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ESTIMATING DYNAMIC MODELS OF IMPERFECT COMPETITION

BY PATRICK BAJARI, C. LANIER BENKARD, AND JONATHAN LEVIN1

We describe a two-step algorithm for estimating dynamic games under the assump-
tion that behavior is consistent with Markov perfect equilibrium. In the first step, the
policy functions and the law of motion for the state variables are estimated. In the
second step, the remaining structural parameters are estimated using the optimality
conditions for equilibrium. The second step estimator is a simple simulated minimum
distance estimator. The algorithm applies to a broad class of models, including industry
competition models with both discrete and continuous controls such as the Ericson and
Pakes (1995) model. We test the algorithm on a class of dynamic discrete choice models
with normally distributed errors and a class of dynamic oligopoly models similar to that
of Pakes and McGuire (1994).

KEYWORDS: Markov perfect equilibrium, dynamic games, incomplete models,
bounds estimation.

1. INTRODUCTION

IN MANY BRANCHES OF APPLIED ECONOMICS, it has become common practice
to estimate structural models of decision-making and equilibrium. With a few
notable exceptions, most of this work has focused on static environments or on
single-agent dynamic decision problems. Many economic policy debates, how-
ever, turn on quantities that are inherently linked to dynamic competition, such
as entry and exit costs, the returns to advertising or research and development,
the adjustment costs of investment, or the speed of firm and consumer learn-
ing. Estimating these dynamic parameters has been seen as a major challenge,
both conceptually and computationally.

One reason for this is the perceived difficulty of incorporating informa-
tion from a dynamic equilibrium into an estimation algorithm. Research on
dynamic competition (e.g., Ericson and Pakes (1995), Pakes and McGuire
(1994, 2001), Gowrisankaran and Town (1997), and Benkard (2004)) has shown
that computing an equilibrium for even relatively simple industry models is all
but prohibitive. For models with the complexity usually required for empirical
work, the situation is even bleaker. Even with advancing computer technology,
computing equilibria over and over, as would be required in a typical estima-
tion routine, seems out of the question. Moreover, dynamic games often admit
a vast multiplicity of equilibria. This multiplicity greatly complicates the appli-
cation of estimators that require computing equilibria and then matching these
equilibria to observed data.

1We thank the co-editor and three anonymous referees for detailed and constructive sugges-
tions. The paper has benefited from our conversations with Jeremy Fox, Phil Haile, Igal Hendel,
Guido Imbens, Phillip Leslie, Ariel Pakes, Peter Reiss, Azeem Shaikh, Elie Tamer, and Ed Vyt-
lacil. Matthew Osborne provided exemplary research assistance. We thank the Bureau of Eco-
nomic Analysis and the National Science Foundation for financial support.
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This paper develops a method for estimating dynamic models of imperfect
competition that is straightforward to apply and does not require the ability to
compute an equilibrium even once. The approach involves two steps. The first
step is to recover the agents’ policy functions, as well as the probability distribu-
tions determining the evolution of the relevant state variables. This essentially
involves regressing observed actions (such as investment, quantity, price, en-
try, or exit) on observed state variables (such as demand or cost shifters, and
firm and product characteristics). In an equilibrium model, agents have correct
beliefs about their environment and the behavior of other agents. As a conse-
quence, by estimating the probability distributions for actions and states, one
effectively recovers the agents’ equilibrium beliefs.2

The second step is to find a set of structural parameters that rationalize the
observed policies as a set of optimal decisions or, more precisely, as a set of mu-
tual best responses. This parallels the second feature of equilibrium models,
namely that agents maximize expected discounted profits given their beliefs.
We represent the conditions for optimality as a system of inequalities that re-
quire each agent’s observed behavior at each state be weakly preferred to the
feasible alternatives. The model’s parameters are estimated as the solution to
this system of inequalities. In practice, we apply a simple simulated minimum
distance estimator that minimizes violations of the optimality conditions.

Our approach builds on a line of research, initiated by Rust (1987), on the
estimation of single-agent dynamic discrete choice models.3 Rust showed that
dynamic single-agent models could be estimated using a nested algorithm.
His idea was to solve the agent’s dynamic decision problem for candidate pa-
rameter values and search for the value that yields predictions most closely
aligned with the data. Hotz and Miller (1993) suggested a computationally
convenient two-step alternative. Their estimator exploits the mapping in dy-
namic discrete choice problems between conditional choice probabilities and
“choice-specific” value functions. Hotz and Miller estimated the probability
distribution over choices at different states and used this to recover the agent’s
value function. The estimated value function is then an input to a second-stage
estimate of the structural parameters, just as in our estimator.

Hotz and Miller’s approach has two features that make it a natural building
block for estimating dynamic models of strategic interaction. The first is com-
putational. Extending Rust’s method to games requires one to compute the
full set of equilibria for candidate parameter values, when finding even a single
equilibrium may be costly and difficult. In contrast, the two-step approach does
not require equilibrium computations. The two-step approach also somewhat

2Ching (2005) used a similar approach to recover consumer’s beliefs about future prices in a
model of dynamic demand.

3Geweke and Keane (2001) and Imai, Jain, and Ching (2005) provided two additional ap-
proaches that may also be useful for estimating equilibrium models, but we have not investigated
them.
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mitigates problems caused by multiple equilibria. As long as the data are gen-
erated by a single equilibrium, the first-stage estimation recovers the correct
value functions for that equilibrium. Therefore, second-stage parameter esti-
mates will be consistent even if the estimated parameters would support other
equilibria that are not observed in the data.

Recent work by Pakes, Ostrovsky, and Berry (2007), Pesendorfer and
Schmidt-Dengler (2003), and Aguirregabiria and Mira (2007) develops alter-
native extensions to the Hotz–Miller approach that can be used to estimate
dynamic games where actions have a discrete choice structure. Their estima-
tors and ours are conceptually similar, but differ in the specifics of implemen-
tation.4 Pesendorfer and Schmidt–Dengler’s work is perhaps the most direct
application of Hotz and Miller’s estimator; they also provide identification re-
sults for dynamic games. Pakes, Ostrovsky, and Berry build their second-stage
estimation around pooled moment conditions rather than maximum likeli-
hood. We discuss this idea at length in Section 6.2.3. Aguirregabiria and Mira
argue for an iterative application of the Hotz and Miller two-step estimator,
in which one uses the first round of estimates to generate new conditional
choice probabilities and then reruns the estimator. They show that iteration,
if it converges, has attractive properties, something they earlier established for
single-agent models (Aguirregabiria and Mira (2002)). A potential benefit of
iteration, which we discuss in Section 5, is that it allows one to include serially
correlated unobserved state variables in the model.

The main substantive difference between our approach and these papers
is that our estimator applies well beyond the discrete choice framework they
consider. While some decisions, such as whether to enter or exit a market,
are naturally modeled as discrete choices with an independent preference
shock attached to each alternative, others are not. Decisions about price set-
ting, capacity, research, or capital investment are better viewed as continuous
choices, perhaps with a stochastic component of marginal returns. Our esti-
mation approach incorporates these types of continuous choices, as well as
discrete choices, in a unified framework.5 We think this has particular value for
estimating dynamic models of industry competition. For example, Ryan (2006)
applied our estimator to study regulation in a model where firms make both
continuous investment and discrete entry and exit decisions.6

In simple discrete choice settings, one can use matrix algebra to compute
value functions from conditional choice probabilities in the first stage of esti-

4Ackerberg, Benkard, Berry, and Pakes (2007) provided a detailed discussion and comparison
of the techniques in these papers.

5Several papers have proposed techniques based on first-order conditions that are specifically
designed to estimate dynamic games with continuous decisions. Jofre-Bonet and Pesendorfer
(2003) provided an elegant analysis of repeated auctions, and Berry and Pakes (2000) proposed
an estimator that makes use of observed data on profits.

6See also Beresteanu and Ellickson (2006), Ryan and Tucker (2007), and Sweeting (2006) for
other applications of the estimator.
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mation. To handle both discrete and continuous decisions, we instead use for-
ward simulation. The use of simulation was suggested by Hotz, Miller, Sanders,
and Smith (1994), whose approach we follow. In the process we show how to
exploit linearity to substantially reduce computation. If firms’ profit functions
are linear in the unknown parameters, so too will be their value functions.
Therefore, in computing firms’ value functions, it is possible to simulate the
expected value terms just once and scale them by different parameter values,
rather than having to simulate the value functions many times. This signifi-
cantly reduces the amount of time required for estimation.

Our second stage of estimation also differs somewhat from the papers men-
tioned above. We use a minimum distance estimator based on minimizing
violations of the equilibrium conditions, rather than maximum likelihood or
method of moments (although we also discuss a strategy based on moment
conditions). Pesendorfer and Schmidt-Dengler (2007) provided a least-squares
interpretation of these alternatives. A potential value to our approach is that
it extends easily to models that are not point identified. Strategic models with
discrete choices, such as entry models, may be only partially identified. That is,
even with infinite data, one can only place the parameters within a restricted
set (Bresnahan and Reiss (1991), Ciliberto and Tamer (2006), Haile and Tamer
(2003), and Pesendorfer and Schmidt-Dengler (2003)). Our estimation algo-
rithm applies in this case, with little alteration, to produce bounds and confi-
dence regions on the parameters of interest.

One general drawback to two-step estimators that is shared by our algorithm
is that first-stage estimates do not fully exploit structure that may be imposed
by the model. For instance, certain functional forms for policy or value func-
tions may be incompatible with an equilibrium of the underlying model for the
relevant parameter range, but estimation will not make use of this informa-
tion. Our solution is to use a flexible first-stage model. This, however, is not
a silver bullet, because the noise from the first stage can lead to finite sample
bias when combined with a nonlinear second stage. A related problem, which
we discuss in more detail in Section 5, is that two-step estimators appear to
be more limited in their ability to handle serially correlated unobserved state
variables.

Given this concern, we would like to assess whether the two-step approach
can provide good estimates with reasonably sized data sets. To answer this
question, we use Monte Carlo experiments to evaluate the efficiency and com-
putational burden of our estimators. We consider two examples: a single-agent
discrete choice decision problem similar to that of Rust (1987), and a version of
the Ericson and Pakes (1995) dynamic oligopoly model that has both discrete
entry and exit decisions and continuous investment decisions. We find that the
algorithm has very low computational burden and works surprisingly well even
for relatively small data sets. For instance, in the dynamic oligopoly example,
we find that even with data sets smaller than one might have in real-world ap-
plications, it is possible to recover the entry cost distribution nonparametrically
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with acceptable precision. We also provide estimates using a variation of the
two stage estimator that is designed to reduce finite sample bias, and find that
this version of the estimator performs particularly well.

The paper proceeds as follows. The next section introduces the class of
models that we are interested in and provides two specific examples. Sec-
tions 3 and 4 outline the estimation algorithm and provide the relevant asymp-
totic theory. Section 6 details how the algorithm applies to the two examples
and provides Monte Carlo evidence on the performance of the estimator. Sec-
tion 7 concludes the paper.

2. A DYNAMIC MODEL OF COMPETITION

We start with a model of dynamic competition between oligopolistic com-
petitors. The defining feature of the model is that actions taken in a given
period may affect both current profits and, by influencing a set of commonly
observed state variables, future strategic interaction. In this way, the model
can permit aspects of dynamic competition such as entry and exit decisions,
dynamic pricing or bidding, and investments in capital stock, advertising, or
research and development. The model includes single-agent dynamic decision
problems as a special case.

There are N firms, denoted i = 1� � � � �N , that make decisions at times
t = 1�2� � � � �∞. Conditions at time t are summarized by a commonly observed
vector of state variables st ∈ S ⊂ R

L. Depending on the application, relevant
state variables might include the firms’ production capacities, their technologi-
cal progress up to time t, the current market shares, stocks of consumer loyalty,
or simply the set of incumbent firms.

Given the state st , firms choose actions simultaneously. These actions might
include decisions about whether to enter or exit the market, investment or
advertising levels, or choices about prices and quantities. Let ait ∈Ai denote
firm i’s action at time t and let at = (a1t � � � � � aNt) ∈A denote the vector of time
t actions.

We assume that before choosing its action, each firm i receives a private
shock νit , drawn independently across agents and over time from a distribution
Gi(·|st) with support Vi ⊂ R

M .7 The private shock might derive from variability
in marginal costs of production, due for instance to the need for plant mainte-
nance, or from variability in sunk costs of entry or exit. We denote the vector
of private shocks as νt = (ν1t � � � � � νNt)

Each firm’s profits at time t can depend on the state, the actions of all the
firms, and the firm’s private shock. We denote firm i’s profits by πi(at � st � νit).

7The assumption of independence across agents can be relaxed in some settings. One example
is if each firm has a single dimension of private information and takes an action that is strictly
increasing in its shock, as in a repeated private value auction. The added complication is that one
must account for the correlation of opponent actions in first-stage policy function estimation.
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Profits include variable returns as well as fixed or sunk costs incurred at date t,
such as entry costs or the sell-off value of an exiting firm. We assume firms
share a common discount factor β< 1.

Given a current state st , firm i’s expected future profit, evaluated prior to
realization of the private shock, is

E

[ ∞∑
τ=t
βτ−tπi(aτ� sτ� νiτ)

∣∣∣st]�
The expectation is over i’s private shock and the firms’ actions in the cur-
rent period, as well as future values of the state variables, actions, and private
shocks.

The final aspect of the model is the transition between states. We assume
that the state at date t+1, denoted st+1, is drawn from a probability distribution
P(st+1|at � st). The dependence of P(·|at � st) on the firms’ actions at means that
time t behavior, such as entry/exit decisions or long-term investments, may
affect the future strategic environment. Not all state variables necessarily are
influenced by past actions; for instance, one component of the state could be
an independent and identically distributed shock to market demand.

To analyze equilibrium behavior, we focus on pure strategy Markov perfect
equilibria (MPE). In a MPE, each firm’s behavior depends only on the current
state and its current private shock. Formally, a Markov strategy for firm i is
a function σi :S × Vi → Ai. A profile of Markov strategies is a vector, σ =
(σ1� � � � �σn), where σ :S× V1 × · · · × VN →A.

If behavior is given by a Markov strategy profile σ , firm i’s expected profit
given a state s can be written recursively:

Vi(s;σ)= Eν

[
πi(σ(s�ν)� s� νi)+β

∫
Vi(s′;σ)dP(s′|σ(s�ν)� s)

∣∣∣s]�
Here Vi is firm i’s ex ante value function in that it reflects expected profits at
the beginning of a period before private shocks are realized. We will assume
that Vi is bounded for any Markov strategy profile σ .

The profile σ is a Markov perfect equilibrium if, given the opponent profile
σ−i, each firm i prefers its strategy σi to all alternative Markov strategies σ ′

i .
That is, σ is a MPE if for all firms i, states s, and Markov strategies σ ′

i ,

Vi(s;σ) ≥ Vi(s;σ ′
i �σ−i)

= Eν

[
πi(σ

′
i (s� νi)�σ−i(s�ν−i)� s� νi)

+β
∫
Vi(s′;σ ′

i �σ−i) dP(s′|σ ′
i (s� νi)�σ−i(s�ν−i)� s)

∣∣∣s]�
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Doraszelski and Satterthwaite (2007) provided conditions for equilibrium ex-
istence in a closely related model. Here, we simply assume that a MPE exists,
noting that there could be many such equilibria.

The structural parameters of the model are the discount factor β, the profit
functions π1� � � � �πN , the transition probabilities P , and the distributions of the
private shocks G1� � � � �GN . For econometric purposes, we treat the discount
factor β as known and estimate the transition probabilities P directly from
the observed state transitions. We assume the profit functions and the private
shock distributions are known functions indexed by a finite parameter vector
θ: πi(a� s� νi;θ) and Gi(νi|s;θ). The goal of estimation is to recover the true
value of θ, denoted θ0, under the assumption that the data are generated by
equilibrium behavior. Before describing our approach to estimation, however,
we introduce two examples that we will use to illustrate our procedure.

2.1. Example: Dynamic Discrete Choice

Our first application is to dynamic discrete choice settings. In a discrete
choice model, each agent i chooses its action at date t from a finite set
of actions Ai. The state st includes variables observed by the economist,
while νit is typically assumed to be a vector of choice-specific preference
shocks {νit(ai)}ai∈Ai that are additively separable in the profit function so
πi(at � st � νit;θ)= π̃i(at � st;θ)+ νit(ait)�

A classic example of dynamic discrete choice is the machine replacement
problem in Rust (1987). A single manager owns a machine that operates each
period. The state variable is the machine’s age st ∈ {1� � � � �M}� At date t,
the manager chooses whether to replace the machine (at = 1) or maintain it
(at = 0), in which case the machine ages by one period. If the machine reaches
age M , it remains M years old until it is replaced.

The manager’s per-period profit is (dropping i subscripts because there is a
single agent)

π(a� s� ν;θ)=
{−µs+ ν(0)� if a= 0,

−R+ ν(1)� if a= 1,

where µs − ν(0) is the cost of maintaining the machine, R − ν(1) is the cost
of replacement, and the parameters are θ = (µ�R). A Markov policy σ(s� ν)
specifies whether or not to replace the machine given the state s and shock ν.
An optimal policy has a cutoff form: σ(s� ν) = 1 if and only if ν(1) − ν(0) ≥
η(s), where η(·) is decreasing in the machine age s� consistent with the idea
that older machines are more often replaced.

2.2. Example: Dynamic Oligopoly

Our second application is to a class of dynamic oligopoly models based
on Ericson and Pakes (1995) and Pakes and McGuire (1994). In these mod-
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els, there is a set of incumbent firms and a large number of potential en-
trants. Incumbent firms are heterogeneous, with each firm described by its state
zit ∈ {1�2� � � � � z}� Depending on the application, these states might represent
product quality, capital stock, or productivity. Potential entrants have zit = 0.
In a given period, each incumbent can make an investment Iit ≥ 0 to improve
its state for the next period. Investment outcomes are random and a firm’s
investment has no direct effect on the state of the other firms.

Firms earn a profit by competing in a spot market. If firm i is an incumbent
in period t, it earns

qit(pit − mc(qit� st;µ))−C(Iit� νit;ξ)�(1)

where pit is firm i’s price, qit = qi(st �pt;λ) is the quantity it sells, mc(·) is the
marginal cost of production, νit represents a private shock to the cost of invest-
ment, and λ�µ�ξ are parameters. The state st includes at least the individual
firm states and perhaps additional variables such as a common demand shock.

The typical assumption is that prices and quantities do not influence the
evolution of the state variables. Instead they are determined in a static equi-
librium conditional on the current state. In our Monte Carlo experiments in
Section 6.2, we model the spot equilibrium as Bertrand–Nash in prices.

The model also allows for entry and exit. In period t, each incumbent firm
can choose to exit the market at the end of the period and receive a fixed scrap
value, φ. In addition, one potential entrant, selected randomly, has the oppor-
tunity to enter at a privately observed cost νet , drawn from a distribution Ge.

In equilibrium, incumbents make investment and exit decisions to maximize
expected profits, so each incumbent i uses an investment strategy Ii(s� νi) and
exit strategy χi(s� νi). Because there are a large number of potential entrants,
each follows a strategy χe(s� νe) that calls for it to enter if the expected profit
from doing so exceeds its entry cost. In our Monte Carlo experiments, we focus
on symmetric equilibria, meaning each incumbent’s strategy is the same func-
tion of its own state and opponent states, and is invariant to permutations of
opponent states.

3. FIRST-STAGE ESTIMATION: POLICY FUNCTIONS, STATE TRANSITIONS,
AND VALUE FUNCTIONS

Our estimation approach proceeds in two steps. The goal of the first stage is
to estimate the state transition probabilities P(s′|a� s) and equilibrium policy
functions σ(s�ν). The second stage uses the equilibrium conditions described
above to estimate the structural parameters θ.

In this section, we start by describing the assumptions required to con-
nect the data to the theoretical model. We then discuss the first-stage es-
timation and describe a simulation procedure that uses the estimated state
transitions and policy functions to recover the equilibrium value functions
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V1(s;σ)� � � � � VN(s;σ). The next section of the paper explains how to estimate
the parameters of the payoff functions and private shock distributions using
the estimated value functions.

We should also note that in many cases some of the parameters of the profit
function can be estimated without using the approach described below. For
instance, in our dynamic oligopoly application, recovering the costs of invest-
ment, entry, and exit requires the full dynamic model, but the demand and
marginal cost parameters can be estimated using standard static methods (e.g.,
Berry (2004), Berry, Levinsohn, and Pakes (1995)). For expositional purposes,
we will not consider this possibility explicitly, although it is easily handled by
simply assuming that profit function parameters that can be estimated using
static methods are included in the vector of first-stage parameters.

3.1. The Data Generating Process

Data for estimation may come from a single market or a set of similar mar-
kets. For each market, we assume that the data at time t consist of the actions
at and the complete vector of state variables st � We discuss the possibility of
unobserved state variables in Section 5. Our main assumption is that for each
market, the data are generated by the same Markov perfect equilibrium of the
above model.

ASSUMPTION ES—Equilibrium Selection: The data are generated by a single
Markov perfect equilibrium profile σ .

This assumption is relatively unrestrictive if the model has a unique equi-
librium. It is stronger if the model has many equilibria and particularly if one
wishes to pool data from many markets. Provided the state space is not ex-
panded to include an identifier for each market, Assumption ES requires that
equilibrium selection is consistent across markets.

3.2. Estimating the Policy Functions and State Transitions

The first step of our approach is to estimate the policy functions σi :S×Vi →
Ai and state transition probabilities P :A × S → �(S). In practice, the best
methods for doing this will depend on the application, so here we provide only
an outline of the approach and details for two important cases.

Assuming the full vector of state variables and actions is observed, the main
choice in estimating the transition probabilities is how flexible a specification
to adopt. Because the transition probabilities are a model primitive, they would
often be parameterized and estimated using parametric methods such as max-
imum likelihood. Alternatively, nonparametric methods can be used if one has
little prior knowledge on the form of the state transitions. For instance, if the
number of actions and states is small, the observed transition frequencies can
be used as an estimate of P .
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Estimating the policy functions may be more demanding, both because they
are functions of the unobserved private shocks and because they result from
equilibrium play. As a result, the optimal strategy and techniques may depend
heavily on the specifics of the dynamic model. Here we discuss the two cases we
believe will be encountered most often. The first is discrete choice with choice-
specific payoff shocks, where we follow the literature on single-agent dynamic
estimation, especially Hotz and Miller (1993) and Hotz, Miller, Sanders, and
Smith (1994). The second is continuous choice where the optimal action is
monotone in a private shock, where our approach is new.

One general point to emphasize about first-stage estimation is that an overly
restrictive parametric assumption may yield policy functions that are inconsis-
tent with an equilibrium of the underlying model. This means there is a benefit
to flexible estimation. With a large number of states, flexibility may be difficult
to achieve in practice, although dynamic models often have general structure—
such as symmetry, constant returns, or monotonicity of optimal policies in cer-
tain state variables—that can be exploited in estimation.

3.2.1. Policy function estimates: Discrete choice

If firms choose from a finite set of actions, it is natural to adopt the tradi-
tional discrete choice framework outlined in Section 2.1. The key assumption
for this approach is that each firm’s private shock takes the form of a vector of
choice-specific shocks that enter additively into the profit function.

ASSUMPTION DC—Discrete Choice: For each firm i,Ai = {0�1� � � � �Ki}, the
profit shock νi is a vector of choice-specific shocks (νi(ai))ai∈Ai , and the profit
function is additively separable: πi(a� s� νi)= π̃i(a� s)+ νi(ai).

Note that Assumption DC together with our earlier assumptions implies
Rust’s (1994) assumptions of additive separability and conditional indepen-
dence.

Given Assumption DC, let vi(ai� s) denote the choice-specific value function

vi(ai� s)= Eν−i

[
π̃i(ai�σ−i(s�ν−i)� s)

+β
∫
Vi(s′;σ)dP(s′|ai�σ−i(s�ν−i)� s)

]
�

With this notation, firm i optimally chooses an action ai that satisfies

vi(ai� s)+ νi(ai)≥ vi(a′
i� s)+ νi(a′

i) ∀a′
i ∈Ai�(2)

Equation (2) represents the policy rule to be estimated in the first stage.
Clearly this requires estimating the choice-specific value functions vi(ai� s) for
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each action ai and state s. One can apply well known methods to estimate these
functions from observed choice data. In particular, Hotz and Miller (1993)
showed how to recover the choice-specific value functions by inverting the ob-
served choice probabilities at each state. To illustrate their approach, suppose
the private shocks have a type 2 extreme value distribution, so that we have a
logit choice model. Then for any two actions ai� a′

i ∈Ai,

vi(a
′
i� s)− vi(ai� s)= ln(Pr(a′

i|s))− ln(Pr(ai|s))�
where Pr(ai|s) is the probability of observing choice ai in state s, which is easily
estimated.

As a general rule, discrete choice methods such as the Hotz–Miller inversion
only permit one to recover differences in the choice-specific value functions.
Identifying the levels of these functions requires a normalization, such as set-
ting vi(ai = 0� s) = 0 for all s ∈ S. To estimate the policy rules σi, however, it
suffices to recover the differences, as is apparent from (2).

Two observations may be useful. First, in the logit example, the distribution
of firm i’s choice-specific shocks Gi(·) is assumed to be known (i.e., it is not a
function of θ). As a result, the Hotz–Miller inversion does not depend on any
unknown parameters. More generally, the inversion may depend on unknown
parameters of the distribution of private shocks, in which case the policy func-
tion could be recovered only as a function of these parameters. We discuss this
issue further below.

Second, in many industrial organization applications, one may want to al-
low for relatively large state spaces. In this case, a state-by-state inversion ap-
proach is likely to generate very noisy estimates of the policy functions. Instead
it may be preferable to smooth the estimates across states. This could be done
by modeling the choice-specific value functions vi(·) as flexibly parameterized
functions of the actions and states. Alternatively, Hotz and Miller use kernel
methods. As noted above, theoretical restrictions from the model, such as a
focus on symmetric equilibria, may allow for much better use of limited data.

3.2.2. Policy function estimates: Continuous choice

Many applications of our general model, such as models of dynamic pric-
ing or bidding and models of investment in product quality or advertising,
involve choices that do not naturally have the kind of discrete choice struc-
ture described above. Instead, optimal policies have the form ai = σi(s� νi)�
where ai ∈Ai ⊂ R is an action such as investment or price and νi is a single-
dimensional private shock. Typically policies satisfy the additional property
that the optimal policy is increasing in the private shock. We propose a method
for estimation that covers this leading case and we discuss extensions to multi-
dimensional actions (e.g., investment in quality and advertising) below.

ASSUMPTION MC —Monotone Choice: For each agent i, Ai�Vi ⊂ R and
πi(a� s� νi) has increasing differences in (ai� νi).
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This assumption, which is equivalent to ∂2πi/(∂ai ∂νi) ≥ 0 if πi is twice-
differentiable, implies that νi affects the marginal return to higher actions (e.g.,
it might affect the marginal cost of investment). By Topkis’ theorem, it implies
that firm i’s optimal policy σi(s� νi) will be increasing in νi.8

To exploit this monotonicity in estimation, let Fi(ai|s) denote the probability
that firm i takes an action less than or equal to ai at state s. This quantity is ob-
served in the data. Because σi(s� νi) is increasing in νi, Fi(ai|s)= Pr(σi(s� νi)≤
ai|s)=Gi(σ

−1
i (ai; s)|s;θ). Substituting ai = σi(s� νi) and rearranging, we have

for all (s� νi),

σ(s� νi)= F−1
i (Gi(νi|s;θ)|s)�

Therefore, to estimate the policy function at a given state s, one needs only to
estimate the distribution of actions at each state Fi(ai|s) and have knowledge
of Gi. As an example, consider the dynamic oligopoly model. In that model,
each firm has an investment policy function given by I(s� νi). Suppose further
that νi ∼ N (0�σ2). Then the policy function I(·) could be estimated by esti-
mating F(I|s) using the data, inverting it at each point s, and evaluating it at
�(νi/σ), where � denotes the normal cumulative distribution function.

The two observations made in the discrete choice case apply here as well.
First, the policy function estimates may depend on any unknown parameters
of Gi. Second, in practice it may be desirable to smooth the estimates of Fi
across states and to impose any known theoretical restrictions on Fi such as
symmetry.

3.3. Estimating the Value Functions

The purpose of estimating the equilibrium policy functions is that they al-
low us to construct estimates of the equilibrium value functions, which can be
used in turn to estimate the structural parameters of the model. In this sec-
tion, we show how forward simulation can be used to estimate firms’ value
functions for given strategy profiles (including the equilibrium profile) given
an estimate of the transition probabilities P . Our approach is inspired by Hotz,
Miller, Sanders, and Smith (1994), although it differs slightly in that we draw
states and private shocks each period and compute actions, while they directly
simulated states and actions, and relied on the specific structure of the logit
model to compute the contribution of the private shock to payoffs.

8The policy function may be only weakly increasing rather than strictly increasing. For expo-
sitional purposes, we consider the strictly increasing case, but the approach also works for the
weakly increasing case with minor notational adjustments. One example where the optimal ac-
tion is weakly increasing is when Ai is discrete but ordered and Vi is continuous; our method
applies here as well.
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Let Vi(s;σ ;θ) denote the value function of firm i at state s, assuming firm i
follows the Markov strategy σi and rival firms follow the strategy σ−i. Then

Vi(s;σ ;θ)= E

[ ∞∑
t=0

βtπi(σ(st �νt)� st � νit;θ)
∣∣∣s0 = s;θ

]
�

where the expectation is over current and future values of the private shocks
νt and states st . Note that the expectation may depend on θ both through the
profit function πi and through the distributions of private shocks, G1� � � � �GN .

Given a first-stage estimate P̂ of the transition probabilities, we can use sim-
ulation to estimate the value function Vi(s;σ ;θ) for any strategy profile σ and
parameter vector θ. A single simulated path of play can be obtained as follows:

Step 1. Starting at state s0 = s, draw private shocks νi0 from Gi(·|s0� θ) for
each firm i.

Step 2. Calculate the specified action ai0 = σi(s0� νi0) for each firm i and the
resulting profits πi(a0� s0� νi0;θ).

Step 3. Draw a new state s1 using the estimated transition probabilities
P̂(·|a0� s0).

Step 4. Repeat Steps 1–3 for T periods or until each firm reaches a terminal
state with known payoff (e.g., exit from the market).9

Averaging firm i’s discounted sum of profits over many simulated paths of
play yields an estimate of Vi(s;σ ;θ), which we denote V̂i(s;σ ;θ). Such an es-
timate can be obtained for any (σ � θ) pair, including (σ̂ � θ), where σ̂ is the
policy profile that results from first-stage estimation. It follows that V̂i(s; σ̂ ;θ)
is an estimate of firm i’s payoff from playing σ̂i in response to opponent be-
havior σ̂−i and that V̂i(s;σi� σ̂−i;θ) is an estimate of its payoff from playing σi
in response to σ̂−i, in both cases conditional on parameters θ. Below we show
how such estimates, combined with the equilibrium conditions of the model,
permit estimation of the underlying structural parameters.

3.3.1. Using linearity to reduce computation

The forward simulation procedure allows a relatively low-cost estimate of
the value functions for different strategy profiles given a parameter vector θ.
In an estimation algorithm that searches over parameters, however, the proce-
dure must be repeated for each candidate parameter value (even if the same
simulation draws are used throughout). Fortunately, there is one particularly
useful case where this additional computation can be avoided.

Suppose the distribution of private shocks is known and the profit function
is linear in the unknown parameters θ so that

πi(a� s� νi;θ)=Ψi(a� s� νi) · θ�
9Our asymptotic results will assume T → ∞ to drive the simulation error to zero, but in prac-

tice one can stop when βT becomes insignificantly small relative to the simulation error generated
by averaging over only a finite number of paths.
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where Ψi(a� s� νi) is an M-dimensional vector of “basis functions” ψ1
i (a� s� νi)�

� � � �ψMi (a� s� νi). If πi is linear in (a� s� νi), the functions ψji are simply the ele-
ments of (a� s� νi), but more generally the basis functions could be polynomials
or more complicated functions of (a� s� νi).

Under these assumptions, we can write the value functions as

Vi(s;σ ;θ)= E

[ ∞∑
t=0

βtΨi(σ(st � νt)� st � νit)
∣∣∣s0 = s

]
· θ= Wi(s;σ) · θ�(3)

Again the expectation is over current and future values of the private shocks
and states. The useful simplification is that Wi = (W 1

i � � � � �W
M
i ) does not de-

pend on the unknown parameters θ. Therefore, for any strategy profile σ , one
can use the forward simulation procedure once to estimate each Wi and then
obtain Vi easily for any value of θ.

The main restriction needed to achieve this computational savings is that
the profit function be linear in the unknown parameters. A number of standard
models have this feature. Entry, exit, and fixed cost parameters enter additively
into a firm’s profit function. Similarly, investment cost and marginal cost para-
meters typically enter profits linearly. So, for instance, the value functions in
the dynamic oligopoly model described above will be linear in the parameters
that are unknown at the time of value function estimation. We take advantage
of this property in our Monte Carlo experiments in Section 6.

The derivation of (3) above assumes that G1� � � � �GN are known. If
G1� � � � �GN are functions of unknown parameters, it may still be possible to
obtain an expression for Vi that is linear in parameters. For example, if νit is
N(µ�κ2), where µ and κ are unknown parameters, and πi contains the term
aitνit , this term can be written as ait(µ+ κωit), where ωit is N(0�1). Linearity
also can be exploited if Vi is linear in some parameters, but not others. The idea
here would be to maximize the second-stage objective function in two steps,
with an inner step that maximizes the objective over the linearized parameters
and an outer step that maximizes the inner step objective over the nonlinear
parameters. This kind of nested optimization procedure is likely to significantly
reduce computational burden.

Of course, it is also easy to write down models that are not linear in para-
meters, so we will not assume linearity in what follows. The general case is
conceptually straightforward and the computational burden may often still be
low using our methods.

3.4. First-Stage Estimation: Discussion and Extensions

So far we have suggested methods for dealing with either a single discrete
choice or a single continuous choice in isolation. In many applications, such as
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our dynamic oligopoly example, firms may make several simultaneous choices
and receive several private shocks. This is straightforward to handle if the de-
cisions can be cleanly separated, but potentially more complicated if multiple
shocks enter a given policy function. In that case, the policy function may not
be identified from the data.10 Our method requires that one be able to con-
sistently estimate each firm’s policy function, so this may limit our ability to
estimate certain models.

An important point regarding the first-stage estimation concerns which real-
izations of the state variables are observed in the data. Under Assumptions ES
and either DC or MC, the firms’ policy functions can be estimated consistently
at any state s that is the support of the data generating process. Similarly the
transition probabilities P can be consistently estimated for these states. Con-
sistent estimation of the value functions V1� � � � � VN at a state s requires some-
what more, namely that the transition probabilities and policy functions can
be estimated not only at s, but also at all states reachable from s with positive
probability in equilibrium.

A potential difficulty in obtaining consistent first-stage estimates is that some
states s may never be reached in equilibrium. For instance, in our dynamic
oligopoly example, the number of incumbent firms may never exceed some
fixed upper bound in equilibrium. More precisely, the general model above
generates a Markov process on the state space that may have an invariant dis-
tribution with a support that is significantly smaller than the entire state space.
Depending on what type of data is available, it may not be possible to con-
sistently estimate the policy functions or value functions at states outside this
support. In practice one can try to overcome this in two ways. One possibility
is to make a parametric assumption on the form of the policy functions and
transition probabilities, and then extrapolate to states that are not observed in
the data. Another possibility is to recognize the lack of identification and, in
our second stage, omit the equilibrium conditions for states that do not appear
in the data.11

Finally, we have so far ruled out the possibility of serially correlated unob-
served state variables. We return to this issue in Section 5 after we discuss
second-stage estimation.

10Note that the distribution of actions given states F(a|s) will still be observed. The identifi-
cation problem arises in translating this distribution into policy functions. For example, if a firm
has private information each period about both demand and marginal cost, we may not be able
to consistently estimate its pricing policy as a function of these two shocks.

11Although we will not focus on it, the possibility of unrealized states could have a substantive
consequence for what the data reveals about parameters of firms’ profit functions that are rele-
vant only along “off equilibrium” paths. An example of this would be parameters that determine
the payoffs in a punishment regime that is never triggered in equilibrium.
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4. SECOND-STAGE ESTIMATION: RECOVERING THE
STRUCTURAL PARAMETERS

The first stage generates estimates of the firms’ equilibrium policy functions,
the state transitions, and the value functions. In this section, we explain how
to combine these estimates with the equilibrium conditions of the model to
recover, or at least to bound, the structural parameters of the model.

To simplify this second-stage problem, we henceforth assume that the policy
function and transition probabilities are parameterized by a finite parameter
vector α and that this vector can be consistently estimated at the first stage.

ASSUMPTION S1: The policy functions σi(s� νi;α) and transition probabilities
P(st+1|st �at;α) are parameterized by a finite parameter vector α, and there exists
a consistent estimator α̂n with the property that

√
n(̂αn − α0)→d N(0� Vα), where

α0 is the true parameter that generates the data.

This assumption permits a nonparametric first stage with discrete action and
state spaces or a parametric first stage with continuous actions and states. It
rules out a nonparametric first stage with continuous actions or states. Hotz
and Miller (1993) used a nonparametric kernel estimator to address the dis-
crete action, continuous state case. Bajari, Chernozhukov, and Hong (2005)
considered this same case using sieve estimation methods in the first stage. We
are optimistic that our approach could be shown to work for a nonparametric
first stage with continuous actions on a continuous state space, but we leave
this for future research.

4.1. The Equilibrium Conditions

Our second-stage estimator makes use of the model’s equilibrium condi-
tions. Recall that the strategy profile σ is a Markov perfect equilibrium if and
only if for all firms i, all states s, and all alternative Markov policies σ ′

i ,

Vi(s;σi�σ−i;θ)≥ Vi(s;σ ′
i �σ−i;θ)�(4)

The equilibrium inequalities (4) define a set of parameters that rationalize
the strategy profile σ in the sense that σ is a Markov perfect equilibrium of
the game defined by P and θ. Let Θ0 denote this set:

Θ0(σ�P) := {θ :θ�σ �P satisfy (4) for all s� i�σ ′
i}�

The goal of second-stage estimation is to recover Θ0 using our first-stage esti-
mates of σ and P .

Depending on the model and its parameterization, the set Θ0 may or may
not be a singleton. This is the problem of identification, studied in the con-
text of single-agent dynamic decision problems by Rust (1994) and Magnac
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and Thesmar (2002) and in the context of dynamic games by Pesendorfer and
Schmidt-Dengler (2003) and Bajari, Chernozhukov, and Hong (2005). These
papers show that while point identification is often possible, it requires fairly
strong assumptions, particularly in the multiagent case.12 Even without it, how-
ever, knowledge of the set Θ0 may convey useful information about the un-
derlying parameters (e.g., Manski and Tamer (2002), Haile and Tamer (2003),
Ciliberto and Tamer (2006)).

We therefore consider two alternative estimators. The first estimator re-
quires that the model be identified; it yields standard point estimates of the
parameters. The second estimator does not rely on identification; it yields con-
sistent “bounds” estimates of the identified set of parameters.

Both estimators follow the same basic outline. We start by constructing em-
pirical counterparts to all or a subset of the equilibrium inequalities (4) using
the forward simulation procedure described in Section 3.3. We then look for
the value(s) of θ that minimizes the (squared distance) violations of these in-
equalities.

4.2. Estimation of Identified Models

Before describing the estimators, it is useful to introduce a small amount of
notation. Let x ∈X index the equilibrium conditions, so that each x denotes a
particular (i� s�σ ′

i ) combination. In a slight abuse of notation, define

g(x;θ�α)= Vi(s;σi�σ−i;θ�α)− Vi(s;σ ′
i �σ−i;θ�α)�

The dependence of Vi(s;σ ;θ�α) on α reflects the fact that σ and P are para-
meterized by α. The inequality defined by x is satisfied at θ�α if g(x;θ�α)≥ 0.

Define the function

Q(θ�α) :=
∫ (

min{g(x;θ�α)�0})2
dH(x)�

where H is a distribution over the set X of inequalities.
The true parameter vector, θ0, satisfies

Q(θ0�α0)= 0 = min
θ∈Θ

Q(θ�α0)�

where Θ ⊂ R
M contains θ0. Assuming that the model is identified and that

H has sufficiently large support, Q(θ�α0) > 0 for all θ �= θ0, so θ0 uniquely

12These papers show that in a strategic setting, nonparametric identification requires a set
of state variables that affect the profit functions of some but not all firms. This requirement is
analogous to the standard exclusion restrictions needed for identification in a linear simultaneous
equations model. Of course, it may also be the case that the model is overidentified. Although we
do not pursue it here, our model suggests a natural specification test for overidentified models
based on testing whether there is any parameter vector θ that satisfies the equilibrium conditions.
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minimizes Q(θ�α0). Therefore, we propose to estimate θ by minimizing the
sample analog of Q(θ�α0).

To do this, let {Xk}k=1�����nI be a set of inequalities from X chosen by the
econometrician (representing independent and identically distributed draws
from H). These might be selected in a variety of ways. One possibility is to
draw firms and states at random and then consider alternative policies σ ′

i

that are slight perturbations of the estimated policy σi(s� νi; α̂n), for exam-
ple, σ ′

i (s� νi) = σi(s� νi; α̂n) + ε. Another possibility is to focus on alternative
policies that depart from the estimated policy at a single state. The particu-
lar method of selecting inequalities (the distribution H) will have implications
for efficiency, but the only requirement for consistency is that H has sufficient
support to yield identification.13

For each chosen inequality, Xk, the next step is to use the forward simula-
tion procedure from Section 3.3 to construct analogs of each of the Vi terms.
Let ĝ(x;θ� α̂n) denote the empirical counterpart to g(x;θ�α) computed by re-
placing the Vi terms with simulated estimates V̂i. Let ns denote the number of
simulation draws. We can then define

Qn(θ�α) := 1
nI

nI∑
k=1

(
min{ĝ(Xk;θ�α)�0})2

�(5)

Our estimator minimizes this objective function at α= α̂n. That is,

θ̂ := arg min
θ∈Θ

Qn(θ� α̂n)�

We now specify sufficient conditions for this estimator to be consistent and
asymptotically normal.

ASSUMPTION S2:
(i) The inequalities X1� � � � �XnI ∈ X are independent and identically distrib-

uted draws from H.
(ii) For each Xk, each V̂i is computed using independent draws and satisfies

EV̂i = Vi <∞. In addition, with probability 1, V̂ is twice differentiable in
θ and α, and three times differentiable in θ.

(iii) As n→ ∞� both ns�nI → ∞ and n/n2
s → 0.

(iv) The set Θ⊂ R
M is compact and θ0 = arg minθ∈ΘQ(θ�α0).

(v) There exists a full-rank matrix B0 such that, for θ near θ0,

∂

∂θ
Qn(θ� α̂n)= ∂

∂θ
Qn(θ0� α̂n)+ (B0 + op(1))(θ− θ0)�

13Note that in some cases the space of feasible alternative policies may contain a large number
of alternatives that provide little or no information about the parameters. In such cases it may
be desirable to choose alternatives in a manner that places little or no weight on these policies.
Holmes (2006) provided a nice illustration and solution to this problem.
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Part (i) was discussed above. Part (ii) says that the value function simulator
is unbiased and uses independent draws for each inequality (the same draws
may be used for the two value functions in a given inequality).14 It also makes
some standard smoothness assumptions that would be satisfied in most appli-
cations (and the linear-in-parameters case, in particular, leads automatically
to smoothness in θ). Part (iii) requires that as n goes to infinity, the number of
inequalities sampled and the number of simulation draws per inequality also
go to infinity, the latter at a rate faster than

√
n. This guarantees that the simu-

lation error adds nothing to the asymptotic variance of the estimator. Part (iv)
is the identification assumption. Finally, part (v) requires that the objective
function satisfy a second-order expansion. It will typically be the case that

B0 = B(θ0) where B(θ)≡ ∂2

∂θ∂θ′Q(θ�α0)�

This assumes that the asymptotic objective function is twice differentiable on a
neighborhood of θ0, which would typically be the case for an identified model.15

In addition to differentiability of the limit function, (v) would also typically
require that an equicontinuity condition be satisfied.

PROPOSITION 1: Under Assumptions S1 and S2,

√
n(θ̂− θ0)

d→N(0�B−1
0 Λ0VαΛ

′
0B

−1
0 )�

where

Λ0 ≡ ∂2

∂θ∂α′Q(θ�α) evaluated at θ= θ0�α= α0�

Because the simulation does not contribute anything to the asymptotic dis-
tribution of the estimator, the standard errors are determined by the first-stage
sampling error adjusted for its effect on the second-stage estimates. Note that
efficiency of the estimator depends on the distribution used to sample over
inequalities (H) through the expectation operators in Λ0 and B0. Deriving an
expression for Λ0 in terms of model primitives is difficult because of the com-
plex way in which the first-stage parameters enter into theW terms. Therefore,
in practice we believe it will typically be easiest to use subsampling or the boot-
strap to estimate standard errors. This is the approach we follow in our Monte
Carlo experiments.

14In fact, using the same draws for the two value functions within a given inequality would typ-
ically be desirable because the two simulated value functions would then be positively correlated,
reducing the simulation variance in the inequality as a whole.

15For this to be true, it is important that the distribution H sample inequalities smoothly. If
condition (v) is violated, then the estimator would not be asymptotically normal.
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One point worth mentioning is that in a finite sample, the resulting parame-
ter estimate θ̂may not fully rationalize the estimated policies as an equilibrium
of the model. Clearly if all inequalities are satisfied, the estimated policies are
an equilibrium of the model defined by θ̂. This will be the case asymptotically.
More generally, if the inequalities are nearly satisfied, the estimated policies
will be “close” to being an equilibrium, but provided the simulation error is
small, the violations will imply that at least one player has a profitable devi-
ation given θ̂ and the estimated policies of the other players. This is typical
of two-stage estimators, and one reason why Aguirregabiria and Mira (2007)
suggested an iterative extension of these methods.

4.3. Bounds Estimation

Our minimum distance estimator extends naturally to models that may only
be set identified. To develop this extension, we drop our earlier identification
requirements, Assumption S2 parts (iv) and (v). We also drop part (i) and the
assumption that nI → ∞, and instead consider estimation using a fixed set of
nI inequalities.16 Let

ΘnI (σ�P) := {θ :θ�σ �P satisfy (4) for all xk�k= 1� � � � � nI}�
If x1� � � � � xnI represent the full set of equilibrium conditions, then ΘnI = Θ0;
more generally, Θ0 ⊆ΘnI .

Our estimator and proof of consistency closely resemble those of Manski
and Tamer (2002) and Haile and Tamer (2003). The distribution theory for
the estimator originated in Chernozhukov, Hong, and Tamer (2007). Below we
apply an extension of their method described by Romano and Shaikh (2006a).

Specifically, we consider the same squared distance function Qn(θ� α̂n) de-
fined in (5), with the understanding that the relevant set of equilibrium con-
ditions is fixed rather than sampled at random. Following Manski and Tamer
(2002), we define our estimate of the set ΘnI to encompass all values of θ that
come within a specified distance of minimizing Qn(θ� α̂n). That is,

Θ̂n ≡
{
θ :Qn(θ� α̂n)≤ min

θ′∈Θ
Qn(θ

′� α̂n)+µn
}

(6)

for some µn > 0, where µn → 0.
Define the distance ρ(Θ�Θ′) between two sets Θ�Θ′ ⊂ R

L as ρ(Θ�Θ′) ≡
supθ∈Θ infθ′∈Θ′ |θ − θ′|. Note that ρ is not symmetric; ρ(Θ�Θ′) measures the
greatest distance from a point in Θ to the set Θ′.

16Note that it would also be possible to consider nI → ∞ here and simply drop the identifica-
tion condition.
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PROPOSITION 2: Under Assumptions S1 and S2(ii) and (iii),

ρ(Θ̂n�ΘnI )
p→ 0�

Furthermore, if supθ∈Θ |Qn(θ� α̂n)−Q(θ�α0)|/µn → 0, then

ρ(ΘnI � Θ̂n)
p→ 0�

The first part of the proposition says that for large n, every point in Θ̂n is
close to a point in ΘnI . This is guaranteed under conditions similar to those
required for standard estimators and holds even if µn = 0 for all n. The second
part says that for large n, every point in Θ̃0 is close to a point in Θ̂n. Essentially
this means that the entire set Θ̃0 is eventually captured by the estimated set.
This second part requires that µn go to zero slowly enough, with the required
rate provided above.17

The primary difficulty in estimation is computation of the set Θ̂n. Manski
and Tamer (2002) and Haile and Tamer (2003) used simulated annealing to
sample the objective function and then constructed one-dimensional bounds
on the parameters. Such an approach could also be used here in the general
case. If the system of inequalities is linear in the parameters, then computation
of Θ̂n is much easier because it is a linear programming problem. One set of
techniques in the operations research literature, dating back to Motzkin et al.
(1953), uses the fact that Θ̂n is a convex polyhedron to describe it in terms of its
vertices. Alternatively, Bajari and Benkard (2004) suggested a Gibbs sampling
procedure that produces simulation draws that are uniformly distributed over
the set Θ̂. These simulation draws can be used to estimate bounds on the para-
meters, θ. The latter method is particularly efficient at handling large numbers
of inequalities, making it ideally suited to this problem.

Our model is similar to one considered by Chernozhukov, Hong, and Tamer
(2007, Example 1), so their subsampling algorithm (Algorithm 2.1) could be
used to construct confidence regions. We describe instead an extension of their
procedure posed by Romano and Shaikh (2006a). Romano and Shaikh’s pro-
cedure produces a set estimator Θ̂0�95 such that for all θ ∈ Θ̂n,

lim inf
n→∞

Pr(θ ∈ Θ̂0�95)≥ 0�95�

Note that since Θ̂0�95 is constructed such that the above condition is satisfied
for all θ ∈ Θ̂n, the condition is guaranteed to be satisfied at the true parameter
value θ0.

17Note that because Θ̃0 is a convex polyhedron in the linear-in-parameters case, consistency
could be shown for that case even for µn = 0.
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In the context of our model, Romano and Shaikh’s procedure can be de-
scribed as follows:

Step 1. Begin with a setΘ that is large enough that it is known with certainty
that θ0 ∈Θ.

Step 2. Construct B subsamples of size nb and compute Qn�b(θ� α̂n) for each
subsample, b ∈ {1� � � � �B}, for each θ ∈Θ.

Step 3. For each θ ∈Θ, compute a critical value, ĉn(0�95� θ), such that

ĉn(0�95� θ)= inf

{
c :

1
B

B∑
b=1

1{nbQn�b(θ� α̂n)≤ c} ≥ 0�95

}
�

Step 4. Compute Θ̂0�95 = {θ :n ·Qn(θ� α̂n)≤ ĉn(0�95� θ)}.
Romano and Shaikh (2006a) showed that this procedure leads to a consistent

estimate of the set Θ̂0�95.18

5. SERIALLY CORRELATED UNOBSERVED STATE VARIABLES

A limitation to our approach is the assumption that all commonly known
states, s, are observed. This leaves the independent private shocks as the only
source of unobserved variation over time. This section discusses alternative
methods for incorporating serially correlated unobserved state variables.

In many cases, unobserved state variables can be recovered in first-stage esti-
mation. Examples include the estimation of unobserved product characteristics
in demand models (e.g., Berry (1994), Berry, Levinsohn, and Pakes (1995)) and
unobserved productivity shocks in production functions (e.g., Olley and Pakes
(1996)). In such cases, once the values of the unobserved state variables are
recovered, it is “as if” they were observable in the first place (subject to caveats
about estimation error) and it is, therefore, simple to allow for quite general
forms of temporal dependence. We believe that this is an important and po-
tentially useful case due to the widespread use of the methods listed above.

With the advent of long panels, another possibility is to use panel data meth-
ods. Suppose that data are available on several markets over time and that the

18Imbens and Manski (2004) argued convincingly that the above pointwise confidence regions
are logically preferred to confidence regions for the identified set as a whole. However, Romano
and Shaikh (2006b) also provided an estimator for a confidence region for the identified set
as a whole. In that case, it is necessary to follow a “step down” procedure that estimates Θ̂0�95

iteratively. Starting with Θ̂0
0�95 = Θ, at each iteration i, a cutoff value ĉin(0�95) is computed such

that

ĉin(0�95)= inf

{
c :

1
B

B∑
b=1

1
{
nb sup

θ∈Θ̂(i−1)
0�95

Qn�b(θ� α̂n)≤ c
}

≥ 0�95

}
�

Then a new estimate is computed: Θ̂i
0�95 = {θ :n ∗Qn(θ� α̂n) < ĉ

i
n(0�95)}. The procedure is termi-

nated when the set obtained from iteration i is identical to that obtained in iteration i− 1. This
procedure will yield larger confidence regions than the procedure described in the text.
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unobserved state variables are market specific. If a long panel is available, it
may be sometimes possible to estimate the policy functions separately for each
market. This would result in different value function estimates for each market.
However, in the second-stage estimation, inequalities from all markets could
be pooled together. Note that such an approach would also accommodate dif-
ferent equilibria in different markets. Of course, the main difficulty would be
finding data sets large enough to make this approach feasible.

A related parametric approach could be used in the event that there were
not enough data to obtain precise estimates for the market specific policy func-
tions. If we were willing to assume a parametric form for the policy functions,
then it would be possible to use standard panel data methods to estimate them.
In that case it may even be possible to account for time-varying serially corre-
lated unobservables.

Aguirregabiria and Mira (2007) suggested a fourth method. They noted that
if the joint distribution between the observed and unobserved states can be
recovered, this distribution can be used to control for the effect of the unob-
served states in estimating the model. In our context, it seems that learning
this joint distribution requires computing an equilibrium to the model. For the
models we have in mind, this may not be computationally feasible.

Arcidiacono and Miller (2007) suggested a fifth method. In a dynamic dis-
crete choice framework, they show that the EM algorithm can be used to maxi-
mize a likelihood function that integrates out over the unobserved states in the
second stage. This novel approach even allows for time-varying serially corre-
lated unobserved states. Because their method requires a likelihood function
in the second stage, however, it would be difficult to apply directly to our model
in general.

6. APPLYING THE ESTIMATION APPROACH

In this section we apply our general algorithm to two specific examples: a
version of Rust’s (1987) machine replacement model involving a single agent
who makes a discrete choice each period, and a version of the Ericson–Pakes
(1995) dynamic oligopoly model involving multiple firms that make both dis-
crete (entry/exit) and continuous (price/investment) decisions in each period.

6.1. Example: Dynamic Discrete Choice

We first consider a simple version of Rust’s (1987) machine replacement
model as introduced in Section 2.1. In this single-agent dynamic discrete choice
context, our approach is very similar to that of Hotz, Miller, Sanders, and Smith
(1994), the difference being the second-stage procedure. The primary advan-
tage of our second stage is that it extends easily to more general models such
as the dynamic oligopoly example below, but the single-agent model provides
a useful starting example.
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Recall that in the model of Section 2.1, the manager’s profit function,

π(a� s� ν;θ)= a[−R− ν(1)] + (1 − a)[−µs− ν(0)]�
is linear in the parameters θ = (R�µ). For our Monte Carlo exercise, we set
µ= 1, R= 4, and β= 0�9. We assume that the age of the machine takes values
s ∈ {1�2�3�4�5}. Finally, we specify that ν(0) and ν(1) are distributed inde-
pendently N(0�1) and this distribution is treated as known in the estimation.
Using this parameterized model, we simulated data sets of (relatively small)
sizes n= 50, 100, 200, and 400 and applied our estimation routine.

The first-stage estimates for this model are the average replacement proba-
bilities in the simulated data for the five states. Recall that the optimal policy
in this model has a cutoff feature. Let σ(s� ν) denote the optimal policy, let
V (s;σ) denote the value function, and define v(1� s) = −R + βV (1;σ) and
v(0� s)= −µs+βV (min{s+ 1�5};σ) to be the choice-specific value functions.
Then

σ(s� ν)= 1 ⇔ v(1� s)+ ν(1)≥ v(0� s)+ ν(0)�(7)

Therefore, Pr(a = 1|s) = �([v(1� s) − v(0� s)]/√2), so we can invert the es-
timated choice probabilities and recover the difference in the choice-specific
value functions and hence the policy rule at each state.

To simulate the value function, observe that it is linear in the parameters
θ= (R�µ). In particular,

V (s;σ;θ)=W 1(s;σ) ·R+W 2(s;σ) ·µ+W 3(s;σ)

= E

[
−

∞∑
t=0

βtσ(st� νt)
∣∣∣s0 = s

]
·R

+ E

[
−

∞∑
t=0

βt(1 − σ(st� νt))st
∣∣∣s0 = s

]
·µ

+ E

[ ∞∑
t=0

βtν(σ(st� νt))
∣∣∣s0 = s

]
�

The first term is the expected present cost of replacement decisions, the second
term is the expected present cost of maintenance, and the third term is the
expected present value of the realized preference shocks, where ν(σ(st� νt))
is the preference shock corresponding to the action that is actually chosen at
time t. Note that for any given policy σ , each W m(s|σ) can be computed by
simulation once and V (s|σ�θ) can be obtained immediately for a given θ.

To perform the second-stage estimation, we constructed alternative state-
dependent cutoff rule policies by drawing cutoff points from a normal distri-
bution with standard deviation 0.5 centered at the cutoff points estimated in
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TABLE I

DYNAMIC DISCRETE CHOICE MONTE CARLOa

Mean SE (Real) 5% (Real) 95% (Real) SE (Subsampling)

n= 400, nI = 200, ns = 1000
µ 1.00 0.14 0.79 1.24 0.10
R 4.02 0.53 3.24 4.96 0.39

n= 200, nI = 200, ns = 500
µ 0.99 0.18 0.72 1.37 0.17
R 4.00 0.78 2.94 5.95 0.86

n= 100, nI = 200, ns = 250
µ 0.94 0.32 0.47 1.48 0.35
R 3.75 1.26 1.92 5.70 1.15

n= 50, nI = 200, ns = 150
µ 0.89 0.54 0.11 2.03 0.47
R 3.57 2.35 0.60 8.16 2.27

a500 Monte Carlo runs; 25 subsamples of size n/2.

the first stage. We computed the estimator and standard errors 500 times for
various values of ns and nI . The standard error estimates were obtained using
25 subsamples of size n/2.

The results, shown in Table I, show several things. First, the estimators are
close to unbiased for all but the smallest sample sizes. Second, the subsampled
standard errors are close to, though generally slightly smaller than, the true
standard errors. The differences are most likely due to the small sample sizes
used, such that the asymptotic approximations are imperfect. Finally, despite
the small size of the data sets, the estimates are relatively precise. For n= 400,
the t statistics are on the order of 6–8; for n= 100, they fall to about 3–4. Even
for n = 50, t statistics are on the order of 2. These results are encouraging,
particularly as many real-world data sets may be far above these sizes.

6.2. Example: Dynamic Oligopoly

We now apply the estimation approach to the dynamic oligopoly model out-
lined in Section 2.2. We first flesh out a few remaining details of the model and
then describe estimation.

6.2.1. The dynamic oligopoly model and equilibrium

We start by positing specific functional forms for the demand system, the
state transitions, and the cost functions. We assume a logit demand system for
the goods. There is a mass M of consumers and consumer r derives utility Uri

from good i, where

Urj = γ0 ln(zi)+ γ1 ln(yr −pi)+ εri�
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Here zi is the current quality of firm i’s product, pi is the product’s price, yr is
income, γ0 and γ1 are parameters, and εrj is an independent and identically
distributed logit error term.19 For simplicity, all consumers have the same in-
come yr = y . We also assume firms have constant marginal costs of production
equal to

mc(qi;µ)= µ�
Each period, firms choose investment levels Iit ∈ R+ to increase their prod-

uct quality the next period. We model the evolution of product quality follow-
ing Pakes and McGuire (1994). Firm i’s investment is successful with probabil-
ity

ρIit/(1 + ρIit)�
where ρ is a parameter. If firm i’s investment is successful, its quality zi in-
creases by 1 and otherwise remains unchanged. There is also an outside good,
whose quality moves up with probability δ each period. Firm i’s cost of invest-
ment is20

C(Ii)= ξ · Ii�
The scrap value realized on exiting, φ, is fixed and equal for all firms. Each
period, the potential entrant draws a private entry cost νet from a uniform dis-
tribution on [νL� νH].

In a Markov perfect equilibrium, each incumbent firm i sets its quantity to
maximize its static profits, and uses an optimal investment strategy Ii(s) and
exit strategy χi(s). Each potential entrant follows a strategy χe(s� νe) that calls
for it to enter if the expected profit from doing so exceeds its entry cost. The
state variable st = (Nt� z1t � � � � � zNt� zout�t) includes number of incumbent firms
and the current product qualities. We restrict attention to equilibria where the
incumbents use symmetric strategies.

The model parameters are γ0�γ1�µ�ξ�φ�ν
L� νH�ρ�δ�β� and y . As sug-

gested above, the demand parameters γ0�γ1 and the marginal cost parame-
ter µ can be estimated using static methods, so we do not include them in

19This simple demand specification does not include natural features such as an unobserved
product characteristic. In principle this is a straightforward extension as long as one has an in-
strument such as an observed cost shifter to estimate the demand system. We do not consider
it here because adding cost shifters to the model would substantially complicate the equilibrium
computation needed to generate the Monte Carlo data.

20We consider a very simple deterministic investment cost. As far as the estimation is con-
cerned, it is straightforward to include a stochastic shock to the marginal cost of investment, but
again this would substantially complicate the equilibrium computation required to generate the
simulated data, so we are unable to consider it. For a detailed discussion of how our approach can
be used to estimate the model when there is a stochastic shock to the marginal cost of investment,
see Ackerberg, Benkard, Berry, and Pakes (2007).
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TABLE II

DYNAMIC OLIGOPOLY MONTE CARLO PARAMETERS

Parameter Value Parameter Value

Demand Discount factor β 0�925
γ1 1�5 Investment cost ξ 1
γ0 0�1 Marginal cost µ 3
M 5 Entry cost distribution
y 6 νl 7

Investment evolution νh 11
δ 0�7 Scrap value φ 6
ρ 1�25

the vector of dynamic parameters θ. The remaining payoff parameters are
θ= (ξ�φ�νL� νH). The state transition parameters are ρ and δ. We assume the
discount factor β and consumer income y are known to the econometrician.

For the Monte Carlo experiments, the parameters were set at the values
shown in Table II. Computing an equilibrium for this model, which is required
to generate the Monte Carlo data, is not trivial. To keep computation man-
ageable, we considered a model in which a maximum of three firms could be
active in each period. We then generated data sets of varying numbers of peri-
ods, from 100 to 400. Typically, real-world data sets would have more firms and
fewer periods. Unfortunately, computing an equilibrium in which there are
a large number of incumbent firms is prohibitive. Instead we chose a longer
period length to make the number of firm–year observations comparable to
available data sets.

6.2.2. Estimating the dynamic oligopoly model

The first stage requires estimation of the state transition probabilities and
the policy functions; we also estimate the demand and marginal cost parame-
ters at this stage. For the state transitions, we use the observed investment
levels and product qualities to estimate the transition parameters ρ and δ by
maximum likelihood. For the demand system, we similarly use maximum like-
lihood, and the observed quantity, price, and product quality data to estimate
γ0 and γ1, the parameters of the logit system. We then recover the marginal
cost parameter µ from the static markup formula for optimal pricing. In gen-
eral, the demand parameters are recovered very precisely and the investment
evolution parameters are recovered somewhat less precisely.

Estimating the investment and exit policies is straightforward because the
incumbent firms do not receive private investment or exit shocks in the simple
numerical example we consider. Because not every possible state s is observed
in the small data sets we consider, we use local linear regressions with a normal
kernel to estimate both the investment policy I(s) and the exit policy χ(s).
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Because the state space is discrete, these estimates achieve parametric rates of
convergence even though some smoothing is employed.

To estimate the equilibrium entry policy χe(s� νe), observe that it has a cutoff
form,

χe(s�νe)= 1 ⇔ νe ≤ βE[Ve(st+1;σ) | σ�st = s�χe = 1]�(8)

where Ve(st+1;σ) is the value function that the entrant will have next period,
as an incumbent, given the strategies σ = (I�χ�χe)�

There is a variety of ways to handle entry in the estimation process. If the
entry cost distribution Ge is known, the entry policy can be estimated using
a Hotz–Miller approach: estimate the probability of entry at each state and
invert the estimated probability to recover the value of entry. If only the para-
metric form of Ge is known, the same can be done conditional on parameter
values. Because the value function of an entrant is the same as that of an in-
cumbent, however, this is unnecessary. Instead, we simply estimate the prob-
ability of entry at each state, using local linear regression, and use this to cal-
culate the incumbent value function. Two dynamic parameters, the investment
cost ξ and the scrap value φ, enter the value function but not the entry cost
distribution.

Given a strategy profile σ = (I�χ�χe), the incumbent value function is

Vi(s;σ)=W 1(s;σ)+W 2(s;σ) · ξ+W 3(s;σ) ·φ

= E

[ ∞∑
t=0

βtπ̃i(st)
∣∣∣s0 = s

]
− E

[ ∞∑
t=0

βtIi(st)
∣∣∣s0 = s

]
· ξ

+ E

[ ∞∑
t=0

βtχi(st)
∣∣∣s0 = s

]
·φ�

The first term π̃i(st) is the static profit of incumbent i given that the current
state is st . This number is computed directly from the first-stage estimates
of marginal cost and demand by calculating the static Bertrand–Nash pricing
equilibrium. The second term is the expected present value of future invest-
ment costs. The third term is the expected present value of the scrap value on
exit. Note that ξ andφ, the two parameters to be estimated, factor out linearly.

To apply the minimum distance estimator, we constructed alternative invest-
ment and exit policies by drawing a mean-zero normal error and adding it to
the estimated first-stage investment and exit policies.21 We used ns = 2,000

21So, for instance, if the estimated investment policy specifies an investment Ii(s) in state s,
an alternative policy might be to invest Ii(s)+ 0�01 in state s. The errors on the alternative in-
vestment policies had standard deviation 0.3 and on the alternative exit policies had standard
deviation 0.5.



ESTIMATING DYNAMIC MODELS 1359

simulated paths, each having length at most 80 periods (shorter if, as was
typical, exit occurred prior to the last period), to compute the present value
W 1�W 2�W 3 terms for these alternative policies.

We experimented with two alternatives for estimating the distribution of en-
try costs. One approach we considered was to first apply the minimum distance
estimator to estimate ξ and φ. Here we exploit the fact that Ge does not en-
ter the incumbent value function. We then observe that given a state s, the
probability of entry equals

Pr(χe(s� νe)= 1)=Ge

(
βE[V (s′;σ) | σ�s�χe = 1])�(9)

Using our estimates of ξ and φ, we computed the incumbent value function
V (s′|σ) at different values of s, and used this to compute the argument of Ge

at |S| points. Because the left-hand side at these points is just the observed
probability of entry at state s, we have identified Ge(·) on a discrete grid. We
then used local linear regression to infer the remaining points.

Our other approach to estimating entry costs uses prior knowledge that Ge

has a uniform distribution. Using this knowledge, we estimated the highest and
lowest possible entry costs, νL and νH , along with the investment cost and scrap
value parameters, in the second stage of estimation. To do this, we include opti-
mality conditions for entry along with those for exit and investment in applying
the minimum distance estimator. This approach has a potential benefit in that
it uses information in the entry decisions to help estimate the investment and
exit parameters.

To implement the Monte Carlo experiment, we generated 500 data sets and
computed our estimator for each. For each data set, we used subsampling
based on 20 subsamples of size n/2, to compute standard errors. The com-
putational burden of the second-stage estimates was about a third that of the
first-stage estimates. Together, each round of estimation took under a minute
with little difference across sample sizes.

The results are shown in Tables III and IV. For small sample sizes, there
is a slight bias in the estimates of the exit value, which is reduced with more
observations. We found that this bias goes away entirely if the true first-stage
functions are used instead of the estimated first stage, so we conclude that the
second-stage bias is generated primarily by sampling error in the first-stage lo-
cal linear estimates. The investment cost parameter estimates are essentially
unbiased even for the smallest sample size (n= 100). The difference between
the two most likely reflects the difference in the number of first-stage observa-
tions. For the n= 100 case, there were typically about 250 investment observa-
tions, but only about 25 entry or exit observations. Thus, for any given sample
size, the investment policy function is substantially better estimated than the
entry and exit policy functions.

Similar to the last example, the subsampled standard errors are, on average,
slightly smaller than the true standard errors. This is again likely due to the
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TABLE III

DYNAMIC OLIGOPOLY WITH NONPARAMETRIC ENTRY DISTRIBUTION

Mean SE (Real) 5% (Real) 95% (Real) SE (Subsampling)

n= 400, nI = 500
ξ 1.01 0.05 0.91 1.10 0.03
φ 5.38 0.43 4.70 6.06 0.39

n= 200, nI = 500
ξ 1.01 0.08 0.89 1.14 0.05
φ 5.32 0.56 4.45 6.33 0.53

n= 100, nI = 300
ξ 1.01 0.10 0.84 1.17 0.06
φ 5.30 0.72 4.15 6.48 0.72

small sample sizes used. Overall the estimates are surprisingly precise given
the small sample sizes. For n= 400, t statistics are on the order of 12–20. For
the n= 100 case, in which there are very few observations of entry and/or exit,
t statistics still average between 7 and 10. For these small data sets, the first-
stage estimates are not very accurate pointwise. Thus, the second-stage esti-
mation algorithm must be averaging across points in such a way as to come
up with precise parameter estimates anyway. Because real-world data sets of-
ten contain more observations than this last case, we believe that these results
support the method’s potential in applications.

TABLE IV

DYNAMIC OLIGOPOLY WITH PARAMETRIC ENTRY DISTRIBUTION

Mean SE (Real) 5% (Real) 95% (Real) SE (Subsampling)

n= 400, nI = 500
ξ 1�01 0.06 0.92 1�10 0.04
φ 5�38 0.42 4.68 6�03 0.41
νl 6�21 1.00 4.22 7�38 0.26
νh 11�2 0.67 10.2 12�4 0.30

n= 200, nI = 500
ξ 1�01 0.07 0.89 1�13 0.05
φ 5�28 0.66 4.18 6�48 0.53
νl 6�20 1.16 3.73 7�69 0.34
νh 11�2 0.88 9.99 12�9 0.40

n= 100, nI = 300
ξ 1�01 0.10 0.84 1�17 0.06
φ 5�43 0.81 4.26 6�74 0.75
νl 6�38 1.42 3.65 8�43 0.51
νh 11�4 1.14 9.70 13�3 0.58
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FIGURE 1.—Entry cost distribution for n= 400.

Our nonparametric estimate of entry costs is displayed in Figures 1–3. The
figures show that for all three sample sizes the entry cost distribution is recov-
ered quite well. Table IV reports our entry cost estimates based on the second,
parametric approach. Again the results are relatively accurate. It appears that
one can recover the distribution of entry costs with reasonably sized data sets.
Perhaps surprisingly, joint estimation did not improve the estimates of the in-

FIGURE 2.—Entry cost distribution for n= 200.
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FIGURE 3.—Entry cost distribution for n= 100.

vestment and scrap parameters. This suggests that in this model entry behavior
contains little information about these parameters.

6.2.3. An alternative second-stage estimator

The results above suggest that the inequality estimator may exhibit bias in
small samples. This bias arises because the second-stage objective function is
nonlinear in the first-stage estimates. Sampling error in the first stage, there-
fore, can bias the second-stage objective and through this, estimates of θ.

In a similar context, Pakes, Ostrovsky, and Berry (2007) suggested that one
possible way to alleviate finite sample bias is to use a method of moments esti-
mator based on highly aggregated moment conditions. The idea is that aggre-
gation helps to average out the first-stage estimation error, reducing (but not
eliminating) bias in the second-stage estimates. In this section, we explore how
this approach applies in our setting.

The most obvious way to construct aggregated second-stage moment condi-
tions in our model is to match the observed investment, exit, and entry rates to
those predicted by the model when the model is evaluated using the estimated
value functions. For each θ, we construct these moment conditions as follows:

Step 1. Estimate the first stage (policy functions, transition probabilities,
and demand and cost parameters).

Step 2. For each state observed in the data and each state that is reachable
in one period from a state observed in the data, construct simulated
estimates of the value function V̂ (s).

Step 3. For each state observed in the data, use the value function estimates
from Step 2 to compute the predicted entry probability, the pre-
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dicted exit policy for each incumbent, and the predicted investment
for each incumbent.

Step 4. Construct moment conditions using the average over all states of the
difference between the observed investment, entry, and exit at each
state and those predicted by the model.

Step 5. Estimate θ by minimizing a quadratic form in these moment condi-
tions.

Note that, similarly to above, if V is linear in θ, then the simulations in Step 2
can be performed in advance once, and then Step 2 involves only multiplying
together two vectors for each observed s, for each θ.

As described in Step 4 above, this method provides only three aggregate mo-
ment conditions (entry, exit, and investment), allowing us to identify at most
three parameters. In our Monte Carlo’s experiments we have four parameters
and thus require additional moment conditions. We thus add additional mo-
ment conditions based on the following criteria:

(i) the covariances between exit and investment, and the firm’s own state
(two moment conditions);

(ii) the covariances between entry, exit, and investment, and the sum of rival
firms’ states (three moment conditions).

This provides eight moment conditions in all. Note that additional moment
conditions could also be constructed by interacting other functions of s with
entry, exit, or investment. We use an optimal weight matrix when there are
enough observations to compute these weights.

Results from this estimator are shown in Table V. Even at the smallest sam-
ple sizes, the bias in the aggregate moments estimator is much smaller than for
the inequality estimator, particularly for the cost of investment parameter and
for the lower bound on the entry cost. Standard errors are larger in some cases
and smaller in others, so there is no obvious gain or loss in efficiency between
the two estimators.

These results suggest that the aggregate moments estimator may have de-
sirable finite sample properties compared to the inequality estimator. The ag-
gregate moments approach does have some drawbacks in that it requires solv-
ing for the optimal investment policy, which may not always be us straightfor-
ward as it is in our model. A more realistic model also might allow for private
investment costs, so one would have to compute the investment policy as a
function of this shock and then simulate the moment conditions. In our par-
ticular example, investment has an analytic solution and there are no private
investment costs, so these issues do not arise. Of course, the inequality esti-
mator also has the advantage of applying easily to set-identified models, but in
cases where the model is point identified and aggregate moments are easy to
compute, we think the aggregate moments approach should be considered as
well.
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TABLE V

DYNAMIC OLIGOPOLY MODEL: METHOD OF MOMENTS ESTIMATES

Mean SE (Real) 5% (Real) 95% (Real) SE (Subsampling)

n= 400, nI = 500
ξ 1�01 0.03 0.96 1�06 0.03
φ 6�09 0.18 5.86 6�36 0.05
νl 7�04 1.01 5.42 8�35 0.90
νh 11�1 0.65 9.97 12�0 0.57

n= 200, nI = 500
ξ 1�01 0.05 0.92 1�08 0.04
φ 6�06 0.24 5.74 6�38 0.10
νl 6�89 1.98 3.52 9�16 1.35
νh 11�0 1.54 9.21 12�5 0.91

n= 100, nI = 300
ξ 1�01 0.06 0.90 1�10 0.04
φ 6�02 0.34 5.43 6�48 0.15
νl 6�86 2.34 2.61 9�16 1.44
νh 11�1 1.83 8.73 13�58 1.09

7. CONCLUSION

This paper describes two new estimators applicable to a large class of dy-
namic environments. The estimators exploit the assumption that observed be-
havior is consistent with Markov perfect equilibrium. In that case, agents’
beliefs can be recovered from observations of equilibrium play. Once agents’
beliefs are known, the structural parameters can be solved for using the opti-
mality conditions for equilibrium.

The biggest advantage of the approach is that it avoids the need for equi-
librium computation. Avoiding equilibrium computation solves two problems.
First, computing an equilibrium even once, for even the simplest of empirical
dynamic oligopoly models, can be computationally prohibitive. In contrast, in
our Monte Carlo experiments we found that the overall computational burden
of the new estimators tends to be no more than that of many commonly used
static estimation methods. Second, because equilibrium beliefs are obtained
from the data, there is no need for the researcher to make assumptions about
which of many potential equilibria is being played. These two benefits do come
at some cost, because in avoiding equilibrium computations, some efficiency is
compromised. However, the Monte Carlo experiments show that the approach
still works quite well for fairly small data sets.

Both estimators are also conceptually straightforward and relatively easy to
program in standard statistical packages. Given that there is currently a vari-
ety of options for estimating single-agent dynamic models, we expect that the
estimators will be most useful for estimating dynamic games. In particular, we
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hope our approach will facilitate future empirical work on dynamic oligopoly,
such as the recent work of Ryan (2006).
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APPENDIX: PROOFS OF PROPOSITIONS 1 AND 2

To shorten notation, let h(y)= (min{y�0})2� The sample objective function
is then

Qn(θ�α)= 1
nI

nI∑
k=1

h(ĝ(Xk;θ�α))�

while the asymptotic objective function is given by

Q(θ�α0)= EXh(g(Xk;θ�α0))�

where Xk has distribution H on X .
We will use the following properties of the above functions:
1. h has a continuous first derivative, its second derivative is continuous

everywhere except at zero, and its third and higher derivatives are zero
everywhere.

2. g and its derivatives with respect to α are smooth in θ.
3. Q(θ�α0), Qn(θ�α), and (∂Qn(θ�α))/∂α are smooth in θ.
We will do the asymptotics in the number of first-stage observations, n. The

reason for this is that the number of inequalities sampled, nI , and the number
of simulation draws per inequality, ns, are both under the researcher’s control.

LEMMA A1: supθ∈Θ |Qn(θ� α̂n)−Q(θ�α0)| = op(1).

PROOF: Because Qn and Q are continuous in θ, it suffices to show that
Qn(θ� α̂n)−Q(θ�α0) is op(1) for each θ:

Qn(θ� α̂n)−Q(θ�α0)

= 1
nI

nI∑
k=1

{
h(ĝ(Xk;θ� α̂n))− h(ĝ(Xk;θ�α0))

}

mailto:bajari@econ.umn.edu
mailto:lanierb@stanford.edu
mailto:jdlevin@stanford.edu


1366 P. BAJARI, C. L. BENKARD, AND J. LEVIN

+ 1
nI

nI∑
k=1

{
h(ĝ(Xk;θ�α0))− E

[
h(ĝ(Xk;θ�α0))

]}
+ 1
nI

nI∑
k=1

{
E
[
h(ĝ(Xk;θ�α0))

] − h(g(Xk;θ�α0))
}

+ 1
nI

nI∑
k=1

h(g(Xk;θ�α0))− EXh(g(Xk;θ�α0))�

The first term, equal to Qn(θ� α̂n)−Qn(θ�α0), represents the effect of using a
preliminary estimator for α rather than the true value. By a mean-value expan-
sion (Assumption S2(ii)),

Qn(θ� α̂n)−Qn(θ�α0)= ∂Qn(θ�α
∗
n)

∂α
(̂αn − α)�

where α̂∗
n → α0 lies between α̂n and α0. The derivative term satisfies a weak law

of large numbers (WLLN), so this term is op(1) by Assumption S1.
The second term represents the simulation error (the expectation is the ex-

pected simulation outcome). Each element of the sum is independent by As-
sumption S2(ii) and has expectation zero by construction. As ns → ∞ by As-
sumption S2(iii), this term is also op(1).

The third term represents the simulation bias. Doing a mean-value expan-
sion of one term in the sum gives

h(ĝ(Xk;θ�α0))− h(g(Xk;θ�α0))

= h′(g∗(Xk;θ�α0))(ĝ(Xk;θ�α0)− g(Xk;θ�α0))�

where g∗ lies between g and ĝ. This term has expectation zero because ĝ is
unbiased (Assumption S2(ii)). Because each term is independent, the sum also
satisfies a WLLN. Thus this term is also op(1).

The last term represents the fact that all the inequalities are sampled only
asymptotically. It satisfies a WLLN as long as Q(θ�α0) exists and is finite, so
the last term is op(1) given that nI → ∞. Q.E.D.

PROOF OF PROPOSITION 1: For consistency, observe that by our identifica-
tion assumption, if |θ̂− θ0|> δ > 0, then there exists some ε(δ) > 0 such that
Q(θ̂�α0) > ε, so

Pr(|θ̂− θ0|> δ)≤ Pr(Q(θ̂�α0) > ε(δ))�

Now observe that

Q(θ̂�α0)=Q(θ̂�α0)−Qn(θ̂� α̂n)+Qn(θ̂� α̂n)

≤ |Q(θ̂�α0)−Qn(θ̂� α̂n)| +Qn(θ̂� α̂n)
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≤ sup
θ∈Θ

|Q(θ�α0)−Qn(θ� α̂n)| +Qn(θ̂� α̂n)

= op(1)+Qn(θ̂� α̂n)

≤ op(1)+Qn(θ0� α̂n)= op(1)�

It follows that θ̂n →p θ0.
We now consider the asymptotic distribution of θ̂n. DifferentiatingQn(θ� α̂n),

evaluating at θ= θ0, and pre-multiplying by
√
n gives

√
n
∂

∂θ
Qn(θ0; α̂n)

=
√
n

nI

nI∑
k=1

(
∂

∂θ
h(ĝ(Xk;θ0� α̂n))− ∂

∂θ
h(ĝ(Xk;θ0�α0))

)

+
√
n

nI

nI∑
k=1

(
∂

∂θ
h(ĝ(Xk;θ0�α0))− E

∂

∂θ
h(ĝ(Xk;θ0�α0))

)

+
√
n

nI

nI∑
k=1

(
E
∂

∂θ
h(ĝ(Xk;θ0�α0))− ∂

∂θ
h(g(Xk;θ0�α0))

)

+
√
n

nI

nI∑
k=1

∂

∂θ
h(g(Xk�θ0;α0))�

These four terms are analogous to those in Lemma A1.
The first term is the first-stage sampling error term. Doing an element by

element mean-value expansion of the first term gives the expression

√
n

nI

nI∑
k=1

(
∂

∂θ
h(ĝ(Xk;θ0� α̂n))− ∂

∂θ
h(ĝ(Xk;θ0�α0))

)

=
(

1
nI

nI∑
k=1

∂2h(ĝ(Xk;θ0�α
∗
n))

∂θ∂α′

)√
n(̂αn − α0)�

By a WLLN, consistency of α̂n, and consistency of ĝ, then as ns and nI go to ∞
with n, (

1
nI

nI∑
k=1

∂2h(ĝ(Xk;θ0�α
∗
n))

∂θ∂α′

)
p→Λ0 ≡ ∂2

∂θ∂α′ EXh(g(Xk;θ0�α0))

= ∂2

∂θ∂α′Q(θ0�α0)�
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Note that the derivative above can be brought outside the integral because the
function inside is bounded. Thus, under these assumptions the first term has
limiting distribution N(0�Λ0VαΛ0)�

The second term is the simulation variance term. It is mean zero by construc-
tion and is the sum of independent terms (Assumptions S2(ii)). Therefore, a
central limit theorem applies and the second term is asymptotically normal
with rate

√
nI and variance matrix of the form SnI /ns that disappears with ns.

As nI and ns go to infinity with n (Assumptions S2(iii)), this term contributes
nothing to the asymptotic variance (this would be true even for fixed ns).

The third term is the simulation bias term. Doing a second-order mean-value
expansion of h(ĝ) around g for one element in the sum for the third term gives

∂

∂θl
h(ĝ(Xk;θ0�α0))− ∂

∂θl
h(g(Xk;θ0�α0))

= ∂

∂θ

∂

∂θl
h(g(Xk;θ0�α0))× (ĝ(Xk;θ0�α0)− g(Xk;θ0�α0))

+ 1
2

∂2

∂θ∂θ′
∂

∂θl
h(g∗(Xk;θ0�α0))(ĝ(Xk;θ0�α0)− g(Xk;θ0�α0))

2�

where g∗ lies between ĝ and g. Note that the derivatives of h on the right-
hand side exist with probability 1. Taking the expectations with respect to the
simulation error gives

E
∂

∂θl
ĥ(Xk;θ0�α0)− ∂

∂θl
h(Xk;θ0�α0)

= 1
2

∂2

∂θ∂θ′
∂

∂θl
h(g∗(Xk;θ0�α0))Var(ĝ(Xk;θ0�α0))�

Since g∗ → g, this term goes to zero at rate ns. Therefore, as long as ns goes
to infinity faster than

√
n, the third term contributes nothing to the asymptotic

variance.
The last term is the standard term in the first-order expansion. Note that in

this case it is always zero (since h is always zero at the true values of the para-
meters) and thus drops out completely. This is because of the lack of sampling
error in the second stage.

Putting all four terms together gives

√
n
∂

∂θ
Qn(θ0� α̂n)

d→N(0�Λ0VαΛ0)�

Under Assumption S2(v), the asymptotic distribution of the estimator is
given by

√
n(θ̂− θ0)

d→N(0�B−1
0 (Λ0VαΛ

′
0)B

−1
0 )� Q.E.D.
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PROOF OF PROPOSITION 2: The first part follows from Lemma A1. The sec-
ond part follows from Proposition 5b in Manski and Tamer (2002). Q.E.D.
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