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FAST COMMUNICATION

A FAST SPECTRAL ALGORITHM FOR THE QUANTUM

BOLTZMANN COLLISION OPERATOR∗

JINGWEI HU† AND LEXING YING‡

Abstract. This paper introduces a fast spectral algorithm for the quantum Boltzmann collision
operator. In the usual spectral framework, one of the terms in the operator cannot be evaluated
efficiently. The new approach is based on the fundamental property of the exponential function which
allows one to construct a new decomposition of the collision kernel to speed up the computation.
Numerical results in 2-D and 3-D for both the Bose gas and the Fermi gas are presented to illustrate
the accuracy and efficiency of the method.
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1. Introduction

The quantum Boltzmann equation describes the time evolution of a dilute Bose
gas or Fermi gas. It was first formulated by Nordheim [13] and Uehling and Uhlenbeck
[17] from the classical Boltzmann equation by heuristic arguments. If f(t,x,v) is the
phase space distribution function of time t, position x, and particle velocity v, then
the equation reads

∂f

∂t
+v ·∇xf =Qq(f), x∈Ω⊂R

dx , v∈R
dv . (1.1)

The quantum collision operator Qq is given by

Qq(f)(v)=

∫

Rdv

∫

Sdv−1

B(v−v∗,ω)[f ′f ′∗(1±θ0f)(1±θ0f∗)

−ff∗(1±θ0f ′)(1±θ0f ′∗)]dωdv∗, (1.2)

where θ0=h
dv and h is the rescaled Planck constant. In this paper, the upper sign

will always correspond to the Bose gas while the lower sign to the Fermi gas. f , f∗, f
′,

and f ′∗ are the shorthand notations for f(t,x,v), f(t,x,v∗), f(t,x,v
′), and f(t,x,v′∗)

respectively. (v,v∗) and (v′,v′∗) are the velocities before and after collision. They are
related by the following parametrization:



















v′=
v+v∗
2

+
|v−v∗|

2
ω,

v′∗=
v+v∗
2

− |v−v∗|
2

ω,

(1.3)
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where ω is the unit vector along v′−v′∗. The collision kernel B is a nonnegative
function that only depends on |v−v∗| and cosθ=w ·(v−v∗)/|v−v∗|. From now on
we will write it as B(|v−v∗|,cosθ).

The quantum collision operator Qq satisfies the conservation of mass, momentum,
and energy,

∫

Rdv

Qq(f)dv=

∫

Rdv

Qq(f)vdv=

∫

Rdv

Qq(f)|v|2dv=0, (1.4)

and Boltzmann’s H-theorem
∫

Rdv

ln

(

f

1±θ0f

)

Qq(f)dv≤0. (1.5)

Moreover, the equality in (1.5) holds if and only if f attains the local equilibrium (the
quantum Maxwellian):

Mq =
1

θ0

1

z−1e
(v−u)2

2T ∓1
, (1.6)

where z is the fugacity, T is the temperature, and u is the macroscopic velocity. (1.6)
is the well-known Bose-Einstein (‘-’) and Fermi-Dirac (‘+’) distributions. For further
details about the derivation of Mq and the properties of the quantum Boltzmann
equation we refer to [9, 5].

The numerical challenge of solving the Boltzmann equation mainly comes from
the multidimensional structure of the collision integral. For the classical Boltzmann
operator, many different approaches are available: for example, the direct simulation
Monte Carlo (DSMC) methods [1, 12], the discrete velocity models (DVM) [16, 2, 4],
and more recently the spectral methods [3, 14, 15, 11, 6, 7]. On the contrary, very few
studies have been conducted in the quantum case. See [8] and references therein for
the Monte Carlo simulations and [10] for a fast deterministic scheme for the energy
space boson Boltzmann equation.

In [5] the authors constructed a spectral method for the quantum Boltzmann
collision operator (1.2) following the framework of [11, 6]. However, due to its cubic
structure, one of the terms in Qq cannot be evaluated by the fast Fourier transform
(FFT), which results in a computational cost of O(Mdv−1N2dv logN) (M is the num-
ber of points in angular direction; N is the number of points in each v direction). In
this work, we improve the above method and develop a fast algorithm for the quantum
Boltzmann operator based on a simple observation of the exponential function. The
numerical cost is reduced to O(Mdv−1Ndv+1 logN).

The rest of the paper is organized as follows: In the next section we first describe
the spectral method in [5] and then present the new fast algorithm. Numerical results
in both 2-D and 3-D are shown in Section 3 to illustrate the accuracy and efficiency
of the method. Finally the concluding remarks are given in Section 4.

2. The spectral methods for the quantum Boltzmann collision operator

We begin by a brief description of the spectral method in [5]. It serves as the starting
point of our fast algorithm and as a comparison in the numerical tests. For simplicity,
we drop the spatial dependence and consider the homogeneous quantum Boltzmann
equation:

∂f

∂t
=Qq(f), v∈R

dv . (2.1)
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2.1. First attempt. The quantum collision operator Qq can be recast as

Qq =Qc±θ0(Q1+Q2−Q3−Q4), (2.2)

where

Qc(f)(v)=

∫

Rdv

∫

Sdv−1

B(|v−v∗|,cosθ)[f ′f ′∗−ff∗]dωdv∗ (2.3)

is the classical collision operator. The cubic terms Q1 – Q4 are


































































Q1(f)(v)=

∫

Rdv

∫

Sdv−1

B(|v−v∗|,cosθ)f ′f ′∗f∗dωdv∗,

Q2(f)(v)=

∫

Rdv

∫

Sdv−1

B(|v−v∗|,cosθ)f ′f ′∗f dωdv∗,

Q3(f)(v)=

∫

Rdv

∫

Sdv−1

B(|v−v∗|,cosθ)ff∗f ′dωdv∗,

Q4(f)(v)=

∫

Rdv

∫

Sdv−1

B(|v−v∗|,cosθ)ff∗f ′∗dωdv∗.

(2.4)

In order to perform the Fourier transform, we periodize the function f on the

domain DL=[−L,L]dv (L is chosen such that L≥ 3+
√
2

2 S, where BS is an approxima-
tion of the support of f(v) [15]). Using a Carleman like representation [11], one can
transform the above operators to

Qc(f)(v)=

∫

BR

∫

BR

B̃(x,y)δ(x ·y)[f(v+x)f(v+y)−f(v+x+y)f(v)]dxdy (2.5)

and


































































Q1(f)(v)=

∫

BR

∫

BR

B̃(x,y)δ(x ·y)f(v+x)f(v+y)f(v+x+y)dxdy,

Q2(f)(v)=

∫

BR

∫

BR

B̃(x,y)δ(x ·y)f(v+x)f(v+y)f(v)dxdy,

Q3(f)(v)=

∫

BR

∫

BR

B̃(x,y)δ(x ·y)f(v+x)f(v+x+y)f(v)dxdy,

Q4(f)(v)=

∫

BR

∫

BR

B̃(x,y)δ(x ·y)f(v+y)f(v+x+y)f(v)dxdy,

(2.6)

where BR is the truncation of the collision integral which satisfies R≥
√
2S;

B̃(x,y)=
2dv−1

(|x|2+ |y|2)
dv−2

2

B

(

√

|x|2+ |y|2,1− 2|x|2
|x|2+ |y|2

)

= B̃(|x|, |y|). (2.7)

We approximate f by a truncated Fourier series (k is the dv-dimensional index):

f(v)≈
N
2 −1
∑

k=−N
2

f̂ke
i π
L
k·v, f̂k=

1

(2L)dv

∫

DL

f(v)e−i π
L
k·v dv. (2.8)
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Plugging it into (2.1), one can get the following equation for f̂k by the orthogonality
of the basis ei

π
L
k·v, k∈Z

dv :

df̂k
dt

= Q̂q,k= Q̂c,k±θ0(Q̂1,k+Q̂2,k−Q̂3,k−Q̂4,k), (2.9)

where

Q̂c,k=

N
2 −1
∑

l,m=−N
2

l+m=k

[β(l,m)−β(m,m)] f̂lf̂m, (2.10)

and



















































Q̂1,k=

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

β(l+n,m+n)f̂lf̂mf̂n, Q̂2,k=

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

β(l,m)f̂lf̂mf̂n,

Q̂3,k=

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

β(l+m,m)f̂lf̂mf̂n, Q̂4,k=

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

β(m,l+m)f̂lf̂mf̂n,

(2.11)

with the kernel mode β defined by

β(l,m)=

∫

BR

∫

BR

B̃(|x|, |y|)δ(x ·y)ei π
L
l·xei

π
L
m·y dxdy. (2.12)

The classical part was treated in [11] by introducing a decomposition for β:

β(l,m)≈
Mdv−1
∑

p=1

αp(l)α
′
p(m), (2.13)

where αp, α
′
p are some functions to be given below.

Now with the same decomposition the remaining four cubic quantum terms can
be approximated as

Q̂1,k≈
Mdv−1
∑

p=1

N
2 −1
∑

n=−N
2









N
2 −1
∑

l,m=−N
2

l+m=k−n

αp(l+n)α
′
p(m+n)f̂lf̂m









f̂n=

Mdv−1
∑

p=1

N
2 −1
∑

n=−N
2

ĝk−n(n)f̂n,

(2.14)
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Q̂2,k≈
Mdv−1
∑

p=1

N
2 −1
∑

n=−N
2









N
2 −1
∑

l,m=−N
2

l+m=k−n

αp(l)α
′
p(m)f̂lf̂m









f̂n, (2.15)

Q̂3,k≈
Mdv−1
∑

p=1

N
2 −1
∑

n=−N
2

αp(k−n)









N
2 −1
∑

l,m=−N
2

l+m=k−n

α′
p(m)f̂lf̂m









f̂n, (2.16)

Q̂4,k≈
Mdv−1
∑

p=1

N
2 −1
∑

n=−N
2

α′
p(k−n)









N
2 −1
∑

l,m=−N
2

l+m=k−n

αp(m)f̂lf̂m









f̂n. (2.17)

Thus, with the above arrangements, Q2, Q3, and Q4 (all in double-convolution forms)
can be evaluated by the FFT in O(Mdv−1Ndv logN) operations. For instance, to

compute Q3, we first treat f̂l and α
′
p(m)f̂m as two functions, then terms inside the

bracket of (2.16) form a convolution and can be evaluated as multiplication in the
original space via the FFT. The resulting function (with subindex k−n) multiplied

by αp(k−n) together with f̂n forms a convolution again and can be computed by the
FFT as well. However, the fast algorithm cannot be applied to Q1, since ĝk−n(n)
itself depends on n (although the terms inside the bracket are a convolution). We
compute Q1 directly at the moment and the total computational cost is dominated
by this part, which is O(Mdv−1N2dv logN).

2.1.1. The decomposition of β. We now discuss the decomposition (2.13)
of β. Following [11], (2.12) becomes

β(l,m)=
1

4

∫

e,e′∈Sdv−1

δ(e ·e′)dede′

·
∫ R

−R

∫ R

−R

B̃(|ρ|, |ρ′|)ei π
L
ρ(l·e)ei

π
L
ρ′(m·e′)|ρ|dv−2|ρ′|dv−2dρdρ′ (2.18)

in polar coordinates. We make the decoupling assumption that

B̃(|x|, |y|)=a(|x|)b(|y|), (2.19)

then

β(l,m)=
1

4

∫

e,e′∈Sdv−1,e⊥e′
dede′

·
(

∫ R

−R

a(|ρ|)|ρ|dv−2ei
π
L
ρ(l·e)dρ

)(

∫ R

−R

b(|ρ′|)|ρ′|dv−2ei
π
L
ρ′(m·e′)dρ′

)

=
1

4

∫

e,e′∈Sdv−1,e⊥e′
φ(l ·e)φ′(m ·e′)dede′, (2.20)

where

φ(s)
.
=

∫ R

−R

a(|ρ|)|ρ|dv−2ei
π
L
ρsdρ, (2.21)

φ′(s)
.
=

∫ R

−R

b(|ρ|)|ρ|dv−2ei
π
L
ρsdρ. (2.22)
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• In the 2-D case,

β(l,m)=

∫ π

0

φ(l ·eθ)φ′(m ·eθ+π
2
)dθ, eθ=(cosθ,sinθ), (2.23)

so we can approximate it by

β(l,m)≈ π

M

M
∑

p=1

φ(l ·eθp)φ′(m ·eθp+π
2
), (2.24)

where M is the number of equally spaced points in [0,π].
• In the 3-D case,

β(l,m)=

∫

e∈S2+

φ(l ·e)ψ(|Πe⊥(m)|)de, ψ(s)
.
=

∫ π

0

φ′(scosη)sinηdη, (2.25)

where Πe⊥ is the orthogonal projection onto the plane e⊥.
Parametrizing e as e=(sinϕcosθ,sinϕsinθ,cosϕ), θ,ϕ∈ [0,π], we can approx-
imate β by

β(l,m)≈
( π

M

)2 M
∑

p,q=1

φ(l ·eθp,ϕq
)ψ(|Πe⊥

θp,ϕq

(m)|)sinϕq, (2.26)

M is the same as in 2-D.

2.2. A fast algorithm. Based on previous discussions we see that the de-
composition (2.13) is good for the fast evaluation of Qc (see [11]), Q2, Q3, and Q4.
To improve the computation of Q1, we need to seek other decompositions.

Suppose we can write β as follows:

β(l,m)≈
J
∑

j=1

exp(iαj(l))α
′
j(m), (2.27)

where αj is assumed to be linear in l. Then one can compute Q1 efficiently by using
the fundamental property of the exponential function: ea+b= eaeb. In fact, (2.14)
becomes

Q̂1,k=

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

β(l+n,m+n)f̂lf̂mf̂n

≈
J
∑

j=1

N
2 −1
∑

l,m,n=−N
2

l+m+n=k

exp(iαj(l))exp(iαj(n))α
′
j(m+n)f̂lf̂nf̂m

=

J
∑

j=1

N
2 −1
∑

l=−N
2

exp(iαj(l))α
′
j(k− l)









N
2 −1
∑

m,n=−N
2

m+n=k−l

exp(iαj(n))f̂nf̂m









f̂l, (2.28)

so it is again in the double-convolution form and can be evaluated by the FFT.
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Fortunately, the decomposition (2.27) can be readily obtained thanks to the spe-
cial form of φ(s) (2.21). Specifically, we still adopt the discretizations (2.24) and
(2.26), but instead of precomputing φ(s), we approximate it by a numerical quadra-
ture rule:

φ(s)≈
J
∑

j=1

[

a(|ρj |)|ρj |dv−2 exp
(

i
π

L
ρjs
)]

·wj , (2.29)

where ρj ,wj , j=1, ...J are the integration points and weights in [−R,R]. Therefore,
• in the 2-D case,

β(l,m)≈ π

M

M
∑

p=1

J
∑

j=1

[

a(|ρj |)exp
(

i
π

L
ρj
(

l ·eθp
)

)

φ′(m ·eθp+π
2
)
]

·wj ; (2.30)

• in the 3-D case,

β(l,m)≈
( π

M

)2 M
∑

p,q=1

J
∑

j=1

[

a(|ρj |)|ρj |exp
(

i
π

L
ρj
(

l ·eθp,ϕq

)

)

·ψ(|Πe⊥
θp,ϕq

(m)|)sinϕq

]

·wj . (2.31)

In our implementation, we use the Gauss quadrature or composite Gauss quadra-
ture for the integration depending on the properties of a(|ρ|)|ρ|dv−2. For reason-
ably nice a(|ρ|)|ρ|dv−2, the integrand of φ(l ·e) oscillates on the scale of O(N) for
l∈
[

−N
2 ,

N
2 −1

]

, so J should be taken as O(N). Thus the total number of terms in
the decomposition of β is equal to Mdv−1J =O(Mdv−1N).

We are ready to summarize the final algorithm for computing Qq(f). Given f(v)
at a fixed time t,

1. Compute f̂k by the FFT.

2. Evaluate Qc, Q2, Q3, and Q4 by the method presented in Section 2.1, with
β(l,m) given by the formulas (2.24) and (2.26).

3. Evaluate Q1 by the method presented in this subsection, with β(l,m) given by
the formulas (2.30) and (2.31).

4. Construct Qq through (2.2).

The main work load still comes from step 3, which is now reduced to
O(Mdv−1Ndv+1 logN).

3. Numerical tests

In this section we provide some numerical results of our new algorithm. We
first test its performance on the steady state, i.e. compute Qq(Mq) and check the
accuracy. Fixing the macroscopic quantities: density ρ=1, temperature T =1, macro-
velocity u=0, one can adjust θ0 to get Mq that lies in different physical regimes [9].
We consider the 2-D Maxwellian molecules and 3-D hard sphere models which both
satisfy the decoupling assumption (2.19), as B̃ is a constant in either case (without loss
of generality, assume a= b=1). The computational domain for v is taken as [−8,8]dv .
The Gauss-Legendre quadrature rule with J =O(N) is employed to integrate φ(s).
In the 3-D case, due to the kink |ρ| in the integrand we divide [−R,R] to [−R,0] and
[0,R], and apply the Gauss quadrature on each interval.

The implementation is in MATLAB and all the numerical results are obtained
on a desktop computer with 2.8GHz CPU. Further acceleration can be achieved by
careful implementation in C or Fortran.



996 FAST ALGORITHM FOR QUANTUM BOLTZMANN COLLISION OPERATOR

3.1. 2-D Maxwellian molecules. In this case

φ(s)=φ′(s)=2RSinc
(π

L
Rs
)

, (3.1)

where Sinc(x)=sinx/x.
Let θ0=0.12 (Planck constant h=0.1), then zBose=1.5903e−03, zFermi=

1.5928e−03. Here z≪1 implies that the quantum effect is very small. Either the
Bose gas or Fermi gas should behave like a classical gas. When we increase θ0, say
θ0=32 (h=3), then zBose=0.7613, zFermi=3.1887. Now the difference between the
quantum gases and classical gas is evident (Figure 3.1).

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Planck constant h=3

Bose−Einstein distribution 
Fermi−Dirac distribution
classical Maxwellian

Fig. 3.1. The cross section of the Maxwellians when θ0=32.

Tables 3.1 and 3.2 report the max norms ofQq(Mq) generated on different meshes.
For comparison we also list the values computed by the spectral method without the
speedup strategy for Q1 (we call it direct method). Clearly our new algorithm gives
accuracy comparable to the direct method. Table 3.3 shows the average running time
of both methods for computing Q1. The speedup factor is more than 100 in N =128
case.

N fast, Bose (J =N) direct, Bose fast, Fermi (J =N) direct, Fermi
16 1.2301e-04 1.1201e-04 1.1973e-04 1.3060e-04
32 5.3865e-10 4.1312e-10 4.7734e-10 3.6743e-10
64 4.8451e-12 4.8451e-12 4.8606e-12 4.8606e-12
128 4.8643e-12 4.8643e-12 4.8798e-12 4.8798e-12

Table 3.1. ‖Qq(Mq)‖L∞ in the classical regime (θ0=0.12) computed by the fast algorithm and
the direct method. M =8 in all the simulations.

3.2. 3-D hard sphere models. In this case

φ(s)=R2
[

2Sinc
(π

L
Rs
)

−Sinc2
( π

2L
Rs
)]

, ψ(s)=2R2Sinc
( π

2L
Rs
)

. (3.2)

We test the fast algorithm in (1) the classical regime: θ0=0.33 (Planck constant
h=0.3), which corresponds to zBose=1.7133e−03, zFermi=1.7154e−03; and (2) the



J.-W. HU AND L.-X. YING 997

N fast, Bose (J =N) direct, Bose fast, Fermi (J =N) direct, Fermi
16 0.0767 0.4576 3.9164e-04 0.0014
32 0.0034 0.0248 1.3642e-06 2.8704e-06
64 1.0880e-05 1.2762e-04 5.3347e-11 1.0608e-10
128 4.5895e-10 4.6890e-09 2.4142e-11 2.4142e-11

Table 3.2. ‖Qq(Mq)‖L∞ in the quantum regime (θ0=32) computed by the fast algorithm and
the direct method. M =8 in all the simulations.

N fast algorithm (J =N) direct method
16 0.04s 0.36s
32 0.09s 2.30s
64 0.55s 28.91s
128 2.43s 341.45s

Table 3.3. The average running time of the fast algorithm and the direct method for computing
Q1. M =8 in all the simulations.

N fast, Bose (J =N) direct, Bose fast, Fermi (J =N) direct, Fermi
8 0.0886 0.0884 0.0884 0.0886
16 1.4853e-04 1.4245e-04 1.4225e-04 1.4825e-04
32 6.3897e-10 3.4993e-09 5.6455e-10 3.3125e-09
64 4.2374e-12 – 4.2477e-12 –
128 4.2374e-12 – 4.2477e-12 –

Table 3.4. ‖Qq(Mq)‖L∞ in the classical regime (θ0=0.33) computed by the fast algorithm and
the direct method. M =8 in all the simulations.

N fast, Bose (J =N) direct, Bose fast, Fermi (J =N) direct, Fermi
8 1.8267 3.8975 0.0106 0.0305
16 0.0214 0.1752 6.3556e-04 0.0013
32 9.1508e-04 0.0036 9.7828e-07 1.1671e-06
64 2.2308e-06 – 3.5756e-11 –
128 4.2658e-11 – 1.3868e-11 –

Table 3.5. ‖Qq(Mq)‖L∞ in the quantum regime (θ0=2.63 for Bose gas; θ0=33 for Fermi gas)
computed by the fast algorithm and the direct method. M =8 in all the simulations.

quantum regime: θ0=2.63 (h=2.6) for the Bose gas, zBose=0.7474; θ0=33 (h=3)
for the Fermi gas, zFermi=3.0997. The numerical results of both methods are given
in Tables 3.4-3.6. In the 3-D case, the fast algorithm provides a huge saving of the
computational time, while the direct method is too slow.

3.3. Relaxation to equilibrium. In this subsection, we would like to test
the numerical performance of the algorithm on a general distribution f , instead of
Mq. Consider the homogeneous Equation (2.1) for a 2-D Bose gas of Maxwellian
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N fast algorithm (J =N) direct method
8 0.08s 5.04s
16 0.99s 236.23s
32 9.49s ∼12000s
64 144.31s –
128 ∼1900s –

Table 3.6. The average running time of the fast algorithm and the direct method for computing
Q1. M =8 in all the simulations.
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Fig. 3.2. The time evolution of ‖f−Mq‖L1 and the relative entropy H for a 2-D Bose gas.
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Fig. 3.3. The time evolution of density, macro-velocity, and specific internal energy for a 2-D
Bose gas.
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molecules, with the nonequilibrium initial data

f0(v)=
ρ0

4πT0

(

exp

(

−|v−u0|2
2T0

)

+exp

(

−|v+u0|2
2T0

))

, (3.3)

where ρ0=1, T0=3/8, and u0=(1,1/2). The fast algorithm for Qq and the fourth-
order Runge-Kutta method for the time derivative are applied to solve the equation.
Here the Planck constant h is chosen as 3 such that z=0.6635. The computational
domain is [−8,8]2. Here N =64=J andM =8. Figure 3.2 shows the time evolution of
‖f−Mq‖L1 and the relative entropy H, from which we clearly observe the relaxation
to equilibrium and the entropy decay. Furthermore, the mass, momentum, and energy
are also preserved very well (Figure 3.3).

4. Conclusion

We improved the spectral method in [5] and developed a fast algorithm for the
quantum Boltzmann collision operator. The special form of the collision kernel in
the spatial domain enables us to accelerate the computation. With the fast Fourier
transform, the algorithm complexity is brought down to O(Mdv−1Ndv+1 logN) as
opposed to O(Mdv−1N2dv logN) of the previous method. Numerical results showed
that the new algorithm preserves the spectral accuracy as well as offers a significant
speedup over the original approach.
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