L

t∑
s=t−L+1

1{Qi(s)=x}, ∀x ∈ Z+, i ∈ [K]

Multiple hypotheses testing: Denote the service rate of
servers which have not slowed down by 0 < µ < 1 and
the slowdown factor by 0 < α < 1. Define the hypothe-
sis:

H0 := {µi = µ,∀i ∈ [K]}

and for every j ∈ [K]:

Hα
j := {µj = αµ and µi = µ,∀i ∈ [K] \ {j}}.

The hypothesis Hj corresponds to the case where only
server j slowed down by a factor of α. The hypothe-
sis H0 corresponds to the case where no server slowed
down. We assume that one, and only one, of the hypothe-
ses H0, H

α
1 , . . . ,H

α
K is true in a given window.

Remark 2.1. In general, a slowdown can occur at any
time during a window, not necessarily at the beginning.
To overcome this complication, one can compare a win-
dow to two windows before it instead of one. The price is
waiting an additional window for detection.

Steady state samples approximation: Ideally, we would
like to know how the quality of detection depends on the
window size L. However, the empirical distributions over
such windows are difficult to analyze. For the analysis, we
approximate the empirical distributions by the empirical

5

distributions of N independent samples from the steady
state distributions of the statistics, P∞

Q and P∞
A .

Denote by Q1, . . . , QN and A1, . . . , AN N indepen-
dent samples from P∞

Q and P∞
A respectively. With a

slight abuse of notation, define the empirical distributions:

P̂Q(N, x) =
1

N

N∑
n=1

1{Qn=x}, ∀x ∈ ZK
+

P̂A(N, i) =
1

N

N∑
n=1

1{An=i}, ∀i ∈ [K]

P̂Qi
(N, x) =

1

N

N∑
n=1

1{Qn
i =x}, ∀x ∈ Z+, i ∈ [K].

Test design: In this preliminary report we show negative
results regarding the effectiveness of using queue lengths
as means for detection regardless of the specific statistical
test that is chosen. Thus, we will only specify the test
which uses action data.

Since we consider the identification task, we design a
test that given that we know a server slowed down, we
declare which server it was. I.e., given H0 is wrong, test
for which of the hypotheses Hα

1 , . . . ,H
α
K is true.

The test procedure is as follows:

1. Find the hypothesis under which the empirical aver-
age is minimal, i.e.:

i∗ = argmini{P̂A(N, i)}

2. Identify server i∗ as the server that slowed down.

The motivation for this simple test is that as the num-
ber of samples N gets larger, the empirical average con-
verges to the steady state action probability values. Under
adaptive policies, the server that slowed down will get less
traffic, thus with a high probability, the minimal empirical
average is that of the server that actually slowed down.

Alternative test: While we do not provide, for now, any
results on tests other than the one specified above, it is
useful to conceptually consider alternatives. A more com-
plicated test, based on KL-divergence, can involve the en-
tire distributions, not just the average:

1. Calculate the KL-divergence between the empirical
steady state sample distribution and the steady state
distribution under every hypothesis:

Di := DKL

(
P̂A(N, i)||P∞

A (i)
)

2. Find the hypothesis under which the KL-divergence
is minimal, i.e.:

i∗ = argmini{Di}

3. Identify server i∗ as the server that slowed down.

The motivation for this simple test is that as the number
of samples N gets larger, the empirical distribution con-
verges to the steady state distribution under the correct
hypothesis. Since the KL-divergence is a good measure
for how different two probability distributions are, the hy-
pothesis under which this distance is minimal should be
the correct hypothesis with a high probability.

Naturally, in practice, one will use the actual empiri-
cal sample distribution over a window in this test and not
samples from steady state.
Test error: The test error is the probability that we iden-
tified the wrong server as the one who slowed down, i.e.:

Error = P(i∗ ̸= actual server who slowed down)

3 Main Findings

3.1 Conservation law
In this section we motivate the use of action data by prov-
ing that a change in service rate must manifest in a change
in the steady state distribution of the queue length, the ac-
tion or both. In what follows, we assume that the control
policy is stable before and after a change in service rate
of one of the servers.

To state the theorem, denote by Q∞ = (Q∞
1 , . . . , Q∞

K)
a random vector distributed according to P∞

Q , and simi-
larly A∞ a random variable distributed according to P∞

A .

Theorem 3.1 (Conservation). We have, for all i ∈ [K]:

µiP(Q
∞
i > 0) = λP(A∞ = i) (2)

Therefore, if µi changes, eitherP(Q∞
i > 0),P(A∞ =

i) or both must change as well.

6

Proof. The flow equation (1) holds if the queues lengths
are initialized to their steady state distribution. We denote
by Q∗ the queue length process initialized in this way and
by A∗ the resulting potential action process. Taking the
expected value of both sides of (1), we obtain:

E[Q∗
i (t+ 1)] = E[Q∗

i (t)]− µiP(Q
∗
i (t) > 0)

+ λP(A∗(t) = i), (3)

where we have used the fact that arrival and service are
driven by RVs independent of the state.

Since the queue length process Q∗ is a Markov Chain
and it is initialized using the steady state distribution, it is
stationary in this case. Thus Q∗

i (t) and Q∗
i (t+1) are both

distributed as Q∞
i , and A∗(t) as A∞. In particular, we

have E[Q∗
i (t+1)] = E[Q∗

i (t)]. Substituting in (3) yields
the result.

3.2 Congestion data can be uninformative
In this section we show that in the rate adaptive example,
queue lengths are indistinguishable regardless of whether
a server slows down or not, for any load. In the queue
adaptive control example, we show that queue lengths are
almost indistinguishable in high loads. Finally, for the
non-adaptive case, we show that the queue length average
and variance are prohibitively large in high loads. This
implies the need for very large windows for convergence
to steady state behaviour.

Proposition 3.2 (Rate-adaptive: Indistinguishable queue
lengths). Under proportional routing, we have:

P(Q∞
i = xi) = ρ(1− ρ)xi

P(Q∞ = x) = ΠP(Q∞
i = xi) = ρK(1− ρ)

∑
xi .

I.e., in steady state, the queue lengths are i.i.d. RVs,
distributed Geometrically with parameter 1− ρ.

Proof. Under proportional routing, the queue lengths are
independent discrete time M/M/1 queues, where the in-
put rate to queue j is λ · µj/

∑
µi. Thus, the load on

server j, denoted by ρj , equals:

ρj =
λ · µj/

∑
µi

µj
=

λ∑
µi

= ρ.

It is well known that the queue lengths of each server j is
distributed Geometrically with parameter 1−ρj in steady
state which concludes the proof.

Thus, there is no way to distinguish between servers
and deciding which one slowed down using queue length
information.

Next, we consider the queue adaptive case, namely
JSQ. It is well known that as the load approaches the max-
imum capacity of the system, the queue length processes
under JSQ collapse to a single dimensional process, even
when the service rates of the servers are different. This
phenomena is usually referred to as ’State Space Col-
lapse’. In other words, if in the rate adaptive example
queue lengths were indistinguishable because they were
i.i.d stochastic processes, under JSQ in heavy traffic, they
are approximately the same process which makes them
indistinguishable as well. We summarize this result and
defer the technical details for a later version of this paper.

Proposition 3.3 (Queue-adaptive: Indistinguishable
queue lengths in heavy traffic). Under JSQ, as the load
increases, the joint queue length distribution approaches
a single dimensional distribution. Informally:

(Q∞
1 , . . . , Q∞

K)
D
≈ (Q, . . . , Q)

where Q is a random variable, same for all queues.

Finally, we consider the non-adaptive example, i,e,
Random Routing, and argue that as the load increases the
effectiveness of the queue lengths statistics deteriorates.
It is well known that in this case the queue lengths are
independent and that in steady state, each is distributed
Geometrically(1-ρi), where ρi = λ

Kµi
. We therefore

know the expected value and variance for each queue.

Proposition 3.4 (Non-adaptive: Large queue length val-
ues and variance in heavy traffic). Under Random Rout-
ing, we have:

E[Q∞
i] =

ρi
1− ρi

=
λ

Kµi − λ

Var(Q∞
i) =

ρi
(1− ρi)2

Thus, as λ increases, so do the ρi’s, which in turn
means higher expected values and variances.

7

3.3 Action data can be powerful
In this section we demonstrate the benefits of using ac-
tion data in the presence of adaptive control. As we have
shown in the previous section, queue lengths can be un-
informative, especially in high loads. Action data on the
other hand is very informative in the rate adaptive case,
as well as in the queue adaptive case for high loads, since
the action distribution must approach that of proportional
routing for the system to remain stable.

It is clear that in these cases, the action steady state
distribution separates well the slow server from the rest.
The only question is whether the test we perform captures
this. To this end, we now provide a preliminary analysis
of the effectiveness of the empirical average test. Without
loss of generality, assume that server 1 slowed down, i.e.
hypothesis Hα

1 is true. In the rate adaptive case, the steady
state action probability distribution is:

P (A∞ = i) =

{ α
K−1+α if i = 1

1
K−1+α else

Denote:
p =

1

K − 1 + α
.

We take N samples from this distribution and get the
empirical averages:

P̂A(N, i) =
1

N

N∑
n=1

1{An=i}, ∀i ∈ [K].

We now check which i has the minimal empirical average
P̂A(N, i), and declare it as the server than slowed down.

Theorem 3.5 (Rate-adaptive: Bound on error). The error
satisfies:

Error ≤ 2K2

N(1− α)2
.

Proof. We have:

Error = P(∃i > 1 : P̂A(N, i) < P̂A(N, 1))

≤
K∑
i=2

P(P̂A(N, i) < P̂A(N, 1))

= (K − 1)P(P̂A(N, 2) < P̂A(N, 1))

Where the last equality is by symmetry of the servers that
did not slow down.

Now, each sample landed on only one server, and on
server i with probability P (A∞ = i). Thus the joint dis-
tribution of how many samples there are from each server
is multinomial. The marginal distribution of each element
is Binomial. Thus, each empirical average multiplied by
N is a Binomial random variable, such that NP̂A(N, i) is
distributed Bin(N,P (A∞ = i)), and these are dependent
across servers.

For simplicity, denote X = NP̂A(N, 2), Y =
NP̂A(N, 1) and Z = Y −X . We have:

Error ≤ (K − 1)P(Z > 0)

= (K − 1)P(Z −E[Z] > −E[Z])

≤ (K − 1)
V ar(Z)

(E[Z])2

Where we have used Chebichev’s inequality and the fact
that E[Z] < 0. Now,

E[Z] = E[Y]−E[X] = −Np(1− α)

and

V ar(Z) = V ar(Y) + V ar(X)− 2Cov(X,Y)

= N(p(1− p) + αp(1− αp))− 2Cov(X,Y)

= Np(1− p+ α− α2p) + 2Npαp

= Np(1− p+ α− α2p+ 2αp)

= Np(1 + α− p(α2 − 2α+ 1))

= Np(1 + α− p(1− α)2) ≤ Np(1 + α)

where we have used properties of the multinomial distri-
bution for the covariance calculation. Thus, we obtain:

Error ≤ (K − 1)
Np(1 + α)

(Np(1− α))2
≤ 2K2

N(1− α)2
.

While this bound is far from tight, it does show that
the error probability decays at a rate of at least 1/N . We
expect the error to decay exponentially with N .

8

3.4 Optimizing action data
In this section we show that small changes to the control
policy can drastically improve the finite time statistical
analysis. Specifically, we observe that popular choices for
the control policy’s tie breaking rule, namely index based
or random, introduce heavy bias and noise respectively to
the action data.

We prove that ties are very common under any stable
policy, which makes the impact of the tie breaking rule
significant. Finally, we introduce a new simple and ef-
ficient tie breaking rule, which we refer to as Adaptive
Round Robin, designed to optimize the action data empir-
ical distribution.

Theorem 3.6 (Ties are prevalent). For a homogeneous
system, under any stable policy, we have:

P(There is a tie) ≥ 1−
(K

K − 1

)
ρ.

For example, for any system with at least 10 servers the
chance for a tie is at least 10% for any load under 80%,
and at least 40% for any load under 50%.

Proof. The probability that there is a tie is larger than the
probability that there are two or more servers with queue
lengths zero. Denote by X∗

f the fraction of idle servers in
steady state, namely:

Xf =
1

K

K∑
i=1

1{Q∞
i =0}.

Thus, we want to prove that:

P(Xf >
1

K
) ≥ 1−

(K

K − 1

)
ρ

Since the server rates are equal, by symmetry we must
have P(A∞ = i) = 1/K, for all i ∈ [K]. Plugging
this into Equation (2) and summing over all servers, we
obtain:

1

K

K∑
i=1

P(Q∞
i > 0) =

λ

Kµ
= ρ.

We have:

E[Xf] =
1

K

K∑
i=1

E[1{Q∞
i =0}] = 1− 1

K

K∑
i=1

P(Q∞
i > 0)

= 1− ρ

Now,

1− ρ = E[Xf] ≤
1

K
P(Xf ≤ 1

K
) + 1 · (1−P(Xf ≤ 1

K
))

= 1− (1− 1

K
)P(Xf ≤ 1

K
)

Using the fact that P(Xf > 1
K) = 1−P(Xf ≤ 1

K) and
rearranging completes the proof.

We proceed by considering two common tie breaking
rules and their impact on the action data.

Proposition 3.7 (Random introduces noise). Breaking
ties randomly introduces substantial noise to the empir-
ical action data distribution.

Argument outline. By Theorem 3.6, ties occur often for
any control policy. Therefore, for each arriving job, there
is a high probability that a tie must be broken. If this
is done randomly, then a large percentage of actions are
distributed randomly between at least two servers. This
introduces random fluctuations in the action data which
we refer to as noise.

Figure 2b illustrates the finite time action data when a
random tie breaking rule is used. We can see that there
is substantial noise which masks the slowdown of server
number 15 at window number 4.

Proposition 3.8 (Index based introduces bias). Breaking
ties by index introduces a substantial bias to the empirical
action data distribution.

Argument outline. If ties occur often, then smaller index
servers are given substantially more jobs than higher in-
dexed servers.

Figure 2c illustrates that there is a substantial bias us-
ing this rule, such that lower index servers are preferred.
Interestingly, there is almost no noise, and the slowdown
of server 15 is apparent.

Adaptive Round Robin tie breaking rule. We now in-
troduce a new, simple and efficient method to break ties.
It is inspired by the round robin policy and conceptually
works as follows:

• The servers are are put on a ring.

9

(a) With Adaptive Round Robin there is less noise and
no bias.

(b) Breaking ties randomly introduces noise. (c) Breaking ties by index introduces bias.

Figure 2: Comparing action empirical averages over 9 consecutive time windows with different tie breaking rules. The simualtion has 30
servers, the policy is JSQ and the load is 50%. Server number 15 slows down during window number 4. The tie breaking rule drastically
impacts the finite time action data distribution.

Figure 3: The Adaptive Round Robin tie breaking rule. The
servers in red are tied. The chosen server is the one clockwise
closest to the current position of the pointer.

• There is a pointer that points to one of the servers,
initialized arbitrarily.

• When a tie needs to be broken, the chosen server is
the one which is clockwise closest to the pointer.

• The pointer position is updated to the chosen server.

Figure 3 illustrates the Adaptive Round Robin tie
breaking rule. At first (left) the pointer points to server
1, and there is a need to break the tie between servers 3
and 5 (marked in red). Since 3 is clockwise closest to 1,
it is chosen and the pointer is updated accordingly. Next,
the tie between servers 3 and 6 is broken and server 6 is
chosen. Notice that the server the pointer points to is con-
sidered to be with the farthest distance from itself, so that
a different server is always chosen to avoid choosing it
repeatedly, which will introduce bias. Finally, server 2 is
closest to 6 and therefore is chosen.

Efficient implementation. Given a set of size 2 ≤ k <
K of tied servers {s1, s2, . . . , sk} and the current pointer
position p, the algorithm does the following:

• Initialize two numbers which we call low (initialized
to p) and high (initialized to K + 1).

• For each element si, if p < si < high we set high =
si. Otherwise, if si < low we set low = si.

• After considering the entire set {s1, s2, . . . , sk}, if
high = K + 1, return low as the winner of the tie.
Otherwise, return high.

Correctness. After considering the entire set
{s1, s2, . . . , sk}, if high was ever updated, at ter-
mination it must contain the closest server larger than p.
In this case, it is the clockwise closet to p. If it was not
updated (i.e. its value remained K + 1), it must mean
there are no servers in {s1, s2, . . . , sk} that are larger
than p. In this case, at termination, low must contain the
smallest server in the set {s1, s2, . . . , sk}, which is the
clockwise closet to p.

Complexity. The algorithm always terminates using
exactly k operations and the memory overhead is storing
the numbers low and high, which need ⌊log2(K)⌋ + 1
bits each.

Figure 2a illustrates the finite time action data when us-
ing the Adaptive Round Robin tie breaking rule. Clearly,
the server slowdown in window 4 is apparent, and the data
is unbiased and with substantially reduced noise.

10

	Introduction
	Control and statistical analysis framework
	System and Model
	Agents
	Statistical analysis

	Main Findings
	Conservation law
	Congestion data can be uninformative
	Action data can be powerful
	Optimizing action data

