

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 7, No. 4, pp. 1727–1750

A FAST BUTTERFLY ALGORITHM FOR THE COMPUTATION OF
FOURIER INTEGRAL OPERATORS∗

EMMANUEL CANDÈS† , LAURENT DEMANET‡, AND LEXING YING§

Abstract. This paper is concerned with the fast computation of Fourier integral operators of the
general form

∫
Rd e2πıΦ(x,k)f(k)dk, where k is a frequency variable, Φ(x, k) is a phase function obeying

a standard homogeneity condition, and f is a given input. This is of interest, for such fundamental
computations are connected with the problem of finding numerical solutions to wave equations and
also frequently arise in many applications including reflection seismology, curvilinear tomography,
and others. In two dimensions, when the input and output are sampled on N ×N Cartesian grids, a
direct evaluation requires O(N4) operations, which is often times prohibitively expensive. This paper
introduces a novel algorithm running in O(N2 log N) time, i.e., with near-optimal computational
complexity, and whose overall structure follows that of the butterfly algorithm. Underlying this
algorithm is a mathematical insight concerning the restriction of the kernel e2πıΦ(x,k) to subsets of
the time and frequency domains. Whenever these subsets obey a simple geometric condition, the
restricted kernel is approximately low-rank; we propose constructing such low-rank approximations
using a special interpolation scheme, which prefactors the oscillatory component, interpolates the
remaining nonoscillatory part, and finally remodulates the outcome. A byproduct of this scheme
is that the whole algorithm is highly efficient in terms of memory requirement. Numerical results
demonstrate the performance and illustrate the empirical properties of this algorithm.

Key words. Fourier integral operators, butterfly algorithm, dyadic partitioning, Lagrange
interpolation, separated representation, multiscale computations

AMS subject classifications. 44A55, 65R10, 65T50

DOI. 10.1137/080734339

1. Introduction. This paper introduces an efficient algorithm for evaluating
discrete Fourier integral operators. Let N be a positive integer, which is assumed to
be an integer power of 2 with no loss of generality, and define the Cartesian grids
X = {(i1/N, i2/N), 0 ≤ i1, i2 < N} and Ω = {(k1, k2),−N/2 ≤ k1, k2 < N/2}. A
discrete Fourier integral operator (FIO) with constant amplitude is defined by

(1.1) u(x) =
∑
k∈Ω

e2πıΦ(x,k)f(k), x ∈ X,

where {f(k), k ∈ Ω} is a given input, {u(x), x ∈ X} is the output, and, as usual,
ı =

√−1. By an obvious analogy with problems in electrostatics, it will be convenient
throughout the paper to refer to {f(k), k ∈ Ω} as sources and {u(x), x ∈ X} as
potentials. Here, the phase function Φ(x, k) is assumed to be smooth in (x, k) for k �= 0
and obeys an homogeneity condition of degree 1 in k, namely, Φ(x, λk) = λΦ(x, k)
for each λ > 0.

∗Received by the editors September 3, 2008; accepted for publication March 30, 2009; published
electronically June 12, 2009.

http://www.siam.org/journals/mms/7-4/73433.html
†Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 (ecandes@acm.caltech.

edu). This author’s research was partially supported by the Waterman Award from the National
Science Foundation and by ONR grant N00014-08-1-0749.

‡Department of Mathematics, Stanford University, Stanford, CA 94305 (laurent@math.stanford.
edu). This author’s research was partially supported by National Science Foundation grant DMS-
0707921.

§Department of Mathematics and ICES, University of Texas, Austin, TX 78712 (lexing@math.
utexas.edu). This author’s research was partially supported by an Alfred P. Sloan Fellowship and
National Science Foundation grant DMS-0708014.

1727

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1728 E. CANDÈS, L. DEMANET, AND L. YING

A direct numerical evaluation of (1.1) at all the points in X takes O(N4) flops,
which can be very expensive for large values of N . Surveying the literature, the main
obstacle to constructing fast algorithms for (1.1) is the oscillatory behavior of the
kernel e2πıΦ(x,k) when N is large, which prevents the use of the standard multiscale
techniques developed in [5, 6, 26, 28]. Against this background, the contribution of
this paper is to introduce a novel algorithm running in O(N2 log N) operations, where
the constant is polylogarithmic in the prescribed accuracy ε.

1.1. General strategy. Because the phase function Φ(x, k) is singular at k = 0,
the first step consists in representing the frequency variable k in polar coordinates via
the transformation

(1.2) k = (k1, k2) =
√

2
2

Np1e
2πıp2 , e2πıp2 = (cos 2πp2, sin 2πp2).

Here and below, the set of all possible points p generated from Ω is denoted by P ; see
Figure 1.1(b). Note that this transformation guarantees that each point p = (p1, p2)
belongs to the unit square [0, 1]2 since −N/2 ≤ k1, k2 < N/2. Now it is natural to
introduce a phase function Ψ(x, p) in the p variable:

Ψ(x, p) :=
1
N

Φ(x, k) =
√

2
2

Φ
(
x, e2πıp2

)
p1,

where the last equality comes from the fact that Φ(x, k) is homogeneous of degree one
in k. Since Φ(x, k) is smooth in (x, k) for k �= 0, Ψ(x, p) is a smooth function of (x, p)
with x and p in [0, 1]2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

(a) (b) (c)

Fig. 1.1. The point distribution and hierarchical partitioning (at a fixed level) for N = 64.
(a) The set X. (b) The set P in polar coordinates. (c) The frequency partitioning in Cartesian
coordinates (k ∈ Ω).

With these notations, we can reformulate the computational problem (1.1) as

u(x) =
∑
p∈P

e2πıNΨ(x,p)f(p), x ∈ X,

in which the sources {f(p)} are now indexed by p instead of k. As we just men-
tioned, the main issue is that the kernel function e2πıNΨ(x,p) is highly oscillatory. Our
approach relies on the observation that this kernel, properly restricted to time and
frequency subdomains, admits accurate and low-order separated approximations. To
see why this is true, consider two square boxes A and B in [0, 1]2 centered at x0(A)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1729

and p0(B), and suppose that the sidelengths w(A) and w(B) obey the relationship
w(A)w(B) ≤ 1/N . Introduce the new function

(1.3) RAB(x, p) := Ψ(x, p) − Ψ(x0(A), p) − Ψ(x, p0(B)) + Ψ(x0(A), p0(B)),

for each x ∈ A and p ∈ B, and decompose the kernel e2πıNΨ(x,p) as
(1.4)

e2πıNΨ(x,p) = e2πıNΨ(x0(A),p) e2πıNΨ(x,p0(B)) e−2πıNΨ(x0(A),p0(B)) e2πıNRAB(x,p).

In (1.4), we note that each of the first three terms depends on at most one variable
(x or p). Recall now the standard multi-index notation; i and j are multi-indices and
for i = (i1, i2), i1, i2 ≥ 0, |i| = i1 + i2 and for x = (x1, x2), xi = xi1

1 xi2
2 . Applying the

mean value theorem to RAB(x, p) successively in p and x gives

RAB(x, p) ≤ sup
p∗∈B

∑
|j|=1

∣∣∂j
p[Ψ(x, p∗) − Ψ(x0(A), p∗)]

∣∣ |(p − p0(B))j |

≤ sup
x∗∈A

sup
p∗∈B

∑
|i|=1

∑
|j|=1

∣∣∂i
x∂j

pΨ(x∗, p∗)
∣∣ |(x − x0(A))i| |(p − p0(B))j |

= O(1/N).(1.5)

The last equation follows from the smoothness of the phase Ψ(x, p) and from the
assumption w(A)w(B) ≤ 1/N . To summarize, (1.5) gives 2πN RAB(x, p) = O(1)
and, therefore, the complex exponential e2πıNRAB(x,p) is nonoscillatory.

Under some mild smoothness condition, this observation guarantees that for any
fixed accuracy ε, there exists a low-rank separated approximation of e2πıNRAB(x,p),
valid over A × B, effectively decoupling the spatial variable x from the frequency
variable p. We propose constructing this low-rank approximation using a tensor-
product Chebyshev interpolation of the function e2πıNRAB(x,p) in the x variable when
w(A) ≤ 1/

√
N and in the p variable when w(B) ≤ 1/

√
N . Since the first three terms

in (1.4) depend on at most one variable, one also has a separated approximation of
e2πıNΨ(x,p) with exactly the same separation rank. Looking at (1.4), the resulting
low-rank approximation of the kernel e2πıNΨ(x,p) can be viewed as a special interpo-
lation scheme that prefactors the oscillatory component, interpolates the remaining
nonoscillatory part, and finally appends the oscillatory component. As we will see
later, the separation rank providing an ε-approximation, for any fixed ε, is bounded
from above by a constant independent of N . Further, if we define the partial sum
generated by the sources p inside B for any fixed box B as

(1.6) uB(x) :=
∑
p∈B

e2πıNΨ(x,p)f(p),

then the existence of such a separated approximation implies the existence of a com-
pact expansion for the restriction of uB(x) to A, {uB(x), x ∈ A}, of the form
(1.7)

uB(x) ≈
r∑

t=1

∑
p∈B

αAB
t (x)βAB

t (p)f(p) =
r∑

t=1

δAB
t αAB

t (x), δAB
t =

∑
p∈B

βAB
t (p)f(p).

In (1.7), the number r of expansion coefficients δAB
j is independent of N for a fixed

relative error ε, as we will see later.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1730 E. CANDÈS, L. DEMANET, AND L. YING

The problem is then to compute these compact expansions. This is where the
basic structure of the butterfly algorithm [30, 31] is powerful. A brief overview is as
follows. We start by building two quadtrees TX and TP (see Figure 1.1(a) and (b)),
respectively, in the spatial and frequency domains with leaf nodes at level L = log2 N .
For each leaf node B ∈ TP , we first construct the expansion coefficients for the
potential {uB(x), x ∈ A}, where A is the root node of TX . This can be done efficiently
because B is a very small box. Next, we go down in TX and up in TP simultaneously.
For each pair (A, B) with A at the 	th level of TX and B at the (L −)th level of
TP , we construct expansion coefficients for {uB(x), x ∈ A}. As we shall see later, the
key point is that this is done by using the expansion coefficients which have already
been computed at the previous level. Finally, we arrive at level 	 = L, i.e., at the
root node of TP . There uB(x) = u(x), and since one has available all the compact
expansions corresponding to all the leaf nodes A of TX , one holds an approximation
of the potential u(x) for all x ∈ X .

1.2. Applications. The discrete equation (1.1) naturally arises as a numerical
approximation of a continuous-time FIO of the general form

(1.8) u(x) =
∫

R2
a(x, k)e2πıΦ(x,k)f(k)dk.

Note that in (1.1), the problem is simplified by setting the amplitude a(x, k) to 1.
The reason for making this simpler is that in most applications of interest, a(x, k) is
a much simpler object than the term e2πıΦ(x,k). For instance, a(x, k) often has a low-
rank separated approximation, which is valid in R

2 × R
2 and yields a fast algorithm

[3, 11]. Hence, setting a(x, k) = 1 retains the essential computational difficulty.
A significant instance of (1.8) is the solution operator to the wave equation

utt(x, t) − c2Δu(x, t) = 0

with constant coefficients and x ∈ R
2. With initial conditions of the form u(x, 0) =

u0(x) and ut(x, 0) = 0, say, the solution u(x, t) at any time t > 0 is given by

u(x, t) =
1
2

(∫
R2

e2πı(x·k+c|k|t)û0(k)dk +
∫

R2
e2πı(x·k−c|k|t)û0(k)dk

)
,

where û0 is the Fourier transform of u0. Clearly, this is the sum of two FIOs with
phase functions Φ±(x, k) = x ·k±c|k|t and amplitudes a±(x, k) = 1/2. Further, FIOs
are still solution operators even in the case of inhomogeneous coefficients c(x) as in

utt(x, t) − c2(x)Δu(x, t) = 0.

Indeed, under very mild smoothness assumptions, the solution operator remains the
sum of two FIOs, at least for sufficiently small times. The only difference is that the
phases and amplitudes are a little more complicated. In particular, the phase function
is the solution of a Hamilton–Jacobi equation which depends upon c(x).

Another important example of FIO frequently arises in seismics. A fundamental
task in reflection seismology consists in producing an image of the sharp features of
an underground medium from the seismograms generated by surface explosions. In a
nutshell, one builds an imaging operator which maps variations of the pressure field
at the surface into variations of the sound speed of the medium (large variations indi-
cate the presence of reflectors). This imaging operator turns out to be an FIO [4, 11].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1731

Because FIOs are hard to compute, several algorithms with various degrees of simpli-
fication have been proposed, most notably Kirchhoff migration, which approximates
the imaging operator as a generalized Radon transform [4, 38]. Computing this trans-
form still has a relatively high complexity, namely, of order N3 in two dimensions. In
contrast, the algorithm proposed in this paper has an optimal O(N2 log N) operation
count, hence possibly offering a significant speedup.

1.3. Related work. Although FIOs play an important role in the analysis and
computation of linear hyperbolic problems, the literature on fast computations of
FIOs is surprisingly limited. The only work addressing (1.1) in this general form is
the article [11] by the authors of the current paper. The operative feature in [11]
is an angular partitioning of the frequency domain into

√
N wedges, each with an

opening angle equal to 2π/
√

N . When restricting the input to such a wedge, one can
then factor the operator into a product of two simpler operators. The first operator is
provably approximately low-rank (and lends itself to efficient computations), whereas
the second one is a nonuniform Fourier transform which can be computed rapidly using
the nonuniform fast Fourier transform (NFFT) [1, 23, 32]. The resulting algorithm
has an O(N2.5 log N) complexity.

In a different direction, there has been a great amount of research on other types of
oscillatory integral transforms. An important example is the discrete n-body problem
where one wants to evaluate sums of the form∑

1≤j≤n

qjK(|x − xj |), K(r) = eıωr/r

in the high-frequency regime (ω is large). Such problems appear naturally when solv-
ing the Helmholtz equation by means of a boundary integral formulation [16, 17]. A
popular approach seeks to compress the oscillatory integral operator by representing
it in an appropriate basis such as a local Fourier basis or a basis extracted from the
wavelet packet dictionary [2, 7, 22, 29]. This representation sparsifies the operator,
thus allowing fast matrix-vector products. In spite of having good theoretical esti-
mates, this approach has thus far been practically limited to one-dimensional bound-
aries. One particular issue with this approach is that the evaluation of the remaining
nonnegligible coefficients sometimes requires assembling the entire matrix, which can
be computationally rather expensive.

To the best of our knowledge, the most successful method for the Helmholtz
kernel n-body problem in both two and three dimensions is the high-frequency fast
multipole method (HF-FMM) proposed by Rokhlin and his collaborators in a series
of papers [34, 35, 13]. This approach combines the analytic property of the Helmholtz
kernel with an FFT-type fast algorithm to speed up the computation of the interaction
between well-separated regions. If N2 is the number of input and output points as
before, the resulting algorithm has an O(N2 log N) computational complexity. Other
algorithms using similar techniques can be found in [15, 18, 19, 36].

Finally, the idea of butterfly computations has been applied to the n-body prob-
lem in several ways. The original paper of Michielssen and Boag [30] used this
technique to accelerate the computation of the oscillatory interactions between well-
separated regions. More recently, Engquist and Ying [24, 25] proposed a multidi-
rectional solution to this problem, where part of the algorithm can be viewed as a
butterfly computation between specially selected spatial subdomains.

1.4. Contents. The rest of this paper is organized as follows. Section 2 describes
the overall structure of the butterfly algorithm. In section 3, we prove the low-rank

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1732 E. CANDÈS, L. DEMANET, AND L. YING

property of the kernel and introduce an interpolation-based method for constructing
low-rank separated approximations. Section 4 develops the algorithm by incorporating
our low-rank approximations into the butterfly structure. Numerical results are shown
in section 5. Finally, we discuss related problems for future research in section 6.

2. The butterfly algorithm. We begin by offering a general description of the
butterfly structure and then provide several concrete examples. This general structure
was originally introduced in [30] and later generalized in [31].

In this section, X and P are two arbitrary point sets in R
d, both of cardinality M .

We are given inputs {f(p), p ∈ P} and wish to compute the potentials {u(x), x ∈ X}
defined by

u(x) =
∑
p∈P

K(x, p)f(p), x ∈ X,

where K(x, p) is some kernel. Let DX ⊃ X and DP ⊃ P be two square domains
containing X and P , respectively. The main data structure underlying the butterfly
algorithm is a pair of dyadic trees TX and TP . The tree TX has DX as its root box
and is built by recursive, dyadic partitioning of DX until each leaf box contains only a
small number of points. The tree TP recursively partitions DP in the same way. With
the convention that the root nodes are at level 0, one sees that under some uniformity
condition about the point distributions, the leaf nodes are at level L = O(log M).
Throughout, A and B denote the square boxes of TX and TP , and 	(A) and 	(B)
denote their level.

The crucial property that makes the butterfly algorithm work is a special low-
rank property. Consider any pair of boxes A ∈ TX and B ∈ TP obeying the condition
	(A) + 	(B) = L; we want the submatrix {K(x, p), x ∈ A, p ∈ B} (we will sometimes
loosely refer to this as the interaction between A and B) to be approximately of
constant rank. More rigorously, for any ε, there must exist a constant rε independent
of M and two sets of functions {αAB

t (x), 1 ≤ t ≤ rε} and {βAB
t (p), 1 ≤ t ≤ rε} such

that the following approximation holds:

(2.1)

∣∣∣∣∣K(x, p) −
rε∑

t=1

αAB
t (x)βAB

t (p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ B.

The number rε is called the ε-separation rank. The exact form of the functions
{αAB

t (x)} and {βAB
t (p)} of course depends on the problem to which the butterfly

algorithm is applied, and we will give two examples at the end of this section.
Recalling the definition uB(x) =

∑
p∈B K(x, p)f(p), the low-rank property gives

a compact expansion for {uB(x), x ∈ A} as follows: summing (2.1) over p ∈ B with
weights f(p) gives∣∣∣∣∣∣uB(x) −

rε∑
t=1

αAB
t (x)

⎛
⎝∑

p∈B

βAB
t (p)f(p)

⎞
⎠

∣∣∣∣∣∣ ≤
⎛
⎝∑

p∈B

|f(p)|
⎞
⎠ ε ∀x ∈ A.

Therefore, if we can find coefficients {δAB
t }t obeying

(2.2) δAB
t ≈

∑
p∈B

βAB
t (p)f(p),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1733

then the restricted potential {uB(x), x ∈ A} admits the compact expansion∣∣∣∣∣uB(x) −
rε∑

t=1

αAB
t (x)δAB

t

∣∣∣∣∣ ≤
⎛
⎝∑

p∈B

|f(p)|
⎞
⎠ ε ∀x ∈ A.

We would like to emphasize that for each pair (A, B), the number of terms in the
expansion is independent of M .

Computing {δAB
t , 1 ≤ t ≤ rε} by means of (2.2) for all pairs A, B is not efficient

when B is a large box because for each B, there are many paired boxes A. The
butterfly algorithm, however, comes with an efficient way for computing {δAB

t } recur-
sively. The general structure of the algorithm consists of a top down traversal of TX

and a bottom up traversal of TP , carried out simultaneously. Postponing the issue
of computing the separated expansions, i.e., {αAB

t (x)} and {βAB
t (p)}, this is how the

butterfly algorithm operates.
1. Preliminaries. Construct the trees TX and TP with root nodes DX and DP .
2. Initialization. Let A be the root of TX . For each leaf box B of TP , construct

the expansion coefficients {δAB
t , 1 ≤ t ≤ rε} for the potential {uB(x), x ∈ A}

by simply setting

(2.3) δAB
t =

∑
p∈B

βAB
t (p)f(p).

3. Recursion. For 	 = 1, 2, . . . , L, visit level 	 in TX and level L − 	 in TP . For
each pair (A, B) with 	(A) = 	 and 	(B) = L − 	, construct the expansion
coefficients {δAB

t , 1 ≤ t ≤ rε} for the potential {uB(x), x ∈ A}. This is done
by using the low-rank representation constructed at the previous level (= 0
is the initialization step). Let Ap be A’s parent and {Bc} be B’s children.
At level 	 − 1, the expansion coefficients {δApBc

t′ }t′ of {uBc(x), x ∈ Ap} are
readily available and we have∣∣∣∣∣uBc(x) −

rε∑
t′=1

α
ApBc

t′ (x)δApBc

t′

∣∣∣∣∣ ≤
⎛
⎝ ∑

p∈Bc

|f(p)|
⎞
⎠ ε ∀x ∈ Ap.

Since uB(x) =
∑

c uBc(x), the previous inequality implies that∣∣∣∣∣uB(x) −
∑

c

rε∑
t′=1

α
ApBc

t′ (x)δApBc

t′

∣∣∣∣∣ ≤
⎛
⎝∑

p∈B

|f(p)|
⎞
⎠ ε ∀x ∈ Ap.

Since A ⊂ Ap, the above approximation is of course true for any x ∈ A. How-
ever, since 	(A)+ 	(B) = L, the sequence of restricted potentials {uB(x), x ∈
A} also has a low-rank approximation of size rε, namely,∣∣∣∣∣uB(x) −

rε∑
t=1

αAB
t (x)δAB

t

∣∣∣∣∣ ≤
⎛
⎝∑

p∈B

|f(p)|
⎞
⎠ ε ∀x ∈ A.

Combining these last two approximations, we obtain that {δAB
t }t should obey

(2.4)
rε∑

t=1

αAB
t (x)δAB

t ≈
∑

c

rε∑
t′=1

α
ApBc

t′ (x)δApBc

t′ ∀x ∈ A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1734 E. CANDÈS, L. DEMANET, AND L. YING

Since this is an overdetermined linear system for {δAB
t }t when {δApBc

t′ }t′,c
are available, one possible approach to compute {δAB

t }t is to solve a least-
squares problem, but this can be very costly when |A| is large. Instead,
the butterfly algorithm uses an approximate linear transformation mapping
{δApBc

t′ }t′,c into {δAB
t }t, which can be computed efficiently. We will discuss

how this is done in several examples at the end of this section.
4. Termination. Now let 	 = L and set B to be the root node of TP . For

each leaf box A ∈ TX , use the constructed expansion coefficients {δAB
t }t to

evaluate u(x) for each x ∈ A,

(2.5) u(x) =
rε∑

t=1

αAB
t (x)δAB

t .

A schematic illustration of the algorithm is provided in Figure 2.1. We would
like to emphasize that the strict balance between the levels of the target boxes A and
source boxes B maintained throughout the procedure is the key to obtaining accurate
low-rank separated approximations.

Fig. 2.1. Schematic illustration of the butterfly algorithm in two dimensions with four levels
(L = 3). The tree TX is on the left and TP is on the right. The levels are paired as indicated so that
the product of the sidelengths remains constant. The solid line pairs two square boxes A and B at
level 2 (shaded in gray); low-rank approximations of the localized kernel and expansion coefficients
for the localized potential are computed for each such pair. The algorithm starts at the root of TX

and at the bottom of TP . It then traverses TX top down and TP bottom up and terminates when
the last level (the bottom of TX) is reached. The figure also represents the four children of any box
B.

Leaving aside the computations of the separated expansion and taking for granted
that constructing {δAB

t }t for each pair (A, B) has, in principle, the complexity of
applying a linear transform of size O(rε × rε), observe that the butterfly algorithm
has low computational complexity. To be sure, the construction of TX and TP clearly
takes at most O(M log M) operations. The initialization and termination steps take
at most O(rε M), as these steps require at most O(rε) operations per point; see (2.3)
and (2.5). The main workload is of course in the recursion step. At each fixed level 	,
the number of pairs (A, B) under consideration is of order O(M). It follows from our
assumption that the number of flops required to compute all the coefficients {δAB

t }t

at each level 	 is just O(r2
ε M). Since there are only about log M levels, the number

of operations in the recursion is at most of the order of O(r2
ε M log M). In conclusion,

the overall operation count is O(r2
ε M log M).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1735

The general structure of the butterfly algorithm should be clear by now, but we
have left out two critical pieces, which we would need to address to apply it to specific
problems.

1. What are the functions {αAB
t (x)} and {βAB

t (p)} in the low-rank approxima-
tion (2.1) and how are they computed?

2. How do we solve for {δAB
t }t from (2.4)?

The rest of this section discusses answers in two distinct examples.
Example 1. In [31], O’Neil and Rokhlin apply the butterfly algorithm to several

special function transforms in one dimension. Suppose that N is a positive integer.
In this setup, DX = DP = [0, N], X and P are two sets of M = O(N) points
distributed uniformly or quasi-uniformly in [0, N], and the kernel K(x, p) parametrizes
some special functions. For example, in the case of the Fourier transform, K(x, p) =
e2πıxp/N so that p parametrizes a set of complex sinusoids. The trees TX and TP are
recursive dyadic partitions of [0, N] until the leaf nodes are of unit size. In this work,
all the kernels under study have low-rank approximations when restricted to any pair
A ∈ TX and B ∈ TP obeying 	(A) + 	(B) = L = log2 N .

The main tool for constructing the low-rank approximation is the interpolative
decomposition proposed in [27, 14]. Given an m×n matrix Z which is approximately
of rank r, the interpolative decomposition constructs an approximate factorization
Z ≈ ZCR, where the matrix ZC consists of a subset of r columns taken from the
original matrix Z and the entries of R have values close to one. Such a decomposition
requires O(mn2) operations, while storing the matrix R requires O(rn) memory space.
Applying this strategy to the kernel K(x, p) with x ∈ A and p ∈ B implies that the
functions {αAB

t (x), 1 ≤ t ≤ r} are of the form {K(x, pAB
t), 1 ≤ t ≤ r} with {pAB

t } ⊂ B
and the functions {βAB

t (p), 1 ≤ t ≤ r} are given by the corresponding entries in the
matrix R. Due to the special form of {αAB

t (x)}, the coefficients {δAB
t }t are often

called equivalent sources.
Now that we have addressed the computations of {αAB

t (x)} and {βAB
t (p)}, it

remains to examine how to evaluate the coefficients {δAB
t }. In the butterfly algorithm,

these coefficients are computed in the initialization step (2.3) and in the recursion
step (2.4). Initially, A is the root box of TX and B is a leaf box of TP . To compute
{δAB

t , 1 ≤ t ≤ r} in the initialization step, construct the interpolative decomposition
for K(x, p) with x ∈ A and p ∈ B obeying

(2.6)

∣∣∣∣∣K(x, p) −
rε∑

t=1

K(x, pAB
t)βAB

t (p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ B.

Since each leaf box B contains only a constant number of points p, constructing the
interpolative decomposition requires O(N) operations and O(rε) memory space for
each B. Since there at most O(N) of these boxes, the computational costs scales at
most like O(N2). Then we simply compute {δAB

t , 1 ≤ t ≤ r} via (2.3). Once the
interpolative decomposition is available, this requires O(rεN) operation for all pairs
at the 0th level.

As for (2.4), the special form of the functions {αAB
t (x), 1 ≤ t ≤ rε} allows rewrit-

ing the right-hand side as

uB(x) ≈
∑

c

rε∑
t′=1

K(x, p
ApBc

t′)δApBc

t′ .

As a result, we can treat this quantity as the potential generated by the equivalent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1736 E. CANDÈS, L. DEMANET, AND L. YING

sources {δApBc

t′ }c,t′ located at {pApBc

t′ }c,t′. In order to find {δAB
t , 1 ≤ t ≤ rε}, con-

struct the interpolative decomposition of K(x, p) with x ∈ A and p ∈ {pApBc

t′ }c,t′ ,
namely,

(2.7)

∣∣∣∣∣K(x, p) −
rε∑

t=1

K(x, pAB
t)βAB

t (p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ {pApBc

t′ }c,t′.

Since the number of points in {pApBc

t′ }c,t′ is proportional to rε, this construction
requires O(r2

ε |A|) and requires O(r2
ε) memory space per pair (A, B). Summing (2.7)

over p ∈ {pApBc

t′ }c,t′ with weights {δApBc

t′ }c,t′ gives a way to compute {δAB
t }t. Indeed,

one can set

δAB
t =

∑
c

∑
t′

βAB
t (pApBc

t′)δApBc

t′ , 1 ≤ t ≤ rε.

From the above discussion, we see that the butterfly algorithm described in [31]
requires a precomputation step to generate interpolative decompositions for

• K(x, p) for x ∈ A, where A is the root node and p ∈ B for each leaf node
(2.6),

• and K(x, p) for x ∈ A and p ∈ {pApBc

t′ }c,t′ for each pair (A, B) with 	(A) =
1, 2, . . . , L and 	(A) + 	(B) = L (2.7).

A simple analysis shows that these “precomputations” take O(r2
ε N2) operations and

require O(r2
ε N log N) memory space. The quadratic time is very costly for problems

with large N . This might be acceptable if the same FIO were applied a large number
of times. However, in the situation where the operator is applied only a few times,
the quadratic precomputation step becomes a huge overhead, and the computational
time may even exceed that of the direct evaluation method. Moreover, the storage
requirement quickly becomes a bottleneck even for problems of moderate sizes, as in
practice the constant r2

ε is often nonnegligible.
Example 2. In [39], the butterfly algorithm is used to develop a fast algorithm

for sparse Fourier transforms with both spatial and Fourier data supported on curves.
Suppose N is a positive integer. In this setting, DX = DP = [0, N]2, and X and
P are two sets of M = O(N) points supported on smooth curves in [0, N]2. The
kernel is given by K(x, p) = e2πıx·p/N . The quadtrees TX and TP are generated
adaptively in order to prune branches which do not intersect with the support curves.
The leaf boxes are of unit size and L = log2 N . For any pair of boxes A ∈ TX

and B ∈ TP with 	(A) + 	(B) = L, it is shown that the restricted kernel K(x, p)
is approximately low-rank. Here, the functions {αAB

t (x), 1 ≤ t ≤ r} take the form
{K(x, pB

t), 1 ≤ t ≤ r}, where {pB
t } is a tensor-product Chebyshev grid located inside

the box B. The coefficients {δAB
t }—also called equivalent sources—are constructed

by collocating (2.4) on a tensor-product Chebyshev grid inside the box A.
Due to the tensor-product structure of the grid {pB

t , 1 ≤ t ≤ r} and the special
form of the kernel K(x, p) = e2πıx·p/N , one can compute {δAB

t } via a linear trans-
formation which is essentially independent of the boxes A and B. As a result, one
does not need the quadratic-time precomputation step and there is no need to store
explicitly these linear transformations. We refer the reader to [39] for more details.

As we shall see, the algorithm introduced in this paper also makes use of tensor-
product Chebyshev grids, but the low-rank approximation is constructed through
interpolation rather than through collocation. Before discussing other similarities
and differences, however, we first need to introduce our algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1737

3. Low-rank approximations. Recall that our problem is to compute

u(x) =
∑
p∈P

e2πıNΨ(x,p)f(p), Ψ(x, p) =
√

2
2

Φ(x, e2πıp2)p1,

for all x ∈ X , where X and P are the point sets given in Figure 1.1(a) and (b).
As both X and P are contained in [0, 1]2, we set DX = [0, 1]2 and likewise for DP .
Then the two quadtrees TX and TP recursively partition the domains DX and DP

uniformly until the finest boxes are of sidelength 1/N .

3.1. The low-rank property. We assume that the function Ψ(x, p) is a real-
analytic function in the joint variables x and p. This condition implies the existence
of two constants Q and R such that

sup
x,p∈ [0,1]2

∣∣∂i
x∂j

pΨ(x, p)
∣∣ ≤ Q i!j! R−|i|−|j|,

where i = (i1, i2) and j = (j1, j2) are multi-indices, i! = i1!i2!, and |i| = i1 + i2.
For instance, the constant R can be set as any number smaller than the uniform
convergent radius of the power series of Ψ. Following [11], we term these functions
(Q, R)-analytic.

The theorem below states that for each pair of boxes (A, B) ∈ TX × TP obeying
w(A)w(B) = 1/N , the submatrix {e2πıNRAB(x,p), x ∈ A, p ∈ B} is approximately low-
rank. Throughout, the notation f � g means f ≤ Cg for some numerical constant C
independent of N and ε.

Theorem 3.1. Let A and B be boxes in TX and TP obeying w(A)w(B) = 1/N .
For any ε ≤ ε0 and N ≥ N0, where ε0 and N0 are some constants, there exists an
approximation obeying∣∣∣∣∣e2πıNRAB(x,p) −

rε∑
t=1

αAB
t (x)βAB

t (p)

∣∣∣∣∣ ≤ ε

with rε � log4(1/ε). Moreover,
• when w(B) ≤ 1/

√
N , the functions {βAB

t (p)}t can all be chosen as monomials
in (p − p0(B)) with a degree not exceeding a constant times log2(1/ε),

• and when w(A) ≤ 1/
√

N , the functions {αAB
t (x)}t can all be chosen as mono-

mials in (x − x0(A)) with a degree not exceeding a constant times log2(1/ε).
The proof of Theorem 3.1 uses the following elementary lemma (see [11] for a

proof).
Lemma 3.2. For each z0 > 0 and ε > 0, set sε = �max(2ez0, log2(1/ε))�. Then∣∣∣∣∣eız −

sε−1∑
t=0

(ız)t

t!

∣∣∣∣∣ ≤ ε ∀|z| ≤ z0.

Proof of Theorem 3.1. Below, we will drop the dependence on A and B in x0(A)
and p0(B), for A and B are fixed boxes. Since w(A)w(B) = 1/N , we either have
w(A) ≤ 1/

√
N or w(B) ≤ 1/

√
N or both. Suppose for instance that w(B) ≤ 1/

√
N .

Then

RAB(x, p) = Ψ(x, p) − Ψ(x0, p) − Ψ(x, p0) + Ψ(x0, p0)
= [Ψ(x, p) − Ψ(x0, p)] − [Ψ(x, p0) − Ψ(x0, p0)]
= Hx(p) − Hx(p0),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1738 E. CANDÈS, L. DEMANET, AND L. YING

where Hx(p) := Ψ(x, p)−Ψ(x0, p); the subscript indicates that we see H as a function
of p and think of x as a parameter. The function RAB(x, p) inherits the analyticity
from Ψ(x, p), and its truncated Taylor expansion may be written as

(3.1) RAB(x, p) =
∑

1≤|i|<K

∂i
pHx(p0)

i!
(p − p0)i +

∑
|i|=K

∂i
pHx(p∗)

i!
(p − p0)i,

where p∗ is a point in the segment [p0, p]. For each i with |i| = K, we have

∂i
pHx(p∗) =

∑
|j|=1

∂j
x∂i

pΨ(x∗, p∗)(x − x0)j

for some point x∗ in [x0, x] and, therefore, it follows from the (Q, R)-analycity property
that∣∣∣∣∣∂

i
pHx(p∗)

i!
(p − p0)i

∣∣∣∣∣ ≤ 2 QR−(K+1)w(A) (w(B))K ≤ 2QR−2 1
N

(
w(B)

R

)(K−1)

.

Since w(B) ≤ 1/
√

N , 1/
√

N ≤ R/2 ⇒ w(B)/R ≤ 1/2 and, therefore, for N suffi-
ciently large, ∣∣∣∣∣∂

i
pHx(p∗)

i!
(p − p0)i

∣∣∣∣∣ ≤ 2−(K−2) QR−2

N
.

Because there are at most K + 1 terms with |i| = K, it follows that

(3.2) 2πN

∣∣∣∣∣∣RAB(x, p) −
∑

1≤|i|<K

∂i
pHx(p0)

i!
(p − p0)i

∣∣∣∣∣∣ ≤ π(K + 1)QR−2 2−(K−3).

Set

(3.3) K = C0 log(1/ε).

Then if C0 is a sufficiently large numerical constant, the right-hand side of (3.2) is
smaller than ε and, therefore,

(3.4) 2πN
∣∣RAB(x, p) − A(x, p)

∣∣ ≤ ε, A(x, p) :=
∑

1≤|i|<K

∂i
pHx(p0)

i!
(p − p0)i.

Noting that
∣∣eıa − eıb

∣∣ ≤ |a − b|, we see that in order to obtain an ε-accurate
separated approximation for e2πıNRAB(x,p), we need only construct one for e2πıNA(x,p).
Our plan is to invoke Lemma 3.2. To do this, we need an estimate on A(x, p). When
K = 1, the estimate in (3.2) provides a bound of RAB(x, p)

2πN |RAB(x, p)| ≤ 8πQR−2.

Combining this estimate with (3.4) yields

2πN |A(x, p)| ≤ 2πN
∣∣RAB(x, p)

∣∣ + ε ≤ 8πQR−2 + ε.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1739

By taking ε small enough, we can assume

2e
(
8πQR−2 + ε

) ≤ log2(1/ε),

and Lemma 3.2 gives a log(1/ε)-term ε-accurate approximation∣∣∣∣∣∣e2πıNA(x,p) −
log(1/ε)−1∑

t=0

(2πNA(x, p))t

t!

∣∣∣∣∣∣ ≤ ε.

Expanding (2πıA(x, p))t for each t gives a sum in which each term is a function of
x times a monomial (p − p0)k of degree |k| � log2(1/ε). Since there are at most
O(log4(1/ε)) different choices for the multi-index k in the expanded formula, combin-
ing the terms with the same multi-index k yields an O(log4(1/ε))-term 2ε-accurate
separated approximation for e2πıNRAB(x,p) with factors {βAB

t (p)} of the form (p−p0)k

as claimed.
We studied the case w(B) ≤ 1/

√
N , but the method is identical when w(A) ≤

1/
√

N . Write

RAB(x, p) = [Ψ(x, p) − Ψ(x, p0)] − [Ψ(x0, p) − Ψ(x0, p0)]

and follow the same procedure. The resulting approximation has O(log4(1/ε)) terms,
but the factors {αAB

t (x)} are now of the form (x − x0)k with |k| � log2(1/ε).
Theorem 3.1 shows that the ε-rank of e2πıNRAB(x,p) is bounded by a constant

multiple of log4(1/ε) for a prescribed accuracy ε. Since

Ψ(x, p) = Ψ(x, p0) + Ψ(x0, p) − Ψ(x0, p0) + RAB(x, p),

a direct consequence is that {e2πıNΨ(x,p), x ∈ A, p ∈ B} has a separated approximation
of the same rank. A possible approach to compute these approximations would be to
use the interpolative decomposition described in Example 1 of section 2. However,
this method suffers from two main drawbacks discussed in that section limiting its
applicability to relatively small problems. This is the reason why we propose below a
different and faster low-rank approximation method.

3.2. Interpolation gives good low-rank approximations. The proof of
Theorem 3.1 shows that when w(B) ≤ 1/

√
N , the p-dependent factors in the low-

rank approximation of e2πıNRAB(x,p) are all monomials in p. Similarly, when w(A) ≤
1/

√
N , the x-dependent factors are monomials in x. This suggests that an alternative

to obtain a low-rank separated approximation is to use polynomial interpolation in x
when w(A) ≤ 1/

√
N and in p when w(B) ≤ 1/

√
N .

For a fixed integer q, the Chebyshev grid of order q on [−1/2, 1/2] is defined by

{
zi =

1
2

cos
(

iπ

q − 1

)}
0≤i≤q−1

.

We use this to define tensor-product grids adapted to an arbitrary squared box with
center c and sidelength w as

{c + w(zi1 , zi2), i1, i2 = 0, 1, . . . , q − 1}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1740 E. CANDÈS, L. DEMANET, AND L. YING

Given a set of grid points {zi ∈ R, 0 ≤ i ≤ q − 1}, we will also consider the family
of Lagrange interpolation polynomials Li taking value 1 at zi and 0 at the other grid
points

Li(z; {zi}) =
∏

0≤j≤q−1,j �=i

z − zj

zi − zj
.

For tensor-product grids {z1,i1}×{z2,i2}, we define the two-dimensional interpolation
polynomials as

Li(z, {zi}) = Li1(z1, {z1,i1})Li2(z2, {z2,i2}), i = (i1, i2).

The theorem below shows that Lagrange interpolation provides efficient low-rank
approximations. In what follows, LB

t is the two-dimensional Lagrange interpolation
polynomial on the Chebyshev grid adapted to the box B.

Theorem 3.3. Let A and B be as in Theorem 3.1. Then for any ε ≤ ε0 and
N ≥ N0, where ε0 and N0 are the constants in Theorem 3.1, there exists qε � log2(1/ε)
such that

• when w(B) ≤ 1/
√

N , the Lagrange interpolation of e2πıNRAB(x,p) in p on a
qε × qε Chebyshev grid {pB

t } adapted to B obeys

(3.5)

∣∣∣∣∣e2πıNRAB(x,p) −
∑

t

e2πıNRAB(x,pB
t) LB

t (p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ B,

• and when w(A) ≤ 1/
√

N , the Lagrange interpolation of e2πıNRAB(x,p) in x
on a qε × qε Chebyshev grid {xA

t } adapted to A obeys

(3.6)

∣∣∣∣∣e2πıNRAB(x,p) −
∑

t

LA
t (x) e2πıNRAB(xA

t ,p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ B.

Both (3.5) and (3.6) provide a low-rank approximation with rε = q2
ε � log4(1/ε)

terms.
The proof of the theorem depends on the following lemma.
Lemma 3.4. Let f(y1, y2) ∈ C([0, 1]2) and Vq be the space spanned by the mono-

mials yα1
1 yα2

2 with 0 ≤ α1, α2 < q. The projection operator Πq mapping f into its
Lagrange interpolant on the q × q tensor-product Chebyshev grid obeys

‖f − Πqf‖ ≤ (1 + C log2 q) inf
g∈Vq

‖f − g‖

for some numerical constant C, where ‖f‖ = supy∈[0,1]2 |f(y)|.
The proof of this lemma is a straightforward generalization of the one-dimensional

case, which can be found in [33].
Proof of Theorem 3.3. Suppose that w(B) ≤ 1/

√
N and pick qε = K log(1/ε),

where K = C0 log(1/ε) is given by (3.3) in the proof of Theorem 3.1. We fix x ∈ A

and view e2πıNRAB(x,p) as a function of p ∈ B. Applying Lemma 3.4 to e2πıNRAB(x,·)

gives∥∥∥e2πıNRAB(x,·) − Πqεe
2πıNRAB(x,·)

∥∥∥ ≤ (1 + C log2 qε) inf
g∈Vqε

∥∥∥e2πıNRAB(x,·) − g
∥∥∥ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1741

Theorem 3.1 states that the functions {βAB
t (p)}t are all monomials of degree less

than qε. Therefore, for a fixed x, the low-rank approximation in that theorem belongs
to Vqε and approximates e2πıNRAB(x,·) within ε. Combining this with the previous
estimate gives
(3.7)∥∥∥e2πıNRAB(x,·) − Πqεe

2πıNRAB(x,·)
∥∥∥ ≤ (1 + C log2 qε) ε ≤ (C1 + C2 log2(log(1/ε))) ε,

where C1 and C2 are two constants independent of N and ε. The same analysis
applies to the situation where w(A) ≤ 1/

√
N ; fix p ∈ B and view e2πıNRAB(·,p) as a

function of x ∈ A, repeat the same procedure, and obtain the same error bound.
The estimate (3.7) and its analogue when w(A) ≤ 1/

√
N are the claims (3.5) and

(3.6) except for the fact that the right-hand side is of the form (C1+C2 log2(log(1/ε))) ε
rather than ε. In order to get rid of the C1 + C2 log2(log(1/ε)) factor, we can repeat
the proof with ε(1+δ) with a small δ > 0. As qε depends on ε only logarithmically,
this increases qε by only a small constant factor.

Finally, to obtain a low-rank approximation for the real kernel e2πıNΨ(x,p) when
w(B) ≤ 1/

√
N , multiply (3.5) with e2πıNΨ(x0,p) e2πıNΨ(x,p0) e−2πıNΨ(x0,p0) (we again

use x0 and p0 as shorthand for x0(A) and p0(B)), which gives that for all x ∈
A, for all p ∈ B∣∣∣∣∣e2πıNΨ(x,p) −

∑
t

e2πıNΨ(x,pB
t)

(
e−2πıNΨ(x0,pB

t) LB
t (p) e2πıNΨ(x0,p)

)∣∣∣∣∣ ≤ ε.

In terms of the notation in (2.1), the expansion functions are given by

(3.8) αAB
t (x) = e2πıNΨ(x,pB

t), βAB
t (p) = e−2πıNΨ(x0,pB

t) LB
t (p) e2πıNΨ(x0,p).

This is a special interpolant of the function e2πıNΨ(x,p) in the p-variable which (1)
prefactors the oscillation, (2) performs the interpolation, and (3) remodulates the out-
come. Following (2.2), the expansion coefficients {δAB

t }t for the potential {uB(x), x ∈
A} should then obey the condition

(3.9) δAB
t ≈

∑
p∈B

βAB
t (p)f(p) = e−2πıNΨ(x0,pB

t)
∑
p∈B

(
LB

t (p) e2πıNΨ(x0,p) f(p)
)

.

When w(A) ≤ 1/
√

N , multiply (3.6) with e2πıNΨ(x0,p) e2πıNΨ(x,p0) e−2πıNΨ(x0,p0) and
obtain that for all x ∈ A, for all p ∈ B∣∣∣∣∣e2πıNΨ(x,p) −

∑
t

(
e2πıNΨ(x,p0) LA

t (x) e−2πıNΨ(xA
t ,p0)

)
e2πıNΨ(xA

t ,p)

∣∣∣∣∣ ≤ ε.

The expansion functions are now

(3.10) αAB
t (x) = e2πıNΨ(x,p0) LA

t (x) e−2πıNΨ(xA
t ,p0), βAB

t (p) = e2πıNΨ(xA
t ,p).

The expansion coefficients {δAB
t } should obey

(3.11) δAB
t ≈

∑
p∈B

βAB
t (p)f(p) =

∑
p∈B

e2πıNΨ(xA
t ,p)f(p) = uB(xA

t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1742 E. CANDÈS, L. DEMANET, AND L. YING

4. Algorithm description. This section presents our algorithm, which com-
bines the expansions introduced in section 3 with the butterfly structure from section
2.

1. Preliminaries. Construct two quadtrees TX and TP for X and P as in Figure
1.1. Each leaf node of TX and TP is of size 1/N × 1/N . Since X is a regular
Cartesian grid, TX is just a uniform hierarchical partition.

2. Initialization. Set A to be the root of TX . For each leaf box B ∈ TP , construct
the expansion coefficients {δAB

t , 1 ≤ t ≤ rε} from (3.9) by setting

(4.1) δAB
t = e−2πıNΨ(x0(A),pB

t)
∑
p∈B

(
LB

t (p) e2πıNΨ(x0(A),p) f(p)
)

.

3. Recursion. For each 	 = 1, 2, . . . , L/2, construct the coefficients {δAB
t , 1 ≤ t ≤

rε} for each pair (A, B) with A at level 	 and B at the complementary level
L− 	 as follows: let Ap be A’s parent and {Bc, c = 1, 2, 3, 4} be B’s children.
For each child, we have available from the previous level an approximation of
the form

uBc(x) ≈
∑
t′

e2πıNΨ(x,pBc
t′)δ

ApBc

t′ ∀x ∈ Ap.

Summing over all children gives

uB(x) ≈
∑

c

∑
t′

e2πıNΨ(x,pBc
t′)δ

ApBc

t′ ∀x ∈ Ap.

Since A ⊂ Ap, this is also true for any x ∈ A. This means that we can treat
{δApBc

t′ } as equivalent sources in B. As explained below, we then set the
coefficients {δAB

t }t as

(4.2) δAB
t = e−2πıNΨ(x0(A),pB

t)
∑

c

∑
t′

LB
t (pBc

t′) e2πıNΨ(x0(A),pBc
t′) δ

ApBc

t′ .

4. Switch. The interpolant in p may be used as the low-rank approximation as
long as 	 ≤ L/2, whereas the interpolant in x is a valid low-rank approxima-
tion as soon as 	 ≥ L/2. Therefore, at 	 = L/2, we need to switch represen-
tation. Recall that for 	 ≤ L/2 the expansion coefficients {δAB

t , 1 ≤ t ≤ rε}
may be regarded as equivalent sources, while for 	 ≥ L/2 they approximate
the values of the potential uB(x) on the Chebyshev grid {xA

t , 1 ≤ t ≤ rε}.
Hence, for any pair (A, B) with A at level L/2 (and likewise for B), we have
δAB
t ≈ uB(xA

t) from (3.11) so that we may set

(4.3) δAB
t =

∑
s

e2πıNΨ(xA
t ,pB

s) δAB
s

(we abuse notation here since {δAB
t } denotes the new set of coefficients and

{δAB
s } the older set).

5. Recursion (end). The rest of the recursion is analogous. For 	 = L/2 +
1, . . . , L, construct the coefficients {δAB

t , 1 ≤ t ≤ rε} as follows. With {αAB
t }

and {βAB
t } given by (3.10), we have

uB(x) =
∑

c

uBc(x) ≈
∑
t′,c

α
ApBc

t′ (x)
∑

p∈Bc

β
ApBc

t′ (p)f(p) ≈
∑
t′,c

α
ApBc

t′ (x)δApBc

t′ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1743

Hence, since δAB
t should approximate uB(xA

t) by (3.11), we simply set

δAB
t =

∑
t′,c

α
ApBc

t′ (xA
t)δApBc

t′ .

Substituting αAB
t with its value gives the update

(4.4)

δAB
t =

∑
c

e2πıNΨ(xA
t ,p0(Bc))

∑
t′

(
L

Ap

t′ (xA
t) e−2πıNΨ(x

Ap

t′ ,p0(Bc)) δ
ApBc

t′

)
.

6. Termination. Finally, we reach 	 = L and set B to be the root box of TP .
For each leaf box A of TX , we have

uB(x) ≈
∑

t

αAB
t (x)δAB

t , x ∈ A,

where {αAB
t } is given by (3.10). Hence, for each x ∈ A, we set

(4.5) u(x) = e2πıNΨ(x,p0(B))
∑

t

(
LA

t (x) e−2πıNΨ(xA
t ,p0(B)) δAB

t

)
.

In order to justify (4.2), recall that∣∣∣∣∣e2πıNΨ(x,p) −
∑

t

e2πıNΨ(x,pB
t)βAB

t (p)

∣∣∣∣∣ ≤ ε ∀x ∈ A, ∀p ∈ B,

where βAB
t (p) is given by (3.8). Summing the above inequality over p ∈ {pBc

t′ }t′,c with
weights {δApBc

t′ } gives

uB(x) ≈
∑

t

e2πıNΨ(x,pB
t)

∑
c,t′

βAB
t (pBc

t′)δApBc

t′ ,

which means that we can set

δAB
t =

∑
c,t′

βAB
t (pBc

t′)δApBc

t′ .

Substituting βAB
t with its value gives the update (4.2).

The main workload is in (4.2) and (4.4). Because of the tensor-product struc-
tures, the computations in (4.2) and (4.4) can be accelerated by performing Cheby-
shev interpolation one dimension at a time, reducing the number of operations from
O(r2

ε) = O(q4
ε) to O(q3

ε). As there are at most O(N2 log N) pairs of boxes (A, B), the
recursion steps take at most O(r3/2

ε N2 log N) operations. It is not difficult to see that
the remaining steps of the algorithm take at most O(r2

ε N) operations. Hence, with
rε = O(log4(1/ε)), this gives an overall complexity estimate of O(log6(1/ε)N2 log N +
log8(1/ε)N2). Since the prescribed accuracy ε is a constant, our algorithm runs in
O(N2 log N) time with a constant polylogarithmic in ε. Although the dependence of
this constant on log(1/ε) is quite strong, we would like to emphasize that this is only
a worst case estimate. In practice, and as empirically demonstrated in section 5, this
dependence is rather moderate and grows like log(1/ε).

We would like to point out that the values of LB
t (pBc

t′) in (4.2) and of L
Ap

t′ (xA
t)

in (4.4) are both translation- and level-independent because of the nested structure

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1744 E. CANDÈS, L. DEMANET, AND L. YING

of the quadtree. Therefore, once these values are computed for a single pair (A, B),
they can just be reused for all pairs visited during the execution of the algorithm. In
our implementation, the values of LB

t (pBc

t′) in (4.2) and L
Ap

t′ (xA
t) are stored in a Kro-

necker product form in order to facilitate the dimensionwise Chebyshev interpolation
discussed in the previous paragraph.

This algorithm has two main advantages over the approach based on interpola-
tive decomposition. First, no precomputation is required. Since the low-rank approx-
imation uses Lagrange interpolation on fixed tensor-product Chebyshev grids, the
functions {αAB

t (x)} and {βAB
t (p)} are given explicitly by (3.8) and (3.10). In turn,

this yields explicit formulas for computing the expansion coefficients {δAB
t }t; compare

(4.1), (4.2), and (4.4). Second, this algorithm is highly efficient in terms of memory
requirement. In the approach based on the interpolative decomposition method, one
needs to store many linear transformations (one for each pair (A, B)), which yields
a storage requirement on the order of r2

ε N2 log N as observed earlier. The proposed
algorithm, however, need only store the expansion coefficients {δAB

t }. Moreover, at
any point in the execution, only the expansion coefficients from two consecutive levels
are actually needed. Therefore, the storage requirement is only on the order of rε N2,
which allows us to address problems with much larger sizes.

One advantage of the interpolative decomposition approach is that it often has a
smaller separation rank. The reason is that the low-rank approximation is optimized
for the kernel under study and, therefore, the computed rank is usually very close to
the true separation rank rε. In contrast, our low-rank approximations are based on
tensor-product Chebyshev grids and merely exploit the smoothness of the function
e2πıNRAB(x,p) either in x or in p. In particular, it ignores the finer structure of the
kernel e2πıNΨ(x,p) and, as a result, the computed separation rank is often significantly
higher. Fortunately, this growth in the separation rank does not result in a signif-
icant increase in the computation time since the tensor-product structure and the
Lagrangian interpolants dramatically decrease the computational cost.

The tensor-product Chebyshev grid is also used in the method described in Ex-
ample 2 of section 2. There, the equivalent sources are supported on a Chebyshev
grid in B and are constructed by collocating the potential on another Chebyshev grid
in A. Because of (1) the tensor-product nature of the grids and (2) the nature of the
Fourier kernel, the matrix representation of this collocation procedure has an almost
(A, B)-independent Kronecker product decomposition. This offers a way of speeding
up the computations and makes it unnecessary to store the matrix representation.
Unfortunately, such an approach would not work for FIOs since the kernel e2πıNΨ(x,p)

does not have an (A, B)-independent tensor-product decomposition. This is why a
major difference is that we use tensor-product Chebyshev grids only to interpolate
the residual kernel e2πıNRAB(x,p) in x or p depending on which box is smaller. The
important point is that we also keep the main benefits of that approach.

Up to this point, we have been concerned only with the computation of FIOs with
constant amplitudes. However, our approach can easily be extended to the general
case with variable amplitudes a(x, k) as in

(4.6) u(x) =
∑
k∈Ω

a(x, k)e2πıΦ(x,k)f(k), x ∈ X.

In most applications of interest, a(x, k) is a simple object, i.e., much simpler than
the oscillatory term e2πıΦ(x,k). A possible approach is to follow [3, 21], where the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1745

amplitude is assumed to have a low-rank separated approximation obeying∣∣∣∣∣a(x, k) −
sε∑

t=1

gt(x)ht(k)

∣∣∣∣∣ ≤ ε,

where the number of terms sε is independent of N—the size of the grids X and Ω.
Such an approximation can be obtained either analytically or through the randomized
procedure described in [11]. An algorithm for computing (4.6) may then operate as
follows:

1. Construct the approximation a(x, k) ≈ ∑sε

t=1 gt(x)ht(k) with x ∈ X and
k ∈ Ω.

2. Set u(x) = 0 for x ∈ X and for each t = 1, . . . , sε,
(a) form the product ft(k) = ht(k)f(k) for k ∈ Ω,
(b) compute

∑
k e2πıΦ(x,k)ft(k) for x ∈ X by applying the above algorithm,

(c) multiply the result with gt(x) for x ∈ X , and add this product to u(x).
We would like to point out that the above algorithm is presented in a form that is

conceptually simple. However, when applying the butterfly algorithm to the functions
{ft(k), t = 1, . . . , sε} in the multiple executions of step 2(b), the following kernel
evaluations are independent of {ft(k)} and thus performed redundantly:

• e−2πıNΨ(x0(A),pB
t) and e2πıNΨ(x0(A),pBc

t′) in (4.2),
• e2πıNΨ(xA

t ,pB
s) in (4.3),

• e2πıNΨ(xA
t ,p0(Bc)) and e−2πıNΨ(x

Ap

t′ ,p0(Bc)) in (4.4).
Therefore, in an efficient implementation of the above algorithm, one should “vector-
ize” the algorithm to operate on {ft(k), t = 1, . . . , sε} simultaneously so that redun-
dant kernel evaluations can be avoided.

5. Numerical results. This section provides some numerical results to illus-
trate the empirical properties of the algorithm. The implementation is in C++ and
all tests are carried out on a desktop computer with a 2.8GHz CPU.

When computing the matrix-vector product u(x) =
∑

k∈Ω e2πıΦ(x,k)f(k), we in-
dependently sample the entries of the input vector {f(k), k ∈ Ω} from the standard
normal distribution so that the input vector is just white noise. Let {ua(x), x ∈ X}
be the potentials computed by the algorithm. To report on the accuracy, we select a
set S of 256 points from X and estimate the relative error by

(5.1)

√∑
x∈S |u(x) − ua(x)|2∑

x∈S |u(x)|2 .

According to the algorithm description in section 4, the leaves of the quadtree
at level L = log2 N are of size 1/N × 1/N and each contains a small number of
points. However, when the number of points in a box B is much fewer than q2

ε , it
does not make sense to construct the expansion coefficients {δAB

t } simply because
the sources at these points would themselves provide a more compact representation.
Thus in practice, the recursion starts from the boxes in TP that are a couple of levels
away from the bottom so that each box has at least q2

ε points in it. Similarly, the
recursion stops at the boxes in TX that are a couple of levels away from the bottom.
In general, the starting and ending levels should depend on the value of qε. In the
following examples, we start from level log2 N − 3 and stop at level 3 in TP . This
choice matches well with the values of qε (5 to 11) that we use here.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1746 E. CANDÈS, L. DEMANET, AND L. YING

In our first example, we consider the computation of (1.1) with the phase function
given by
(5.2)

Φ(x, k) = x · k +
√

c2
1(x)k2

1 + c2
2(x)k2

2 ,
c1(x) = (2 + sin(2πx1) sin(2πx2))/3,
c2(x) = (2 + cos(2πx1) cos(2πx2))/3.

If g(x) =
∑

k∈Ω f(k)e2πıx·k/N is the (periodic) inverse Fourier transform of the input,
this example models the integration of g over ellipses where c1(x) and c2(x) are the
axis lengths of the ellipse centered at the point x ∈ X . In truth, the exact formula of
this generalized Radon transform contains an amplitude term a(x, k) involving Bessel
functions of the first and second kinds. Nonetheless, we wish to focus on the main
computational difficulty, the highly oscillatory phase in this example, and simply set
the amplitude a(x, k) to one. Table 5.1 summarizes the results of this example for
different combinations of the grid size N (the grid is N ×N) and of the degree of the
polynomial interpolation q.

Table 5.1

Computational results with the phase function given by (5.2). N ×N is the size of the domain;
q is the size of the Chebyshev interpolation grid in each dimension; Ta is the running time of the
algorithm in seconds; Td is the estimated running time of the direct evaluation method and Td/Ta

is the speedup factor; finally, εa is the accuracy estimated with (5.1).

(N, q) Ta(sec) Td(sec) Td/Ta εa

(256,5) 6.11e+1 3.20e+2 5.24e+0 1.26e-2
(512,5) 2.91e+2 5.59e+3 1.92e+1 1.56e-2
(1024,5) 1.48e+3 9.44e+4 6.37e+1 1.26e-2
(2048,5) 6.57e+3 1.53e+6 2.32e+2 1.75e-2
(4096,5) 3.13e+4 2.43e+7 7.74e+2 1.75e-2
(256,7) 1.18e+2 3.25e+2 2.76e+0 7.57e-4
(512,7) 5.54e+2 5.47e+3 9.87e+0 6.68e-4
(1024,7) 2.76e+3 9.48e+4 3.44e+1 6.45e-4
(2048,7) 1.23e+4 1.46e+6 1.19e+2 8.39e-4
(4096,7) 5.80e+4 2.31e+7 3.99e+2 8.18e-4
(256,9) 2.46e+2 3.10e+2 1.26e+0 3.15e-5
(512,9) 1.03e+3 5.19e+3 5.06e+0 3.14e-5
(1024,9) 4.95e+3 9.44e+4 1.91e+1 3.45e-5
(2048,9) 2.21e+4 1.48e+6 6.71e+1 4.01e-5
(4096,9) 1.02e+5 2.23e+7 2.18e+2 4.21e-5
(256,11) 4.66e+2 3.07e+2 6.59e-1 7.34e-7
(512,11) 1.69e+3 4.53e+3 2.68e+0 7.50e-7
(1024,11) 8.33e+3 9.50e+4 1.14e+1 5.23e-7
(2048,11) 3.48e+4 1.49e+6 4.27e+1 5.26e-7

Next, we use the algorithm described at the end of section 4 to study the perfor-
mance in the more general setup of variable amplitudes (4.6). The second example
is the exact formula for integrating over circles with radii c(x) centered at the points
x ∈ X

u(x) =
∑
k∈Ω

a+(x, k)e2πıΦ+(x,k)f(k) +
∑
k∈Ω

a−(x, k)e2πıΦ−(x,k)f(k),

where the amplitudes and phases are given by

a±(x, k) = (J0(2πc(x)|k|) ± iY0(2πc(x)|k|) e∓2πic(x)|k|,
Φ±(x, k) = x · k + c(x)|k|,(5.3)
c(x) = (3 + sin(2πx1) sin(2πx2))/4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1747

(Above the functions J0 and Y0 are special Bessel functions. The appendix in [11] de-
tails the derivation of these formulas.) We use the randomized procedure described in
[11] to construct the low-rank separated approximation for a±(x, k). For an accuracy
of 1e-7, the resulting approximation contains only three terms. Table 5.2 summarizes
the results of this example for different combinations of N and q.

Table 5.2

Computational results with the amplitudes and phase functions given by (5.3).

(N, q) Ta(sec) Td(sec) Td/Ta εa

(256,5) 1.39e+2 3.20e+3 2.31e+1 1.48e-2
(512,5) 7.25e+2 5.20e+4 7.17e+1 1.62e-2
(1024,5) 3.45e+3 8.34e+5 2.42e+2 1.90e-2
(256,7) 2.69e+2 3.21e+3 1.19e+1 4.71e-4
(512,7) 1.38e+3 5.20e+4 3.78e+1 7.30e-4
(1024,7) 6.43e+3 8.35e+5 1.30e+2 6.35e-4
(256,9) 5.23e+2 3.20e+3 6.12e+0 1.59e-5
(512,9) 2.49e+3 5.17e+4 2.08e+1 2.97e-5
(1024,9) 1.15e+4 8.32e+5 7.25e+1 1.75e-5
(256,11) 1.04e+3 3.18e+3 3.06e+0 8.03e-7
(512,11) 4.10e+3 5.11e+4 1.24e+1 9.38e-7
(1024,11) 1.84e+4 8.38e+5 4.57e+1 8.01e-7

From these tables, the first observation is that the accuracy is well controlled
by the size of the Chebyshev grid and that the estimated accuracy εa improves on
average by a factor of 30 every time q is increased by a factor of 2. In practical
applications, one often specifies the accuracy εa instead of the grid size q. To adapt
to this situation, the quantity (5.1) can be used to estimate the error; whenever the
error is too large, one can simply increase the value of q until the desired accuracy is
reached. The second observation is that the accuracy decreases only slightly when N
increases, indicating that the algorithm is numerically stable. This is due to the fact
that the Lebesgue constant of the Chebyshev interpolation is almost optimal; i.e., the
Chebyshev interpolation operator has almost the minimum operator norm among all
Lagrange interpolants of the same order [33].

These results show that the empirical running time of our algorithm closely follows
the O(N2 log N) asymptotic complexity. Each time we double N , the size of the grid
quadruples. The corresponding running time and speedup factors increase by a factor
roughly equal to 4 as well. We note that for large values of N which are of interest to
us and to practitioners, the numerical results show a very substantial speedup factor
over direct evaluation. For instance, for 4, 096 × 4, 096 grids, we gain three orders
of magnitude since one can get nearly two digits of accuracy with a speedup factor
exceeding 750.

The article [11] proposed an O(N2.5 log N) approach based on the partitioning of
the frequency domain into

√
N conical region. Though the time complexity of this

former algorithm may not be optimal, we showed that it was efficient in parts because
its main computational component, the nonuniform fast Fourier transform, is highly
optimized. Comparing Tables 4 and 5 in [11]1 with the numerical results presented
here, we observe that both approaches take roughly the same time for N = 256
and 512. For N ≤ 256, the approach based on conical partitioning is faster, as its

1The results in Tables 4 and 5 of [11] were obtained on a desktop with a 2.6GHz CPU, which is
slightly slower yet comparable to the computer used for the tests in this section. The implementation
of the nonuniform fast Fourier transform in [11] was written in C++ and compiled as a MEX-function.
Finally, the two examples are not exactly similar, but this slight difference is unessential.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1748 E. CANDÈS, L. DEMANET, AND L. YING

complexity has a smaller constant. For N ≥ 512, however, the current approach based
on the butterfly algorithm clearly outperforms our former approach.

It is straightforward to generalize our algorithm to higher dimensions. In three
dimensions, for example, the main modification is to use a three-dimensional Cheby-
shev grid to interpolate e2πıRAB(x,k). Consider again a simple three-dimensional ex-
ample modeling the integration over spheres with varying radii in which the now
six-dimensional phase function Φ(x, k), x, k ∈ R

3, is given by

Φ(x, k) = x · k + c(x)|k|, c(x) = (3 + sin(2πx1) sin(2πx2) sin(2πx3))/4.

Our three-dimensional numerical results are reported in Table 5.3. In this setup, we
see that our approach offers a significant speedup even for moderate values of N .

Table 5.3

Computational results in three dimensions with the phase function given by (5.4).

(N, q) Ta(sec) Td(sec) Td/Ta εa

(64,7) 1.79e+3 7.33e+3 4.10e+0 3.32e-3
(128,7) 1.58e+4 4.77e+5 3.02e+1 4.06e-3
(256,7) 1.44e+5 2.97e+7 2.06e+2 3.96e-3

6. Conclusions and discussions. This paper introduced a novel and accurate
algorithm for evaluating discrete FIOs. Underlying this approach is a key mathemat-
ical property, which says that the kernel, restricted to special subdomains in time and
frequency, is approximately very low-rank. Our strategy operationalizes this fact by
using a multiscale partitioning of the time and frequency domain together with the
butterfly structure to achieve an O(N2 log N) asymptotic complexity.

A different way to achieve a near-optimal O(N2 log N) complexity might be to
use the curvelet transform [12, 10] of Candès and Donoho or the wave atoms [20] of
Demanet and Ying. In [8, 9], Candès and Demanet proved that the curvelet repre-
sentation of FIOs is optimally sparse (the wave atom representation also offers the
same optimality), a property which relies on the role played by the second dyadic
decomposition of Stein and his collaborators [37]. Whether one can operationalize
this mathematical insight into an efficient algorithm seems an interesting direction
for future research.

The geometric low-rank property together with the butterfly algorithm appears
to be a very powerful combination to obtain fast algorithms for computing certain
types of highly oscillatory integrals. We already discussed the work of O’Neil and
Rokhlin [31], who have used the butterfly algorithm to design fast special transforms,
and of Ying, who has extended this approach to develop fast algorithms for Fourier
transforms with sparse data [39] and Fourier transforms with summation constraints
[40]. Clearly, it would be of interest to identify wide classes of problems for which
this general approach may prove powerful.

Acknowledgment. The authors thank the anonymous reviewers for their com-
ments and suggestions.

REFERENCES

[1] C. Anderson and M. D. Dahleh, Rapid computation of the discrete Fourier transform, SIAM
J. Sci. Comput., 17 (1996), pp. 913–919.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BUTTERFLY ALGORITHM OF FOURIER INTEGRAL OPERATORS 1749

[2] A. Averbuch, E. Braverman, R. Coifman, M. Israeli, and A. Sidi, Efficient computation
of oscillatory integrals via adaptive multiscale local Fourier bases, Appl. Comput. Harmon.
Anal., 9 (2000), pp. 19–53.

[3] G. Bao and W. W. Symes, Computation of pseudo-differential operators, SIAM J. Sci. Com-
put., 17 (1996), pp. 416–429.

[4] G. Beylkin, The inversion problem and applications of the generalized Radon transform,
Comm. Pure Appl. Math., 37 (1984), pp. 579–599.

[5] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms.
I, Comm. Pure Appl. Math., 44 (1991), pp. 141–183.

[6] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical Matrices, Technical report 21,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany, 2003.

[7] B. Bradie, R. Coifman, and A. Grossmann, Fast numerical computations of oscillatory
integrals related to acoustic scattering. I, Appl. Comput. Harmon. Anal., 1 (1993), pp. 94–
99.

[8] E. Candès and L. Demanet, Curvelets and Fourier integral operators, C. R. Math. Acad. Sci.
Paris, 336 (2003), pp. 395–398.

[9] E. Candès and L. Demanet, The curvelet representation of wave propagators is optimally
sparse, Comm. Pure Appl. Math., 58 (2005), pp. 1472–1528.

[10] E. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, Mul-
tiscale Model. Simul., 5 (2006), pp. 861–899.

[11] E. Candès, L. Demanet, and L. Ying, Fast computation of Fourier integral operators, SIAM
J. Sci. Comput., 29 (2007), pp. 2464–2493.

[12] E. Candès and D. Donoho, New tight frames of curvelets and optimal representations of
objects with piecewise C2 singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219–266.

[13] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang,

V. Rokhlin, N. Yarvin, and J. Zhao, A wideband fast multipole method for the Helmholtz
equation in three dimensions, J. Comput. Phys., 216 (2006), pp. 300–325.

[14] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[15] W. Chew, E. Michielssen, J. M. Song, and J. M. Jin, eds., Fast and Efficient Algorithms
in Computational Electromagnetics, Artech House, Norwood, MA, 2001.

[16] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.,
Appl. Math Sci. 93, Springer-Verlag, Berlin, 1998.

[17] D. L. Colton and R. Kress, Integral equation methods in scattering theory, Pure Appl. Math.
(N.Y.), John Wiley & Sons, New York, 1983.

[18] E. Darve, The fast multipole method: Numerical implementation, J. Comput. Phys., 160
(2000), pp. 195–240.

[19] E. Darve and P. Havé, A fast multipole method for Maxwell equations stable at all frequencies,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 603–628.

[20] L. Demanet and L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput.
Harmon. Anal., 23 (2007), pp. 368–387.

[21] L. Demanet and L. Ying, Discrete symbol calculus, SIAM Rev., to appear.
[22] L. Demanet and L. Ying, Scattering in flatland: Efficient representations via wave atoms,

Found. Comput. Math., to appear.
[23] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci.

Comput., 14 (1993), pp. 1368–1393.
[24] B. Engquist and L. Ying, Fast directional multilevel algorithms for oscillatory kernels, SIAM

J. Sci. Comput., 29 (2007), pp. 1710–1737.
[25] B. Engquist and L. Ying, A fast directional algorithm for high frequency acoustic scattering

in two dimensions, Commun. Math. Sci., to appear.
[26] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,

73 (1987), pp. 325–348.
[27] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR

factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.
[28] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element

method by panel clustering, Numer. Math., 54 (1989), pp. 463–491.
[29] D. Huybrechs and S. Vandewalle, A two-dimensional wavelet-packet transform for matrix

compression of integral equations with highly oscillatory kernel, J. Comput. Appl. Math.,
197 (2006), pp. 218–232.

[30] E. Michielssen and A. Boag, A multilevel matrix decomposition algorithm for analyzing scat-
tering from large structures, IEEE Trans. Antennas and Propagation, 44 (1996), pp. 1086–
1093.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1750 E. CANDÈS, L. DEMANET, AND L. YING

[31] M. O’Neil and V. Rokhlin, A New Class of Analysis-Based Fast Transforms, Technical
report/YALE/DCS/TR1384, Yale University, New Haven, CT, 2007.

[32] D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A
tutorial, in Modern Sampling Theory, Appl. Numer. Harmon. Anal., Birkhäuser Boston,
Boston, MA, 2001, pp. 247–270.

[33] T. J. Rivlin, The Chebyshev Polynomials, Wiley-Interscience, New York, 1974.
[34] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J.

Comput. Phys., 86 (1990), pp. 414–439.
[35] V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three di-

mensions, Appl. Comput. Harmon. Anal., 1 (1993), pp. 82–93.
[36] J. M. Song and W. C. Chew, Multilevel fast-multipole algorithm for solving combined field

integral equations of electromagnetic scattering, Microwave Opt. Tech. Lett., 10 (1995),
pp. 15–19.

[37] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993.

[38] W. W. Symes, Mathematical Foundations of Reflection Seismology, Technical report, Rice
University, Houston, TX, 1998.

[39] L. Ying, Sparse Fourier transform via butterfly algorithm, SIAM J. Sci. Comput., 31 (2009),
pp. 1678–1694.

[40] L. Ying and S. Fomel, Fast Computation of Partial Fourier Transforms, Technical report,
University of Texas at Austin, Austin, TX, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

