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Discriminative vs Generative Models

Consider the task of predicting labels y ∈ X from features x ∈ X .

Generative Models

A generative model p specifies a
joint probability p(x , y) over
both x and y .

Example: Naive Bayes

Provides a richer prior

Answers general queries
(e.g. imputing features x)

Discriminative Models

A discriminative model p
specifies a conditional probability
p(y |x) over y , given an x .

Example: Logistic regression.

Focus on prediction; fewer
modeling assumptions

Lower asymptotic error

Volodymyr Kuleshov and Stefano Ermon Bridging Discriminative and Generative Approaches



A New Framework For Hybrid Models
An Application: Deep Hybrid Models

Supervised and Semi-Supervised Experiments

Discriminative vs Generative Approaches
Hybrid Models by Coupling Parameters
Hybrid Models by Coupling Latent Variables

Discriminative vs Generative Models

Consider the task of predicting labels y ∈ X from features x ∈ X .

Generative Models

A generative model p specifies a
joint probability p(x , y) over
both x and y .

Example: Naive Bayes

Provides a richer prior

Answers general queries
(e.g. imputing features x)

Discriminative Models

A discriminative model p
specifies a conditional probability
p(y |x) over y , given an x .

Example: Logistic regression.

Focus on prediction; fewer
modeling assumptions

Lower asymptotic error

Volodymyr Kuleshov and Stefano Ermon Bridging Discriminative and Generative Approaches



A New Framework For Hybrid Models
An Application: Deep Hybrid Models

Supervised and Semi-Supervised Experiments

Discriminative vs Generative Approaches
Hybrid Models by Coupling Parameters
Hybrid Models by Coupling Latent Variables

Discriminative vs Generative Models

Consider the task of predicting labels y ∈ X from features x ∈ X .

Generative Models

A generative model p specifies a
joint probability p(x , y) over
both x and y .

Example: Naive Bayes

Provides a richer prior

Answers general queries
(e.g. imputing features x)

Discriminative Models

A discriminative model p
specifies a conditional probability
p(y |x) over y , given an x .

Example: Logistic regression.

Focus on prediction; fewer
modeling assumptions

Lower asymptotic error

Volodymyr Kuleshov and Stefano Ermon Bridging Discriminative and Generative Approaches



A New Framework For Hybrid Models
An Application: Deep Hybrid Models

Supervised and Semi-Supervised Experiments

Discriminative vs Generative Approaches
Hybrid Models by Coupling Parameters
Hybrid Models by Coupling Latent Variables

It well well-known that the decision boundary of both Naive Bayes
and logistic regression has the form

log
p(y = 1|x)

p(y = 0|x)
= bT x + b0.

The difference is only training objective!
It make sense to optimize between the two.
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Hybrid Models by Coupling Parameters

Hybrids Based on Coupling Parameters (McCallum et al., 2006)

1 User specifies a joint probability model p(x , y).

2 We maximize the multi-conditional likelihood

L(x , y) = α · log p(y |x) + β · log p(x).

where α, β > 0 are hyper-parameters.

When α = β = 1, we have a generative model.

When β = 0, we have a discriminative model.

There also exists a related Bayesian coupling approach (Lasserre,
Bishop, Minka, 2006)
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Multi-Conditional Likelihood: Some Observations

Multi-Conditional Likelihood (McCallum et al., 2006)

Given a joint model p(x , y), the multi-conditional likelihood is

L(x , y) = α · log p(y |x) + β · log p(x).

Good Example: Naive Bayes

p(x , y) = p(x |y)p(y)

p(x) =
∑

y∈{0,1} p(x , y)

p(y |x) = p(x |y)p(y)/p(x)

Bad Example: Factored p(x , y)

p(x , y) = p(y |x)p(x)

p(y |x) logistic regression

p(x) are word counts

Framework requires that p(y |x) and p(x) share weights!
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Multi-Conditional Likelihood: Limitations

Multi-Conditional Likelihood (McCallum et al., 2006)

Given a joint model p(x , y), the multi-conditional likelihood is

L(x , y) = α · log p(y |x) + β · log p(x).

Shared weights pose two types of limitations:

1 Modeling: limits models that we can specify (e.g. how to
define p(x , y) such that p(y |x) is a conv. neural network)?

2 Computational: marginal p(x), posterior p(y |x) need to be
tractable
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A New Framework Based on Latent Variables

We couple discriminative + generative parts using latent variables.

1 User defines generative model with latent z ∈ Z.

p(x , y , z) = p(y |x , z) · p(x , z)

The p(y |x , z), p(x , z) are very general; they only share the
latent z , not parameters!

2 We train p(x , y , z) using a multi-conditional objective

Advantages of our framework:

Much greater modeling flexibility

Trains complex models (incl. lat. var.) using approx. inference
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Approximate Variational Inference

Consider a latent variable model p(x , z) with intractable p(x).

Let q(x) be the data distribution and q(z |x) ≈ p(z |x) is an
approximate posterior that we fit as follows.

Approximate Variational Inference

We maximize the variational lower bound on the log-likelihood:

data log-likelihood = Ex∼q(x) log p(x)

≥ Ex∼q(x)Ez∼q(z|x) [log p(x , z)− log q(z |x)]

= −KL [q(x , z)||p(x , z)] ,

Volodymyr Kuleshov and Stefano Ermon Bridging Discriminative and Generative Approaches



A New Framework For Hybrid Models
An Application: Deep Hybrid Models

Supervised and Semi-Supervised Experiments

Discriminative vs Generative Approaches
Hybrid Models by Coupling Parameters
Hybrid Models by Coupling Latent Variables

Multi-Conditional Objective for Our Framework

As before, q(x , y) is the data distribution and q(z |x) is (learned)
approximate posterior.

Generative Component

We minimize an f -divergence

LG = Df [q(x , z)||p(x , z)]

This encourages q(z |x) ≈ p(z |x)
and p(x) ≈ q(x).

Discriminative Component

We minimize a classification loss:

LD = Eq(x ,y)Eq(z|x)` (y , p(y |x , z))

We may choose to minimize `2,
log, hinge loss, etc.

We fit p(y |x , z), p(x , z), q(z |x) by minimizing the objective

L(p, q) = α · LG + β · LD .
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Explicit Density Models

Natural idea: bound the marginal multi-conditional log-likelihood

log

∫
z∈Z

p(y |x , z)γp(x , z)dz ≥ L = variational lower bound.

Applying the variational principle, we have our framework:

L = Eq(z|x) [γ log p(y |x , z) + log p(x , z)− log q(z |x)] .

Latent Variable Hybrid Model with Explicit Density

Suppose that p(y |x , z), p(x , z), q(z |x) can be evaluated in closed
form and have tractable gradients. We optimize

LD = expected log loss LG = KL (q(x , z)||p(x , z)) .
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Deep Hybrid Models: Intuitions

This may seen as unsupervised feature extraction

Alternatively, we are regularizing the discriminative model
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Implicit Density Models

Our framework also extends to recent GAN-based methods.

Latent Variable Hybrid Model with Implicit Density

Suppose that p(y |x , z), p(x |z), q(z |x) are differentiable and can
be sampled. We optimize

LD = expected log loss LG = JS (q(x , z)||p(x , z)) .

This amounts to parametrizing p(x , z) with a generative
adversarial network.
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Deep Hybrid Models

Instantiating p(x , y , z) with neural nets yields deep hybrid models.

We experiment with a particular architecture suited to vision tasks.

Generative component

Variational Autoencoder

Min. KL(q(x , z)||p(x , z)), where

p(z) = N (0, 1)

p(x |z) = N (µ1(z),Σ1(z))

q(z |x) = N (µ2(z),Σ2(z))

Discriminative component

Convolutional Neural Network

Logits φ from deep convolutions

p(y |x , z) = softmax(φ(x , z))

All functions µ, Σ, φ are neural nets.
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Interpolation: Discriminative Performance

We train an explicit density model on MNIST/SVHN and vary γ.

Adjusting discriminative strength improves performance

Baseline assigns no weight to generative part (α = 1, β = 0)
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Effects of Regularization

Why does it work? Learning curves on MNIST for baseline + ours

Our training/test error curves stay closer to each other

This suggests a regularization effect
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Semi-Supervised Learning

In semi-supervised learning, there are also two types of algorithms

Generative approaches

Model true label y as a
missing latent variable

Semi-supervised VAE,
semi-supervised GANs, etc.

Discriminative approaches

Place decision boundary far
from unlabeled data

Transductive SVM, Entropy
regularization

Our framework allows us to apply both types techniques in the
same model.
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Semi-Supervised Experiments: SVHN

Our framework produces improvements over state-of-the-art on
semi-supervised datasets:

Method Accuracy

VAE (Kingma et al.) 36.02± 0.10%
SDGM (Maaloe et al.) 16.61± 0.24%
Improved GAN (Salimans et al.) 8.11± 1.3%
ALI (Dumoulin et al.) 7.42± 0.65%
Π-model (Aila et al.) 5.45± 0.25%

Implicit HDGM (ours) 4.45± 0.35%
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Summary

New framework for hybrid models based on latent-variable
coupling. Advantages include:

Greater flexibility when specifying the the hybrid model.

Deals with complex models (incl. LV) using approximate
inference

Compatible with modern deep learning approaches

Improves semi-supervised accuracy
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The end

Thank you!
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