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ABSTRACT
We propose a general framework, dubbed Stochastic Processing
under Imperfect Information (SPII), to study the impact of infor-

mation constraints and memories on dynamic resource allocation.

The framework involves a Stochastic Processing Network (SPN)

scheduling problem in which the decision maker may access the

system state only through a noisy channel, and resource allocation

decisions must be carried out through the interaction between an

encoding policy (who observes the state) and allocation policy (who

chooses the allocation) situated on the two ends of the channel.

Applications in the management of large-scale data centers and

human-in-the-loop service systems are among our chief motiva-

tions.

We quantify the degree to which information constraints reduce
the size of the capacity region in general SPNs, and how such reduc-

tion depends on the amount of memories available to the encoding

and allocation policies. Using a novel metric, capacity factor , our
main theorem characterizes the reduction in capacity region (under

“optimal” policies) for all non-degenerate channels, and across almost
all combinations of memory sizes. Notably, the theorem demon-

strates, in substantial generality, that (1) the presence of a noisy
channel always reduce capacity, (2) more memories for the alloca-

tion policy always improve capacity, and (3) more memories for the

encoding policy have little to no effect on capacity. Finally, all of our

positive (achievability) results are established through constructive,

implementable policies.

Our proof program involves the development of a host of new

techniques, largely from first principles, by combining ideas from

information theory, learning and queueing theory. As a sub-module

of one of the policies proposed, we create a simple yet powerful gen-

eralization of the Max-Weight policy, in which individual Markov

chains are selected dynamically, in a manner analogous to how

schedules are used in a conventional Max-Weight policy.
1

1 INTRODUCTION
In many modern large-scale resource allocation systems, such as

data centers, call centers and hospitals, getting reliable access to

accurate system state information usually requires expensive in-

vestment in monitoring or machine learning infrastructures. Fur-

thermore, such information can often be subject to noise, loss or

misinterpretation. It is therefore crucial to understand how imper-
fect and noisy information affects system performance. Insights

along this direction can provide crucial architectural guidelines

on how to design efficient information-driven scheduling policies,
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and also assist with infrastructure planning by quantifying the per-

formance benefits from better information access, and hence the

tradeoffs between such benefits and the investment costs.

As a first step towards this direction, we propose in this paper a

new, general framework for quantifying the performance impact

of information constraints on an underlying dynamic resource allo-

cation problem. Specifically, we will focus on Stochastic Processing

Networks (SPN) ([8, 14–16]) – a widely used paradigm for modeling

resource allocation problems in diverse sectors, including informa-

tion technology ([9, 23, 27, 35]), manufacturing ([6]), call centers

([12, 17, 21]), as well as other service industries – and address how
information, or the lack of, alters the capacity region of an SPN.

We begin with an overview of the model; the formal description

will be presented in Section 2. The framework, dubbed the Sto-
chastic Processing under Imperfect Information (SPII) model,

is illustrated in Figure 1, and consists of three main elements: an un-

derlying dynamic resource allocation problem, a model of imperfect

information, and memories.

I. Stochastic Processing Network Scheduling. The underlying
dynamic resource allocation problem is that of scheduling in a

discrete-time SPN, sometimes also known as a switched network
([29, 32]), where a finite set of processing resources is employed

to serve incoming tasks of N different types. In each time slot

t , new tasks arrive to the system in a stochastic manner, where

unprocessed tasks of type i are buffered in a queue i , and the queue
lengths are denoted byQ (t ) = (Q1 (t ), . . . ,QN (t )). The number of

arrivals of type i jobs, Ai (t ), has an expected value E[Ai (t )] = λi ,
and we will refer to the vector λ = (λ1, . . . , λN ) as the arrival rate
vector. The decision maker is to select from a finite schedule set, Π,
an allocation vector, D (t ) = (D1 (t ), . . . ,DN (t )) ∈ Π, where Di (t )
corresponds to the number of tasks in queue i that can be processed

during the present time slot. The queue lengths evolve according

to the following dynamics
2
:

Q (t ) = (Q (t − 1) − D (t ))+ +A(t ), t ∈ N, (1.1)

As an example, the scheduling problem involving one server and

two parallel queues falls under this framework, as is illustrated

in Figure 2, where the schedule set contains two elements, Π =
{(1, 0), (0, 1)}, corresponding to the server processing a job from

the first and second queue, respectively.

II. Scheduling with Imperfect Information. As a major depar-

ture from conventional SPNs, the decision maker in our model does
not have access to the full queue-length state information when

making scheduling decisions. In contrast, she obtains information

concerning the queues only through a (noisy) channel. A channel

consists of a pair of finite input and output alphabets,X andY , and
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Figure 1: System diagram. The encoder is able to fully ob-
serve the state of the queues,Q (t ). The encoder and receiver
are equippedwithmemories of sizek and ℓ bits, respectively.
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Figure 2: An example of a stochastic processing network
with one server and two parallel queues. Two types of tasks
arrive to the systems at rates λ1 and λ2 respectively, and
wait in two separate queues. The schedule set consist of two
possible allocation vectors, (1, 0) and (0, 1), representing the
server’s choice of processing one job from queue 1 or queue
2, respectively.
a family of probability distributions {PCx }x ∈X over Y . When an in-

put signal, x ∈ X, is sent through the channel, it results in a random

output message, Y ∈ Y , drawn from the probability distribution

PCx (Y = ·). For instance, one simple channel is that of an ε-noisy
binary symmetric channel with X = Y = {0, 1}, where the input

signal is correctly received with probability 1 − ε , and is perturbed

to the opposite symbol with probability ε , i.e., PCa (Y = a) = 1 − ε

and PCa (Y = b) = ε for a,b ∈ {0, 1}, a , b. By using different alpha-

bets and distributions PC , the channel is able to capture a variety

of partial and/or lossy information models, such as controlling a

data center over band-limited communication constraints, where

only noisy and compressed signals of the full system state can be

obtained. In this paper, we will impose little restriction on the form

of the channel, in order to allow for a maximum degree of generality

and modeling flexibility.

In the presence of a channel, the allocation decisions in ourmodel

are carried out by a pair of encoding and allocation policies,
situated on opposite ends of the channel (Figure 1). An encoder
is co-located with the queues and has complete knowledge of the

queue lengths at all times. In time slot t , the encoder employs an

encoding policy, ϕ, to send an input symbol X (t ) ∈ X through the

channel. The resulting random output message, Y (t ), arrives at the
receiver, who then employs an allocation policy, ψ , to choose the

allocation vector D (t ). Note that the receiver does not observe the
queue lengths, and in most settings considered in this paper, the

information contained in Y (t ) is severely limited; for instance, the

output alphabet Y can be substantially smaller than the number of

possible allocation vectors in Π.
III. Memory. The last crucial element of the system is memory. In

a classical SPN, external memories are rarely needed by a sched-

uling policy, because the queue lengths are fully observable and

already contain all the relevant information for policies such as
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Figure 3: Illustration of the reduction of capacity region due
to lossy information, for the two-queue-one-server SPN in
Figure 2. The triangle with vertices (0, 0), (0, 1) and (1, 0) rep-
resents the maximum capacity region, Λ, when the queue
lengths are fully observable, Λ. The rectangle dominated
by µ0 represents the capacity region ˜Λ(ϕ,ψ ) under an unin-
formative channel and an allocation policy that induces an
average service rate of µ0. The triangle with vertices (0, 0),
(0, 1/2) and (1/2, 0) represent the scaled (“shrunk”) version
of the maximal capacity region that is contained in ˜Λ(ϕ,ψ ).

Max-Weight (see e.g., [8, 29, 32, 35]) to make scheduling decisions.

However, when the system state information becomes constrained

and imperfect, it is conceivable that memory can play a crucial role

in determining the system performance. For instance, with memory,

the allocation policy could aggregate past messages across multiple

time slots to better estimate the system state and inform its sched-

uling decisions, and similarly, the encoding policy could benefit

by remembering past transmissions in order to better tailor future

input signals.

For this reason, we will allow for the possibility that the encoder

and receiver have at their disposal a finitememory of k and ℓ bits, re-

spectively, in which information can be recorded and subsequently

retrieved in the next time slot. The encoding policy may generate

the input signal X (t ) based on the queue lengths as well as the

state of the encoder memory, and similarly, the allocation policy

may choose the allocation vector D (t ) based on the received output

message Y (t ) along with the state of the receiver memory. If k or ℓ

is equal to 0, we say that the corresponding encoding or allocation

policy is memoryless.
Finally, we say that the system has memory-feedback if the

state of the receiver memory is accessible by the encoding policy.

The existence of memory-feedback would correspond to applica-

tions in which the backward communication from the receiver to

the encoder is lossless and relatively cheap. Arguably, this is not a

very restrictive assumption within the SPII framework, considering

that the receiver must, in any event, communicate the allocation

decision, D (t ), back to the queues, and hence sending along the

state of the receiver memory in the mean time should not incur

too much additional overhead. A number of main results in the

present paper will rely on this assumption, and we expect to relax

it in future work.

1.1 Performance Metric: Capacity Factor
The main quantity of interest is the capacity region of an SPII: the

set of arrival rate vectors λ under which the queue lengths,Q (·),
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remain stable
3
, for a given pair of encoding and allocation policies.

As we shall see shortly, harsh information constraints tend to reduce
the capacity region. Therefore, at a high level, the main question

that we aim to address can be stated as follows:

How does the information constraint, in the form of a noisy channel,
reduce the capacity region of an SPII architecture, and how does the
degree of reduction vary with respect to the sizes of encoder and
receiver memories?

In order to measure the magnitude of the reduction in capacity

region, we introduce a key (scalar) metric, dubbed the capacity
factor, which captures the fraction of capacity region lost due to

imperfect information. Informally, the notion of capacity factor

can be described as follows (the formal definition will be given in

Section 2). Fix a channel C = (X,Y, {PCx }). For a pair of encoding-

allocation policies (ϕ,ψ ), denote by ˜Λ(ϕ,ψ ) the set of all arrival rate
vectors λ that the system is able to stabilize under the pair (ϕ,ψ )
and channel C. Denote by Λ the maximum capacity region of the

SPII, defined by the set of arrival rate vectors that are dominated by

the convex hull of the schedule set, Π. In particular, Λ corresponds

to the maximal capacity region of the system under full information
and a maximally stable scheduling policy, such as Max-Weight.

Definition 1.1 (Capacity Factor (Informal)). Fix k, ℓ ∈ Z+. The
(k, ℓ)-capacity factor of the channel C, denoted by ρ∗k, ℓ (C), is de-

fined by the supremum of ρ ∈ (0, 1), such that

ρΛ ⊂ ˜Λ(ϕ,ψ ), (1.2)

for some pair of encoding and allocation policies (ϕ,ψ ), whose
memory sizes are k and ℓ bits, respectively.

Intuitively, the capacity factor can be interpreted as the “largest”

fraction of the full-information maximum capacity region that

can be preserved under information constraints (using an “opti-

mal” encoding-allocation policy pair). A capacity factor of 1 means

that the information constraints result in no loss of the maximum

capacity region, and on the other extreme, a capacity factor of 0

indicates that most of the maximum capacity region has been lost

due to lossy information.

Example 1.2 (Scheduling with Parallel Queues). We now present

a simple example to illustrate the drastic impact that lossy informa-

tion can have on the capacity region, consequently resulting in a

small capacity factor. Consider the SPN in Figure 2 with one server

and two parallel queues. It is not difficult to see that the maximum

capacity region under full information, Λ, consists of all arrival
rates where λ1 + λ2 < 1, achieved by always serving a queue that

is non-empty.

Now suppose the channel of the SPII is completely uninforma-

tive, so that the output message Y (t ) is independent of the input
signal X (t ). Then, it can be shown that any allocation policy will

induce a fixed average service rate vector, µ0, independent of the
actual arrival rates. The resulting capacity region is represented

by the rectangle in Figure 3 (dominated by µ0), which is always
substantially smaller than the maximum capacity region, regardless

of the choice of µ0. It is not difficult to show that the capacity factor
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ρ∗k, ℓ (C) k = 0 k ∈ N k = ∞

ℓ = 0 ρ∗
0,0 = ρ

∗
∞,0

⇒ ρ∗k,0 = ρ
∗
∞,0 ρ∗

∞,0 < 1
†

ℓ ∈ N − ρ∗K (Π,X), ℓ
= ρ∗
∞, ℓ

ρ∗
∞, ℓ
< 1
†

ℓ = ∞ 1
⇒

1
⇒

1

Table 1: Summary of ourmain results in Theorem 3.3, where
we omit the dependence on C for simplicity of notation. The
system is assumed to have memory-feedback. The parame-
ters k and ℓ denote the size of the memory for the encoder
and receiver, respectively. The symbol “⇒” indicates that the
result of the cell is readily implied by that of the cell to the
left. The symbol “ †” means that the result holds if in addi-
tion to being informative, the channel is also “noisy” (more
precisely, ε-majorizing for some ε > 0; see Definition 3.2).
Finally, the symbol “−” means that we do not yet know the
exact value of ρ∗k, ℓ (C) when k < K (Π,X), beyond the fact
that it’s not greater than ρ∗K (Π,X), ℓ

(C). For instance, we do
not knowwhether ρ∗k, ℓ (C) is in fact equal to ρ∗K (Π,X), ℓ

(C) for
all k < ρ∗k, ℓ (C).

under such an uninformative channel is equal to 1/2, which cor-

responds to the case where the allocation policy induces a service

rate vector of µ0 = (1/2, 1/2) by choosing the two schedules with

equal frequency. Therefore, depending on the quality of the channel

and the memories available, the fractional loss of capacity region

in SPII can range from 1/2 (uninformative) to 1 (full-information).

1.2 Preview of Main Results: Characterization
of Capacity Factor

We now give an informal preview of our main results (Theorem

3.3), which are also summarized in Table 1. Fix any channel that

is informative, such that the input signal X (t ) and output message

Y (t ) are not independent. Suppose that the system has memory-

feedback. We show the following:

(1) When the receiver is memoryless (ℓ = 0), the capacity factor

ρ∗k,0 (C) is independent of k , the number of bits in the encoder

memory:

ρ∗k,0 (C) = ρ
∗
0,0 (C), ∀k ≥ 0. (1.3)

(2) When the receiver has a finitememory (0 < ℓ < ∞), the capacity

factor ρ∗k, ℓ (C) may depend on k , but only up to a constant,

K (Π,X), whose value does not depend on ℓ or the channel C:

ρ∗k, ℓ (C) = ρ
∗
K (Π,X), ℓ (C), ∀k ≥ K (Π,X). (1.4)

(3) In the limit where the size of the receiver memory tends to

infinity (ℓ = ∞), the (limiting) capacity factor ρ∗k,∞ (C) is always

1, regardless of the magnitude of k :

ρ∗k,∞ (C) = 1, ∀k ≥ 0. (1.5)

In particular, there will be no loss of capacity region in this

limiting regime.

(4) Finally, if the channel is “noisy” (to be precisely defined), and

the receiver does not have infinite memory (ℓ < ∞), then the
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capacity factor ρ∗k, ℓ (C) is always strictly less than 1:

ρ∗k, ℓ (C) < 1, ∀ℓ < ∞. (1.6)

Moreover, as a by-product of the proof, all of our achievability

results (Items 1 through 3) are established through constructive

and implementable encoding-allocation policy pairs. The capacity

factor can also be explicitly computed in closed-form for restricted

families of channels and schedule sets, which we will demonstrate

in Section 7.1. Appendix D discusses how to compute the capacity

factor and identify optimal policies that achieve the capacity factor

for the general case.

Key implications of the main results: Our results have a

number of architectural implications; we highlight some of them

below.

(1) Impact of imperfect information is non-trivial. The result in Item

4 show that the presence of a noisy channel always reduces capacity
(i.e., ρ∗k, ℓ (C) < 1), regardless of the amount of memories available

to the encoding or allocation policies, so long as the allocation

policy does not have infinite memory.

(2) Memories play an intricate, asymmetric role. The results in Items

1 through 3 demonstrate that memories are crucial in mitigating the

reduction in capacity region due to imperfect information. How-

ever, memories are substantially more important for the allocation
policy than they are for the encoding policy: increase in memory

for the allocation policy always improves capacity, while the bene-

fit of having additional memory for the encoding policy becomes

zero beyond some finite threshold. This asymmetry suggests design

principles that favor simple, low-memory communication modules

for the encoding policy, while the allocation policy must aggre-

gate sufficient amount of past observations in order to achieve a

maximum capacity region.

1.2.1 Motivating Examples of SPII. While the SPII model is highly

stylized, it is motivated by a range of dynamic resource allocation

systemswith information constraints.We discuss in this sub-section

two motivating examples:

(1) Example 1 - Scheduling in Large-Scale Data Centers. It has long
been recognized that obtaining reliable system-wide state informa-

tion is challenging in modern-day data centers, where many tasks

are processed in a massively parallel manner, servers may fail, and

bandwidths may be limited (see e.g., [1, 2, 7, 41]). For a concrete

illustration, consider a manager who is operating a large-scale data

center via a limited communication channel. Here, the channel

is broadly construed as incorporating all aspects of information

obfuscations, such as those due to server failures, and limiting band-

widths on the network and server I/O. For example, due to possible

server failures or malfunctions, incomplete information concerning

the state of the data center may be transmitted to the manager

across a network link. Furthermore, because of communication

constraints on the link and server I/O, the information that the

manager obtains may be condensed and corrupted by randomly

dropped packets. In these scenarios, our model will speak to the

design of the communication protocol from the data center to the

manager, as well as how she should translate the received messages

into resource allocation decisions.

(2) Example 2 - Human-in-the-Loop Resource Allocation. Our model

can also be applied to resource allocation problems where commu-

nications amongst human operators may be subject to errors or

misinterpretations (cf. [5, 22, 26]). For instance, one may consider

a hospital setting where a physician (“encoder”), who observes the

state of the ward, must communicate the relevant information and

instructions to nurses (“decoder”), who will carry out the actual

interventions.

1.3 Organization
The remainder of the paper is organized as follows. We formally

describe our model in Section 2, and present our main results in

Section 3. Section 4 discusses the related literature. The remainder

of the paper is devoted to the proof of our main results, with a

proof overview in Section 5 that summarizes the key techniques.

We conclude the paper with some discussion in Section 10.

1.4 Notation
We reserve boldface letters for vectors and plain letters for scalars.

For any scalar x , ⌈x⌉ denotes the smallest integer greater than or

equal to x , and (x )+ ≜ max{x , 0} denotes the nonnegative part of

x . For any d ∈ N, and vector x ∈ Rd , we use xi to denote the ith co-

ordinate of x . We use (x )+ to denote the vector
(
(x1)
+, . . . , (xd )

+)
.

For any x ,y ∈ Rd+, we write x ≤ y if xi ≤ yi for all i = 1, 2, . . . ,d ,
and we write x < y if xi < yi for all i = 1, 2, . . . ,d . For a set

X ⊂ Rd+, we write x ≤ X (x < X, respectively) if there exists

y ∈ X such that x ≤ y (x < y, respectively), and say that the

vector x is dominated (strictly dominated, respectively) by the set

X. For N ∈ N, we will use the short-hand [N ] to denote the set

{1, 2, . . . ,N } of consecutive integers.
For a set S and function f , we will use f (S) to denote the set

{ f (s ) : s ∈ S}. For any set S ∈ Rd+, we use conv(S) to denote the

convex hull of S, conv− (S) ≜ {x ∈ Rd+ : x < conv(S)} to denote

the set of vectors x ∈ Rd+ strictly dominated by conv(S), and cl(S)
to denote the closure of the set S.

For vectors x ,y ∈ Rd , the inner product of x and y is denoted

by ⟨x ,y⟩ ≜
∑d
i=1 xiyi . The ℓ2-norm of vectorx is denoted by ∥x ∥ ≜√∑d

i=1 x
2

i , and the ℓ∞-norm denoted by ∥x ∥∞ ≜ max{|x1 |, . . . , |xd |}.

The ith standard unit vector in Rd is denoted by e (i ) , whose ith
coordinate equals 1 and all other coordinates equal zero. The vector

with all components being 1 is denoted by 1.
We use the shorthand “w.p.1” to mean “with probability 1,” “i.i.d”

tomean “identically and independently distributed,” and “WLOG” to

mean “without loss of generality.” We use Uniform(0, 1) to describe
random variables that are uniformly distributed over the interval

(0, 1). The indictor function of an event A is denoted by IA.

2 THE MODEL
We formally present the model, Stochastic Processing with Imper-

fect Information (SPII), in this section.

Stochastic Processing Network model. We consider a dy-

namic Stochastic Processing Network (SPN) evolving in discrete

time t ∈ Z+ (Figure 1). The system consists of N queues, whose

lengths at the end of the t th time slot are represented byQ (t ) ∈ ZN+ .
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The evolution of the queues is captured by the following equation:

Q (t ) = (Q (t − 1) − D (t ))+ +A(t ), t ∈ N, (2.1)

where A(t ) and D (t ) are the arrival and allocation vectors during

slot t , respectively. We use Π ⊂ ZN+ to denote the finite set of

all allowable schedules. The arrivals are i.i.d. Bernoulli random

variables, where

E(Ai (1)) = λi , i = 1, 2, . . . ,N . (2.2)

We will refer to λ = (λ1, λ2, . . . , λN ) as the arrival rate vector.
WLOG we suppose that the schedule set Π satisfies the following

three assumptions.

Assumption 1. Π is monotone: if d ∈ Π, then for any d ′ ∈ ZN+ with

d ′ ≤ d , d ′ ∈ Π as well.

Assumption 2. For each i ∈ [N ], e (i ) ∈ Π.

Assumption 3. The schedule set Π has at least two distinct maximal

elements. More specifically, there exist d (1) ,d (2) ∈ Π with d (1) ,

d (2)
, and for j = 1, 2, d (j ) ≤ d with d ∈ Π implies that d = d (j )

.

Assumption 1 allows for more flexible allocation decisions with-

out impacting system performance. Assumption 2 guarantees that

each queue can receive a positive service rate, and Assumption 3

rules out the possibility of Π having only one maximal element, in

which case the single maximal element would dominate all other

schedules, and the trivial decision of always choosing that max-

imal element would be optimal for a wide range of performance

objectives, such as maximizing throughput or minimizing queue

lengths.

Signals, channels, and messages. A channel is a triple C =

(X,Y,C ), whereX andY are finite sets representing the input and

output alphabets, with cardinalities cX and cY , respectively, and C
is an cX-by-cY row stochastic matrix, which we will refer to as the

channel matrix. Since C is row stochastic, each row corresponds to

a probability distribution over Y , the set of output alphabets, and

we denote the probability distribution corresponding to the xth row
as PCx . When an input signal, X ∈ X is sent through the channel,

it leads to a (possibly random) output message, Y ∈ Y , drawn
from the probability distribution PCx (Y = ·). Thus, the matrix C
captures the stochastic distortion introduced by the channel, where

the entry Cx,y represents the probability that the output message

of the channel is y when the input signal is x :

Cx,y = P
C
x (Y = y), x ∈ X,y ∈ Y . (2.3)

We assume the channel is (1) memoryless, so that each output

message only depends on the input signal of the present time slot,

and is independent from the system’s past history, and (2) stationary,

so that for any x ∈ X and y ∈ Y , the probability that the output is

y when the input is x does not depend on time.

Encoder and encoding policies. During each time slot, an en-
coder situated at the queues sends a signal, X (t ) ∈ X, over the
channel. The encoder is equipped with a finite-sized lossless mem-
ory represented by a k-bit binary sequence, whose value at time t is
denoted byMe (t ). The signal X (t ) can depend on the most recent

state of the queuesQ (t − 1), the most recent arrivals A(t − 1), the
content of the memoryMe (t − 1), and possibly some idiosyncratic

randomness. Formally, let ϕe be a deterministic encoding policy.
Then,

4

X (t ) = ϕe (Q (t − 1),A(t − 1),Me (t − 1),Ze (t − 1)), t ∈ N, (2.4)

where {Ze (t )}t ∈Z+ is an string of i.i.d. Uniform(0, 1) random vari-

ables, which are all independent from the rest of the system. In

each time slot t , the content of the memory,Me (t ), is also updated

based onQ (t − 1), A(t − 1), Me (t − 1), and Ze (t − 1), and we can

formally write

Me (t ) = ϕm (Q (t−1),A(t−1),Me (t−1),Ze (t−1)), t ∈ N, (2.5)

for some deterministic function ϕm . If we write ϕ = (ϕe ,ϕm ), then

(X (t ),Me (t )) = ϕ (Q (t − 1),A(t − 1),Me (t − 1),Ze (t − 1)), t ∈ N.
(2.6)

With a slight abuse of notation, we also call ϕ the encoding policy.
We will denote by Φk the set of all encoding policies with k bits

of memory. We useMe (k ) to denote the set of possible values for

the encoder memory when k bits are allowed. When the context

is clear, we often suppress the dependence on k and simply write

Me .

Roughly speaking, the size of the memory, k , serves as a measure

of “complexity” of an encoding function. A special case is when

k = 0, where the encoder is equipped with no memory and the

signal depends only on the current state of the queues. We will

refer to a policy ϕ ∈ Φ0 as a memoryless encoding policy.
Receiver and allocationpolicies.The signalX (t ) passes through

the channel and results in a message, Y (t ) ∈ Y at a receiver. The
responsibility of the receiver is to choose, at each time slot, the

allocation vector D (t ). However, the receiver is not able to observe

the state of the queues directly, so the allocation decisions can only

rely on information provided by the encoder through the channel.

Similar to the encoder, the receiver is equipped with a memory

of ℓ bits, whose state in slot t is denoted by Mr (t ). Let ψa be a

deterministic allocation policy, such that

D (t ) = ψa (Y (t ),Mr (t − 1),Zr (t − 1)), t ∈ N, (2.7)

where {Zr (t )}t ∈Z+ is an string of i.i.d. Uniform(0, 1) random vari-

ables, which are all independent from the rest of the system. In

each time slot t , the content of the receiver memory,Mr (t ), is also
updated. However, different from the allocation decisions, Mr (t )
is updated with a time lag, and it depends onMr (t − 1), Zr (t − 1)
and Y (t − 1), the message from an earlier time slot, instead of Y (t ),
the most recent message.

5
Formally,

Mr (t ) = ψm (Y (t − 1),Mr (t − 1),Zr (t − 1)), t ∈ N, (2.8)

for some deterministic functionψm . Similar to the encoder side, we

also callψ ≜ (ψa ,ψm ) the allocation policy.
We will denote by Ψℓ the set of all allocation policies with ℓ

bits of memory. Analogous to the encoding policies, an allocation

policy with no memory generates the allocation decision using

4
In the sequel, we will see that our achievability results for the case of finite receiver

memory (Items 1 and 2 of Theorem 3.3; also Sections 8 and 9) are established using

encoding policies that do not depend on A(t − 1), the most recent arrivals. However,

to prove the result on infinite receiver memory (Item 3 of Theorem 3.3; also Appendix

C), the encoding policy that we constructed makes crucial use of A(t − 1), which is

therefore included in Eq. (2.6).

5
The one-step lag can be removed without substantially changing the results; it serves

the purpose of simplifying the notation and proof.
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only the current message, Y (t ). We will refer to a policyψ ∈ Ψ0 as
a memoryless allocation policy. The set of possible values for the
receiver memory is denoted by Mr (ℓ) when ℓ bits are allowed.

Similar toMe , when the context is clear, we suppress dependence

ofMr (ℓ) on ℓ and simply writeMr .

In this paper, we are primarily interested in the dynamics of the

tuple

W (t ) ≜ (Q (t ),A(t ),Me (t ),X (t ),Mr (t )) , t ∈ Z+. (2.9)

It is not difficult to verify that under any well-defined encoding-

allocation policy pair (ϕ,ψ ),W (·) is a countable-stateMarkov chain.

Therefore, for any time t , we callW (t ) the system state at time t ,
and from now on, we restrict our attention to pairs of encoding

and allocation policies (ϕ,ψ ) under which the Markov chainW (·)
is irreducible.

Memory-feedback.We say that the systemhasmemory-feedback
if the state of the receiver memory,Mr (t − 1), is accessible by the

encoding policy in time slot t for generating the message X (t )
and updating the encoder memory stateMe (t ). That is, under this
assumption, Eq. (2.6) would become:

(X (t ),Me (t ))

=ϕ (Q (t − 1),A(t − 1),Me (t − 1),Mr (t − 1),Ze (t − 1)), (2.10)

for t ∈ N. As alluded to in the Introduction, note that the model

already assumes a mode of feedback: the scheduling decision, D (t ),
can be sent to the queues without obstruction, implying that the

backward communication from the receiver to the encoder is loss-

less. Therefore, under thememory-feedback assumption, in addition

to sending D (t ), the allocation policy also includes the state of its

own memory in the backward communication.

2.1 Main Performance Metric: Capacity Factor
We define in this subsection the main performance metric of this

paper, the capacity factor. Fix a pair of encoding and allocation

policies, ϕ andψ , respectively. We say the system is stable ifW (·)
is positive recurrent. Define the maximum capacity region, Λ, to be

the set of all vectors strictly dominated by the convex hull of the

schedule set Π:

Λ ≜ conv
− (Π) = {λ ∈ RN+ : λ < conv(Π)}. (2.11)

Note that because the schedule set Π satisfies Assumptions 1 and 2,

it is not difficult to see that cl(λ) = conv(Π).
We now define our main performance metric.

Definition 2.1 (Capacity Factor). Fix a channel C, and k, ℓ ∈ Z+.

(a) Consider encoding policy ϕ ∈ Φk and allocation policyψ ∈ Ψℓ .
Define Λ̃(ϕ,ψ ) to be the capacity region under the policy pair

(ϕ,ψ ):

Λ̃(ϕ,ψ ) ≜ {λ ∈ RN+ : (ϕ,ψ ) stabilizes the system under

the arrival rate vector λ}. (2.12)

We also define the capacity factor of the channel C under the
policy pair (ϕ,ψ ), denoted by ρ∗ (ϕ,ψ ,C), to be

ρ∗ (ϕ,ψ ,C) = sup{ρ > 0 : ρΛ ⊆ Λ̃(ϕ,ψ )}. (2.13)

(b) The (k, ℓ)-capacity factor of channel C, denoted by ρ∗k, ℓ (C), is

defined to be

ρ∗k, ℓ (C) = sup

{
ρ∗ (ϕ,ψ ,C) : ϕ ∈ Φk ,ψ ∈ Ψℓ

}
. (2.14)

When the context is clear, sometimes we just write the “capacity

factor” to mean ρ∗k, ℓ (C).

Some elementary properties of capacity factor. Before we pro-
ceed, we state some elementary properties of capacity factor. First,

for any channel, C, ρ∗k, ℓ (C) must be non-decreasing in both k and ℓ,

because the capacity region can never decrease with more memory.

Furthermore, since ρ∗k, ℓ (C) is upper-bounded by 1 by definition,

by the Monotone Convergence Theorem, we have the following:

ρ∗k,∞ (C) ≜ limℓ→∞ ρ
∗
k, ℓ (C), and ρ

∗
k,∞ (C) ≥ ρ

∗
k, ℓ (C) for all ℓ ∈ Z+;

ρ∗
∞, ℓ

(C) ≜ limk→∞ ρ
∗
k, ℓ (C), and ρ

∗
∞, ℓ

(C) ≥ ρ∗k, ℓ (C) for all k ∈ Z+;

ρ∗∞,∞ (C) ≜ limk→∞ limℓ→∞ ρ
∗
k, ℓ (C) = limℓ→∞ limk→∞ ρ

∗
k, ℓ (C).

In particular, the limits in which we take k , ℓ, or both to∞ are well

defined.

3 MAIN RESULTS
We formally state the main results in this section. We begin with

two definitions.

Definition 3.1 (Informative Channels). A channel C is said to be

informative if the corresponding channel matrix, C , admits at least

two distinct rows. A channel C whose channel matrix has identical

rows is called uninformative.

The purpose of Definition 3.1 is to rule out degenerate channels:

simply put, a channel is informative if and only if its output is not

independent of the input. The next definition speaks to the other

extreme by describing channels that are sufficiently noisy.

Definition 3.2 (ε-Majorizing Channels). Fix ε ∈ (0, 1). We say that

a channel C is ε-majorizing if its corresponding channel matrix, C ,
can be written as

C = εC0 + (1 − ε )C1, (3.1)

whereC0
andC1

are two row-stochastic matrices, such that (a) the
rows of C0

are identical, and (b) every column of C1
has at least

one zero entry.

Roughly speaking, an ε-majorizing channel can be interpreted

as having at most ε-portion of the channel being “completely un-

informative.” For technical reasons, we will also assume that the

“uninformative portion,” C0
, of an ε-majorizing channel, is every-

where positive:
6

Assumption 4. Let C = (X,Y,C ) be an ε-majorizing channel, and

let C0
be as in (3.1). Then, for all x ∈ X and y ∈ Y , C0

x,y > 0.

The following theorem is the main result of this paper. The

same results are summarized in Table 1, where the rows of the

table correspond to Items 1 through 3 in the theorem, respectively.

We will assume that the SPII architecture has memory-feedback
(See Appendix C.3 for a discussion of a scenario without memory-

feedback.)

6
Intuitively, since C0

is completely uninformative, whether Assumption 4 is satisfied

or not should have little impact on performance. Assumption 4 is used in some of the

subsequent proofs to ensure that states of the chainW ( ·) are “easily reachable” from

each other. For more details, see Appendix B.3.
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Theorem 3.3 (Characterization of Capacity Factor). Fix
the number of queues, N ∈ N and a finite schedule set, Π. Let C be an
informative channel (Definition 3.1). Suppose the system has memory-
feedback. The capacity factor, ρ∗k, ℓ (C), satisfies the following:

7

(1) Memory-less receiver: when ℓ = 0, we have that

ρ∗k,0 (C) = ρ
∗
0,0 (C), ∀k ≥ 0. (3.2)

(2) Finite-memory receiver: when ℓ ∈ N, we have that

ρ∗k, ℓ (C) = ρ
∗
K (Π,X), ℓ (C), ∀k ≥ K (Π,X). (3.3)

where K (Π,X) ∈ N depends only on the structure of the schedule
set, Π, and the channel’s input alphabet, X.

(3) Infinite-memory receiver: when ℓ = ∞, we have that

ρ∗k,∞ (C) = ρ
∗
0,∞ (C) = 1, ∀k ≥ 0. (3.4)

(4) Suppose, in addition, that the channel is also ε-majorizing for
some ε > 0 (Definition 3.2). Then, for all ℓ < ∞, we have

ρ∗k, ℓ (C) < 1, ∀k ≥ 0. (3.5)

Appendix D discusses how to compute the capacity factor and

identify optimal policies that achieve the capacity factor.

4 RELATED LITERATURE
The challenges in obtaining reliable and timely access to state in-

formation have long been recognized in large-scale dynamic re-

source allocation problems. One prominent example is the cele-

brated “power-of-two-choices” (PoT) routing algorithm ([24, 38])

for load-balancing. Designed to address the lack of full queue-length

information in a system with a large number of parallel queues,

the PoT algorithm routes an incoming job to the shorter one be-

tween two randomly sampled queues. The same design considera-

tion underlies pull-based variants of PoT ([3, 20, 33, 34]), and the

partially centralized scheduling policy by [37] that has access to

queue-length information only a small fraction of the time. Be-

yond the realm of computer networks, information constraints are

also prominent in systems with humans in the loop. For instance,

communication failures and misunderstanding between physicians

and nurses have been cited as a leading cause of adverse events in

healthcare, and specialized messaging and decision protocols have

been developed to minimize the impact of errors ([22]; see [5, 26]

for other examples of information loss among healthcare providers).

While information constraints play a central role in the aforemen-

tioned models and applications, in contrast to our work, they often

serve as an implicit motivation behind a chosen design, rather than

a explicit constraint with respect to which an optimal policy is to

be identified. As a result, there has been little understanding as to

what policies are optimal for a given level of information availabil-

ity, and what the fundamental impact information has on system

performance.

Taking a more principled approach to policy design, several re-

cent papers have aimed at rigorously quantifying the performance

impact of information in dynamic resource allocation. [11] char-

acterize how the average delay in a load-balancing system scales

depending on the rate of messaging between the dispatcher and

the servers, as well as the size of the dispatcher memory. In the

7
In this theorem, the notation k ≥ 0 should be interpreted as a short-hand for k
belonging to the extended positive integers: k ∈ Z+ ∪ {∞}.

context of queueing admission control, [30] and [39] quantify how

the system’s optimal heavy-traffic delay scales as a function of the

amount of future information available. In contrast to our approach,

however, these papers largely focus on a specific model of informa-

tion constraint, e.g., captured by the rate of messaging or length

of the lookahead window, while our framework allows for a sub-

stantially more general family of information models, achieved by

using different channels. To the best of our knowledge, the present

paper is one of the first attempts at rigorously establishing the link

between information and the performance of a resource allocation

system at this level of generality.

At a high-level, our framework is inspired by information the-

ory, and more specifically, the research on feedback control under

communication constraints ([28, 36]; see [40] for a survey). This

literature studies the problem of stabilizing (i.e., minimizing the

magnitude of the state) a linear dynamical system of the form:

Xt+1 = AXt + Nt + Ut , where Xt is the state, Nt a noise distur-

bance,Ut the control action, and A a gain matrix, and the decision

maker has access to the state Xt only through a rate-limited com-

munication channel, similar to the scenario depicted in Figure 1.

While our framework also admits a feedback loop over a communi-

cation channel, the dynamics in our problem differ fundamentally

from those in a linear dynamical system, and consequently, so do

the design approaches and analysis. The difference stems from the

fact that the state process in a linear dynamical system is driven

multiplicatively by the gain matrix, A, whereas in our system, it is

updated in an additive manner (see Eq. (2.1)). Consequently, in the

control setting, even when all parameters are known (e.g., gain ma-

trix, noise distribution, etc) an informative channel is still necessary
for stabilization (cf. [36]). In sharp contrast, if all parameters are

known in our SPII, it becomes trivial to stabilize the queues without

any feedback: the decision maker can simply choose a stationary,

randomized allocation policy that matches the arrival rate vector λ.
A major theme on the dynamic control of SPNs concerns the

setting where the decision maker does not have complete infor-

mation about the underlying system. For example, the classical

Max-Weight policy ([8, 21, 35]) is oblivious to detailed statistics

of the arrival process. There is also a literature that addresses the

setting where the service rates (or the service time distributions)

are not known completely, and the decision maker needs to either

learn these parameters or develop scheduling policies that do not

depend on service rates ([4, 10, 18, 19, 25, 31]). Let us note that in

all this literature, even though the decision maker has partial or

no information on system parameters, she has full information on

system states. In contrast, our model only assumes (often severely)

noisy observations of system states. This fundamental difference

requires us to take a very different approach in designing policies,

and to develop new tools for analyzing them.

On the methodological front, our program involves the develop-

ment of a host of new techniques, largely from first principles by

combining ideas from areas such as information theory, learning

and queueing theory. As a sub-module of one of the policies we

propose, we also create a simple yet powerful generalization of the

Max-Weight policy, in which individual Markov chains are selected

dynamically, in a manner analogous to how schedules are used in

a conventional Max-Weight policy.
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5 OVERVIEW OF PROOF TECHNIQUES
The remainder of the paper is devoted to the proof of Theorem 3.3,

and we provide in this section an overview of the key ideas.

Item 4 of Theorem 3.3 (Section 7) - Capacity factor is less than one
for ε-majorizing channels. We show that any level of noise in the

form of an ε-majorizing channel always reduces the capacity region.

The intuition is that the channel noise causes any output symbol

to appear with sufficiently positive probability, and thus limits the

allocation policy’s ability to adapt to different arrival rates with

sufficient precision. The proof employs a lifting argument, whereby

we carry out the analysis in a higher-dimensional product space

for the output alphabet, with the added dimension capturing the

realization of the channel noise. A coupling argument is then used

to show that noise reduces capacity region.

Items 1 and 2 of Theorem 3.3 (Sections 8 and 9) - Memoryless and
Finite-Memory Receivers. This is the most technically challenging

part of our program. We begin with the simple case of a memo-

ryless receiver (ℓ = 0), where the size of the encoder memory k
has no effect on the capacity factor. The key intuition is a change
of perspective: instead of viewing the receiver (allocation policy) as

the one making scheduling decisions based on noisy information,

it turns out that the correct way to design the system is to treat the

encoder as the more “intelligent” of the two policies that conducts

Max-Weight-like scheduling, where the encoding policy treats the

set of input symbols, X, as its “scheduling actions.” By formulating

a transformed, but equivalent, scheduling problem from the per-

spective of the encoder, we then use a version of the Max-Weight

policy to establish stability.

For the general case of ℓ > 0, we obtain a slightly weaker result

than that of ℓ = 0, showing that the encoding memory size becomes

irrelevant after a finite threshold, K (Π,X). The proof builds on the

same intuition of viewing the encoding policy as the main decision-

maker. However, a non-trivial receiver memory will mandate a

substantially more sophisticated argument. This is because in each

time slot, the induced service action no longer depends solely on

the input signal X (t ), as in the case of memoryless receiver; it will

now also depend on the state of the receiver memory, which is

by itself a stochastic process, and hence conventional Lyapunov

arguments for Max-Weight cannot be applied. Instead, we will

formulate a generalized version of the conventional Max-Weight

policy, dubbed the Episodic Max Weight (EMW) policy, where the
encoding policies switches between a family of Markov chains,
as opposed to input symbols, in a manner that is analogous to

how schedules are used in conventional Max-Weight. The stability

proof heavily exploits a certain conditional independence properties

among different elements of the overall processW (t ), which in

turn stems from the feedback structure of the SPII.

Item 3 of Theorem 3.3 (Appendix C) - Infinite-Memory Receiver.
The last part of the proof shows that as the receiver memory size

ℓ → ∞, the capacity factor always converges to 1, regardless of

the size of encoder memory. The argument is relatively straightfor-

ward compared to the other parts. Since the receiver has abundant

memory in this regime, the main idea will be shifting the burden

of decision-making back to the receiver. We construct an Episodic
Greedy Learning (EGL) policy, where the receiver first estimates the

arrival rates from the noisy messages, and subsequently deploys

a randomized schedule that dominates the estimated arrival rate

vector in expectation. With more memory, the receiver is able to

estimate arrival rates more accurately, leading to capacity factors

that are arbitrarily close to 1.

6 PRELIMINARIES
The main purpose of this section is to establish some results and

conventions that will be used throughout the remainder of the paper.

Section 6.1 introduces a generalized formulation of the Max-Weight

policy, whose stability properties will be used as a sub-module

in subsequent proofs. Since our primary focus is on stability, we

will often be concerned with the question of whether the long-
run average service rates dominate the arrival rates. Section 6.2

formalizes the notion of long-run average service rates for our

model, which is used extensively in later sections.

6.1 A Generic Max-Weight Stability Theorem
In this section, we present a simple generalization of the stability

result of the celebrated Maximum Weight (Max-Weight) policy

([35]) to a class of systems that is more general than those typically

seen in prior literature (e.g., [8, 29, 32]). This result, Proposition 6.1,

will be used as a basic building block in our subsequent proofs. We

first describe the setup, and then present the stability result. The

proof is a simple modification of the standard stability proof of the

Max-Weight policy, which we include for completeness.

Consider a discrete-time, irreducible Markov chain {Z (t )}t ∈Z+
with two componentsQ (·) and G (·), so that for any time t , Z (t ) =
(Q (t ),G (t )). HereG (·) takes value in a finite set G, andQ (·) ∈ ZN+
evolves according to the following dynamics:

Q (t ) = (Q (t − 1) − D (t ))+ +A(t ) − R (t ), t ∈ N. (6.1)

Here, A(t ), D (t ) and R (t ) are all random vectors taking values in

ZN+ . It is useful to think of the system dynamics in the following

way. During each time slot t , upon observing the current queue size

vectorQ (t − 1), the system makes the service allocation decision

D (t ), which is used twice in the current slot. First, it is used as

much as possible to reduce the queue sizesQ (t − 1), as represented
by the term (Q (t − 1) −D (t ))+. There may be residual services left

from this first use of D (t ). Then, arrivalsA(t ) take place, and some

of the residual services may be used to serve the arrivalsA(t ); this
portion of the residual services is denoted by R (t ).8

More formally, we require the random vectors A(t ) to be i.i.d.

with finite second moment, and independent from the rest of the

system, with E(A(1)) = α = (α1, . . . ,αN ) ∈ RN+ . The variables
D (t ) are also required to have finite second moments, which are

uniformly bounded above by a constant that does not depend on

the time index t . Furthermore, given Z (t ), D (t + 1) is conditionally
independent from the past history {Z (s ) : s < t }. R (t ) are required
to satisfy the following properties w.p.1:

8
Let us provide some remarks about the differences between the process Z ( ·) and
those in prior literature, as well as how these differences are used in the present paper.

Compared to other works on SPNs (e.g., [29]), Z ( ·) has the additional component

G ( ·), which is included to model the signals X (t ) and the memory contents Me (t )
and Mr (t ). The “residual service” term R (t ), also absent from related prior literature,

will be used in Section 9.3 to describe the dynamics ofW ( ·) (recall (2.9)) under a
so-called episodic Max-Weight policy.
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(a) R (t ) ≤ min{D (t ), A(t )}, and R (t ) guarantees that Q (t + 1) ∈
ZN+ ;

(b) given Z (t ), R (t + 1) is conditionally independent from the past

history {Z (s ) : s < t }.

We are now ready to state the stability result. The proof is given in

Appendix B.1.

Proposition 6.1. Let D be a non-empty, finite subset of RN+ that

satisfies Assumptions 1 and 2. Define the sets

D∗ (t ) ≜ arg max

d ∈D

〈
Q (t ),d

〉
, t ∈ Z+. (6.2)

Suppose that α ∈ conv− (D), and for all t ∈ Z+,

E(D (t + 1) ���Z (t )) ≥ d∗, for some d∗ ∈ D∗ (t ) almost surely.

(6.3)

Then Z (·) is positive recurrent.

An immediate corollary of Proposition 6.1 is when the residual

services R (t ) are always zero.

Corollary 6.2. Suppose that the residual services R (t ) are zero
w.p.1, so thatQ (·) follows the dynamics given by (2.1). Let D, D∗ (·)
and α be exactly as in Proposition 6.1. Then Z (·) is positive recurrent.

6.2 Stationary Service Rates
In conventional SPN systems, it is a simple fact that a stabilizing

scheduling policy induces stationary service rates that dominate

corresponding arrival rates. The presence of channel, encoder and

receiver in the SPII architecture slightly complicates the notion of

stationary service rates, for which we provide some discussion in

this subsection.

Consider a channel C = (X,Y,C ), constants k, ℓ ∈ Z+, and a

policy pair (ϕ,ψ ) with ϕ ∈ Φk and ψ ∈ Ψℓ . Suppose that when

the arrival rate vector is λ, the processW (·) is positive recurrent
under the policy pair (ϕ,ψ ). Then,W (·) has a unique stationary
distribution, whose corresponding probability we denote by P∞ (·).

Next, we define some further notation. First, for each x ∈ X,
define

γx ≜ P∞ (X (t ) = x ) (6.4)

to be the stationary probability of sending signalx . By the ergodicity
of the Markov chainW (·), we also know that w.p.1,

γx = lim

T→∞

1

T

T∑
t=1
I{X (t )=x }, (6.5)

the long-run average fraction of time that the sent signal is x . Sec-
ond, for each y ∈ Y and d ∈ Π, the following conditional probabil-

ity is well-defined:

My,d = P
∞ (D (t ) = d ���Y (t ) = y). (6.6)

We useM to denote the cY × |Π |-matrix (My,d )y∈Y,d ∈Π , and call

it the rate allocation matrix. Finally, we also represent the set of

allowable schedules in a matrix form. Let S = (Sd ,i ) be the |Π | × N
schedule matrix where

Sd ,i = number of services offered to queue

i when schedule d is chosen. (6.7)

Let us note that in general, γ and M may depend on λ, whereas
S does not. With the preceding notation in mind, we define the

stationary service rate vector µ = µ(ϕ,ψ ,λ) to be

µ = µ(ϕ,ψ ,λ) = γCMS, (6.8)

so that for each i , µi represents the long-run average service rate

offered to queue i . The following lemma is a simple but useful

fact. The proof follows simply from the fact thatW (·) is positive
recurrent.

Lemma 6.3. Let C = (X,Y,C ), λ, andW (·) be described as above,
and µ be defined by (6.8). Then, µ ≥ λ.

7 CAPACITY FACTORS ARE NON-TRIVIAL
FOR ε-MAJORIZING CHANNELS

In this section, we will establish Item 4 of Theorem 3.3, that capacity

factors are non-trivial for ε-majorizing channels (recall Definition

3.2), i.e., that they are in general less than 1. Towards this end, we

prove the following

Theorem 7.1. Consider a system with schedule set Π that satisfies
Assumptions 1, 2 and 3. Fix any finite ℓ ∈ Z+, k ≥ 0 (recall that k ≥ 0

means k ∈ Z+ ∪ {∞}), and ε ∈ (0, 1). Then, for any ε-majorizing
channel C = (X,Y,C ),

ρ∗k, ℓ (C) < 1. (7.1)

The main idea behind the proof of Theorem 7.1 is that because

the channel is ε-majorizing, each combination of output symbol

Y (t ) and receiver memory content Mr (t ) appears with sufficiently

positive probability. As a result, no allocation policy (with finite

memory) is adaptive enough to stabilize all arrival rate vectors in

Λ. The proof is given in Appendix B.3.

The next theorem states a stronger result, for the special case of

memoryless receiver, i.e., ℓ = 0. It gives a tight characterization of

the (k, 0)-capacity factor of any ε-majorizing channel, by providing

an achievable upper bound, ρ (ε,Π), on the capacity factors.

Theorem 7.2. Consider a system with schedule set Π that satisfies
Assumptions 1, 2 and 3. Then, for any ε ∈ (0, 1), there exists a constant
ρ (ε,Π) < 1, which only depends on ε and Π, such that:

(1) For any ε-majorizing channel C = (X,Y,C ), and for any
k ≥ 0,

ρ∗k,0 (C) ≤ ρ (ε,Π). (7.2)

(2) Conversely, there exists an ε-majorizing channel, C, such that

ρ∗
0,0 (C) = ρ (ε,Π). (7.3)

The next subsection proves Theorem 7.3, a special case of Theo-

rem 7.2, for systems of parallel queues with a single server, where

we derive a simple, explicit expression for the bound ρ (ε,Π). The
proof of Theorem 7.2 is more abstract than that of Theorem 7.3

and involves using general properties of convex polyhedron, but it

follows a similar argument, and is provided in Appendix B.4.

7.1 An Example: Single Server Scheduling of
Parallel Queues

In this subsection, we prove Theorem 7.3, a special case of Theorem

7.2. While more restricted in scope, it best illustrates the key intu-

ition present in the more general version of the result. Consider the
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Figure 4: Equivalent construction of an ε-majorizing chan-
nel.
following system that consists of one server and N parallel queues,

where the queues are indexed by [N ]. In each time slot, the server

picks one queue, so that exactly one job departs from the chosen

queue if it is non-empty, and no departure occurs in the system,

otherwise. Thus, the schedule set Π is given by

Π = {0} ∪ {e (i ) }Ni=1, (7.4)

where 0 is the zero vector, and e (i ) is the standard ith unit vector,

i ∈ [N ]. It is easy to see that the capacity region of this system is

given by

Λ =


λ ≥ 0 :

N∑
i=1

λi < 1



. (7.5)

The following theorem provides a tight characterization on the

capacity factors of ε-majorizing channels, when the allocation pol-

icy is memoryless.

Theorem 7.3. Fix ε ∈ (0, 1). Consider a single-server system with
N parallel queues. Then, the following hold.

(1) For any ε-majorizing channel, C = (X,Y,C ), and any k ≥ 0,

ρ∗k,0 (C) ≤ 1 − ε (1 − N−1). (7.6)

(2) Conversely, there exists an ε-majorizing channel, C, such that

ρ∗
0,0 (C) = 1 − ε (1 − N−1). (7.7)

Proof. We begin by establishing the first statement of the theo-

rem using a lifting argument. First, note that in Section 8, we will

prove that ρ∗k,0 = ρ
∗
0,0 for all k ≥ 0 (see Theorem 8.1), so it suffices

to show that ρ∗
0,0 (C) ≤ 1−ε (1−N−1) for any ε-majorizing channel.

Fix an ε-majorizing channel, C = (X,Y,C ), and write

C = εC0 + (1 − ε )C1, (7.8)

according to the decomposition in Definition 3.2. Use PCx to denote

the probability distribution over Y when the input signal is x ,

for the channel C; use the notation PC
0

x and PC
1

x in a similarly

manner. Since C0
has identical rows, we drop the subscript x and

use PC
0

to denote a row of C0
. Then, for each x , the probability

distribution PCx is a mixture of PC
0

and PC
1

x . Thus, to generate the

message Y (t ) from X (t ) through the channel C, it is equivalent to

(a) first generate a switching Bernoulli random variable U (t ), with
P(U (t ) = 0) = ε , independent of everything else; (b) second, if

U (t ) = 1, Y (t ) is set to be Y 1 (t ), the message generated from X (t )
through the channel (X,Y,C1), and if U (t ) = 0, Y (t ) is set to be

Y 0 (t ), generated from the probability distribution PC
0

. See Figure

4 for a pictorial illustration of this equivalent interpretation of the

channel C.

We shall adopt the preceding interpretation of C for the remain-

der of the proof. Consider a channel C+ constructed by augmenting

the output of C the value of the switching variable, U (t ). Specif-
ically, the output message of C+ is equal to (Y (t ),U (t )), taking
values in the alphabet setY+ = Y × {0, 1}. Note thatY+ is still a fi-

nite set and hence C+ is a valid channel. It is easy to see that for any

policy pair (ϕ,ψ ) operating under the channel C, we can construct

a corresponding pair (ϕ,ψ+) operating under the channel C+ by

simply ignoring the variableU (t ), so that Λ̃(ϕ,ψ ) ⊆ Λ̃(ϕ,ψ+). We

hence conclude that ρ∗k,0 (C) ≤ ρ
∗
k,0 (C

+), for any k ≥ 0. In light of

the fact that ρ∗k,0 (C) = ρ
∗
0,0 (C), which will be proved in Section 8,

it suffices to show that

ρ∗
0,0 (C

+) ≤ 1 − ε (1 − N−1). (7.9)

Let (ϕ,ψ+) be a pair of memoryless encoding and allocation

policies that works with the channel C+, and suppose that (ϕ,ψ+)
stabilizes the arrival rate vector λ. Denote by µ0 the N -dimensional

vector where µ0i is the probability underψ
+
that the server chooses

to serve queue i , conditioning onU (t ) = 0, i.e.,

µ0i = Pψ +
(
D (t ) = e (i ) ���U (t ) = 0

)
, t ∈ Z+. (7.10)

Note that conditioning on U (t ) = 0, the message Y (t ) is equal to
Y 0 (t ), which is independent from the signal X (t ). Therefore, µ0

does not change as the arrival rate vector λ varies. Since the entries

of µ0 sum to no larger than 1, it follows that mini=1,2, ...,N µ0i ≤
1

N .

Let µ = µ(ϕ,ψ+,λ) be the vector of stationary service rates defined
in Eq. (6.8) of Section 6.2. Since P(U (t ) = 0) = ε , we conclude that
the server will choose queue i with probability at least µ0i ε . Fix

i∗ ∈ argmini µ
U
i . Then, µi∗ ≤ 1 − ε

(∑
i,i∗ µ

U
i

)
≤ 1 − ε (1 − N−1).

We claim that λ cannot be of the following form:

λi∗ > 1 − ε (1 − N−1) and λi = 0, ∀i , i∗. (7.11)

This is because if (7.11) holds, then queue i∗ cannot be stable, be-
cause λ∗i > 1 − ε (1 − N−1) ≥ µi∗ . Since ϕ andψ+ are arbitrary, we
conclude that

ρ∗
0,0 (C

+) ≤ 1 − ε (1 − N−1), (7.12)

which, by Eq. (7.9), proves the first statement of the theorem.

We now prove the second statement of the theorem by consid-

ering the following example. Let X = Y = {1, 2, . . . ,N }, so that

cX = cY = N . Define I (t ) to be the smallest index corresponding

to an non-empty queue at time t , i.e.,

I (t ) ≜ min{i = 1, 2, . . . ,N : Qi (t ) > 0}, (7.13)

and let the encoder simply send the signal I (t ) at time t , i.e., X (t ) =
I (t ). Consider theN×N channel matrix whereCx,x = 1−ε (1−N−1)
for all x ∈ [N ], and Cx,y = ε/N for all x , y. It is easy to verify

that C is in fact ε-majorizing, where its corresponding C0
has all

entries equal to 1/N , andC1
is the N -by-N identity matrix. Finally,

the allocation policy is simply to choose the queue whose index is

equal to the message: D (t ) = e (Y (t ))
for all t .

Let λ ∈ (1 − ε (1 − N−1))Λ, then
∑N
i=1 λi < (1 − ε (1 − N−1)).

Consider the aggregate queue length process ∥Q (t )∥1 ≜
∑N
i=1Qi (t ).

Note that with probability 1 − ε (1 − N−1), Y (t ) = X (t ), in which

case exactly 1 job would depart from the system if and only if

∥Q (t )∥ > 0. Otherwise, Y (t ) , X (t ), and a job may or may not

depart, depending on whether the chosen queue is empty or not.

Therefore, the evolution of the process ∥Q (t )∥ is stochastically
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dominated by the queue length process in a single-server-single-

queue system with i.i.d. arrivals, where the number of arrivals at

time t is equal to
∑N
i=1Ai (t ), and the number of jobs to depart

from the queue at time t is a Bernoulli random variable with mean

1 − ε (1 − N−1), if the queue is non-empty, and zero, otherwise.

A simply Lyapunov function argument would show that in this

system with arrival rate

∑N
i=1 λi < 1 − ε (1 − N−1) and service rate

1 − ε (1 − N−1) when the queue is non-empty, the queue length

process is positive recurrent. This shows that the channel C =

(X,Y,C ) satisfies

ρ∗
0,0 (C) ≥ 1 − ε (1 − N−1), (7.14)

which, in light of the first claim of the theorem, implies that ρ∗
0,0 (C)

is in fact equal to 1−ε (1−N−1). This concludes the proof of Theorem
7.3. □

8 MEMORYLESS RECEIVER
In this section, we show Item 1 of Theorem 3.3: if the allocation

policy is memoryless (i.e., ℓ = 0), then there exists somememoryless

encoding policy ϕ ∈ Φ0, which achieves the optimal capacity factor

among all encoding policies, memoryless or not. In short, when the

receiver does not have memory, then one will not benefit from any

memory at the encoder, either.

Theorem 8.1. Fix any channel C = (X,Y,C ). We have that

ρ∗
0,0 (C) = ρ

∗
∞,0 (C). (8.1)

Proof. It is clear that ρ∗
0,0 (C) ≤ ρ

∗
∞,0 (C), so it suffices to show

that ρ∗
0,0 (C) ≥ ρ∗

∞,0 (C). For the rest of the proof, we write ρ for

ρ∗
∞,0 (C) to simplify notation.

Let ε > 0. We will show that ρ∗
0,0 (C) ≥ ρ − ε by constructing a

policy pair (ϕ,ψ ) with ϕ ∈ Φ0 andψ ∈ Ψ0, under which (ρ − ε )Λ ⊆
Λ̃(ϕ,ψ ). By the definition of ρ∗

∞,0 (C), there exist k ∈ N, encoding

policyϕk ∈ Φk and allocation policyψ ∈ Ψ0, such that ρ
∗ (ϕk ,ψ ,C),

the capacity factor of C under (ϕk ,ψ ), satisfies ρ
∗ (ϕk ,ψ ,C) ≥

ρ − ε/3.
Let λ ∈ (ρ − 2ε/3)Λ ⊆ Λ̃(ϕk ,ψ ), and consider a system with

arrival rate vector λ, operating under the policy pair (ϕk ,ψ ). Let
the stationary service rate vector µ = γCMS be defined by (6.8),

and γ ,M and S defined by (6.4), (6.6) and (6.7) respectively. Then,

by Lemma 6.3, µ ≥ λ. Furthermore, because the allocation policy

ψ is memoryless, the matrixM depends only on the policyψ , but

not on λ. Thus, the matrix CMS is fixed, and λ ≤ conv

(
Ŝ
)
, where

Ŝ denotes the set consisting of the rows of CMS : Ŝ = {(CMS )x :

x ∈ X}. Here (CMS )x represents the xth row of CMS . Since λ is

arbitrary except λ ∈ (ρ − 2ε/3)Λ, this implies that

(ρ − ε )Λ ⊆ conv
−
(
Ŝ
)
. (8.2)

We are now ready to define the memoryless encoding policy ϕ ∈ Φ0

and prove that ρ∗ (ϕ,ψ ,C) ≥ ρ−ε . For all time t ∈ N, the sent signal
X (t ) is a deterministic function ofQ (t − 1), defined to be

X (t ) = ϕ (Q (t − 1)) ∈ argmax

x ∈X

〈
Q (t − 1), (CMS )x

〉
, (8.3)

where ties are broken arbitrarily. Note that (CMS )x is the vector

of expected services offered when alphabet x is chosen to be the

signal.

Let us summarize the encoding-allocation policy pair (ϕ,ψ ) that
we have constructed so far:

(1) encoding policy ϕ: send a signal x∗ according to Eq. (8.3). Note

that the optimization in Eq. (8.3) only involves the current queue

lengths, so ϕ is memoryless.

(2) allocation policyψ : one that corresponds to the allocation policy
matrixM defined by Eq. (6.6).

Under the pair (ϕ,ψ ), the expected services offered at time t is

given by (CMS )X (t ) . The set Ŝ satisfies Assumption 2 because of

Eq. (8.2), and the fact that Λ satisfies Assumption 2. Thus, we can

apply Corollary 6.2 to the processW (·), and conclude that for any

λ ∈ (ρ − ε )Λ ⊆ conv
−
(
Ŝ
)
,W (·) is positive recurrent under the

pair (ϕ,ψ ). This implies that ρ∗
0,0 (C) ≥ ρ

∗ (ϕ,ψ ,C) ≥ ρ − ε .

Since ε > 0 is arbitrary, we have that ρ∗
0,0 (C) ≥ ρ = ρ∗

∞,0 (C).

This concludes the proof. □

9 FINITE-MEMORY RECEIVER
We consider in this section the scenario where the size of the re-

ceiver memory, ℓ, is finite. Recall that we assume the existence

of memory-feedback, so that the encoder can fully observeMr (t ),
the receiver memory, and use it as input to the policy design:

(X (t ),Me (t )) = ϕ (Q (t−1),A(t−1),Me (t−1),Mr (t−1),Ze (t−1)).
The goal of this section is to prove Item 2 of Theorem 3.3. To-

wards this end, we define the notion of simple (encoding) policies
in Section 9.1, and establish a key property of simple policies in

Proposition 9.2. The Episodic Max-Weight policy, defined in Section

9.2, makes use of simple policies, and is itself used in Section 9.3 to

prove Theorem 9.5 (Item 2 of Theorem 3.3). Along the way, we also

provide an explicit expression for K (Π,X), the threshold beyond

which ρ∗k, ℓ are all the same.

9.1 Projection to Simple Policies
Definition 9.1 (Simple Encoding Policies). Fix ℓ ∈ N andψ ∈ Ψℓ .
An encoding policy ϕ0 is called simple for the allocation policyψ , if

(1) ϕ0 ∈ Φ ⌈log |X |⌉ .

(2) ϕ0 takes as inputs only Me (t − 1), Mr (t − 1) and Ze (t − 1),
and does not rely onQ (t − 1).

(3) {(X (t ),Mr (t ))}t ∈N is a homogeneous irreducible Markov

chain under the pair (ϕ0,ψ ).

We use ΦS (ψ ) to denote the set of all simple encoding policies for

ψ . When the context is clear, we sometimes write ΦS for ΦS (ψ ),
and call a policy simple if it is simple forψ .

Recall µ(ϕ,ψ ,λ), the stationary service rate vector defined by

(6.8) when the arrival rate vector is λ, and the system is operating

under the policy pair (ϕ,ψ ). If the service rates do not change as

a function of λ, then we write µ(ϕ,ψ ) and omit the dependence

on λ. Let us note that for any simple policy ϕ0, even thoughW (·)
may not be positive recurrent under the policy pair (ϕ0,ψ ) and
arrival rate vector λ, the stationary service rate vector µ(ϕ0,ψ ,λ)
is still well-defined according to (6.8), because {(X (t ),Mr (t ))}t ∈N is

irreducible with a finite state space. Furthermore, because ϕ0 does
not rely on queue lengths when generating signals, µ(ϕ0,ψ ,λ) does
not depend on λ, in which case we can just write µ(ϕ0,ψ ).

The following proposition is the main result of this subsection.
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Proposition 9.2. Fix k , ℓ ∈ N, ϕ ∈ Φk , ψ ∈ Ψℓ , and λ ∈ Λ̃(ϕ,ψ ).
There exists a simple encoding policy,ϕ0 ∈ ΦS , such that µ(ϕ0,ψ ) ≥
λ.

Proposition 9.2 provides the technical foundation for the design

of the EMW policy in Section 9.2. With the proposition on hand, we

can “approximately” cover the entire schedule set Π (see Lemma

9.3 for details), and the EMW policy will switch between simple

policies in this covering, similar to how schedules are chosen in

conventional Max-Weight. The proof of Proposition 9.2 heavily

exploits the conditional independence of X (t ) and Mr (t ) given
X (t − 1) andMr (t − 1), for any t . See Appendix B.2 for the detailed
proof.

9.2 Episodic Max Weight
We present in this section our main policy, Episodic Max Weight,

for the regime of 0 < ℓ < ∞, which will employ the simple policies

(Definition 9.1) as basic building blocks. Recall from Eq. (2.11) that

Λ = conv
− (Π), the set of points strictly dominated by the convex

hull of Π. Let F be the set of all maximal elements of Π, which we

denote by F =

{
µF
1
, . . . , µF

|F |

}
. Then, it is easy to see that we also

have Λ = conv
− (F ). The next lemma is a useful structural result

concerning the simple policies; the proof is given in Appendix B.5.

Lemma 9.3. Fix k, ℓ ∈ N and ε ∈ (0, ρ∗k, ℓ ). There exist an alloca-
tion policy ψ ε ∈ Ψℓ , and a set Φε of |F | simple encoding policies,
Φε ≜ {ϕε

1
, . . . ,ϕε

|F |
} ⊆ ΦS , such that for each i ∈ [|F |], the chain

(X (·),Mr (·)) is irreducible and aperiodic under (ϕεi ,ψ
ε ), and

(ρ∗k, ℓ − ε )Λ ⊆ conv
− (

µ(Φε ,ψ ε )
)
. (9.1)

TheEpisodicMaxWeight Policy. Fixk, ℓ ∈ N and ε ∈ (0, ρ∗k, ℓ ).

Let Φε andψ ε ∈ Ψℓ be defined as in Lemma 9.3. The Episodic Max

Weight (EMW) encoding policy is parameterized by a expected

episode length parameter, B ∈ N, whose memory requirement is

K (Π,X) = log( |F |) + log( |X|). (9.2)

In every time slot, the EMW policy applies a simple encoding pol-

icy from the set Φε to generate the signal, where Φε is defined

as in Lemma 9.3. The encoder memory stores only two types of

information:

(1) The index of the simple encoding policy in Φε that is cur-
rently used to generate the signalX (t +1). Since Φε contains
|F | simple policies, this can be implemented using log( |F |)
bits of memory.

(2) The current signal X (t ). This can be implemented using

log( |X|) bits of memory.

We denote the first log( |F |) bits and last log( |X|) bits ofMe (t ) by

MFe (t ) andMXe (t ), respectively.

Definition 9.4 (B-Episodic Max Weight (B-EMW)). Fix B ∈ N. Let

{Z
p
t }t ∈N be a sequence of i.i.d. Bernoulli random variables with

P(ZP
1
= 1) = 1

B , independently from everything else. For each

t ∈ N:

(1) IfZP
t = 1, let i∗ ∈ argmaxi=1, ..., |F |

〈
Q (t ), µ(ϕεi ,ψ

ε )
〉
,with

ties broken arbitrarily. SetMFe (t ) = i∗.

(2) If ZP
t = 0, setMFe (t ) = MFe (t − 1).

Apply the simple encoding policy ϕε
MFe (t )

to generate X (t ). Set

MXe (t ) = X (t ).

9.3 Asymptotic Feasible Region under EMW
We now present the main result of this section, which will imply

Item 3 of Theorem 3.3.

Theorem 9.5. Let k, ℓ ∈ N, and ε ∈ (0, ρ∗k, ℓ ). Let ϕ
ε be defined

as in Lemma 9.3, and denote by ϕB the B-EMW policy defined in
Definition 9.4. Then, there exists B∗ > 0 such that

(ρ∗k, ℓ − 2ε )Λ ⊆ Λ̃(ϕB ,ψ ε ), for all B > B∗. (9.3)

Because ϕB ∈ ΦK (Π,X) and Eq. (9.3) holds for all k and ε , we have
that ρ∗k, ℓ ≤ ρ

∗
K (Π,X), ℓ

for all k , so

ρ∗K (Π,X), ℓ (C) = ρ
∗
∞, ℓ (C). (9.4)

Proof. Denote byTn the nth time that ZP
t = 1, and call the time

slots between Tn and Tn+1 − 1 (including both Tn and Tn+1 − 1),

the nth episode. It is easy to see that the episode lengths are i.i.d

geometric random variables with mean B, and that within each

episode, the same simple policy is employed by ϕB . Define A[n] =∑Tn−1
t=Tn−1

A(t ), D[n] =
∑Tn−1
t=Tn−1

D (t ), Q[n] = Q (Tn ), andW [n] =

W (Tn ). Because theZ
P
t ’s are i.i.d Bernoulli random variables which

are independent from everything else, it is easy to see thatW [·] is a

Markov chain. Furthermore,W [·] is of the formW [·] = (Q[·],G[·]),
where G[n] = (Me (Tn ),X (Tn ),Mr (Tn )) taking values in a finite-

state space, andQ[·] evolves according to the dynamics

Q[n] = (Q[n − 1] − D[n])+ +A[n] − R[n], (9.5)

with R[n] satisfying properties (a) and (b) in Section 6.1. To verify

Eq. (9.5), we can think of the allocations D[n] as first being used to

serveQ[n − 1], the queue lengths at the beginning of the episode,
and any residual allocations as being used to serve subsequent

arrivals in the episode. These residual allocations are captured by

the term R[n].
Denote by ϕ[n] the simple policy used in the nth episode. Recall

the setΦε = {ϕεi : i ∈ [|F |]} of simple policies defined in Lemma 9.3,

and that for each i ∈ [|F |], (X (·),Mr (·)) is irreducible and aperiodic
under (ϕεi ,ψ

ε ). SinceΦε is a finite set, the convergence speeds to the
steady-state distribution of (X (·),Mr (·)) under different (ϕ

ε
i ,ψ

ε ),
i ∈ [|F |], can be uniformly upper bounded. Also recall that the

episode lengths are i.i.d geometric random variables with mean

B, which are independent from everything else. Thus, there exists

B∗ε > 0, such that if B > B∗ε , then

E(D[n + 1] ���W [n]) ≥ B (1 − ε )µ(ϕ[n],ψ ε ), ∀n ∈ N, a.s. (9.6)

Fix B > B∗ε , and let λ ∈ (1 − ε )
(
ρ∗k, ℓ − ε

)
Λ. By Lemma 9.3, (ρ∗k, ℓ −

ε )Λ ⊆ conv
− (µ(Φε ,ψ ε )), so

Bλ ∈ conv−
(
B (1 − ε )µ(Φε ,ψ ε )

)
. (9.7)

Also note that

E(A[n]) = Bλ, ∀n ∈ N. (9.8)

By Eqs. (9.6), (9.7) and (9.8), and Proposition 6.1, the sampled chain

W [·] is positive recurrent under B-EMW whenever λ ∈ (1 −
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ε ) (ρ∗k, ℓ−ε )Λ.Using the above fact, combinedwith (1−ε ) (ρ∗k, ℓ−ε ) ≥

ρ∗k, ℓ − 2ε , we establish (9.3) and, hence the theorem as well. □

10 CONCLUSION AND FUTUREWORK
We proposed in this paper the Stochastic Processing under Imperfect
Information (SPII) framework to study the impact of information

constraints and memories on the capacity of general Stochastic

Processing Networks. Using a novel metric, capacity factor, our

main theorem characterizes the reduction in capacity region (under

“optimal” policies) under all non-degenerate channels, and across

almost all memory sizes.

A few interesting questions remain open. Firstly, our results leave

open the question of whether the encoder memory has any impact

on the capacity factor when the receiver memory is finite but non
zero (ℓ > 0), i.e., whether we can reduce the threshold K (Π,X)
down to 0. Secondly, our results currently rely on the assumption

of memory-feedback for the regime of finite receiver memory ℓ,

which we hope can be removed in the future. Finally, we believe the

SPII framework put forth in this paper can be extended to studying

the impact of imperfect information and memory on other, more

refined metrics, such as average delay, and more broadly, to other

sequential decision-making problems.
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A GLOSSARY OF FREQUENTLY USED
SYMBOLS

A(t ) arrival vector in time slot t
C, C channel, channel matrix

D (t ) chosen allocation / schedule in time slot t
k encoder memory size

ℓ receiver memory size

Λ maximum capacity region

N system size / number of queues

Π set of allowable allocations / schedules

Q (t ) queue state in time slot t
ρ∗k, ℓ (C) (k, ℓ)-capacity factor

X (t ),X input symbol in time slot t , input alphabet
Y (t ),Y output symbol in time slot t , output alphabet

B ADDITIONAL PROOFS
B.1 Proof of Proof of Proposition 6.1

Proof. Consider the quadratic Lyapunov function L : ZN+ ×G →

R+ defined by L(Z ) = ∥Q ∥2. We are interested in the conditional

drift E[L(Z (t + 1)) − L(Z (t )) ���Z (t )]. We have

L(Z (t + 1)) − L(Z (t ))

= ∥Q (t + 1)∥2 − ∥Q (t )∥2

=

N∑
i=1

{ [
(Qi (t ) − Di (t + 1))

+ +Ai (t + 1) − Ri (t + 1)
]
2

−Q2

i (t )
}

≤

N∑
i=1

{ [
(Qi (t ) − Di (t + 1))

+ +Ai (t + 1)
]
2

−Q2

i (t )
}

(B.1)

=

N∑
i=1

{ [
(Qi (t ) − Di (t + 1))

+
]
2

+A2

i (t + 1)

+2Ai (t + 1) (Qi (t ) − Di (t + 1))
+ −Q2

i (t )
}

≤

N∑
i=1

{
(Qi (t ) − Di (t + 1))

2 +A2

i (t + 1)

+2Ai (t + 1)Qi (t ) −Q
2

i (t )
}

(B.2)

=

N∑
i=1
{−2Qi (t )Di (t + 1)+

2Ai (t + 1)Qi (t ) + D
2

i (t + 1) +A
2

i (t + 1)
}
. (B.3)

Inequality (B.1) follows from properties (a) and (c) of the “resid-

ual service” R (·), and Inequality (B.2) follows from the facts that[
(x )+

]
2

≤ x2 for any x ∈ R, and that for any x ,y ∈ R+, 0 ≤

(x − y)+ ≤ x .
Since both A(t ) and D (t ) have second moments that are uni-

formly upper bounded, let us suppose that for some constant K > 0,

for all time t ,

N∑
i=1
E
[
A2

i (t ) + D
2

i (t )
]
≤ K .

Conditioning on Z (t ) and taking expectations on both sides of (B.3)

gives

E
[
L(Z (t + 1)) − L(Z (t )) ���Z (t )

]

≤ −2
〈
E
[
D (t + 1) ���Z (t )

]
,Q (t )

〉
+ 2

〈
α ,Q (t )

〉
+ K

≤ −2
〈
d∗,Q (t )

〉
+ 2

〈
α ,Q (t )

〉
+ K ,

for some d∗ ∈ D∗ (t + 1). Since α ∈ rel

(
conv

− (D)
)
, there ex-

ist constants δ ∈ (0, 1), and pd ≥ 0 for each d ∈ D, such that∑
d ∈D pd ≤ 1 − δ and α ≤

∑
d ∈D pdd . Therefore,〈

α ,Q (t )
〉
≤

〈 ∑
d ∈D

pdd,Q (t )

〉
=

∑
d ∈D

pd
〈
d,Q (t )

〉
≤ (1−δ )

〈
d∗,Q (t )

〉
.

Thus,

E
[
L(Z (t + 1)) − L(Z (t )) ���Z (t )

]

≤ − 2δ
〈
d∗,Q (t )

〉
+ K

≤ − 2δ ∥Q (t )∥∞ + K , (B.4)

where the last inequality follows from Assumption 2.

Consider the finite set
˜G ≜

{
q ∈ RN+ : ∥q∥∞ ≤

K
2δ + 1

}
× G.

Then we have

E
[
L(Z (t + 1)) − L(Z (t )) ���Z (t )

]
≤

{
K , if Z (t ) ∈ ˜G,

−2δ , if Z (t ) < ˜G.

The positive recurrence of Z (·) then follows from a standard appli-

cation of the Foster-Lyapunov criteria (cf. [13, 35]). □

B.2 Proof of Proposition 9.2
Proof. We will use the stationary distribution of the Markov

chainW (·) under the policy pair (ϕ,ψ ) to design a simple encoding

policy ϕ0 ∈ ΦS , under which we will show that

µ(ϕ0,ψ ) = µ(ϕ,ψ ,λ) ≥ λ. (B.5)

More specifically, consider the system under the policy pair (ϕ,ψ )
and arrival rate vector λ. Because λ ∈ Λ̃(ϕ,ψ ) by assumption, the

Markov chainW (·) is positive recurrent, so it has a unique station-

ary distribution. Suppose that the chainW (·) is initialized with

this unique stationary distribution at time 0, and we use P∞ϕ,ψ (·) to

denote the corresponding probability, where the subscripts ϕ,ψ are

used to highlight the encoding and allocation policies employed.

We now construct the simply encoding policy ϕ0 forψ . In each

time slot t , the encoder memoryMe (t ), is set to equal the current

signal X (t ), i.e.,

Me (t ) = X (t ) under ϕ0, (B.6)

and the signals X (·) underψ 0
are generated according to the con-

ditional probabilities

P
(
X (t + 1) = x ′ ���X (t ) = x ,Mr (t ) =m

)
=P∞ϕ,ψ

(
X (1) = x ���X (0) = x ,Mr (0) =m

)
, (B.7)

for all x ∈ X andm ∈ M. That is, the signal X (t ) will be sampled

with respect to the stationary marginal probabilities of X (1) condi-
tioned on (X (0),Mr (0)), under (ϕ,ψ ) and λ. Denote by r (x ,m) the
stationary marginal probability

r (x ,m) = P∞ϕ,ψ (X (0) = x ,Mr (0) =m), x ∈ X,m ∈ Mr . (B.8)
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SinceW (·) is by assumption irreducible, r (x ,m) > 0 for all x and

m. Thus, the conditional probabilities on the right-hand side in

Eq. (B.7) are always well-defined.

Next, we show that under (ϕ0,ψ ), (X (·),Mr (·)) forms a homoge-

neous irreducibleMarkov chain. It is easy to check that (X (·),Mr (·))
is a homogeneous Markov chain, and we now show that it is irre-

ducible. Define byW to be the product space corresponding to the

state space ofW (·):W ≜ Q ×Me × X ×Mr , and use Pϕ0,ψ to

denote probabilities under (ϕ0,ψ ). Fix x ,x ′ ∈ X andm,m′ ∈ M.

We have that

Pϕ0,ψ
(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)

= P∞ϕ,ψ

(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)
. (B.9)

Eq. (B.9) can be derived as follows.

P∞ϕ,ψ (X (1) = x ′,Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)

(a)
= P∞ϕ,ψ (X (1) = x ′ ���X (0) = x ,Mr (0) =m)

· P∞ϕ,ψ (Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)

(b )
= P∞ϕ,ψ (X (1) = x ′ ���X (0) = x ,Mr (0) =m)

· Pψ (Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)

(c )
= Pϕ0,ψ (X (1) = x ′ ���X (0) = x ,Mr (0) =m)

· Pϕ0,ψ (Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)

(d )
= Pϕ0,ψ

(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)
.

(B.10)

Step (a) follows from the fact that, under the pair (ϕ,ψ ) and condi-

tional on X (0) andMr (0), the only randomness in generating the

next receiver memory stateMr (1) is from Zr (0), so X (1) is condi-
tionally independent from Mr (1); this conditional independence
can also be seen from the dependencies of variables illustrated in

Figure 5. In Step (b), we remove the superscript∞ and the subscript

ϕ in the second term, so as to emphasize the fact that the distribu-

tion ofMr (1) is fully determined by the values of X (0),Mr (0) and
the allocation policyψ , regardless of how the overall chainW (0) is
initialized, or what encoding policy is used. Step (c ) follows from
the definition of the policy ϕ0 in Eq. (B.7). Finally, step (d ) is based
on the same conditional independence property as that in Step

(a) in Eq. (B.10), which holds under any encoding and allocation

policies (Figure 5).

We proceed further to derive

Pϕ0,ψ
(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)

= P∞ϕ,ψ

(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)

= r (x ,m)−1P∞ϕ,ψ
(
X (1) = x ′,Mr (1) =m

′,X (0) = x ,Mr (0) =m
)

= r (x ,m)−1
∑

w 1,w 0∈W :

x 1=x ′,m1

r=m′,x 0=x,m0

r=m

P∞ϕ,ψ

(
W (1) = w1,W (0) = w0

)
(e )
≥

∑
w 1,w 0∈W :

x 1=x ′,m1

r=m′,x 0=x,m0

r=m

P∞ϕ,ψ

(
W (1) = w1,W (0) = w0

)

=
∑

w 1,w 0∈W :

x 1=x ′,m1

r=m′,x 0=x,m0

r=m

Pϕ,ψ
(
W (1) = w1 ���W (0) = w0

)

· P∞ϕ,ψ (W (0) = w0), (B.11)

where we use the notation w j = (qj ,mj
e ,x

j ,m
j
r ), j = 0, 1. Here,

step (e ) follows from the fact that 0 < r (x ,m) ≤ 1.

	𝑸 𝑡 , 𝑨(𝑡)

	𝑸 𝑡 − 1 ,	
𝑨(𝑡 − 1)

𝑋(𝑡)

𝑋(𝑡 − 1) 𝑀,(𝑡 − 1)

𝑀,(𝑡)

𝑀-(𝑡 − 1)

𝑀,(𝑡)

Figure 5: A Bayesian network representation of the evolu-
tion ofW (·). The directed lines represent dependence rela-
tions; for example, there is a directed line from Mr (t − 1) to
Mr (t ), so Mr (t ) is dependent on Mr (t − 1). The set of dashed
lines is a general representation of arbitrary dependence
among Q (t − 1), A(t − 1), X (t − 1), Me (t − 1) and Mr (t − 1),
whereas solid lines indicate dependence relations from the
policy update equations (2.6), (2.7) and (2.8).

The irreducibility ofW (·) implies that P∞ϕ,ψ (W (0) = w0) > 0

for allw0 ∈ W . Eq. (B.11) thus shows that the one-step transition

probability

Pϕ0,ψ
(
X (1) = x ′,Mr (1) =m

′ ���X (0) = x ,Mr (0) =m
)
> 0 (B.12)

if any only if there exist two statesw1,w0 ∈ W , with x1 = x ′,m1

r =

m′,x0 = x ,m0

r =m, such that

Pϕ,ψ (W (1) = w1 ���W (0) = w0) > 0. (B.13)

Because (X (·),Mr (·)) is a time-homogenous Markov chain un-

der (ϕ0,ψ ), it is not difficult to extend the same observation from

Eq. (B.11) to over multiple time slots, and conclude that, for any

fixed T > 0,

Pϕ0,ψ
(
X (T ) = x ′,Mr (T ) =m

′ ���X (0) = x ,Mr (0) =m
)
> 0

(B.14)
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if and only if there existw1,w0 ∈ W , with x1 = x ′,m1

r =m
′,x0 =

x ,m0

r =m, such that

Pϕ,ψ (W (T ) = w1 ���W (0) = w0) > 0. (B.15)

Since the chainW (·) under (ϕ,ψ ) is irreducible, (X (·),Mr (·)) under
(ϕ0,ψ ) is also irreducible.

We now proceed to show that

µ(ϕ0,ψ ) = µ(ϕ,ψ ,λ).

By the irreducibility of the finite-state-space chain (X (·),Mr (·))
under (ϕ0,ψ ), it has a unique stationary distribution, which we

denote by (r̄ (x ,m))x ∈X,m∈Mr :

r̄ (x ,m) = P∞ϕ0,ψ (X (0) = x ,Mr (0) =m), x ∈ X,m ∈ Mr .

(B.16)

Here P∞ϕ0,ψ denotes the probability associated with this stationary

distribution. By definition, for each x ′ ∈ X andm′ ∈ Mr , r̄ (x
′,m′)

satisfies the balance equation

r̄ (x ′,m′)

=
∑

x ∈X,m∈Mr

Pϕ0,ψ (X (1) = x ′,Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)r̄ (x ,m).

(B.17)

By definition, we also have

r (x ′,m′)

=
∑

x ∈X,m∈Mr

P∞ϕ,ψ (X (1) = x ′,Mr (1) =m
′ ���X (0) = x ,Mr (0) =m)r (x ,m).

(B.18)

Thus, by (B.9), r (x ′,m′) also satisfies the balance equation (B.17),

and since (r̄ (x ,m))x,m is unique, we must have

r̄ (x ,m) = r (x ,m), ∀x ∈ X,m ∈ Mr . (B.19)

This implies that µ(ϕ0,ψ ) = µ(ϕ,ψ ,λ). By Lemma 6.3 and the posi-

tive recurrence ofW (·) under (ϕ,ψ ) and λ, We have µ(ϕ,ψ ,λ) ≥ λ.
Therefore, µ(ϕ0,ψ ) ≥ λ and this completes the proof of Proposition

9.2. □

B.3 Proof of Theorem 7.1
We prove Theorem 7.1 in this subsection, and begin with the fol-

lowing technical result on the geometry of the set conv(Π).

Lemma B.1. Consider a schedule set Π that satisfies Assumption
1, and let E be the set of extreme points of conv(Π). Let d (0) ∈ Π be
an extreme point that is maximal in E. Then, d (0) is also maximal in
conv(Π).

Proof. Let µ ∈ conv(Π) be such that d (0) ≤ µ and µ , d (0)
.

Then, µ can be written as a convex combination of extreme points;

i.e., µ = p1d1 + · · · + prdr with ps > 0 for all s = 1, 2, . . . , r ,∑
s ps = 1, ds ∈ E for all s and the ds are all distinct. WLOG we

may assume that ds , d (0)
for all s , since, for example, if d1 = d (0)

,

then
µ−p1d 1

1−p1 =
p2

1−p1d
2 + . . .

pr
1−p1d

r ∈ conv(Π),
µ−p1d 1

1−p1 ≥ d (0)

and
µ−p1d 1

1−p1 , d
(0)
, so we can re-choose µ to be

µ−p1d 1

1−p1 .

Consider the set Π′ = {d ′ ∈ ZN+ : d ′ ≤ ds for some s =

1, 2, . . . , r }. By Assumption 1, Π′ ⊆ Π. Since d (0) ≤ µ = p1d1 +
· · · + prdr , it is easy to see that we can find p′

d ′
≥ 0 for d ′ ∈ Π′

such that

∑
d ′∈Π′ p

′
d ′
= 1 and

∑
d ′∈Π′ p

′
d ′
d ′ = d (0)

. Now d (0)
is

an extreme point, so we must have p′
d ′
> 0 ⇒ d ′ = d (0)

. Con-

sider any d ′ ∈ Π′ such that p′
d ′
> 0. By definition, d ′ ≤ ds for

some s . Thus, d (0) = d ′ ≤ ds . However, ds , d (0)
by assumption,

which contradicts the maximality of d (0)
in E. This establishes the

lemma. □

Lemma B.2. Consider a schedule set Π that satisfies Assumptions
1 and 3, and let E be the set of extreme points of conv(Π). Then,
conv(Π) has two distinct extreme points that are maximal.

Proof. We will show that there are at least two distinct maximal

extreme points in E. Suppose that E has a unique maximal extreme

pointd (0)
. Thend (0)

dominates all other extreme points in E, hence

all points in conv(E) as well. But conv(Π) = conv(E), so d (0)
also

dominates all points in conv(Π). This implies that Π has a unique

maximal element as well, contradicting Assumption 3. Thus, there

are at least two distinct maximal extreme points in E, which, by

Lemma B.1, are also maximal in conv(Π). □

Lemma B.3. Fix any finite k, ℓ ∈ Z+, and ε ∈ (0, 1). Consider
some ϕ ∈ Φk and ψ ∈ Ψℓ , an ε-majorizing channel C = (X,Y,C )
that satisfies Assumption 4, and recall Λ̃(ϕ,ψ ), the capacity region
under the policy pair (ϕ,ψ ), defined in (2.12). For any λ ∈ Λ̃(ϕ,ψ ),
let Pλ (·) denote the stationary probability of the chainW (·). Then,
there exists some δ > 0 such that the following is true. For any y ∈ Y
andm ∈ Mr , and for any λ ∈ Λ̃(ϕ,ψ ),

Pλ (Y (t ) = y,Mr (t ) =m) ≥ δ . (B.20)

Proof. WriteC = εC0 + (1− ε )C1
as in Eq. (3.1), withC0

having

identical rows. Let δ ′ = min{C0

x,y : x ∈ X,y ∈ Y}. By Assumption

4, δ ′ > 0.

Let λ ∈ Λ̃(ϕ,ψ ), and consider anyy′,y′′ ∈ Y , andm′,m′′ ∈ Mr
with

Pλ
(
Y (t + 1) = y′,Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
> 0.

(B.21)

We claim that there exists
˜δ > 0 such that whenever (B.21) holds,

then

Pλ
(
Y (t + 1) = y′,Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
≥ ˜δ .

(B.22)

To prove the claim, note thatMr (t + 1) is generated from Y (t ) and
Mr (t ) by ψ alone (see Eq. (2.8)). Thus, Mr (t + 1) is conditionally
independent from Y (t + 1), given Y (t ) andMr (t ), and we can write

Pλ
(
Y (t + 1) = y′,Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)

= Pλ
(
Y (t + 1) = y′ ���Y (t ) = y

′′,Mr (t ) =m
′′
)

· Pψ
(
Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
, (B.23)

where the notation Pψ is used to emphasize the fact the conditional

probability Pψ
(
Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
depends

only on the policyψ , but not onλ. SinceC = εC0+(1−ε )C1
and δ ′ =

minx,y C
0

x,y > 0, Pλ
(
Y (t + 1) = y′ ���Y (t ) = y

′′,Mr (t ) =m
′′
)
≥

εδ ′. Thus,

Pλ
(
Y (t + 1) = y′,Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)

≥ εδ ′Pψ
(
Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
. (B.24)
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Also, by (B.21) and (B.23), we have

Pψ
(
Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
> 0. (B.25)

The preceding conditional probability only depends on ψ , so we

can find a uniform lower bound δ ′′ > 0 with

Pψ
(
Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
≥ δ ′′. (B.26)

Therefore, we have

Pλ
(
Y (t + 1) = y′,Mr (t + 1) =m

′ ���Y (t ) = y
′′,Mr (t ) =m

′′
)
≥ εδ ′δ ′′.

(B.27)

By choosing
˜δ = εδ ′δ ′′, we have established the claim.

To prove the lemma, let y0,y ∈ Y and m0,m ∈ Mr . By irre-

ducibility, Pλ (Y (T ) = y,Mr (T ) = m ���Y (1) = y0,Mr (1) = m0) > 0

for some T ≥ 1. Using Eq. (B.21) in the claim above, it is easy to

show that

Pλ (Y (T ) = y,Mr (T ) =m
���Y (1) = y0,Mr (1) =m0) ≥ ˜δT . (B.28)

Since the set Y ×Mr is finite, there exists some Tmax such that

Pλ (Y (T ) = y,Mr (T ) =m
���Y (1) = y0,Mr (1) =m0) ≥ ˜δTmax

(B.29)

uniformly over all y0,y ∈ Y andm0,m ∈ Mr . Thus, we must have

Pλ (Y (T ) = y,Mr (T ) =m) ≥ ˜δTmax , (B.30)

which establishes the lemma. □

Proof of Theorem 7.1. We prove Theorem 7.1 by contradic-

tion. Towards this end, suppose that there exists ε > 0 and an

ε-majorizing channel C = (X,Y,C ), such that ρ∗k, ℓ (C) = 1 for

some k ≥ 0 and ℓ ∈ Z+.
Let ε ′ > 0. Then there exist some k ′ ∈ Z+, and (ϕ,ψ ) ∈ Φk ′ ×Ψℓ

such that (
1 −

ε ′

2

)
Λ ⊆ Λ̃(ϕ,ψ ). (B.31)

By Lemma B.2, let d (1)
and d (2)

be two distinct extreme points of

conv(Π), both of which are maximal as well. Write λ(j ) = (1 −
ε ′)d (j )

for j = 1, 2. Then, λ (j ) ∈ Λ̃(ϕ,ψ ) for both j = 1, 2. Consider

Pλ (1) (D (t ) = d (1) ). By choosing ε ′ > 0 sufficiently small, we have

Pλ (1)

(
D (t ) = d (1)

)
> 0. Thus, there exist y ∈ Y andm ∈ Mr such

that

Pλ (1)

(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
> 0. (B.32)

Note that D (t ) is generated by the policyψ , only based on Y (t ) and
Mr (t − 1), so whenever λ ∈ Λ̃(ϕ,ψ ),

Pψ
(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
=Pλ

(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
. (B.33)

This implies that

Pψ
(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
= Pλ (1)

(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
= Pλ (2)

(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
. (B.34)

Thus,

Pλ (2)

(
D (t ) = d (1)

)
≥ Pλ (2)

(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
· Pλ (2) (Y (t ) = y,Mr (t − 1) =m)

= Pψ
(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
· Pλ (2)

(
Y (t ) = y ���Y (t − 1) = y,Mr (t − 1) =m

)
· Pλ (2) (Y (t − 1) = y,Mr (t − 1) =m)

≥ Pψ
(
D (t ) = d (1) ���Y (t ) = y,Mr (t − 1) =m

)
εδ ′δ ≜ δ1, (B.35)

where the last inequality uses the facts that (a) for an ε-majorizing

channel, P(Y (t ) = y ���Y (t − 1) = y,Mr (t − 1) = m) ≥ εδ ′ for

any y ∈ Y (recall the definition of δ ′ in the proof of Lemma B.3),

independent of the conditioning event in the earlier time slot, and

Pλ (2) (Y (t − 1) = y,Mr (t − 1) =m) ≥ δ with δ in (B.20), by Lemma

B.3.

Ineq. (B.35) implies that by choosing ε ′ sufficiently small, the

policy pair (ϕ,ψ ) cannot stabilize the system under the arrival rate

vector λ(2)
. This contradicts the supposition that λ(2) ∈ Λ̃(ϕ,ψ ).

Thus, for any k ′, ℓ ∈ Z+, ρk ′, ℓ (C) < 1.

To show that ρ∞, ℓ (C) < 1 as well, simply note that the preced-

ing argument in fact shows that there exists some δ2 > 0 such

that ρk ′, ℓ (C) ≤ 1 − δ2 for any k ′, ℓ ∈ Z+. The theorem is hence

established. □

B.4 Proof of Theorem 7.2
In this section, we prove Theorem 7.2. First, we proceed with the

proof of the first statement. Let ε ∈ (0, 1), and let C = (X,Y,C ) be
an ε-majorizing channel. Let C+ = (X,Y+,C+) be the augmented

channel, which we used at the beginning of the proof of Theorem

7.3. We will provide a constructive characterization of the constant

ρ (ε,Π), and similar to Theorem 7.3, it will be sufficient to show that

ρ∗
0,0 (C

+) ≤ ρ (ε,Π). (B.36)

Let (ϕ,ψ+) be a pair of memoryless encoding and allocation policies.

Also let p (d ) = Pψ + (D (t ) = d ���U (t ) = 0) be the probability that the

allocation policy chooses the scheduled ∈ Π at time t , conditioning
onU (t ) = 0, and let µ0 =

∑
d ∈Π p (d )d be the vector of stationary

service rates, conditioning on U (t ) = 0. Note that the probabilities

p (d ) are well-defined, independent of the arrival rate vector λ, since

for any y ∈ Y , the probabilities Pψ + (D (t ) = d ���Y (t ) = y) depend
only on the policy ψ+, P(Y (t ) = y ���U (t ) = 0) depend only on the

channel C+, so

p (d ) = Pψ + (D (t ) = d ���U (t ) = 0)

=
∑
y
Pψ + (D (t ) = d ���Y (t ) = y)P(Y (t ) = y

���U (t ) = 0) (B.37)

does not depend on λ, for any d ∈ Π.
Let Γ be the set of achievable vectors of stationary service rates

under the policy pair (ϕ,ψ+). Then, it is easy to see that Γ ⊆ (1 −
ε )conv(Π)+ εµ0. We also let Γ+ = {λ ∈ RN+ : λ ≤ (1− ε )conv(Π)+

εµ0}. Then, we must have Λ̃(ϕ,ψ+) ⊆ Γ+. Finally, let ρ (ε, µ0) =
sup

{
ρ > 0 : ρΛ ⊆ Γ+

}
. Then, ρ∗ (ϕ,ψ+,C+) ≤ ρ (ε, µ0), where we

recall the definition of ρ∗ (ϕ,ψ+,C+) in Eq. (2.13).
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We claim that ρ (ε, µ0) < 1 for all ε ∈ (0, 1) and µ0 ∈ conv(Π).
To prove the claim, we will show that

(a) ρ (ε, µ0) is achievable, in the sense that ρ (ε, µ0)Λ ⊆ Γ+; and
(b) Γ+ , conv(Π).

To prove part (a), suppose, on the contrary, that ρ (ε, µ0)Λ ⊊ Γ+.
Then, there exists µ ∈ Λ such that ρ (ε, µ0)µ < Γ+. Since Γ+ is a

compact set, its complement is open, and there exists δ > 0 such

that

(
ρ (ε, µ0) − δ

)
µ < Γ+. But this contradicts the definition of

ρ (ε, µ0). This proves part (a).
To prove part (b), suppose on the contrary that Γ+ = conv(Π).

Then, Γ+ has two distinct extreme points d (1)
and d (2)

that are

also maximal. By definition, there exists µ1 ∈ conv(Π) with d (1) ≤

(1 − ε )µ1 + εµ0. By the maximality of d (1)
, d (1) = (1 − ε )µ1 + εµ0.

Since d (1)
is an extreme point, d (1) = µ1 = µ0. Using a similar

argument, we can show that d (2) = µ0. Thus, d (1) = d (2)
, but

this contradicts the supposition that d (1)
and d (2)

are distinct. This

proves part (b).

By part (a), since ρ (ε, µ0)Λ ⊆ Γ+ and cl(Λ) = conv(Π), we have
ρ (ε, µ0)conv(Π) ⊆ Γ+. Note also that Γ+ ⊆ conv(Π). If ρ (ε, µ0) = 1,

then conv(Π) ⊆ Γ+ ⊆ conv(Π), which implies that conv(Π) = Γ+,
contradicting part (b). Thus, ρ (ε, µ0) = 1, which establishes the

claim.

Now, define

ρ (ε,Π) ≜ sup

µ0∈conv(Π)
ρ (ε, µ0). (B.38)

It is not difficult to see that for any given ε ∈ (0, 1), ρ (ε, µ0) is a
continuous function of µ0. conv(Π) is a compact set, so ρ (ε,Π) =
ρ (ε, µ0) for some µ0 ∈ conv(Π). This implies that ρ (ε,Π) = ρ (ε, µ0) <
1, establishing the first statement of the theorem.

To prove the second statement of the theorem, consider the

following example. First, let µ0 ∈ conv(Π) be such that ρ (ε,Π) =
ρ (ε, µ0), and let (p (d ))d ∈Π be a probability distribution with µ0 =∑
d ∈Π p (d )d . We now turn to the construction of the channel C =

(X,Y,C ). Let X = Y = Π. Let the channel matrix C be given by:

C = εC0 + (1 − ε )C1
, where C0

is the matrix with rows equal to

(p (d ))d ∈Π , and C
1
is the identity matrix. The encoding policy ϕ is

defined as follows. If d ∈ argmaxd ′∈Π⟨Q (t − 1),d ′⟩, then X (t ) = d .
The allocation policyψ simply chooses the schedule d that equals

the received message Y (t ).
Let λ < (1 − ε )conv(Π) + εµ0. Then, by a simple Lyapunov

function argument, we can show that the policy pair (ϕ,ψ ) sta-
bilizes the arrival rate vector λ. This implies that the capacity

factor ρ∗ (ϕ,ψ ,C) ≥ ρ (ε, µ0) = ρ (ε,Π). By the first statement,

ρ∗ (ϕ,ψ ,C) ≤ ρ (ε,Π). Thus, ρ∗ (ϕ,ψ ,C) = ρ (ε,Π), establishing the

second statement of the theorem.

B.5 Proof of Lemma 9.3
Proof. By the definition of ρ∗k, ℓ , for all ε ∈ (0, ρ∗k, ℓ ), there exist

ϕ ∈ Φk andψ ∈ Ψl , such that(
ρ∗k, ℓ −

ε

3

)
Λ ⊆ Λ̃(ϕ,ψ ). (B.39)

By Ineq. (B.39) and Proposition 9.2, we have that for all i ∈ [|F |],
there exists ϕi ∈ Π

S
, such that

µ(ϕi ,ψ ) ≥
(
ρ∗k, ℓ −

ε

3

)
µFi , (B.40)

and the chain (X (·),Mr (·)) is irreducible under (ϕi ,ψ ).

Let δ > 0, and consider perturbationsψ δ and ϕδi of the policies

ψ and ϕi for i ∈ [|F |]. Given the current signal X (t ) and receiver

memory Mr (t ), ψ
δ
updates Mr (t + 1) = Mr (t ) with probability

δ > 0, and it updates Mr (t + 1) according to ψ with probability

1−δ ; independently, ϕδi updatesX (t +1) = X (t ) with probability δ ,
and updates X (t + 1) according to ϕi with probability 1 − δ . Then,

(X (·),Mr (·)) is clearly aperiodic under (ϕδi ,ψ
δ ). Furthermore, by

choosing δ = δ (ε ) sufficiently small, we can also make (X (·),Mr (·))

irreducible under

(
ϕ
δ (ε )
i ,ψ δ (ε )

)
, and have

µ
(
ϕ
δ (ε )
i ,ψ δ (ε )

)
≥
ρ∗k, ℓ − 2ε/3

ρ∗k, ℓ − ε/3
· µ(ϕi ,ψ ). (B.41)

Combining Ineqs. (B.40) and (B.41), we have

µ
(
ϕ
δ (ε )
i ,ψ δ (ε )

)
≥

(
ρ∗k, ℓ −

2

3

ε
)
· µ(ϕi ,ψ ). (B.42)

With a slight abuse of notation, we write ϕεi for ϕ
δ (ε )
i , i ∈ [|F |],

and ψ ε for ψ δ (ε ) . Then, Ineq. (B.42) implies that (ρ∗k, ℓ − ε )Λ ⊆

conv
− (µ(Φε ,ψ ε )). □

C INFINITE-MEMORY RECEIVER
In this section, we consider the case where the size of the receiver

memory is infinite, i.e., ℓ = ∞. The main result of this section is The-

orem C.1 (Item 3 of Theorem 3.3), which states that ρ∗
0,∞ (C) = 1,

for any informative channel C. In other words, we do not need

to maintain any encoder memory in order to recover the maxi-

mal capacity region, when the receiver is equipped with infinite

memory.

Theorem C.1. ρ∗
0,∞ (C) = 1.

The rest of this section is organized as follows. In Appendix C.1,

we provide a precise description of the encoding-allocation policy

pair – episodic greedy learning (EGL) – that will be used to prove

Theorem C.1. Then, in Appendix C.2, we prove the main result

proper. Finally, Appendix C.3 contains some discussion on a simple

modification to EGL to the case of no memory-feedback, where

we can show that ρ∗
logN ,∞

= 1, when the encoder does not have

memory-feedback from the receiver.

C.1 Episodic Greedy Learning
To prove Theorem C.1, we first describe the encoding-allocation

policy pair (ϕ,ψ ) that will be used, which we call Episodic Greedy
Learning (EGL), where ϕ ∈ Φ0 and ψ ∈ Ψ∞. At a high level, the

encoding policyϕ is designed in such a way that the encoded signals

are only used for the receiver to estimate the arrival rate vector,
from the corresponding messages received. The allocation policyψ
operates in episodes – these are fixed-length blocks of time slots –

each one of which consists of two phases:

(1) Phase 1: Learning. The allocation policy learns an estimator

of the arrival rate vector.

(2) Phase 2:Deployment. The allocation policy chooses a random-

ized schedule in each time slot, whose expectation strictly

dominates the estimator produced in Phase 1.
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The idea behind the allocation policy is that when (a) the length
of the deployment phase is substantially longer than that of the

learning phase, and (b) the arrival rate estimator generated from the

learning phase is reasonably accurate, then the amount of service

dedicated to each queue should be greater than the arrivals during

each episode, in expectation.

Before we proceed to a precise description of EGL, let us provide

some remarks on the use of memory-feedback under the infinite-

receiver-memory setting. On the one hand, with memory-feedback,

the encoder potentially has access to a lot of past system informa-

tion from the receiver, so it may seem intuitive that the encoder

need not be equipped with any memory of her own. On the other

hand, as we will see in the policy description, the memory-feedback

is only used to synchronize the encoder and the receiver, so that the
encoder knows the exact time in each episode. In fact, with some

simple changes to the policy pair described in this section, it is

possible to show that without memory-feedback, ρ∗
logN ,∞

(C) = 1;

see Appendix C.3 for details.

We now describe the EGL policy pair in detail. Let B ∈ N be

the length of an episode, and B1 and B − B1 be the lengths of the
learning and deployment phases, respectively. We also assume that

B1 is divisible by N . Note that, because the encoder has access to

the receiver memory through memory-feedback, we may assume

that by recording time in Mr , the encoder knows the exact time

relative to the start of the episode.

Encoding Policy. Recall that the channel C is informative, which

implies that we can find x1,x2 ∈ X and y1 ∈ Y such that

q1 ≜ P(Y (1) = y1
���X (1) = x1) < P(Y (1) = y1

���X (1) = x2) ≜ q2.

(C.1)

During each time slot, the encoding policy first observes the current

time t relative to the start of the episode. Then, for i ∈ [N ], if

i ≡ t mod N , the encoder sets X (t ) = x1 if Ai (t − 1) = 1, and sets

X (t ) = x2 otherwise. Thus, the encoder observes the N queues

in a round-robin manner, based on which the signals are decided.

Note that the signal X (t ) only depends on A(t − 1) andMr (t ) (via
memory-feedback), and the policy does not require any encoder

memory. Let us also note that even though we have specified the

encoder’s decisions for the entire duration of the episode, this is not

necessary, since the allocation policy will not be using the outputs

of the channel during the deployment phase. The decisions of the

encoding policy for the entire episode are provided for concreteness,

and also for ease of reference in Appendix C.3, when we discuss

the case of no memory-feedback.

Allocation policy: To define the allocation policy, we first intro-

duce some notation. For x ∈ RN+ and a closed convex set X ⊂ RN+ ,
define proj(x ,X) to be the scaled projection ofx to the outer boundary
of X:

proj(x ,X) ≜ ax , (C.2)

where a = sup{ã ∈ R+ : ãx ∈ X}.

(1) Learning Phase. The allocation policy generates an estimator

for λ, denoted by λ̂, as follows. For each i ∈ [N ], denote by

p̂i the empirical frequency that the symbol y1 is observed,
out of all time slots t for which i = t mod N , i.e.,

p̂i ≜
1

B1/N

∑
t :t=i mod N

I{Y (t )=y1 } . (C.3)

Then, set

λ̂i =
q2 − p̂i
q2 − q1

, i = 1, . . . ,N . (C.4)

We do not need to specify details of the allocation decisions

in this phase, since the primary function of this phase is to

learn an estimator of the arrival rate vector.

(2) Deployment Phase. Let α > 0 be a parameter, and let λ̂+ ≜(
max{0, λ̂1}, . . . ,max{0, λ̂N }

)
. Consider the vector

proj

(
λ̂+ + α1, cl(Λ)

)
, (C.5)

i.e., the scaled projection of λ̂+ + α1 to the boundary of

cl(Λ), where we recall that 1 is the vector of all ones, and

cl(Λ) is the closure of Λ. Since proj

(
λ̂+ + α1, cl(Λ)

)
is on

the outer boundary of cl(Λ), there exists a random schedule

D, distributed over the set Π of schedules, so that

E
[
D ��� λ̂

+
]
= proj

(
λ̂+ + α1, cl(Λ)

)
9. (C.6)

During the deployment phase, the allocation vectorD (t ) cho-
sen by the allocation policy are i.i.d. samples of the random

schedule D.

Memory Requirement. As we explained earlier, the encoder does not
require any memory, due to the presence of memory-feedback. The

receiver memories are used in the following ways:

(1) Time-keeping: log(B) bits used to keep track of the relative

time past since the start of an episode.

(2) Learning: B1 bits are used to store the messages received

during the learning phase, one bit for each of the B1 times

slots.

Thus, altogether the allocation policy uses B1 + log(B) bits of mem-

ory.

C.2 Proof of Theorem C.1
Proof. The following simple fact will be used throughout the

proof: since Λ is a bounded set, there exists K > 0 such that for all

λ′ ∈ Λ, λ ≤ K1.
Let ε ∈ (0, 1). Consider the EGL policy pair (ϕ,ψ ) ∈ Φ0 × Ψ∞

described in Appendix C.1. We will find suitable values of B1, B and

α , for which the capacity factor ρ∗ (ϕ,ψ ,C) ≥ 1 − ε .
Let the arrival rate vector be λ ∈ (1 − ε )Λ. By Assumption 2, for

all i ∈ [N ], we have e (i ) ∈ Π. This implies that

ε

N
1 = ε

N∑
i=1

1

N
e (i ) ≤ εconv(Π).

Recalling λ ∈ (1 − ε )Λ, and Λ = conv
− (Π), we have λ + ε

N 1 ∈ Λ.
By construction, the estimator p̂i defined in (C.3) is the empirical

average from B1/N i.i.d. samples of a Bernoulli distribution with

mean λiq1 + (1− λi )q2. By the law of large numbers and the union

bound, there exists B∗
1
such that

P
(
∥λ̂+ − λ∥∞ ≤

ε

3N

)
≥ 1 −

ε

12KN
, ∀B1 ≥ B∗

1
. (C.7)

9
Note that in Eq. (C.6), we have written the expectation of D as being conditioned on

λ̂+ , which is itself random, and the distribution of D depends on the realization of λ̂+ .
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For the rest of the proof, set

B1 = B∗
1
N , B =

8KN

ε
· B1, and α =

2ε

3N
. (C.8)

Consider the event E =
{
∥λ̂+ − λ∥∞ ≤

ε
3N

}
. We claim that under

event E, we have

λ̂++α1 ∈ Λ, λ̂++α1 ≥ λ+
ε

3N
1, and proj(λ̂++α1, cl(Λ)) ≥ λ̂++α1.

(C.9)

First, observe that under event E, λ̂+ ≤ λ + ε
3N 1, so λ̂+ + α1 ≤

λ + ε
N 1. But λ + ε

N 1 ∈ Λ, so λ̂+ + α1 ∈ Λ as well. Second, under

event E we have λ̂+ ≥ λ − ε
3N 1, so λ̂+ + α1 ≥ λ + ε

3N 1. Finally,
for any λ′ ∈ Λ, proj(λ′, cl(Λ)) ≥ λ′, so if λ̂+ + α1 ∈ Λ, then

proj(λ̂+ + α1, cl(Λ)) ≥ λ̂+ + α1. This proves the claim.

Let us now consider the randomized schedule D chosen during

the deployment phase. By construction,E
[
D ��� λ̂

+
]
= proj

(
λ̂+ + α1, cl(Λ)

)
.

By Eqs. (C.7) and (C.9), we have that

E [D]

= E
[
E
[
D ��� λ̂

+
] ]
= E

[
proj

(
λ̂+ + α1, cl(Λ)

)]
≥ P

(
proj(λ̂+ + α1, cl(Λ)) ≥ λ̂+ + α1, λ̂+ + α1 ≥ λ +

ε

3N
1
)

·

(
λ +

ε

3N
1
)

≥ P (E)
(
λ +

ε

3N
1
)
≥

(
1 −

ε

12KN

) (
λ +

ε

3N
1
)

≥ λ +
ε

3N
1 −

ε

12KN
· K1

= λ +
ε

4N
1, (C.10)

where, in the last inequality, we have used the fact that λ+ ε
3N 1 ∈ Λ,

so λ + ε
3N 1 ≤ K1.

Denote by A[n] and D[n] the vector representing the total num-

ber of jobs that arrive and the total amount of service dedicated

during the nth episode, respectively. We have that for all n ∈ N

E(A[n]) = Bλ, and E[D[n]] = (B − B1)E[D]. (C.11)

Using (C.8), (C.10) and (C.11), we have

E[D[n]] ≥

(
1 −

ε

8KN

)
B

(
λ +

ε

4N
1
)

≥ B
(
λ +

ε

4N
1
)
−

ε

8KN
· BK1

= B
(
λ +

ε

8N
1
)
, (C.12)

where in the last inequality we have used the fact that λ+ ε
4N 1 ∈ Λ,

so λ + ε
4N 1 ≤ K1.

Similar to the proof of Theorem 9.5, we consider the Markov

chainW [·] sampled at the beginnings of the episodes. Noting that

{(A[n],D[n])} are i.i.d. sequences, and using (C.11), (C.12), and

Proposition 6.1, the sampled chainW [·] is positive recurrent under

the EGL pair (ϕ,ψ ) with parameters given in (C.8), whenever λ ∈
(1 − ε )Λ. This implies that ρ∗ (ϕ,ψ ,C) ≥ 1 − ε . But ε ∈ (0, 1) is
arbitrary, so we must have ρ∗

0,∞ (C) = 1. □

C.3 Infinite Receiver Memory: No
Memory-Feedback

In this subsection, we consider the case where the encoder does

not have memory-feedback from the receiver; in other words, other

than the allocation vector D (t ) that the encoder can observe from

the receiver in each time slot, the encoder does not have access

to any content of the receiver memory. We still assume that the

receiver is equipped with infinite memory. Then, we can prove the

following

Theorem C.2. Under no memory-feedback, ρ∗
logN ,∞

(C) = 1.

The proof of the theorem uses a simple, modified version of

EGL, and is then essentially that of Theorem C.1 verbatim. Hence,

we only provide a proof sketch here. Recall the EGL policy pair

described in Appendix C.1. Consider the following changes to EGL:

(1) The encoding policy still observes the queues in a round-robin

manner, and sends signals in the same way as EGL. However,

instead of keeping track of the time relative to the start of the

current episode, the encoder memory maintains the index of the

queue currently observed. More specifically, if the current time

is t and t ≡ i mod N , then Me (t ) = i . The memory content is

updated asMe (t+1) = Me (t )+1 ifMe (t ) < N , andMe (t+1) = 1

if Me (t ) = N . Note that the encoder only needs logN bits of

memory to keep track of the queue indices, and does not require

memory-feedback from the receiver to know which queue to

observe.

(2) At time 0, the encoder and the receiver synchronize for the

receiver to know that at time 1, the encoder sends a signal based

on the state of the first queue. The encoder and the receiver do

not need to synchronize after time 0.

Under the preceding changes to the EGL policy pair, essentially the

same argument from the proof of Theorem C.1 can be used to show

that under no memory-feedback, ρ∗
logN ,∞

(C) = 1. One key point

to note is that without the synchronization between the encoder

and the receiver at time 0, the receiver may only obtain estimates

of the arrival rates up to a cyclic permutation on the queue indices.

Synchronization resolves this issue, and lets the receiver know

which estimate correspond to which queue.

D FINDING THE CAPACITY FACTOR AND
OPTIMAL POLICIES

We demonstrate in this section how to calculate the capacity factor

ρ∗
∞, ℓ

(C) as the optimal value of a polynomial optimization problem

over finite-dimensional matrices. Note that, by Theorem 3.3, this

will cover all ρ∗k, ℓ (C) for k ≥ K (Π,X), and serve as an upper bound

on ρ∗k, ℓ for k < K (Π,X). Moreover, the optimal solutions to this

optimization problem lead to the allocation policy (ψ ϵ ) and simple

encoding policies (Φϵ ) that will be used by the Episodic Max-Weight

policy (Lemma 9.3, Section 9.2) to achieve the capacity factor.

We first consider the case where ℓ ≥ 1 (i.e., the receiver is

not memoryless). Fix ℓ ∈ N. The chain {(X (t ),Mr (t ),D (t ))}t ∈N is

Markov with the following transition dynamics. Let a simple encod-

ing policy (Definition 9.1) be parameterized by the ( |Mr | |X|) × |X|
row-stochastic matrix, GE

, with

GE
(m,x ),x ′ = P(X (t + 1) = x ′ ���Mr (t ) =m,X (t ) = x ). (D.1)
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Similarly, an allocation policyψ can be parameterized by the pair

(GA,HA ), where GA
is an ( |Mr | |Y |) × |Mr | matrix, with

GA
(m,y ),m′ = P(Mr (t + 1) =m

′ ���Mr (t ) =m,Y (t ) = y), (D.2)

and HA
is an ( |Mr | |Y |) × |Π | matrix, with

HA
(m,y ),d = P(D (t ) = d ���Mr (t ) =m,Y (t ) = y). (D.3)

Denote by GS
the transition matrix associated with the chain

{(X (t ),Mr (t ),D (t ))}t ∈N:

GS
(m,x,d ), (m′,x ′,d ′)

=P
(
X (t + 1) = x ′,Mr (t + 1) =m

′,D (t + 1) = d ′

���Mr (t ) =m,X (t ) = x ,D (t ) = d
)
. (D.4)

We can write GS
as a function of GE

, GA
and GE

:

GS
(m,x,d ), (m′,x ′,d ′) =G

E
(m,x ),x ′

*.
,

∑
y∈Y

Cx ′,yG
A
(m,y ),m′H

A
(m,y ),d

+/
-
,

(D.5)

where C is the channel matrix, with Cx,y = P(Y (t ) = y
���X (t ) = x ).

Note thatGE ,GE
andHA

are row-stochastic matrices chosen by the

system designer, whileC is given. To ensure that the resultingGS
is

irreducible, we may perturb the entries inC by a very small amount

so that all entries are positive, and similarly, we may constrain the

entries of the row-stochastic matrices to be bounded from below by

a small constant. The irreducibility ofGS
implies that it is associated

with a unique stationary distribution, given by

p =
(
I −GS

)−1
. (D.6)

Denote by p̂ the marginalized stationary distribution over the sched-

ules:

p̂d =
∑

m∈Mr ,x ∈X

pS
(m,x,d )

, d ∈ Π. (D.7)

The resulting stationary service rate is given by

µ(GE , (GA,HA )) =
∑
d ∈Π

p̂d · d . (D.8)

Using the above construction, we now formulate the optimiza-

tion problem that will lead to the capacity factor. Recall from Lemma

9.3 that the capacity factor is given by the minimal shrinkage to

the maximum capacity region such that it can be dominated by the

set of service rates achievable through simple encoding policies.

We can therefore compute ρ∗
∞, ℓ

(C) as follows. Let E ′ be the set of

maximal schedules in E, where E ′ = {d (i ) }i=1, ..., |E′ | . Consider the

following polynomial optimization problem:

maximize ρ

subject to µ
(
GE (i ),

(
GA,HA

))
≥ ρd (i ) ,

i = 1, . . . , |E ′ |, (D.9)

where the variables to be optimized are the row-stochastic matrices

GA
,HA

, and

{
GE (i )

}
i=1, ..., |E′ |

. Denote by ρ and
({
G
E
(i )

}
i=1, ..., |E′ |

,

(
G
A
,H

A))
the optimal value and an optimal solution of (D.9), re-

spectively. We have that the optimal value corresponds to the ca-

pacity factor:

ρ∗
∞, ℓ (C) = ρ. (D.10)

Furthermore, to construct the Episodic Max Weight policy that

achieves the capacity factor, the allocation policy (ψ ϵ in Lemma

9.3) and the set of simple encoding policies (Φϵ in Lemma 9.3) are

given by those associated with

(
G
A
,H

A)
and

{
G
E
(i )

}
i=1, ..., |E′ |

,

respectively.

Special case of memoryless receiver. When ℓ = 0, the optimiza-

tion problem (D.9) can be further simplified. Recall the notation

of rate allocation matrixM in (6.6), and schedule matrix S in (6.7).

The capacity factor ρ∗
∞,0 (C) is the optimal value of the following

optimization problem:

maximize ρ

subject to r (i )CMS ≥ ρd (i ) , i = 1, . . . , |E ′ |,

r (i ) ≥ 0,
∑
x ∈X

r
(i )
x = 1, i = 1, . . . , |E ′ |, (D.11)

where the variables to be optimized are the probability vectors

{r (i ) }i=1, ..., |E′ | and row-stochastic matrixM . Here, r (i ) represents
the probabilities over the set of input symbols, X. The allocation

policy that achieves the capacity factor corresponds to the matrix

M∗ in an optimal solution of (D.11).

Notably, enabled by our theoretical results, the above deriva-

tions show that ρ∗
∞, ℓ

(C) can be calculated by solving polynomial

optimization problems over finite-dimensional matrices. In con-

trast, without Theorem 3.3, it was not at all clear a priori how to

compute ρ∗
∞,l (C), since it is defined as the supremum over an un-

bounded family of encoding policies, who may take as input the

entire queue lengths, as well as an encoding memory state (Me (t ))
with an unbounded size. In the same way, identifying the optimal

encoding and allocation policies that achieve the capacity factor

would have been quite difficult if one were to solve it via brute

force. Admittedly, the optimization problems in (D.9) and (D.11)

still have their drawbacks: they may be non-convex and could scale

poorly as the size of the receiver memory, |ℓ |, or that of the maximal

schedules, |E ′ |, becomes larges. It would be an interesting future

direction to investigate how these optimization problems can be

solved efficiently.
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