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Abstract

Peer-to-Peer (P2P) live streaming has become a popular means of distributing real-time
online video contents. The distributed nature of the system provides great flexibility, scala-
bility and robustness. The central theme of this thesis revolves around the following general
questions that concern the modeling, performance, and stability of P2P live-streaming sys-
tems.:

1. What models are effective in describing and analyzing the dynamics of a P2P stream-
ing network and what are the trade-offs in different modeling methods? We examine
three stochastic model candidates (Chapter 2) that depict the network at various
levels of granularity [1, 2]. While we do not present any explicit results related to
the models, they serve not only as conceptual frameworks for understanding the crit-
ical characteristics of the network, but also important analytical tools on which later
results are based.

2. What are the decision variables involved in the process, and how can we utilize them
to optimize the peers’ viewing experiences? In particular, we identify the average
downloading rate achieved by the network as one of the most important performance
measures, as it assesses the video playback continuity experienced by an average peer.
We present a heuristic criteria for optimizing permutation-based downloading policies,
which outperforms the best Mixed policy in [1].

3. Is the P2P video streaming network stable under certain downloading policies and in-
centive strategies? Even if the model suggests the existence of a healthy steady state
with a desirable throughput, is there still a chance for the network to become stuck
in a state with poor performance? We show uniqueness of marginal distribution for
several typical permutation-based downloading policies, indicating the steady-state
marginal chunk distributions for these policies are stable. We also show that there
exists a bistability of fixed point of marginal distribution when the tit-for-tat incen-
tive requirement is enforced, leading to drastically different continuity performances
depending on the initial state of the network.

4. Lastly, we ask what downloading policies a selfish peer would choose in order to
maximize its own playback continuity, given that it has complete information of the
empirical distribution of other peers. This sheds light on the robustness of download-
ing policies against malicious peers. We present a necessary condition for any optimal
downloading policy.
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Chaper 1

Introduction

The world has witnessed a surging demand for videos distributed through the Internet. In
many cases, instead of playing the video after downloading the complete file, the user can
watch the video in real time via a data link connected to the server. We call this video
streaming. Assuming the user plays the video at the same rate as it downloads the video,
the simplest way of streaming from a server takes the following steps:

1. The user downloads a video frame, or data chunk, C, from the server.

2. The user plays the frame C.

3. Return to Step 1 and repeat.

This simple model would work well in reality if not for its parallel problem of scalability: if
N users are trying to stream the same video from the same server, and if each user streams
at a constant rate r, then the server’s uplink requirement is approximately rN . Such a
rapid rate of increase in upload bandwidth can add significant stress to the server as N
becomes large.

For video content providers who do not have a budget to expand the physical uplink band-
width, a natural question to ask is: Does there exist a way to serve a large number of
peers who are trying to stream the same video, given a limited upload bandwidth from the
server? The answer is affirmative, and one of the ways to efficiently achieve this goal is to
use the technique called Peer-to-Peer (P2P) video streaming.

1.1 A Peer-to-Peer Streaming Network

The central idea for a Peer-to-Peer (P2P) video streaming system is to fully utilize every
user ’s upload bandwidth and storage space to help the server distribute the content. In-
stead of downloading only from the server, each user now is allowed to contact other peers
and download parts of the file. Hence the total upload service requirement is now shared
among the group of peers, rather than by the server alone.

We adopt the following model from [1]. Consider a network with M peers trying to stream
a live video from a single server. For simplicity of analysis, assume the system progresses
on a discrete time basis (t = 1, 2, 3, ...), video contents are distributed in the form of data
packets called chunks, and the video is played at the rate of one chunk per time slot. At the
beginning of each time slot, the server selects a peer uniformly at random from the network
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and uploads the most recent chunk. Due to the limited upload bandwidth at the server,
each peer employs an N -chunk buffer to cache the video stream, where location 1 denotes
the most recent chunk that is currently being uploaded by the server, and location N is
where the video is currently being played. During each time slot, every peer is allowed to
contact another peer randomly selected from the rest of the network, which we call target,
and download at most one chunk of content that is available in target’s buffer locations 2
to N − 1. At the end of the time slot, the chunk at buffer location N , if it exists, is played,
and all other chunks in the buffer are shifted by one location towards the end of the buffer.
An illustration of a peer buffer is given in Figure 1.2.

Figure 1.1: Structure of a P2P Streaming Network.

Figure 1.2: Illustration of A Peer’s Buffer

1.2 Definitions

To facilitate the analysis in later sections, we define a set of notations and operators asso-
ciated with the distribution process which will be formally defined in Section 1.3.

Definition 1. Let the buffer length be N , the buffer state of peer i is defined to be the
N -element vector xi ∈ {0, 1}N , where xi(n) = 1 indicates there is a chunk in buffer location
n, and xi(n) = 0 indicates buffer location n is empty. For example, when N = 5 and
xi = 00001, it means peer i has only one chunk, which is in buffer location 5.

Definition 2. The buffer state space is defined to be the set of all possible buffer states:
X = {0, 1}N .
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Definition 3. A deterministic downloading policy is a function δ(xi, xj) : X 2 →
{2, ..., N − 1}. Given a peer’s buffer state xi, and its target’s buffer state xj, the down-
loading policy δ(xi, xj) maps (xi, xj) to an index of the buffer location, in which the peer
intends to download the chunk. Unless otherwise specified, we assume all peers use the same
downloading policy.

Definition 4. A shifting operator S: X → X is defined such that if y = Sx, x, y ∈ X ,
then yi+1 = xi, ∀i ∈ {1, ..., N − 1}, and y1 = 0.

Definition 5. A downloading operator Di(x) : X → X , i ∈ {1, ..., N}, is defined such
that if y = Di(x), x, y ∈ {0, 1}N , then yj = xj ,∀j ∈ {1, ..., N}\{i}, and yi = 1.

1.3 The Content Distribution Process

To summarize, we now formally define the video distributing process by specifying the exact
actions taken by the server and peers within one time slot.

1. Time slot t = k begins.

2. Each peer plays the current chunk that is in buffer location N , if it exists.

3. The server selects a peer, indexed by l, uniformly at random from the network and
uploads to peer l the most recent video chunk Cnew into buffer location 1 of the peer.

4. For every peer i who was not selected by the server in the previous step (i ∈
{1, 2, ...,M}\{l}):

(a) The peer selects a target j uniformly at random from the network, with j 6= i.

(b) The peer downloads a chunk Cd from the set of downloadable chunks, denoted
by D(xi, xj), which is the set of chunks available at the target’s buffer locations
2, 3, .., N − 1, but are not possessed by the downloading peer. The choice of d
is made by the downloading policy δ, i.e. d = δ(xi, xj). If D(i, j) is empty, the
peer does not download anything.

5. For all peers, the chunk in the N -th location of the buffer, if it exists, is played, and
all other chunks in the buffer are shifted towards the end of the buffer by one buffer
location.

6. Time slot t = k ends. Set t = k + 1 and return to Step 1.

Note that only the chunks in buffer locations 2, 3, ..., N − 1 are downloadable, which means
buffer location 1 is always empty for all peers at the beginning of a time slot. Also, since
only one user was selected by the server in the previous iteration, only one peer in the
network has a chunk in buffer location 2 at the beginning of any time slot.
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Chaper 2

Probabilistic Models for Peer-to-Peer Live

Streaming

In this chapter, we describe three probabilistic models that can be used to describe the dy-
namics of this P2P streaming network: the network state model, the user state model , and
the marginal probability model. While the network state model describes the system with
the highest degree of comprehensiveness compared to the other two, the relative simplicities
of user state and marginal probability models provide a better ground for performing more
in depth analysis on how the system behaves.

2.1 The Network State Model

The network state model is the most general of all three and describes the system most
accurately. Due to its details, however, the network state model is very difficult to analyze
to obtain performance-specific results. Nevertheless, it provides important insights on the
nature of the dynamic system, as well as what assumptions could be made to simplify the
model.

Definition 6. Let the number of peers be M and the buffer length be N . A network
state is a vector ψ ∈ {0, 1}MN , which encompasses the buffer states of all peers in the P2P
network, defined by:

ψ := [x1 x2 ... xM−1 xM ] , (2.1)

where xi ∈ {0, 1}N , ∀i ∈ {1, 2, ..., N}.

Let Ψ(t) denote the network state at the beginning of time slot t, we observe that the
random variables (Ψ(t)) form a finite-state Markov process {Ψ(t) : t ∈ N} . It is easy to
identify that the transition probability pψi,ψj depends on the deterministic downloading
policy δ employed by the network. Hence, we can express the conditional probability of the
network states as:

P
(

Ψ(t+ 1) = ψ̃
)

=
∑
ψ

pψψ̃(δ)P (Ψ(t) = ψ) . (2.2)

If we know the expressions for the transition probabilities pψi,ψj (δ) for all ψi, ψj ∈ {0, 1}MN

given any downloading policy δ, equation (2.2) along with an initial condition Ψ(1) = ψ(1)
will allow us to fully describe the distribution of the system in any time slot t. Unfortunately,
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finding an exact expression for pψi,ψj (δ) can easily be prohibitively computationally expen-
sive. In a common P2P network with the network size M ≈ 1000 and buffer size N ≈ 20,
finding pψi,ψj (δ) involves computing a probability mass function with 21000∗20∗2 = 240000

states, an astronomically large number. More complex tasks such as using numerical meth-
ods to find optimal downloading policies may simply be computationally infeasible.

While lacking computational tractability, the network state model provides a basis on which
simplified versions can be built. The next two models can be treated as extensions of the
general network state model, by adding additional independence assumptions. The user
state model assumes independent and identical distributions for each peer’s states, and the
marginal probability model, in addition the assumption of inter-peer independence, assumes
that the marginal chunk distributions at different buffer locations within a single peer are
independent.

Note: (Uniqueness of Equilibrium Distribution) Based on the network model, we
can see that for a given deterministic downloading policy the dynamics of the network is
described by an irreducible aperiodic finite-state Markov process. The irreducibility comes
from the fact that one can always find a sample path with positive probability that goes
from one state to another. The aperiodic property can be shown as follows:

Suppose we start with a network state Ψ0 = ψ̂ = [x1 x2 ... xi ... xn] where xk = [0 1 1 ... 1]
if k = i and [0 0 0 ... 0] otherwise. In the current time slot, peer i will be served by the
server with probability 1

M to maintain its buffer state xk = [0 1 1 ... 1], whereas all other
peers will stay in the state [0 0 0 ... 0] with probability (1− 1

M )M−1, which is the probability
that none of the them contacts peer i in this time slot. The probability that the network
will remain in state Ψ after one time slot is therefore pψ̂ψ̂(1) = 1

M (1− 1
M )M−1 > 0. Hence

state ψ̂ has a period equal to 1. Since the Markov chain is irreducible, all states have the
same period, and hence the process is aperiodic by definition.

Finally, as a well-known result in the literature of stochastic processes, it is shown in
[3] that all irreducible aperiodic finite-state Markov processes have a unique equilibrium
distribution.

2.2 The User State Model

While the network state model is able to fully describe the network, we are more interested
in the performance factors experienced by each individual peer. The user state model fo-
cuses on the steady-state distribution of an average peer’s buffer, by assuming that when
the total number of peers M becomes very large, the state at each peer is essentially in-
dependent from one another. Hence, instead of trying to solve for the exact states for the
entire system, the user state model simply states that when a peer contacts a target, the
buffer state it observes at the target is equivalent to a random sample drawn from a certain
distribution.

The user state model is essentially based on the heuristic in statistical physics called the

5



Mean-Field Theory, which simplifies the iteraction between any single peer and the rest of
the group so that the peer is expected to keep sampling independently from the mean buffer
state distribution of the rest of the peers. Therefore, we can assume that in stead-state,
all peers have an identical and independent buffer state distribution, which equals to the
expected distribution of the whole network, which is observed by a peer during every time
slot. This reduces the total number of states from 2MN to 2N . The user state model is
essentially the same as the Density Dependent Jump Markov Process model proposed in [2].

It is worth noting that the model is not completely accurate because in reality, every peer
has a unique buffer state distribution at any times, but the model is assuming that all peers
take on the mean buffer state distribution when being sampled as a target. But the error
is generally diminishing as the number of peers M →∞.

Following the content distributing process described in Section 1.3, a steady-state buffer
state distribution Ps is described by the a solution to the fixed-point equation below:

Ps(x) =
1
M

∑
xi∈X1

Ps(xi) +
(

1− 1
M

) ∑
(xi,xj)∈X2(δ)

Ps(xi)Ps(xj),∀x ∈ X , (2.3)

where X1 is the set of all states that will become x after downloading the chunk in buffer
position 1, or: X1 = {xi : SD1(xi) = x}.(In fact X1 always has only two elements, differing
by the N -th bit). X2(δ) is the set of pairs of states (xi, xj) such that when a peer with
state xi downloads from a target with state xj according to the downloading policy δ, the
resulting state is x, or: X2(δ) = {(xi, xj) : SDδ(xi,xj)(xi) = x}.

2.3 The Marginal Probability Model

Although the user state model significantly reduces the state space, computations are still
challenging as the length of buffer N becomes large. To further simplify the problem, the
marginal probability model, first proposed by Zhou et al. [1] makes the assumption that the
states of individual buffer locations are independent from each other. Hence the joint dis-
tribution of a particular buffer state can be written in terms of the product of the marginal
probabilities of all buffer locations, reducing the dimension of the state space from 2N to N .

Assuming identical and independent peer state distribution for all peers, let pi denote the
steady-state marginal probability that buffer location i has a chunk in the current time slot:

pi =
∑

x∈{x∈X :x(i)=1}

Ps(x). (2.4)

The marginal probabilities {pi, i ∈ {1, 2, ..., N}} are defined by the following equations [1]:

p1 = 0
p2 = 1

M

pi+1 = pi + pi(1− pi)si(δ), ∀i ∈ {2, 3, ..., N − 1}, (2.5)

where si(δ) denotes the probability that one piece will be downloaded to the buffer position
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i in a given time slot, given a deterministic downloading policy δ. In later sections, the
term si(δ) will take on specific expressions as we focus on particular classes of downloading
policies.

While it becomes more obvious in later sections, we can already see that the independence
assumption on buffer states is not true in reality, because any deterministic downloading
policy will introduce correlations among different locations in the same buffer. The simplic-
ity of the marginal probability model and its relative accuracy, however, allows us to study
many interesting performance factors qualitatively on large buffer sizes, such as the impact
of various downloading policies on playback continuity and the uniqueness of distribution
of buffer states.
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Chaper 3

Studies Using the Marginal Probability Model

In this chapter, we employ the Marginal-Probability (MP) model to study a collection of
topics that concern the performance of a peer-to-peer video streaming network. We begin
by investigating the playback-continuity-maximizing downloading policies.

3.1 Optimal Permutation-based Chunk Selection Heuristic

One of the most important performance measures for a P2P video streaming network is the
playback continuity experienced by the peers. In our context, it is defined by the probability
of the peer being able to “play” a frame at each time slot. If such a probability is low,
the viewing experience is more likely to be degraded due to skipped frames or noticeable
playback interruptions. Relating to the network model in Section 1.3, this quantity is
represented by the marginal probability of seeing a chunk in buffer location N :

Playback Continuity := pN =
∑

x∈{x∈X :x(N)=1}

P (x), (3.1)

3.1.1 Permutation-based Chunk Selection Policies

It can be observed from the distributing process described in Section 1.3 that the only
controllable input to the system is the downloading policy δ. Hence our goal will be to
find a policy so that the steady-state marginal probability pN is maximized. Generally, as
defined in Section 1.2, a downloading policy is a function that depends on the state of both
the peer itself and the state of the target. To simplify the case and obtain more intuitive
understanding of the system, here we restrict our study to policies that be described by a
set of deterministic preference permutation, defined as below.

Definition 7. A preference permutation π is a permutation of the set of buffer loca-
tion indices {2, 3, ..., N − 1}. A downloading policy δπ based on a deterministic preference
permutation π is to always download the piece whose index is closest to the beginning of the
permutation, i.e.

δπ(i, j) = min
m
{m ∈ {2, 3, ..., N − 1} : π(m) ∈ D(i, j)} . (3.2)

Below are some typical preference permutations, discussed also in [1].
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• Earliest Deadline First (EDF): π = {N − 1, N − 2, ..., 3, 2}

• Latest Deadline First (LDF): π = {2, 3, ..., N − 2, N − 1}

• Mixed : π = {2, 3, ..., k − 1, N − 2, N − 1, ..., k + 1, k} for some threshold k, k ∈ {3, 4, ..., N − 2}

Figure 3.1 gives a comparison of performance among difference choices of permutations. It
has been shown experimentally in [1] that by varying the threshold k, one could achieve a
better playback using Mixed permutations compared to LDF and EDF. Roughly speaking,
the EDF policy chooses piece by its urgency to playback, and LDF prefers chunks that tend
to be more rare in the network (since the marginal probabilities pi’s are strictly increasing
in i), and the Mixed policy essentially represents a compromise between the two.

Figure 3.1: Steady-state Buffer Marginal Probabilities due to Different Permutations

Given a buffer length N , the total number of unique permutations of {2, 3, ..., N − 1} is
(N − 2)!. Such a size of posible permutations increases too rapidly in N for an exhaustive
search method to tackle the problem of finding the optimal permutation among all pos-
sible permutations. We therefore propose a computationally efficient permutation search
heuristic in the following section in an attempt to find near optimal permutations.

3.1.2 The Hardness-First Heuristic

In some sense, the definition of a permutation-based strategy assigns a ranking of importance
between the buffers, since the policy requires to download the piece that is closest to the head
of the permutation. In EDF, chunks that have a smaller time to playback are considered
more important, whereas in LDF, higher importances are given to chunks that are rarer in
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the network. In the Hardness-First heuristic, we judge the importance by the probability of
a chunk appearing in the set of downloadable pieces, denoted by the term hardness, defined
as below:

Definition 8. The hardness, hi, of the chunk in buffer location i is defined by hi =
1− pi(1− pi).

Interpretation: It is assumed that in steady-state all peers have the same buffer-state
distribution, hence the same marginal probability for each buffer location. Therefore, the
term pi(1 − pi) can be interpreted as the joint probability that the target possesses the
chunk in buffer location i (pi), while the peer does not (1 − pi). In another word, a high
pi(1− pi) means chunk i is “easier” to be seen in the pieces that can be downloaded after
contacting a random target, and hence a higher 1− pi(1− pi) suggests chunk i is “harder”
to be among the set of downloadable pieces.

Based on this interpretation, we would like to find a permutation such that the chunks are
ranked in a decreasing order of hardness, as is described in the following definition:

Definition 9. A hardness-first permutation is a preference permutation, πh, whose
steady-state marginal distribution satisfies the following ordering of hardness:

hπ(i) ≥ hπ(j),∀i ≥ j, i, j ∈ {2, 3, ..., N − 1} . (3.3)

3.1.3 The Algorithm for Finding Hardness-First Permutations

We employ a greedy algorithm to converge to a hardness-first permutation, starting from
any arbitrary permutation of {2, 3, ..., N −1}. In each iteration the algorithm computes the
stead-state marginal chunk distribution and updates the permutation sequence to be more
hardness-oriented based on the current marginal distribution:

• Phase 1: Calculate the buffer’s steady-state marginal probabilities {pi}k given a pref-
erence permutation πk.

• Phase 2: Update πk to πk+1 based on {pi}k.

The general structure of the algorithm is shown in Figure 3.2.

Figure 3.2: Illustration of the Greedy Search for a Hardness-First Permutation

Calculating Steady-State Buffer Distribution: The first phase calculates the steady-
state marginal distribution of the buffer locations given a permutation π, by finding the
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fixed-point solution to (2.5). Let i be the m-th element in π, the probability of a peer
choosing to download chunk i (si in (2.5)) can be expressed as:

si = (1− 1
M

)
∏

∀j<m,j∈{2,...,N−1}

[1− pπi (1− pπi)] (3.4)

Standard numerical techniques can then be used to solve for the solutions of the fixed-point
equations defined by (2.5) and (3.4).

Updating permutation πk based on {pi}k: The goal of the second phase is to come
up with an updated permutation that is in some sense more hardness-oriented. A naive
solution will be to calculate the hardness hi for all i using {pi}k, and produce the updated
permutation by putting the chunk indices in a nonincreasing ordering of the hi’s. This
approach however, does not converge in many cases. The convergence issue is mitigated by
taking steps of smaller changes. In our implementation, the update step simply swaps two
adjacent elements with the smallest decreasing (or largest increasing) in hardness, i.e:

πk+1 = (πk(1), πk(1), ...., πk(iswap + 1), πk(iswap), πk(iswap + 2), ..., πk(N − 1)) , (3.5)

where
i = arg min

2≤i≤N−2
(πk(i)− πk(i+ 1)) . (3.6)

However, convergence is not guaranteed in general.

3.1.4 Numerical Calculation and Simulation Results

Converging to a Hardness-First Permutation: Figure 3.3 illustrates the result of run-
ning the algorithm in Section 3.1.3. The first subgraph compares the marginal distribution
that is resulted by using the initial permutation (which is set to EDF in this case) and the
final permutation, both calculated numerically by the MP model. The second subgraph
plots the hardness (hi) for each buffer location, from which it can be observed that the
hi’s converge to values with a nonincreasing ordering in the final permutation. The last
subgraphs illustrates the structure of the final permutation, where the permutation starts
with a LDF up to buffer location 8 and then “jumps” between the beginning and the end
of the rest of the buffer locations.

Performance: In Figure 3.4(a) and Figure 3.4(b), steady-state marginal distributions us-
ing different permutations are compared. The Hardness-First permutation outperforms all
of LDF, EDF and Mixed in terms of playback continuity (pN ), although the advantage
compared to Mixed is very small.

Since both LDF and EDF belong to the class of Mixed permutations, we proceed to com-
pare the performance of Hardness-First permutations against the best Mixed permutation
(obtained by optimizing over all position threshold k) for a given buffer size. Define a com-
parison metric, the Miss Rate Ratio, as the ratio of the probability of not seeing a chunk
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Figure 3.3: Converging to a Hardness-First Permutation

at buffer location N between the hardness-first and optimal mixed permutations, i.e.:

Miss Rate Ratio =
1− pN (πhardness−first)
1− pN (πoptimal−mixed)

. (3.7)

With the number of peers M = 1000, Figure 3.5 shows the comparison in playback continu-
ities and the Miss Rate Ratio computed by the MP-model. The hardness-first permutation
appears to outperform the best Mixed permutation in the buffer size range of 15 ≤ N ≤ 39,
since the Miss Rate Ratio is always less than 1. However, such advantage is quite small
in an absolute scale. Also, the plot suggests that by increasing the buffer size by about 2,
the continuity of optimal mixed permutation can match up with that of the hardness-first
permutation with the original buffer size.
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(a) Comparison of Performances among Hardness-First, Mixed, EDF and
LDF (Simulations)

(b) Zoomed-in Version of Figure 3.4(a)

Figure 3.4:
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Figure 3.5: Continuity Comparison between Hardness-First and the Best Mixed Policy

3.2 Uniqueness of the Equilibrium Marginal Distribution

Besides searching for a continuity-maximizing permutation, we are also concerned about
the stability of the system, namely, that given a specific permutation sequence whether
there exists a unique marginal distribution. It is shown in Section 2.1 that the network
possesses a unique equilibrium distribution in terms of the network states. However, the
uniqueness of the equilibrium only guarantees the convergence in time to an equilibrium
joint distribution, and implies little of what a peer would expect to experience in terms of
the playback continuity.

A simple example: Consider a simple Markov chain with two states: good and bad, for
which the transition diagram is drawn in Figure 3.6. Observe that this Markov process
is aperiodic and irreducible and hence has a unique equilibrium distribution. However a
observer may witness drastically different experience (good or bad) depending on if the
network starts in a good state or not, given that the transition probability between the two
aggregate states are extremely small.

While by numerically solving for the fixed-point solutions of (2.5) and (3.4) we are able
to obtain a steady-state marginal distribution, it is not immediately clear whether such
a solution is unique. The property that we are interested in finding out is whether there
are multiple solutions of the marginal probability distributions that satisfy the fixed-point
equations.

We show in this section that the fixed-point marginal distribution is indeed unique for the
LDF, EDF and Mixed policies. However, similar attempts for obtaining uniqueness results

14



Figure 3.6: Transition Diagram for the Simple Markov Chain with Two States

for more general permutations remain unsolved.

Proposition 10. Based on the MP model, the steady-state marginal distributions {pi} by
using LDF, EDF and Mixed with any threshold are all unique.

Proof. Uniqueness of LDF: It can be shown [1] that when LDF is used the si takes on a
simple form of:

si = 1− pi. (3.8)

Thus (2.5) reduces to:

p1 = 0
p2 = 1

M

pi+1 = pi + pi(1− pi)2,∀i ∈ {2, 3, ..., N − 1}. (3.9)

Note that pi+1 is a function of pi for all i ∈ {1, 2, .., N − 1}. Hence given the initial condi-
tions p1 = 0, p2 = 1, pi is uniquely determined for all i ∈ {1, 2, .., N}.

Uniqueness of EDF/Mixed: Given the uniqueness result for LDF, it suffices to show
uniqueness only for EDF, since Mixed can be treated as an EDF permutation with buffer
length being N − k+ 1 and with p2 replaced by pk. When EDF is, the probability of si can
be expressed as: [1]

si = 1− pN + pi+1 (3.10)

Hence the fixed-point equation for pi, k + 1 ≤ i ≤ N − 1 becomes:

pi+1 = pi + pi(1− pi)(1− pN + pi+1)
= pi + pi(1− pi)(1− pk − pN + pi), ∀i ∈ {k, k + 1, ..., N − 2}, (3.11)

with the boundary condition for the N ’th buffer location

pN = pN−1 + pN−1(1− pN−1)(1− pk − pN + pN−1). (3.12)
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The form of pi+1 suggests that it is a function of pi and pN . Observe that since pk is a
constant value determined by the LDF equations, pk+1 becomes a function of PN only.
Using an induction argument, we can easily verify that each pi+1, i ≥ k + 1 is in fact a
function of PN only.

To prove uniqueness of fixed-point for (3.11) and (3.12), we claim that pi+1 decreases as
PN increases for all i ∈ {k, k + 1, ..., N − 1},i.e.:

dpi+1

dpN
< 0,∀i ∈ {k, k + 1, ..., N − 2}. (3.13)

Therefore, given one value of pN = p̂N that satisfies the fixed-point equations, if we were to
move pN away from p̂N , (3.12) will never be satisfied with another value pN = p̃N 6= p̂N .

Using the Chain Rule of calculus, dpi+1

dpN
can be expressed as:

dpi+1

dpN
=

∂pi+1

∂pi

dpi
dpN

+
∂pi+1

∂pN

dpN
dpN

=
∂pi+1

∂pi

dpi
dpN

+
∂pi+1

∂pN
. (3.14)

From (3.11), we have:

pi+1 =
pi + pi(1− pi)(1− pk + pN )

1− pi(1− pi)
,∀i ∈ {k, k + 1, ..., N − 2}. (3.15)

Taking the partial derivative of pi+1 with respect to pN , we get:

∂pi+1

∂pN
= − pi(1− pi)

1− pi(1− pi)
< 0. (3.16)

The inequality in (3.16) is due to the fact that pi ∈ (0, 1).

Let σ = 1− pk − pN . Taking the partial derivative of pi+1 with respect to pi, we obtain:

∂pi+1

∂pi
=

[1 + σ(1− 2pi)] [1− pi(1− pi)]− (2pi − 1) [pi + σpi(1− pi)]
[1− pi(1− pi]2

=
1
A

[1− pi(1− pi) + σ(1− 2pi)− σpi(1− pi)(1− 2pi) + pi(1− 2pi) + σpi(1− pi)(1− 2pi)]

=
1
A

[1− pi(1− pi) + (1− 2pi)(σ + pi)]

=
1
A
{1− [σ(1− pi) + (σ + pi)pi]} , (3.17)

where 1
A = 1

[1−pi(1−pi)]2
.
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Due to the relationships 0 < pk ≤ pi ≤ pN < 1, we have:

σ = 1− pk − pN =⇒ σ ∈ (−1, 1) =⇒ |σ| < 1
σ + pi = 1− pk − (pN − pi) = 1 + (pi − pk)− pN =⇒ (σ + pi) ∈ (0, 1) =⇒ |σ + pi| < 1

Since the term σ(1− pi) + (σ+ pi)pi can be viewed as a linear combination of σ and σ+ pi,
we have:

∂pi+1

∂pi
> 0,∀i ∈ {k, k + 1, ..., N − 1}. (3.18)

Induction: When i = k, pk is a constant. Hence (3.14) reduces to

dpk+1

dpN
=
∂pk+1

∂pk
· 0 +

∂pk+1

∂pN
=
∂pk+1

∂pN
< 0 (3.19)

Suppose dpm
dpN

< 0 for some m ∈ {k + 2, k + 3, ..., N − 1}, from (3.16) and (3.18) we have:

dpm+1

dpN
=
∂pm+1

∂pm

dpm
dpN

+
∂pm+1

∂pN
< 0. (3.20)

Finally, denote the value of the right-hand-side of (3.12) by p̃N , we get:

dpp̃N
dpN

< 0 (3.21)

Hence pN = p̃N has only one solution of pN . Since every pi, i > k is a function of pN as
shown above, this means there exists a unique set of pi’s that satisfies (3.12) and (3.11).

3.3 Stability Implications of Incentive Strategies

While the P2P streaming model considered in this paper assumes that each peer behaves
in a cooperatively manner, in the sense that whenever a target is contacted by a peer, the
target will always truthfully report its current collection of chunks and upload according
to the downloader’s requests. In reality, however, a selfish peer will prefer not to upload,
because uploading consumes its bandwidth resources and does not bring any direct ben-
efits. Under the original network setup, a selfish peer can do so by, for example, sending
out false messages and pretending that it does not have any chunk. To prevent such peers
from refusing to upload, incentive strategies can be imposed so as to create motivations for
cooperation.

Consider a typical incentive strategy called tit-for-tat, defined as follows:

Definition 11. The tit-for-tat constraint: In each round, a peer can download a chunk
from the target only if it also uploads a chunk to the target simultaneously.

Under the tit-for-tat constraint, every peer, except for the one who downloads directly
from the server, has its download amount enforced to be equal to its upload amount in each
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iteration. The benefit in refusing to upload is therefore eliminated because doing so will
proportionally hurt the peer’s own downloading performance.

A natural question to ask is by how much the enforcement of the tit-for-tat will impact
the performance of the network. Intuitively, we expect the steady-state continuity to be
lower than the original situation due to the additional tit-for-tat constraint. Interestingly,
it turns out that imposing the tit-for-tat strategy not only degrades the overall playback
continuity of the network, which is expected, but also creates a bistability in the solutions to
the fixed point of the marginal probability equations, where in one solution the continuity
is every close to that without tit-for-tat (slight degradation), but in the other the continuity
is severely degraded to close to 1

M . In the following sections we first present an analytical
solution that solves for the steady-state continuity with the tit-for-tat constraint based
on the MP model, where the bistability phenomenon was first observed. We then show
simulation results to empirically verify our analysis.

3.3.1 Modified Content Distribution Process with Tit-for-Tat

We now modify the content distribution process described in Section 1.3 to incorporate the
tit-for-tat incentive strategy. We assume here that the number of peers M is even.

1. Time slot t = k begin.

2. The set of peers {1, 2, ...,M} is partitioned uniformly at random into a set of M/2
pairs P = {(ai, bi)}M/2

i=1 such that every peer belongs to one and only one pair. We
call the two peers in one pair partners.

3. The server selects a peer, indexed by l, uniformly at random from the network and
uploads to l the most recent video chunk Cnew.

4. Peer l’s partner m downloads from l according to the downloading policy δ if and
only if m possesses at least one chunk that l could have downloaded, had l not been
chosen by the server. Note that this downloading action is unilateral as m does not
actually upload to l even it could.

5. For every other pair (a, b) ∈ {(ai, bi) ∈ P : l /∈ (ai, bi)},

(a) If both a and b has at least one chunk that its partner can download, a and b
downloads from each other using the downloading policy δ.

(b) Otherwise, neither a or b downloads anything in this time slot.

6. For all peers, the chunk in the N -th location of the buffer, if it exists, is discarded,
and all other chunks in the buffer are shifted towards the end of the buffer by one
buffer location.

7. Time slot t = k ends. Set t = k + 1 and return to Step 1.
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3.3.2 Bi-stability Results using the Modified Marginal Probability
Model

We modify the MP fixed-point (3.9) to capture the effect of tit-for-tat.

Definition 12. The probability of offering, d, is the probability that during one contact
a peer’s collection of chunks is NOT a subset of its partner’s collection in steady state. In
other words, it is the probability that a peers has some chunks which its partner does not
have.

Due to the tit-for-tat requirement, a pair of partners can download from each other if and
only if they are both able to offer each other some chunks. This event has probability
d2 in steady state, according to the definition above. We arrive at a modified fixed-point
equations for the MP model with LDF as in (3.22). The only difference between this and
the original MP model (in (2.5)) is the d2 multiplied to the probability of download for a
specific buffer location. Note that although the probability of offering does not apply to the
single pair that includes the peer selected by the server; however in a large network such
error is very small.

p1 = 0
p2 = 1

M

pi+1 = pi + pi(1− pi)sid2, ∀i ∈ {2, 3, ..., N − 1}. (3.22)

Main Result: When tit-for-tat is imposed in a network using LDF, there are two continu-
ity solutions pN1 and pN2 to the steady-state marginal distribution fixed-point equations,
with pN1 close to the original continuity pN and pN2 close to 1

M .

Analytical Derivation using MP Model: The main idea is to find two equations that
relate the continuity pN to the probability of offering d. The uniqueness will hence depend
on the number of solutions for pN and d.

Based on the fact that the downloading policy is LDF, from (3.4) we have the expression
for si+1 as:

si+1 = si+1 [1− pi(1− pi)] (3.23)

From (3.22) and (3.23), we get:

i∑
l=3

pl − pl−1 = −d2
i∑
l=3

sl − sl−1, ∀i ∈ {3, 4, .., N}, (3.24)

which is equivalent to:

pi − p2 = −d2(si − s2), ∀i ∈ {3, 4, .., N}, (3.25)

Using (3.25) to substitute si in equation (3.22), we get:

pi+1 = pi + pi(1− pi)
[

1
M
− pi + d2(1− 1

M
)
]
,∀i ∈ {2, 3, .., N − 1}, (3.26)
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Let i = N − 1 in equation (3.26). Since each pi depends on only the values of pj , j ≤ i,
we can compute the value of pN iteratively given the values of d and p2 (constant). This
constitutes the first equation we need.

In order to find the second equation to solve for pN and d, observe that the continuity pN is
equivalent to the expected number of chunks downloaded by a peer in one time slot. Since
we also know that if both peers in a pair are able to offer its partner some chunk, each peer
will download at least one chunk. Therefore the expected download rate, assuming neither
of the peers in a pair is chosen by the server, becomes d2. This observation leads us to the
relationship:

pN =
1
M

+ (1− 1
M

)d2 (3.27)

Combining (3.26) and (3.27), the solutions for pN and d are given by:

pN = pN−1 + pN−1(1− pN−1)
[

1
M
− pN−1 + d2(1− 1

M
)
]

(3.28)

pN =
1
M

+ (1− 1
M

)d2 (3.29)

(3.28) and (3.29) can be solved numerically. With N = 40 and M = 1000, Figure 3.7 shows
the values of pN calculated by the two equations, where the solutions are represented by
the coordinates of where the two curves cross. As can be observed from the graph, the
first solution appears to be where both d and pN are close to zero, whereas the second
solution occurs at a continuity of approximately 0.95, which is slightly lower than the 0.967
continuity computed by the MP model without tit-for-tat. Numerically, the two solutions
are:

Solution 1: pN = 0.9526, d = 0.9760 (3.30)
Solution 2: pN = 0.0001, d = 0 (3.31)

Interpretation: Solution 1 suggests that when most peers in the network have a rich col-
lection of chunks, the probability that both partners have something to offer is high. Hence
the additional tit-for-tat constraint has very little negative impact on the performance of
the network. Solution 2 can be verified by setting d to 0 in (3.28) and (3.29), which gives
pN = 1

M . This reflects the intuition that when all of the peers have very little in their
chunk collection to start with, the probability of offering is naturally very small. Hence the
tit-for-tat constraint becomes very harsh in this situation and prevents the very few chunks
from propagating throughout the network, and the playback continuity falls back to about
1
M , meaning no peer-to-peer downloading is happening at all.

Simulations: We use simulation results to verify the predictions given by (3.30) and (3.31).
In Figure 3.8(a), the tit-for-tat constraint is imposed after the network has reached steady-
state using LDF without the tit-for-tat. The continuity appears to be very close to the
.9526 predicted value. In Figure 3.8(b), however, the steady-state continuity is only about
0.0045 when we impose the tit-for-tat constraint from the beginning where every peer starts
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Figure 3.7: Solutions for pN and d

with an empty buffer.

Note that the simulation results tend to be higher than the predictions. In the case of
Solution 2, in particular, it is obvious that the probability of offering is strictly greater than
0 (although still very small) in reality, since there will be a few peers in the network who
possess distinct chunks from the server, and the possible downloading among these peers
will result in a positive d. We conjecture that this discrepancy is due to the fact that the
dependency between chunk locations is not taken into account in the MP model.
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(a) Simulations with tit-for-tat - Marginal Distribution 1

(b) Simulations with tit-for-tat - Marginal Distribution 1

Figure 3.8: Bistability Phenomenon in Simulations
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Chaper 4

Studies using the User State model

While the marginal probability model provides a simple and intuitive way to analyze the
system performance, its intrinsic inaccuracy, mainly due to the assumption that all buffer
locations are independent, makes it difficult to draw more precise and rigorous conclusions
on the behavior of the network. In this chapter, we turn our attention to the user state
model. Instead of assuming a product-form joint distribution for the buffer as in the MP
model, each buffer state in the peer-state model is treated individually, as was described
in Section 2.2. This increased degree of granularity allows us to introduce a more refined
definition of a peer’s utility, as well as using dynamic programing to obtain insights in terms
of optimal downloading policies.

It is worth noting that in this chapter we will pose the question of optimal downloading
policy in a different angle: instead of asking for the optimal policy to maximize continuity
for the entire network, which was the focus for Section 3.1, we would like to know, assuming
a peer has complete information about all other peers’ strategy, or equivalently, the equi-
librium buffer-state distribution at the target, what downloading policy would it choose to
maximize its own continuity, with the assumption that the peer size is reasonably large so
that a selfish peer’s local “cheating” behavior has no influence on the rest of the network.
As we will see in later sections, this approach is partially motivated by the fact that given
a known target distribution, the optimal strategy can be studied naturally using a dynamic
programing formulation.

Note that the content distributing process is largely the same as before for a selfish peer.
However, for the simplicity of analysis, we now assume this peer is not contacted by the
server, and can download from buffer locations {1, 2, ..., N − 1} at the target.

4.1 The Buffer-State-Based Cost-to-Go

Consider a network where each peer maintains a buffer with a length N . We would like
to have a quantity that relates a peer’s current collection of chunks and its downloading
policy with the expected utility in the future. According to the content distribution process
described in Section 1.3, we say that a peer is penalized in a time slot, if the Nth buffer
location is empty, which means the peer will have no frame to play for the current time slot.
We therefore denote such an event (i.e. not having chunk N when it needs to be played),
as charging the peer 1 unit of cost. Using the this concept of cost, we define the peer’s
expected total costs in the next k time slots as the peer’s k-step cost-to-go, a concept often
seen in the literature of dynamic programming. [4]
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Definition 13. A peer’s k-step cost-to-go, Ck(x, δ) , is a function of the initial buffer
state at time t, denoted by xt, and downloading policy δ, defined as:

Ck(xt, δ) = I{xt(N) = 0}+ E

[
t+k∑

m=t+1

βm−tI{xm(N) = 0}

∣∣∣∣∣δ
]

(4.1)

where I{·} is the identify function on a boolean variable such that I{A} = 1 if and only if
A is true, and β is a discount factor, 0 ≤ β ≤ 1.

Observe that,

lim
k→+∞,β→1

1
k
Ck(xt, δ) = pN (4.2)

where is pN is the continuity measured used in previous sections.

Now, suppose that all other peers in the network are identical, such that in steady state a
peer observes an iid sample of chunk collection drawn from a target distribution F every
time it contacts a target. We proceed to give a recursive definition of a minimum cost-to-go
and the associated optimal downloading policy which achieves the minimum cost.

Definition 14. A peer’s k-step minimum cost-to-go with an initial state x, V k(x) is
defined by:

V 0(x) = 0
V k(x) = I{xt(N) = 0}+ βminδ

∑
y∈X pxy(δ)V

k−1(y)∀k ≥ 1 (4.3)

where pxy(δ) is the transition probability from state x to y using policy δ.

A k-step optimal downloading policy δ̂k, is defined by:

δ̂k = arg min
δ

∑
y∈X

pxy(δ)V k−1(y),∀k ≥ 1 (4.4)

Note that, when β < 1 in the limiting case Ck(x, δ)→ C(x, δ),V k(x)→ V (x), and δ̂k → δ̂
as k →∞.

4.2 A Necessary Condition for Optimal Downloading Policy

We present in this section a simple result that states given any buffer-state distribution at
the target, all optimal downloading policies, as defined in (14), must download the chunk
which is going to be played in the next time slot, if such a download is possible. This means
any downloading policy that does not do so (e.g. the LDF permutation introduced earlier),
is not a robust downloading policy in the sense that in such a network a selfish peer can
benefit by switching to a better policy.

Denote the sequence of the set of chunks that can be downloaded (both available at the
target and needed by the peer) in each future time slot by (Dn), n = t, t + 1, .... Let us
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define the cost-to-go given a sample path of target collections (Dn). Note that in this case
the cost-to-go no longer contains an expectation over the target distribution, but becomes
a deterministic function of xt, δ and (Dn).

Definition 15. A peer’s cost-to-go given a sequence of the future downloadable sets (Dn), n =
t, t+ 1, ... is:

Ck
(
xt, δ, (Dn)

)
= I{xt(N) = 0}+

t+k∑
m=t+1

βm−tI{xm(N) = 0} (4.5)

where xm(N) now is function of xt, δ and (Dn), ∀m ≥ t+ 1.

Similarly, the minimum cost-to-go given (DN ),V k(x, (DN )), is defined by:

V 0(x, (Dn)) = 0
V k(x, (Dn)) = I{xt(N) = 0}+ βminδ

∑
y∈X pxy(δ, (Dn))V k−1(y)∀k ≥ 1 (4.6)

We are now ready to formally state the proposition.

Proposition 16. Given a buffer with length N and a discount rate 0 ≤ β < 1, an optimal
downloading policy δ̂ will always choose to download the chunk in buffer position N − 1 if
such a download is possible. Among the class of permutation-based policies, this implies if
the optimal policy permutation π̂, then π̂1 = N − 1.

Proof. We use a stochastic coupling argument to prove the claim. We denote buffer position
i to be Bi. Let δ be some downloading policy such that there exists some (Dn) so that δ
will not download BN − 1 when such a download is possible at time slot t0. We show that
it is always possible to construct a policy δ̃ that downloads BN−1 whenever possible, and
that Ck

(
xt, δ, (Dn)

)
is stochastically dominated by Ck

(
xt, δ̃, (Dn)

)
.

Assume there are two users, a and b, who have identical buffer states xt, and are exposed
to the same sequence (Dn). User a adopts downloading policy δ, while user b adopts δ̃.

Construct δ̃ as follows:

1. Starting at t0, δ̃ downloads exactly the same chunk as δ in each iteration, until
the first round, say t = k, when the set of possible downloading locations Dk is
{Bj , BN−1}, j < N − 1, where Bj is assigned a higher priority than BN−1 according
to δ.

2. At time t = k, δ̃ will choose to download chunk c that is now at position BN−1, while
δ will download chunk d that is now at position Bj .

3. From time t = k + 1 to t = k + (N − 1 − j), δ̃ continue to mimic the downloading
choices of δ, except when the only possible downloading for user b is Bj+(t−k), and
no download is possible for user a, since a and b should have the same buffer state
except for location Bj+(t−k). In this case user b (δ̃) will download chunk d, while user
a does nothing.
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4. After time t = k + (N − 1 − j), by which time chunk d would have been played, δ̃
becomes identical to δ for the rest of the time.

Because time t goes to infinity, the event described in Step 1 is going to happen with
probability 1. Note that the randomness of V is solely contributed by the randomness
of the sequence (Dn). Denote the probability space on which (Dn) is defined as Ω0 =
{B2, B3, ..., BN−1}∞. Create a partition {Ω1,Ω2} of Ω0, such that Ω1 contains all sequences
(Dn), based on which the chunk d will be downloaded by user b as described in Step 3.

Observe that:

1.
C
(
xt, δ, (Dn)

)
− C

(
xt, δ̃, (Dn)

)
= βk−t > 0, ∀(Dn) ∈ Ω1 (4.7)

This is true since chunk d was later downloaded by b. Overall user a was charged an
additional cost of βk−t compared to user b for missing chunk c.

2.
C(xt, δ, (Dn))− C

(
xt, δ̃, (Dn)

)
= βk−t − βk−t+N−1−j ≥ 0,∀(Dn) ∈ Ω2 (4.8)

In this case user a missed chunk c while b missed chunk d. However, the cost for
missing d was incurred at a later time, which led to a lower or equal discounted cost
compared to missing chunk c.

We have shown that C(xt, δ, (Dn)) presents a higher cost than C
(
xt, δ̃, (Dn)

)
on any sample

path of future downloadable sets (Dn). Therefore, an optimal downloading policy must
download the piece at buffer position BN−1 whenever possible.

Note:The above proof is derived with the assumption that the discount factor β < 1, and
hence the infinite-horizon cost-to-go converges. If we were to make a similar argument
about the optimal downloading policies with β = 1, such that the focus is only on the
average downloading rate, the same argument applies, but only when the time horizon k is
finite since the limit limk→∞C(x, δ, (Dn)) may not exist if β = 1.

4.3 Is EDF Always Optimal?

While EDF is clearly not an optimal strategy if all users were to follow it (shown in simu-
lations from the previous chapter), since it suppresses the spreading of rare chunks within
the network, could it be optimal if a selfish user is to use it against any fixed target distri-
bution? Proposition 16 in some sense states the absolute importance of the buffer positions
N − 1 in downloading, and intuitively speaking, a peer would prefer to download chunks
that are closer to the playback deadline (buffer location N), since there is less time left to
download such pieces. This leads to the following conjecture:

Conjecture 17. (Optimality of EDF) It is an optimal downloading policy to always
download the chunk with the largest buffer index possible given any fixed target distribution.
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Unfortunately, it turns out such a conjecture is not true. The following proposition disproves
the conjecture and offers some insight on when a peer would prefer not to download the
chunk with the earliest deadeline.

Proposition 18. Let the length of buffer N = 5. Let the target’s buffer-state distribution for
locations {1, 2, 3, 4} consist of the product of four independent Bernoulli random variables
with coefficients p1 = p2 = δ, p3 = p4 = γ. Then EDF is NOT an optimal strategy if both
of the following two conditions hold:

1. 1 > γ >> δ ≥ 0

2. γ >
√

1
β − 1, where β is the discount factor.

Proof. Suppose in the present time slot the user’s buffer state is x = 0011/1, where the
forward slash (/) is used to simply remind us that no download is permitted in the last
(N -th) buffer location. Suppose also that both chunks C1 and C2 (in locations 1 and 2, re-
spectively) are available at the target in this time slot. We argue that the optimal strategy
will be to download C1 rather than C2, which disagrees with EDF.

Note that with a discount factor β < 1, limk→∞ V
k(x) = V (x), ∀x ∈ X . We would like to

show that the state resulted by downloading chunk C1 has a lower cost-to-go compared to
downloading chunk C2, or equivalantly:

V (0101/1) < V (0011/1). (4.9)

We also have:

0011/1 = SD2(0011/1) (4.10)
0101/1 = SD1(0011/1)

where S is the shift operator and D(·) is the download operator. Note that since the down-
loading process follows the charge-download-shift cycle, the most significant (or left-most)
bit of the state vector x should always be zero in between two adjacent time slots.

Since we are interested in disproving the conjecture that EDF’s optimality, let us assume
that EDF is indeed optimal for all other states other than the case where user has state
x = 0011/1. We also assume that since δ is very small, the probability of getting anything
from position 1 or 2 in one time slot is negligible. Expanding the expression of V , based on
the assumption that EDF is optimal for all other states we obtain:

V (0101/1)
δ
γ
→0

≈ I{x5 = 0}+ γβV (0011/1) + (1− γ)βV (0010/1) (4.11)
δ
γ
→0

≈ β2
{[

1− (1− γ)2
]
V (0001/1) + (1− γ)2V (0001/0)

}
= β2

{[
1− (1− γ)2

]
V (0001/1) + (1− γ)2 (V (0001/1) + 1)

}
= β2

[
V (0001/1) + (1− γ)2

]
.

We also have for state 0011/1”:
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V (0011/1)
δ
γ
→0

≈ I{x5 = 0}+ β · V (0001/1)
δ
γ
→0

≈ β2 [γV (0001/1) + (1− γ)V (0000/1)]
= β2 [V (0001/1) + (1− γ) (V (0000/1)− V (0001/1))] . (4.12)

Further expanding the terms, we have:

V (0001/1)
δ
γ
→0

≈ 0 + γβV (0001/1) + (1− γ)βV (0000/1) (4.13)

V (0000/1)
δ
γ
→0

≈ 0 + γβV (0000/1) + (1− γ)γβV (0001/0) + (1− γ)2βV (0000/0)

Subtracting V (0000/1) by V (0001/1), we get:

1
β

(V (0000/1)− V (0001/1))

= (2γ − 1)V (0000/1) +
[
(1− γ)γV (0001/0)− γV (0001/1) + (1− γ)2V (0000/0)

]
= (2γ − 1)V (0000/1) + (1− γ)γ [V (0001/1) + 1]− γV (0001/1) + (1− γ)2V (0000/0)
= (2γ − 1)V (0000/1)− γ2V (0001/1) + (1− γ)γ + (1− γ)2V (0000/0)
= (2γ − 1)V (0000/1)− γ2 [V (0000/1)− (V (0000/1)− V (0001/1))]

+(1− γ)γ + (1− γ)2V (0000/0) (4.14)

Rearranging (4.14) and moving the term (V (0000/1)− V (0001/1)) to the left-hand side,
we get:

(
1
β
− γ2

)
(V (0000/1)− V (0001/1))

= −(1− γ)2V (0000/1) + (1− γ)2V (0000/0) + (1− γ)γ
= −(1− γ)2V (0000/1) + (1− γ)2 (V (0000/1) + 1) + (1− γ)γ
= 1− γ (4.15)

from which we obtain

V (0000/1)− V (0001/1) =
β(1− γ)
1− βγ2

. (4.16)

Combining (4.11) and (4.12) and by using (4.16), we arrive at the final inequality:
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V (0011/1)− V (0101/1)
δ
γ
→0

≈ β2
[
(1− γ) (V (0001/1)− V (0000/0))− (1− γ)2

]
= β2

[
(1− γ)

β(1− γ)
1− βγ2

− (1− γ)2
]

= β2

[
(1− γ)2

1− βγ2
(β − 1 + βγ2)

]
> β2

[
(1− γ)2

1− βγ2

(
β − 1 + β

(
1
β
− 1
))]

= 0 (4.17)

Since the buffer state x = 0011/1 has a strictly higher cost-to-go compared to state x =
0101/1, the EDF policy is hence not optimal.
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Conclusion

In this thesis we examined a set of problems concerning the performance of a peer-to-peer
live-streaming network. The majority of our results were obtained using the marginal prob-
ability model, while much of the ongoing research is oriented on the user state model with
a problem formulation using dynamic programming.

Through our presentation, the reader may have already come to notice the trade-off be-
tween the simplicity and accuracy every model entails. For example, despite the fact that
the marginal probability model operates on an independence assumption that is not true
in practice, the error is generally small is in some situations tolerated given the resulted
simplicity. On the other hand, the model is no longer capable of providing us with further
insight as we begin to investigate the optimal downloading policies for a selfish user in a
more rigorous setting, in which case the user state model and the related concept of dy-
namic programming, although a bit more complex, came in as a very powerful tool.

A future direction of research may be in the area of Nash Equilibrium downloading poli-
cies. It would be interesting to know that assuming every user is selfish, such that they
all constantly adjust their downloading policies to minimize cost-to-go against the chunk
distribution of the surrounding peers, what would be the convergent downloading policy
δ∗ and chunk distribution F∗ be so that a peer will be penalized with a higher cost-to-go
if it chooses to deviate from δ∗. This analysis would give us some sense of a worst-case
performance of the network, since the enforcement of a peer’s choice of chunks is generally
more difficult to accomplish compared to imposing incentive strategies such as the tit-for-tat
requirement described in Section 3.3.
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