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Computing Free Convolutions via Contour Integrals

Alice Cortinovis∗ Lexing Ying†

Abstract

This work proposes algorithms for computing additive and multiplicative free convolu-
tions of two given measures. We consider measures with compact support whose free convo-
lution results in a measure with a density function that exhibits a square-root decay at the
boundary (for example, the semicircle distribution or the Marchenko-Pastur distribution). A
key ingredient of our method is rewriting the intermediate quantities of the free convolution
using the Cauchy integral formula and then discretizing these integrals using the trapezoidal
quadrature rule, which converges exponentially fast under suitable analyticity properties of
the functions to be integrated.

1 Introduction

Given two independent commutative random variables X and Y , the density of the sum can be
obtained by computing the convolution of the densities of X and Y . This no longer holds when
X and Y do not commute. As an example, consider two symmetric matrices X and Y of size
n×n whose eigenvalues are ±1, each chosen with probability 1

2 , and whose eigenvector matrices
are two independently chosen random orthogonal matrix (that is, from the Haar distribution).
When the size n grows to infinity, the eigenvalues of X+Y tend to follow an arcsine distribution
– a continuous distribution that does not correspond to the convolution of the random variables
that define the eigenvalues of X and Y . The theory of free probability, introduced by Voiculescu
in the 1980s, is a powerful tool to explain the behavior of the eigenvalue distribution of the
sum of random matrices via the concept of free additive convolution ; we refer the reader to the
book [7] for an explanation of the topic and its connections with random matrix theory.

Another application of free probability is the following. When Z is a random matrix of size
n× p whose rows are zero-mean random vectors with variance Σp ∈ R

p×p, one can consider the

sample covariance Σ̂p := 1
nZ

TZ. If we consider increasing values of n and p with p
n → γ, and

the eigenvalues of Σp have a limit distribution, then the eigenvalue distribution of Σ̂p also has a
deterministic limit, under mild conditions [10, 11]. Again, such a limit can be expressed using
the tools of free multiplicative convolution.

Related literature. The free additive and multiplicative convolutions of measures are defined,
theoretically, via Cauchy transforms, R-transforms, T-transforms, and S-transforms, which will
be recalled in Section 2. It is possible to compute the free convolution analytically only in some
very special cases; for all other measures, one must resort to numerical techniques. An approach
for the numerical computation of free convolutions is to use fixed-point iterations, for example,
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based on the results in [5, Theorem 6.5]. The work [3] proposes an algorithm for computing the
free multiplicative convolution of a sum of point measures with a Marchenko-Pastur distribution
(which fits into the application of free multiplicative convolution mentioned above). The work [9]
addresses the free additive convolution of measures whose Cauchy transform is an algebraic
function. The work [8] proposes an algorithm for the free convolution of measures that result in
a smoothly-decaying measure supported on the entire real line or a measure that is supported
on a compact interval and exhibits a square-root behavior at the boundary; see Remark 3.6 for
a comparison with our approach.

Contributions. In this work, we propose a new algorithm for computing the free (additive
and multiplicative) convolution of two measures µ1 and µ2. We assume that µ1 and µ2 have
compact support and that their free convolution has a square-root behavior at the boundary,
which is made precise in Definition 2.1. Our approach is based on approximating the analytic
transforms needed in the computation of the free convolution using the Cauchy integral theorem
along suitably defined curves. The numerical evaluation of integrals is done using the trapezoidal
quadrature rule, which results in a fast convergence with respect to the number of quadrature
points because the functions to be integrated are analytic.

Outline. The rest of the paper is organized as follows. In Section 2, we recall the relevant
definitions and results on the free convolution of measures. In Section 3, we outline the proposed
algorithm for free additive convolution. A similar algorithm for the free multiplicative convolution
is summarized in Section 4. In Section 5, we discuss the approximation errors in the algorithms
for free convolutions. We report various numerical examples in Section 6, and the conclusions
are given in Section 7.

2 Preliminaries on free convolution

In this work, we consider measures with compact support and with a continuous density without
atoms.

Notation. We denote by µ a measure with support in [a, b] and density f(x). The input
measures are µ1 (with support [a1, b1]) and µ2 (with support [a2, b2]). We denote by µ1 ⊞ µ2
their free additive convolution and by µ1 ⊠ µ2 their free multiplicative convolution. We denote
D the open unit disk in C and ∂D the unit circle (the border of the unit disk) in C. When
computing integrals on ∂D or any other curve in the complex plane, these are intended in an
anti-clockwise direction. C

+ and C
− denote the half of the complex plane containing numbers

with strictly positive or negative imaginary parts, respectively.

2.1 Measures with sqrt-behavior at the boundary and Jacobi measures

The most regular distributions we consider in this paper are those with an sqrt-behavior at the
boundary in the following sense.

Definition 2.1. The measure µ has square-root behavior at the boundary ( sqrt-behavior) if its
density has the form

dµ(x) = f(x)dx = ψ(x)
√
x− a

√
b− xdx

for some ψ ∈ C1([a, b]) with ψ′(x) of bounded variation.
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We recall two examples of measures of this type that arise naturally from random matrix
theory.

Example 2.2 (Semicircle). The semicircle distribution has support in [a, b] = [−2, 2] and its
density is

dµ(x) =
1

2π

√
4− x2dx.

It has sqrt-behavior at the boundary with ψ(x) = 1
2π .

The semicircle distribution is the limit (for n → ∞) eigenvalue distribution of a random
symmetric matrix of size n×n that has random i.i.d. entries with mean 0 and variance 1

n above
the diagonal, and i.i.d. entries with mean 0 and variance C

n on the diagonal, for some constant
C ≥ 0.

Example 2.3 (Marchenko-Pastur). The Marchenko-Pastur distribution with parameter λ ∈
(0, 1) has support in [λ−, λ+] with λ± := (1±

√
λ)2, and its density is

dµ(x) =

√
(λ+ − x)(x− λ−)

2πλx
dx.

It has sqrt-behavior at the boundary, with ψ(x) = 1
2πλx .

The Marchenko-Pastur distribution is the limit (for n→ ∞) eigenvalue distribution of random
matrices of the form BnB

T
n for matrices Bn ∈ R

⌊λn⌋×n made of i.i.d. entries with zero mean and
variance 1

n .

A more general class of measures is the following.

Definition 2.4. µ is a Jacobi measure if its density has the form

dµ(x) = (x− a)α(b− x)βψ(x)dx

for some α, β > −1 and ψ ∈ C1([a, b]).

Example 2.5 (Uniform distribution). As an example of a Jacobi measure that does not have
an sqrt-behavior at the boundary (that we will use in our numerical experiments), let us consider
the uniform distribution with support in the interval [a, b], for some a, b ∈ R. The density is
dµ(x) = 1

b−adx.

2.2 The Cauchy transform and Stiltjies inversion

Definition 2.6. The Cauchy transform of the point z ∈ C\[a, b] is defined as

G(z) =

∫ b

a

1

z − x
dµ(x).

When ambiguous, we will put a subscript indicating the measure, for example, Gµ(z).

Theorem 2.7. The Cauchy transform G is analytic on C\[a, b] and at infinity.

This is a version of Proposition A.7 in [8] with different assumptions, and it is slightly better
than Lemma 2 in Chapter 3 in [7] because we have stronger assumptions in our case (i.e. compact
support). The proof follows [7, Chapter 3, Lemma 2]; we report the proof in Appendix A for
completeness.

To see the Cauchy transform as a map from the unit disk in C to C, we use the Joukowski
map.

3



Definition 2.8. The Joukowski map relative to the segment [a, b] is

J[a,b](v) =
1

2

(
v +

1

v

)
b− a

2
+
b+ a

2
, v ∈ C.

This is a conformal map from the unit disk to C ∪ {∞}\[a, b]. The unit circle is mapped
into the segment [a, b] (“twice”), and circles are mapped into ellipses. For z ∈ C ∪ {∞}\[a, b] we
denote by J−

[a,b]
and J+

[a,b]
the inverse Joukowski functions which are inside and outside the unit

disk, respectively. The Joukowski map allows us to define

G(v) := G
(
J[a,b](v)

)
,

which is a holomorphic function that maps the unit disk into C, and such that G(0) = 0.
Therefore, we can write it as a power series

G(v) =
∑

n≥1

gnv
n (1)

that converges everywhere inside D.

Remark 2.9. If the measure µ has sqrt-behavior at the boundary, the series (1) converges also on

the unit circle. Indeed, as discussed in [8, Section 3.0.1], the coefficients are gn = (b−a)π
2 ψn−1,

where ψn is the n-th coefficient in the series expansion of ψ(x) with Chebyshev polynomials
of the second kind. When ψ(x) is analytic in a (complex) neighborhood of the interval [a, b],
the coefficients ψn decay exponentially fast; see, e.g., [12, Theorem 8.1]. To obtain convergence
of (1) on the unit circle, it is sufficient to assume that ψ(x) is Lipschitz-continuous, see, e.g., [12,
Theorem 3.1].

Example 2.10. For the semicircle and Marchenko-Pastur distribution, we can write the Cauchy
transform explicitly (and their inverse and G(z) as well). For the semicircle distribution, we have

G(z) =
z −

√
z2 − 4

2
, G−1(w) = w +

1

w
, G(v) = v.

For the Marchenko-Pastur distribution with parameter λ, we have

G(z) =
z + λ− 1−

√
(z − λ− 1)2 − 4λ

2λz
, G−1(w) =

1

1− λw
+

1

w
, G(v) = v

λ(1− v
√
λ)
.

In particular, note that G is analytically continuable in the disk of radius 1√
λ
> 1. For the uniform

distribution on the interval [−m,m], instead, we have that

G(z) =
1

2m
log

z +m

z −m
, G−1(w) = −m+

2m

1− exp(−2mw)
.

We have

G(v) = 1

m
log

(
1 +

2

1− v

)
=

2

m

∑

n≥0

v2n+1

2n + 1
,

which means that G is not analytically continuable on the border of the unit disk.

4



The Stiltjies inversion formula allows us to recover the density of a distribution from its
Cauchy transform.

Theorem 2.11 ([7, Theorem 6]). Assume dµ(x) = f(x)dx for a continuous function f . For
any c < d ∈ (a, b) we have that

− 1

π
lim
y→0+

∫ d

c
Im (G(x+ iy)) dx = µ([c, d]).

In our algorithm, we will use the following corollary, whose proof we report in Appendix A,
for completeness.

Corollary 2.12. Let dµ(x) = f(x)dx for a continuous function f . Then for all θ ∈ (0, π) we
have

f

(
b− a

2
cos θ +

b+ a

2

)
=

1

π
lim
r→1−

Im
(
G(reiθ)

)
.

2.3 The free additive convolution

The key function needed to define the free additive convolution of measures is the R-transform,
which is defined as follows.

Definition 2.13. The R-transform of a measure µ is a function R defined in a neighborhood of
0 such that G

(
R(w) + 1

w

)
= w.

When the Cauchy transform G is invertible, we have R(w) = G−1(w) − 1
w . When we need

to avoid confusion, we will denote the R-transform of the measure µ by Rµ(w).

Theorem 2.14. Let µ be a measure with compact support in [a, b]. Then its R-transform is
analytic on G(R\[a, b]) and on a disk centered in the origin with radius 1

6min{|a|,|b|} .

If G′(z) 6= 0 for all z ∈ C ∪ {∞}\[a, b] then R is invertible on G(C ∪ {∞}\[a, b]) and it
is analytic on the whole G(C ∪ {∞}\[a, b]). We have the following result for the free additive
convolution of µ1 and µ2.

Theorem 2.15 ([7, Chapter 2, Theorem 18]). Given two measures µ1 and µ2,

Rµ1⊞µ2(w) = Rµ1(w) +Rµ2(w).

2.4 The free multiplicative convolution

For two measures µ1 and µ2 with compact support, analogously to the additive case, a suitable
transform (S-transform) allows us to compute the free multiplicative convolutions.

Definition 2.16. The T-transform and S-transform of a measure µ are

T (z) =

∫ b

a

t

z − t
dµ(t) and S(w) =

1 + w

wT−1(w)
,

respectively.
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The T-transform maps C
+ into C

− and maps C
− into C

+, and it is a holomorphic function
from C ∪ {∞}\[a, b] to C. Therefore, the map T (v) := T (J(v)) has a power expansion T (v) =∑

n≥1 tnv
n that converges inside the unit disk. The S-transform is analytic in a neighborhood of

0. We skip the details because this is similar to the additive case.

Theorem 2.17 ([7, Chapter 4, Theorem 23]). Given two measures µ1 and µ2,

Sµ1⊠µ2(w) = Sµ1(w) · Sµ2(w).

3 An algorithm for free additive convolution

In this section, we propose an efficient algorithm for computing the free additive convolution of
two measures µ1 and µ2 that satisfy the following set of assumptions.

Assumptions 3.1. We assume that µ1 and µ2 satisfy the following properties.

• They have compact support [a1, b1] and [a2, b2].

• One of them, without loss of generality µ1, has sqrt-behavior at the boundary.

• The other one, without loss of generality µ2, is a Jacobi measure.

• The Cauchy transforms Gµ1 and Gµ2 are invertible on their domain of definition.

We recall that the Cauchy integral formula states that, for an analytic function f and a
contour Γ, for any point z inside Γ

f(z) =
1

2πi

∫

Γ

f(w)

w − z
dw.

This is a tool that we will use frequently in our algorithm, to evaluate Cauchy transforms and
R-transforms (which are analytic functions).

Another central theoretical result for our algorithm is the following theorem that allows us
to characterize the support of µ1 ⊞ µ2 and the image of Gµ1⊞µ2 .

Theorem 3.2 (Theorem 2.2 and Theorem 5.2 in [8]). Under the Assumptions 3.1, let

g(w) := G−1
µ1

(w) +G−1
µ2

(w) − 1

w
, (2)

which coincides with G−1
µ (w) in a neighborhood of 0. We have the following properties.

• µ := µ1 ⊞ µ2 has sqrt-behavior at the boundary.

• The support of µ is contained in the interval

[a, b] := [g(ξa), g(ξb)],

where ξa and ξb are the unique zeros of the derivative g′ in the intervals

(max(Gµ1(a1), Gµ2(a2)), 0) and (0,min(Gµ1(b1), Gµ2(b2))),

respectively.
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• To check whether a point w is in the image of Gµ1⊞µ2 we can use the following criterion:

w ∈ Gµ1⊞µ2(C\[a, b]) ⇔ sgn(Im(g(w))) = −sgn(Im(w)).

Our proposed algorithm consists of four main steps:

1. Set up the computation of the R-transform for µ1 and µ2.

2. Compute the support of µ

3. Compute the Cauchy transform of µ on a suitable set of points.

4. Recover the density of µ from its Cauchy transform.

3.1 Step 1: Setting up the computation of the R-transform

In this section, we explain how to set up the computation of the R-transform for a measure µ with
support in [a, b]. We apply this procedure to µ1 and µ2. Let us consider the curve Γ := G(rA∂D),
for some rA ∈ (0, 1). Since the R-transform is analytic, given a point w inside Γ we can write
R(w) with the Cauchy integral formula:

R(w) =
1

2πi

∫

Γ

R(s)

w − s
ds.

As Γ is parameterized by s = G(rAv) for v on the unit circle, we have ds = rAG′(rAv)dv and
G−1(s) = J[a,b](rAv) and the integral becomes

R(w) =
rA
2πi

∫

∂D

J[a,b](rAv)− 1/G(rAv)
G(rAv)− w

G′(J[a,b](rAv))J
′
[a,b](rAv)dv =:

∫

∂D
u(v)dv. (3)

We perform an additional change of variables v = exp(2πiθ), for θ ∈ [0, 1], and aim at discretiz-
ing (3) with the trapezoidal quadrature rule, which reads

R(w) ≈ rA
N

N−1∑

j=0

ξjN ·G′(J[a,b](ξ
j
N )) · J ′

[a,b](ξ
j
N ) ·

J[a,b](ξ
j
N )− 1

G(J[a,b](ξ
j
N
))

G(J[a,b](ξ
j
N ))− w

, ξN = exp

(
2πi

N

)
.

Note that the quantities G(J[a,b](ξ
j
N )) and G′(J[a,b](ξ

j
N )) do not depend on the point w and can

be computed ahead of time. For their computation, we again use the trapezoidal quadrature rule.
More precisely, for evaluating the Cauchy transform G(z) for a point z ∈ C\[a, b], we rewrite the
integral that defines it as

G(z) =

∫

γ

1

2

b− a

2

(
1− 1

v2

)
f(J[a,b](v))

z − J[a,b](v)
dv,

where γ is the upper unit semicircle in the complex plane, oriented clockwise, where we made
the change of variables x = J[a,b](v). With an additional change-of-variable v = exp(2πiθ) for
θ ∈ [0, 1] we get

G(z) = π
b− a

2

∫ 0

1
sin(2πθ)

f
(
b−a
2 cos(2πθ) + b+a

2

)

z −
(
b−a
2 cos(2πθ) + b+a

2

)dθ. (4)

7



The discretization in N quadrature points using the trapezoidal quadrature rule reads:

G(z) ≈ − π

N

N∑

k=0

′′ b− a

2
sin

(
2πk

N

)
f
(
b−a
2 cos

(
2πk
N

)
+ b+a

2

)

z −
(
b−a
2 cos

(
2πk
N

)
+ b+a

2

) , (5)

where the
′′

denotes that the first and last terms are halved. This makes sense for any measure
µ, but it has a provably exponential convergence when µ has sqrt-behavior at the boundary (see
Corollary 5.2 below). Now note that the derivative of the Cauchy transform can be written as

G′(z) = −
∫ b

a

1

(z − x)2
dµ(x)

and this integral can be discretized in the same way as the Cauchy transform itself.
Practically speaking, the first step of our proposed algorithm consists in choosing a radius

rA < 1 (for example, rA = 0.95), a number of quadrature points N (for example, N = 1000),
and approximating

c
(k)
j ≈ Gµk

(J[ak ,bk](ξ
j
N )), d

(k)
j ≈ G′

µk
(J[ak ,bk](ξ

j
N ))

for j = 0, 1, . . . , N and for k = 1, 2 via (5). We call Γ1 and Γ2 the images of the circle of radius
rA by Gµ1 and Gµ2 , respectively. This allows us to compute the R-transform for µ1 and µ2, when
needed, from the expression

Rµk
(w) ≈ rA

N

N−1∑

j=0

ξjN · d(k)j · J ′
[ak ,bk]

(ξjN ) ·
J[ak,bk](ξ

j
N )− 1/c

(k)
j

c
(k)
j − w

, k ∈ {1, 2}. (6)

Example 3.3. Throughout this section, we will illustrate the behavior of our proposed algorithm
on an explicit example: we consider µ1 to be a Marchenko-Pastur distribution with parameter
λ = 0.5 and µ2 to be the semicircle distribution. In Figure 1, we show, in the left block, a
blue circle of radius rA = 0.95, in the middle block the image of this circle via the Joukowski
transform associated with µ1, and in the right block the image of this curve (an ellipse) via the
Cauchy transform Gµ1 . The red circle in the left plot is the unit circle. In Figure 2, we do the
same for µ2. The number of discretization points used in the expression (5) is N = 400 in these
examples.
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Figure 1: Computation of the Cauchy transform of an ellipse corresponding to a circle of radius
rA = 0.95 for the Marchenko-Pastur distribution with parameter λ = 0.5 (see Example 3.3).
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Figure 2: Computation of the Cauchy transform of an ellipse corresponding to a circle of radius
rA = 0.95 for the semicircle distribution (see Example 3.3).

3.2 Step 2: Computing the support of the free sum

The second point in Theorem 3.2 gives a clear characterization of the support of µ = µ1 ⊞µ2 we
use a result from [8]. Note that

g′(w) =
1

G′
µ1
(G−1

µ1 (w))
+

1

G′
µ2
(G−1

µ2 (w))
+

1

w2

so it can be approximated numerically using (6) and (5) when w is inside both Γ1 and Γ2.
In our algorithm, we use bisection to numerically find a zero of g′(w) in the interval ((1 −
ε)max{c(1)N/2, c

(2)
N/2}, 0) and one in the interval (0, (1 − ε)min{c(1)0 , c

(2)
0 }), where the parameter ε

is needed because when w is very close to either Γ1 or Γ2 the computations become unstable;
see Section 5 for a better insight on this problem. We stop the binary search when the size of
the interval is smaller than a fixed tolerance. We denote by ξa and ξb the zeros that we found
numerically. Then, we compute a ≈ g(ξa) and b ≈ g(ξb), and these are (up to numerical errors)
the extrema of the support of µ = µ1 ⊞ µ2.

3.3 Step 3: Computation of the Cauchy transform of µ

The next step in our algorithm is finding a circle of radius rB that is entirely contained in
Gµ(C ∪ {∞}\[a, b]). We want rB to be as large as possible, for reasons that will be clarified in
Section 5. An upper bound for rB is the radius of the largest circle that is contained inside the
intersection of Γ1 and Γ2. Given a point w inside this intersection, the criterion from Theorem 3.2
allows us to check whether w is in the image of Gµ or not. Therefore, we can perform a binary
search on the radius and find a suitable value of rB.

Consider the curve Γ := g(rB∂D) = G−1
µ (rB∂D). Leveraging the analyticity of Gµ, for a

point z inside Γ we can write Gµ(z) using the Cauchy integral formula

Gµ(z) =
1

2πi

∫

Γ

Gµ(s)

s− z
ds =

r2B
2πi

∫

∂D

g′(rBv)v
g(rBv)− z

dv.

where the second equality follows from the parametrization of Γ with s = G−1
µ (rBv) for v ∈ ∂D.

The trapezoidal quadrature rule for this integral gives

Gµ(z) ≈
r2B
N

N−1∑

j=0

g′(rBξ
j
N )ξ2jN

g(rBξ
j
N )− z

. (7)
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We now choose a circle of radius rC which is contained inside J−
[a,b](Γ), and we evaluate G(v) =

G(J[a,b](v)) numerically on the points rCξ
j
M , for j = 0, 1, . . . ,M . Let us denote by h0, h1, . . . , hM

the values obtained by the quadrature formula (7). We will use these to recover an approximation
of the measure µ in the next section.

Example 3.4. In Figure 3, we show, in the middle block, the numerically computed extrema
a and b (the red dots) of the support of µ = µ1 ⊞ µ2, where µ1 and µ2 are the Marchenko-
Pastur distribution with parameter λ = 0.5 and the semicircle distribution from Example 3.3,
respectively. The circle of radius rB is drawn in orange in the right block. The curve Γ is the
orange curve in the middle block, and the orange curve in the left block is J−

[a,b](Γ). The circle of
radius rC is in green in the left block, its image via J[a,b] is the green ellipse in the middle block
and its image via Gµ is the green curve in the right block.
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Figure 3: Illustration of Step 3 of the proposed algorithm for free additive convolution, see
Example 3.4.

3.4 Step 4: Recovering the density of µ from its Cauchy transform

From the previous step of the algorithm, we have the (approximate) value of Gµ in M equispaced
points on a circle of radius rC < 1. If we truncate the power series (1) to the first M terms, we
obtain the relation




Gµ(rCξ
0
M )

Gµ(rCξ
1
M )

...

Gµ(rCξ
M−1
M )


 =




ξ0M
ξ1M

. . .

ξM−1
M


 · F ·




g1rC
g2r

2
C

...
gMr

M
C


 , (8)

where F is the Fourier matrix of size M ×M . Therefore, we can recover the (approximate) co-
efficients g1, . . . , gM by performing an IFFT to the vector [h0, h1, . . . , hM−1]

T that approximates
the left-hand-side and then dividing the jth entry by rjC for j = 1, . . . ,M . Note that, when rjC is
very small, we cannot hope that the corresponding coefficient of the power series is numerically
accurate. Hence, we truncate the series to the first m terms, for some m < M . Now using
Theorem A.1 we take the following approximation for the density dµ(x) = f(x)dx:

f
(
J[a,b](exp(iθ))

)
≈ − 1

π
Im




m∑

j=1

gj exp(ijθ)


 ,
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which can be written nicely in matrix form:




f
(
J[a,b](ξ

0
m)
)

f
(
J[a,b](ξ

1
m)
)

...
f
(
J[a,b](ξ

m−1
m )

)


 ≈ − 1

π
Im







ξ0m
ξ1m

. . .

ξm−1
m


 · F ·




g1
g2
...
gm





 . (9)

By padding the vector
[
g1 g2 · · · gm

]T
with zeros, we get a discretization of µ in any number

of points.
We remark that (9) only makes sense, theoretically, when the power series corresponding to

Gµ also converges on the unit circle. This is the case when µ has sqrt-behavior at the boundary,
and its density is analytic when non-zero. While Theorem 3.2 only states that µ = µ1 ⊞ µ2 has
sqrt-behavior at the boundary, the result from [1, Theorem 2.2 and Lemma 2.7] states that under
mild assumptions µ has the analyticity property as well.

Example 3.5. In Figure 4 we plot, in the right block, the approximation of the density of
µ1 ⊞ µ2 for the input measures from Examples 3.3 and 3.4, together with the densities of the
input measures. In the left block, we compare the obtained approximation of dµ(x) with the
empirical eigenvalue distribution of a 5000 × 5000 matrix resulting from the sum of two random
matrices sampled accordingly to Example 2.2 and 2.3.

−2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8
free sum
mu_1
mu_2

−1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

Figure 4: Illustration of Step 4 of the proposed algorithm for free additive convolution, see
Example 3.5.

Remark 3.6 (Comparison with [8]). The work [8] also proposes an algorithm to compute the
free convolution of measures. In the algorithm from [8], in the sqrt-behavior case, they explicitly
compute the inverse of the Cauchy transform. However, our approach via the Cauchy integral
theorem allows us to compute the R-transform for any measure with compact support, and not
only the ones with sqrt-behavior at the boundary. This makes sense to consider, because the
measure µ2 may not have sqrt-behavior at the boundary. In addition, our approach for evaluating
Gµ on a circle in Step 3 simplifies the approach used in [8] to recover the resulting measure from
its inverse Cauchy transform.
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Algorithm 1 Computation of the free sum of two measures

Require: Measures µ1 and µ2, number of quadrature points N , number of Fourier coefficients m, tol-
erance ε, radius rA, tolerance tol. Optional: Cauchy transform, inverse Cauchy transform, the
derivative of Cauchy transform, for one or both measures.

Ensure: Discretization of the density of the measure µ := µ1 ⊞ µ2.
1: % Step 1: Set up the computation of the R-transform for both input measures

2: for k = 1, 2 do

3: if (Inverse) Cauchy transform of µk is unknown then

4: Compute values of d
(k)
j , J ′

[ak,bk]
(ξjN ), c

(k)
j appearing in Eq. (6) using (5).

5: end if

6: end for

7: % Step 2: Find support of µ
8: Find ξa ∈ (max{Gµ1

(−rA + ε),Gµ2
(−rA + ε)}, 0) such that g′(ξa) = 0 (g(z) from (2)).

9: Find ξb ∈ (0,min{Gµ1
(rA − ε),Gµ2

(rA − ε)}) such that g′(ξb) = 0 (g(z) from (2))
10: The support of µ is [a, b] := [g(ξa), g(ξb)].
11: % Step 3: Compute the Cauchy transform of µ
12: Find a (large, if possible) circle inside Gµ(C ∪ {∞}\[a, b]) by binary search on the radius, using

Theorem 3.2 to check whether the circle is inside the wanted region or not. Call rB its radius and
Γ := g(rB∂D).

13: Let rC be (slightly) smaller than the radius of the largest circle inscribed in J−

[a,b](Γ).

14: Evaluate Gµ on M = max{100,
∣∣∣16 log1/rC 10

∣∣∣} equispaced points on the circle of radius rC , using the

Cauchy integral theorem + trapezoidal quadrature rule (7).
15: % Step 4: Recover the density of µ
16: Approximate first m coefficients of power series of Gµ(z) via IFFT (8).
17: Return the approximation of the density of µ by (9).

4 An algorithm for free multiplicative convolution

The case of free multiplicative convolution is very similar to the additive case, so we will skip the
details. We present an algorithm for two input measures µ1 and µ2 that satisfy the following set
of assumptions.

Assumptions 4.1. We assume that µ1 and µ2 satisfy the following properties.

• They have compact support [a1, b1] and [a2, b2], with a1, b1, a2, b2 > 0.

• Both µ1 and µ2 have sqrt-behavior at the boundary.

• The T-transforms Tµ1 and Tµ2 are invertible on their domain of definition.

Under these assumptions (which are more restrictive than the Assumptions 3.1), a theorem
similar to Theorem 3.2 holds. The proof is in Appendix B.

Theorem 4.2. Under the Assumptions 4.1, let us define

t(w) :=
w

1 + w
T−1
1 (w)T−1

2 (w), (10)

which coincides with T−1
µ (w) in a neighborhood of zero. Then the following properties hold.

• µ := µ1 ⊠ µ2 has sqrt-behavior at the boundary.

12



• The support of µ is contained in the interval

[a, b] := [t(ξa), t(ξb)],

where ξa and ξb are the unique zeros of the derivative t′ in the intervals (max(T1(a1), T2(a2)), 0)
and (0,min(T1(b1), T2(b2))), respectively.

• To check whether a point w is in the image of Tµ1⊠µ2 we can use the following criterion:

w ∈ Tµ1⊞µ2(C\[a, b]) ⇔ sgn(Im(t(w))) = −sgn(Im(w)).

In summary, the algorithm again has four steps:

1. Set up the computation of the S-transform for µ1 and µ2.

2. Compute the support of µ

3. Compute the T-transform of µ on a suitable set of points.

4. Recover the density of µ from its T-transform.

Step 1. Following the same procedure as in Section 3.1 we can find an approximation of T (z)
by rewriting the integral that defines T on the unit circle and then discretizing it using the
trapezoidal quadrature rule:

T (z) ≈ π

N

N∑

k=0

′′ b− a

2
sin

(
2πk

N

)
f
(
b−a
2 cos

(
2πk
N

)
+ b+a

2

)

z −
(
b−a
2 cos

(
2πk
N

)
+ b+a

2

) .

In order to be able to evaluate the S-transform (or the inverse of the T-transform), we will need
a contour on which to apply the Cauchy integral theorem. In our algorithm, we compute Tµ1 and
Tµ2 in N equispaced points on a circle of radius rA < 1 (close to 1). Analogously, we can compute
the derivatives of the T-transform in these same points. Let us denote the approximations by

c
(k)
j ≈ Tk(J[ak ,bk](ξ

j
N )), d

(k)
j ≈ T ′

k(J[ak ,bk](ξ
j
N )) (11)

for j = 0, 1, . . . , N and for k = 1, 2.
As the S-transform is analytic in a neighborhood of zero, we can write the Cauchy integral

formula for any z inside the curve Γ1 = Tµ1(rA∂D) (the procedure is analogous for Γ2):

Sµ1(w) =
1

2πi

∫

Γ1

Sµ1(s)

w − s
ds.

Using the parametrization of Γ1 from the circle of radius rA, and then discretizing the circle in N
equispaced points using the trapezoidal quadrature rule, we obtain a formula for approximating
Sµ1(w) (and therefore also T−1

µ1
(w)) for any w inside Γ1:

Sµ1(w) ≈
rA
N

N∑

j=1

′′
ξjNd

(1)
j J ′

[a1,b1]
(rAξ

j
N )(1 + c

(1)
j )

c
(1)
j J[a1,b1](rAξ

j
N )(w − c

(1)
j )

, T−1
µ1

(w) =
1 + w

w · Sµ1(w)
.
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Algorithm 2 Computation of the free product of two measures

Require: Measures µ1 and µ2, number of quadrature points N , number of Fourier coefficients m, toler-
ance ε, radius rA, tolerance tol. Optional: T-transform, S-transform, derivative of T-transform, for
one or both measures.

Ensure: Discretization of the density of the measure µ := µ1 ⊠ µ2.
1: % Step 1: Set up the computation of the S-transform for both measures

2: for k = 1, 2 do

3: if (Inverse) S-transform of µk is unknown then

4: Compute values of d
(k)
j , J ′

[ak,bk]
(ξjN ), c

(k)
j appearing in Eq. (11).

5: end if

6: end for

7: % Step 2: Compute the support of µ
8: Find ξa ∈ (max{Tµ1

(−rA + ε), Tµ2
(−rA + ε)}, 0) such that t′(ξa) = 0 (t(z) from (10)).

9: Find ξb ∈ (0,min{Tµ1
(rA − ε), Tµ2

(rA − ε)}) such that t′(ξb) = 0 (t(z) from (10))
10: The support of µ is [a, b] := [t(ξa), t(ξb)].
11: % Step 3: Compute the T-transform of µ
12: Find a (large, if possible) circle inside Tµ(C ∪ {∞}\[a, b]) by binary search on the radius, using the

criterion from Theorem 4.2 to check whether the circle is inside the wanted region or not. Let rB be
the radius of the chosen circle and let Γ := t(rB∂D) be the image of the chosen circle via t.

13: Let rC be (slightly) smaller than the radius of the largest circle inscribed in J−

[a,b](Γ)

14: Evaluate Tµ on M = max{100,
∣∣∣16 log1/rC 10

∣∣∣} equispaced points on a circle of radius rC , which is

slightly smaller than the largest circle inscribed in Γ, using the Cauchy integral formula + trapezoidal
quadrature rule (12).

15: % Step 4: Recover the density of µ from its T-transform.

16: Approximate first m coefficients of power series of T (z) via IFFT (8).
17: Return the approximation of the density of µ by (13).

Step 2. Being able to evaluate T−1
µ1

and T−1
µ2

, we can find the support [a, b] of µ := µ1 ⊠ µ2
using Theorem 4.2 (by bisection).

Step 3. Theorem 4.2 also gives a criterion to find a circle of radius rB inside the image of Tµ.
Analogously to Section 3.3, we can now evaluate Tµ in any point inside T−1

µ (rB∂D) using the
Cauchy integral formula. The discretization by the trapezoidal quadrature rule reads

Tµ(z) ≈
r2B
N

N−1∑

j=0

(J−
[a,b])

′(t(rBξ
j
N ))t′(rBξ

j
N )ξ2jN

J−
[a,b](t(rBξ

j
N ))− z

. (12)

We use this formula to approximate Tµ(z) on a circle of radius rC contained inside T −1
µ (rB∂D).

Step 4. From the approximate values of Tµ, we find a truncated series representation of Tµ(v) ≈∑m
j=1 tjv

j using (8) (which also holds when replacing G with T ). Finally, we recover the measure
µ from the following relation:




f
(
J[a,b](ξ

0
m)
)
J[a,b](ξ

0
m)

f
(
J[a,b](ξ

1
m)
)
J[a,b](ξ

1
m)

...
f
(
J[a,b](ξ

m−1
m )J[a,b](ξ

m−1
m )

)


 ≈ − 1

π
Im







ξ0m
ξ1m

. . .

ξm−1
m


 · F ·




t1
t2
...
tm





 . (13)

The proposed method for free multiplicative convolution is summarized in Algorithm 2.
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5 Error analysis of free convolutions

The discussion of this section focuses on free additive convolution; the proof for free multiplicative
convolution is exactly the same. The aim is to explain, for each step of our proposed algorithm,
what sources of error are present, and how they can be bounded under suitable assumptions on
the measures µ1 and µ2 and the other parameters involved in Algorithm 1.

Important for our analysis is the well-known fact that the convergence of the trapezoidal
quadrature rule is exponential when the function to be integrated is analytic in a suitable region
of the complex plane [2]. We recall a version of this result from [13].

Theorem 5.1 (Exponential convergence of trapezoidal rule for analytic functions). Suppose u
is analytic and satisfies |u(s)| ≤ C in an annulus ρ−1 < |s| < ρ of the complex plane, for some
ρ > 1. Let N > 1 and consider the approximation IN of the integral I :=

∫
∂D u(s)ds using N

equispaced quadrature points on the unit circle and the trapezoidal quadrature rule. Then

|IN − I| ≤ 4πC

ρN − 1
.

This immediately implies the following result on the error in the computation of the Cauchy
transforms for measures with sqrt-behavior at the boundary.

Corollary 5.2. Let µ be a measure with sqrt-decay behavior at the boundary, and further assume
that the function ψ(J[a,b](v)) (from Definition 2.1) is analytic in an annulus Aρ0 = {ρ−1

0 < |v| <
ρ0} around the unit circle. Let z ∈ C\[a, b] and let c be the approximation of G(z) obtained by
the trapezoidal quadrature rule (5) with N points. Then for any ρ < min(ρ0, |J+

[a,b](z)|) we have

|G(z) − c| ≤ 4π

ρN − 1
· ‖ψ ◦ J[a,b]‖Aρ

(b− a)2

8
ρ

(
ρ+

1

ρ

)2

· 1

dist(z, J[a,b](Aρ))
,

where ‖ψ ◦ J[a,b]‖Aρ denotes the maximum modulus of the function ψ ◦ J[a,b] on the set Aρ.

Proof. If µ has sqrt-behavior at the boundary, we can further manipulate the expression (4) and
get

G(z) = − i(b− a)2

4

∫ π

0
sin2(θ)

ψ
(
b−a
2 cos(θ) + b+a

2

)

z −
(
b−a
2 cos(θ) + b+a

2

)dθ

=
1

2

i(b− a)2

4

∫ 2π

0
sin2(θ)

ψ
(
b−a
2 cos(θ) + b+a

2

)

z −
(
b−a
2 cos(θ) + b+a

2

)dθ.

Here, the second equality follows from symmetry properties of sin2 θ and cos θ. Changing back
the variable to v = exp(iθ) we get

G(z) = −1

2

∫

∂D

(b− a)2

4

1

v

(
v − 1

v

)2 ψ(J[a,b](v))

z − J[a,b](v)
dv, (14)

with ∂D in anti-clockwise direction. Discretizing the integral (14) using the trapezoidal quadra-
ture rule with 2N equispaced points is equivalent to discretizing (4) in N +1 equispaced quadra-
ture points in [−π, 0] with the trapezoidal quadrature rule. Let us consider the function

u(v) := −1

2

(b− a)2

4

1

v

(
v − 1

v

)2 ψ(J[a,b](v))

z − J[a,b](v)
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that appears when computing the Cauchy transform. Note that 1
v

(
v − 1

v

)2
is analytic in C\{0}

and 1
z−Ja,b(v)

is analytic in the annulus |J−
[a,b](z)| < |v| < |J+

[a,b](z)|. The statement of the

corollary, therefore, follows from Theorem 5.1.

A result for the derivative G′(z) can be obtained in a similar way.
In our algorithm, we use the approximation (5) for points on the Joukowski transform of a

circle of radius rA < 1, therefore ρ = min(ρ0, r
−1
A ) in this case. This means that the closer rA

gets to 1, the slower the convergence becomes. Note that (5) can also be used for measures that
do not have the sqrt-behavior at the boundary. However, we have no guarantees on the fast
convergence of the trapezoidal quadrature rule.

Theorem 5.3 (Error in the computation of the R-transform). Let µ be a measure with support on
[a, b] and let w be a point inside the curve Γ = G(r∂D) for some r ∈ (0, 1) for which G is invertible
inside the disk of radius r. Let ρ < min{r−1,dist(G−1(w), r∂D)}. Let ξN = exp(2πi/N). Assume
we have computed approximations cj ≈ G(rξjN ) and dj ≈ G′(J(rξjN )) such that |G(rξjN )− cj | ≤ ε

and |G′(J(rξjN ))−dj | ≤ ε. Let m1 = min{‖G‖Γ, c0, . . . , cN−1}. Let m2 be the distance of w from
Γ. Let us discretize the integral (3) with the trapezoidal quadrature rule (6)

R(w) ≈ r

N

N∑

j=1

ξjN · dj · J ′(ξjN ) · J(ξ
j
N )− 1/cj
cj −w

=: RN (w).

Then

|RN (w)−R(w)| ≤ 4π

ρN − 1
max

ρ−1≤|v|≤ρ
|u(v)|

+ εr‖J ′‖r∂D
(‖J‖r∂D

m2
+

1

m1m2
+ (ε+ ‖G′‖J(r∂D))

1

m2
2

(
‖J‖r∂D +

|w|
m2

1

+
2

m1

))
. (15)

Proof. Informally, we have two sources of error:

• the quadrature error – as the R-transform is analytic, Theorem 5.1 can be applied;

• the fact that the function to be integrated cannot be evaluated exactly – each point requires
quadrature as well.

More precisely, by triangular inequality we have

|R(w)−RN (w)| ≤

∣∣∣∣∣∣
1

2πi

∫

Γ

R(s)

w − s
− r

N

N∑

j=1

ξjN ·G′(J(rξjN )) · J ′(ξjN ) · J(rξ
j
N )− 1/G̃(rξjN )

G̃(rξjN )− w

∣∣∣∣∣∣

+
r

N

N∑

j=1

|ξjNJ ′(rξjN )| ·
∣∣∣∣∣dj

J(rξjN )− 1/cj
cj − w

−G′(J(rξjN ))
J(rξjN )− 1/G(rξjN )

G(rξjN )−w

∣∣∣∣∣ .

We can directly use Theorem 5.1 to bound the first term by 4π
ρN−1

max{|u(v)| : ρ−1 ≤ |v| ≤ ρ},
where u(v) is the function to be integrated, defined in (3). Let us analyze each term in the sum
of the second part. To simplify notation, we drop the dependence of the functions on rξjN and
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denote J(rξjN ) = Jj , G
′(J(rξjN )) = G′

j , G(rξ
j
N ) = Gj . We have

∣∣∣∣dj
Jj − 1/cj
cj − w

−G′
j

Jj − 1/Gj

Gj − w

∣∣∣∣ ≤ |G′
j − dj | ·

∣∣∣∣
Jj − 1/Gj

Gj − w

∣∣∣∣+ |dj | ·
∣∣∣∣
Jj − 1/cj
cj − w

− Jj − 1/Gj

Gj − w

∣∣∣∣

= |G′
j − dj | ·

∣∣∣∣
Jj − 1/Gj

Gj − w

∣∣∣∣+ |dj | ·
∣∣∣∣
Jj(Gj − cj) + w(1/cj − 1/Gj) + (cj/Gj − Gjcj)

(cj − w)(Gj − w)

∣∣∣∣ .

We can bound the terms with |G′
j−dj|·

∣∣∣Jj−1/Gj

Gj−w

∣∣∣ ≤ ε
m2

(
‖J‖r∂D + 1

m1

)
, |1/cj−1/Gj | =

∣∣∣Gj−cj
cjGj

∣∣∣ ≤
ε
m2

1
, |cj/Gj − Gj/cj | ≤ 2ε

m1
, |(cj − w)(Gj − w)| ≥ m2

2, therefore obtaining (15).

Theorem (5.3) basically states that the quadrature error in the computation of the R-
transform decreases exponentially with the number of quadrature points, and the error due
to the inexact evaluation of G and G′ is not amplified significantly. Note that this result does
not need the assumption that µ has sqrt-behavior at the boundary.

Remark 5.4 (Error in the computation of the support of µ1 ⊞ µ2). Let us denote by g′N (w)
the approximation of the function g′(w) obtained using N quadrature points for all the involved
quadrature rules. When N → ∞, the functions g′N (w) are holomorphic and they converge to
g′(w) uniformly on compact subsets of the intervals (max{Gµ1(−rA + ε),Gµ2(−rA + ε)}, 0) and
(0,min{Gµ1(rA − ε),Gµ2(rA − ε)}). By Hurwitz’s theorem, we can conclude that for sufficiently
large values of N , the functions g′N (w) have exactly one simple zero in each of the intervals, and
these zeros converge to the zeros ξa, ξb of g′(w). Therefore, when the number of quadrature points
is sufficiently large, the computed values of the support [a, b] of µ are accurate.

What we said until now means that we are able to evaluate the R-transforms of µ1 and µ2
accurately, together with the support of µ = µ1 ⊞ µ2. The next step in Algorithm 1 is the
evaluation of Gµ(v) on a suitable circle of radius rC ∈ (0, 1) (see line 14).

Remark 5.5 (Error in the computation of the Cauchy transform of µ1 ⊞ µ2). Let r = rC
and let us discuss the sources of error in the evaluation of G(v). Let us denote by g̃j , g̃

′
j the

approximations of g(rξjN ) and g′(rξjN ), respectively, obtained by numerical quadrature. For any

point v inside the curve J−
[a,b](Γ) defined in Section 3.3, letting ã, b̃ be the approximated extrema

of the support of µ, the approximation of G(v) obtained from (7) would be

G̃v :=
r2

N

N−1∑

j=0

g̃′jξ
2j
N

g̃j − J
[ã,̃b]

(v)
.

We can split the error |G(v) − G̃v| into three sources by triangular inequality:

|G(v) − G̃v| ≤
∣∣∣G(J[a,b](v)) −G(J

[ã,̃b]
(v))

∣∣∣ +

∣∣∣∣∣∣
G(J

[ã,̃b]
(v))− r2

N

N−1∑

j=0

g′(rξjN )ξ2jN

g(rξjN )− J
[ã,̃b]

(v)

∣∣∣∣∣∣

+
r2

N

N−1∑

j=0

∣∣∣∣∣∣
g′(rξjN )

g(rξjN )− J
[ã,̃b]

(v)
−

g̃′j
g̃j − J

[ã,̃b]
(v)

∣∣∣∣∣∣
.

We refrain from outlining a full error analysis of this step, but we will briefly comment on the
three terms in the above error bound. The first term can be expected to be small if [ã, b̃] is accurate.
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The second term, the error in the trapezoidal quadrature rule, can be bounded by Theorem 5.1
because the function to be integrated (the Cauchy transform G) is analytic in an annulus around
∂D; therefore, this part decreases exponentially fast in the number of the quadrature points N .
Finally, the third term can be bounded similarly to what is done in Theorem 5.3 if we know that
g̃j , g̃

′
j , ã, b̃ have been computed accurately.

The last part of the algorithm is about recovering the density of the measure µ = µ1 ⊞ µ2
from the (approximate) values of the Cauchy transform G = Gµ on equispaced points on the
circle of radius r = rC .

Theorem 5.6 (Error in the computation of the coefficients of G). Let µ be a measure with
sqrt-behavior, at the boundary, with support [a, b] and density dµ(x) =

√
b− x

√
x− aψ(x)dx,

where ψ(x) is Lipschitz-continuous. Assume that we have a vector
[
G̃0 G̃1 · · · G̃M−1

]T
that

approximates, up to entrywise error ε, the vector
[
G(rξ0M ) G(rξ1M ) · · · G(rξM−1

M )
]T

for some

M ∈ N and some r < 1, that is, |G̃j − G(rξjM )| ≤ ε for j = 0, 1, . . . ,M − 1. Let




g̃1
g̃2
...
g̃M


 :=




r−1

r−2

. . .

r−M


F

−1




ξ−0
M

ξ−1
M

. . .

ξ−M+1
M







G̃0

G̃1
...

G̃M−1


 .

Then ∣∣∣∣∣∣∣∣∣




g̃1
g̃2
...
g̃M


−




g1
g2
...
gM




∣∣∣∣∣∣∣∣∣
≤




r−1

r−2

...
r−M




ε√
M

+
rM

1− rM
‖ψ‖[a,b]




1
1
...
1


 ,

where the symbol | · | means that the inequality holds entry-wise and g1, . . . , gM are the exact
coefficients of the series expansion (1).

Proof. First of all, we can write




G(rξ0M )
G(rξ1M )

· · ·
G(rξM−1

M )


 =




ξ0M
ξ1M

. . .

ξM−1
M



[
F F F · · ·

]




g1r
g2r

2

g3r
3

...


 ,

where we have an infinite matrix and an infinite vector (it is alright to write this because the
series converges absolutely). Using triangular inequality (entry-wise), we have

∣∣∣∣∣∣∣∣∣




g̃1
g̃2
...
g̃M


−




g1
g2
...
gM




∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣




r−1

r−2

. . .

r−M


F

−1




ξ−0
M

ξ−1
M

. . .

ξ−M+1
M










G̃0

G̃1
...

G̃M−1


−




G(rξ0M )
G(rξ1M )

...

G(rξM−1
M )







∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣




r−1

r−2

. . .

r−M


F

−1




ξ−0
N

ξ−1
M

. . .

ξ−M+1
M







ξ0M
ξ1M

. . .

ξM−1
M



[
F F F · · ·

]




g1r
g2r

2

g3r
3

...

...



−




g1
g2
...
gM




∣∣∣∣∣∣∣∣∣∣∣∣

.
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The first term is bounded by
∣∣∣∣∣∣∣∣∣




r−1

r−2

. . .

r−M


 ·

∥∥∥∥∥∥∥∥∥
F−1




ξ−0
M

ξ−1
M

. . .

ξ−M+1
M




∥∥∥∥∥∥∥∥∥
2

·




ε
ε
...
ε




∣∣∣∣∣∣∣∣∣
≤




r−1

r−2

...
r−M




ε√
N

because F−1 has norm 1/
√
M and all the ξ−j

M have modulus 1. The second term simplifies to
∣∣∣∣∣∣∣∣∣




gM+1r
M + g2M+1r

2M + g3M+1r
3M + . . .

gM+2r
M + g2M+2r

2M + g3M+2r
3M + . . .

...
g2Mr

M + g3Mr
2M + g4Mr

3M + . . .




∣∣∣∣∣∣∣∣∣
≤ rM

1− rM

(
max

k≥M+1
|gk|
)



1
1
...
1


 .

Due to the connections with expansions of G in the Chebyshev series (see Remark 2.9), all
coefficients gk have modulus bounded by ‖ψ‖[a,b], which concludes the proof of the theorem.

Theorem 5.6 tells us that whenever ε/rj is large, we cannot expect the approximation of gj to
be reliable. This is why we are only keeping the first few approximations of the series coefficients.
We also need to ensure that rM = rMC is small so that the second error term is small (but this

is less problematic): for this reason, in our code, we set M = max
{
100,

∣∣∣16 log1/rC 10
∣∣∣
}
.

Remark 5.7 (Error in the recovery of the density of µ1 ⊞ µ2). Let us denote by[
f̃0 · · · f̃m−1

]T
the approximation obtained from (9) by plugging in the vector

[
g̃1 · · · g̃m

]T
.

Using the triangular inequality and the fact that F is unitary up to a
√
m scaling factor, we get

that

∣∣∣∣∣∣∣∣∣




f
(
J[a,b](ξ

0
m)
)

f
(
J[a,b](ξ

1
m)
)

...
f
(
J[a,b](ξ

m−1
m )

)


−




f̃0
f̃1
...

f̃m−1




∣∣∣∣∣∣∣∣∣
≤

√
m

π

∣∣∣∣∣∣∣∣∣




g1
g2
...
gm


−




g̃1
g̃2
...
g̃m




∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣




f
(
J[a,b](ξ

0
m)
)

f
(
J[a,b](ξ

1
m)
)

...
f
(
J[a,b](ξ

m−1
m )

)


+

1

π
Im







ξ0m
ξ1m

. . .

ξm−1
m


 · F ·




g1
g2
...
gm







∣∣∣∣∣∣∣∣∣
.

The first error term can be bounded with Theorem 5.6. The second error term depends on how
fast the series (1) converges to Gµ(v), which, in turn, depends on the regularity of the density
function associated with µ (see Remark 2.9).

6 Numerical experiments

6.1 Exponential convergence of trapezoidal quadrature rule for the pointwise

evaluation of the Cauchy transform

First of all, we consider the evaluation of the Cauchy transform in some points outside the support
for the semicircle, uniform (with m = 3), and Marchenko-Pastur (with λ = 0.7) distributions.

19



0 200 400 600 800 1000
N = # quadr. po nts

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Er
ro

r

Se# c rcle
z1
z2

101 102 103 104 105 106

N = # quadr. po nts

10−11

10−9

10−7

10−5

10−3

10−1

Er
ro

r

Un for# on [-3, 3]
z1
z2

0 200 400 600 800 1000
N = # quadr. points

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Er
ro
r

Marchenko-Pastur lambda=0.8
z1
z2

Figure 5: Evaluation of the Cauchy transform of the points z1 = 1.001 ·b and z2 = (0.8+0.01i) ·b
for the semicircle distribution (left), the Marchenko-Pastur with parameter 0.8 (middle), and the
uniform distribution on [−3, 3] (right). The x-axis is the number of quadrature points, and the
y-axis is the error of the trapezoidal quadrature rule.

The results are reported in Figure 5. For each measure, we consider the point z1 = 1.001·b (blue)
and z2 = (0.8+0.01i) · b (orange). The x-axis is the number of quadrature points, and the y-axis
is the error of the trapezoidal quadrature rule. As expected, the error decreases exponentially
for the semicircle and Marchenko-Pastur. The same cannot be said for the uniform distribution
(note that the graph is log-log in this case).

6.2 Recovery of measures from the Cauchy transform

We test numerically the recovery of the spectral measure µ from the knowledge of the (exact)
G(z) on a circle of radius R = 0.9 in N = 3000 points coming from equispaced points on a circle,
using m = 40 coefficients in the power series (1) for the Cauchy transform. The results are shown
in Figure 6. As expected, we can recover the measures with sqrt-behavior at the boundary very
well.

6.3 Free additive and multiplicative convolution of distributions

In this section, we test Algorithm 1 on various input measures. In some cases, we know the
analytic form of the support of the free sum or the analytic form of the free sum itself. This allows
us to test the accuracy of our algorithm on some examples. In the other cases, we will compare
the approximate density returned by our algorithm with the empirical eigenvalue distribution of
the sum of two random matrices that are chosen according to the input distributions.

How to read the plots. Let us explain what is plotted in each figure. The first (top) block
row is about the measure µ1, the second block row is about µ2, and the third block row is about
the free convolution µ1⊞µ2. We pass from the first (left) column to the second (middle) column
with the Joukowski transform, and from the second column to the third (right) column with the
Cauchy/T-transform. The red circle in the left column is always the unit circle. The red line
in the second column indicates the support of the corresponding measure. The blue curve in
the (1,3) block (the top right block) is Γ1 and the blue curve in the (2,3) block (the top middle
block) is Γ2. These same curves are reported in the (4,3) block, together with an orange circle
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Figure 6: Recovering the measure from 40 Fourier coefficients of the Cauchy transform. From top
to bottom, we consider the semicircle distribution, the Marchenko-Pastur law with parameter
λ = 0.5, and the uniform distribution on the interval [−3, 3]. In the left block column, the blue
curve is the density function, and the orange curve is the reconstruction of the measure. In the
middle block column, we plot the pointwise error |f(x)−{(x)|. The right block column illustrates
the magnitude of the approximate coefficients g1, g2, . . . , g10.

that is in the intersection of the two curves and inside the image of C ∪ {∞}\[a, b]. The same
orange circle is drawn in the (1,3), (2,3), and (3,3) blocks, and the inverses via G1, G2, G are in
the (1,2), (2,2), (3,2) blocks, respectively. Finally, the circle A is represented in green in the (3,1)
block, and its image via J and then G/T is also in green in the (3,2) and (3,3) blocks. In the
(4,2) block, we plot the densities of the measures µ1, µ2, and µ. In the (4,1) block, we (usually)
plot the eigenvalue distribution of one instance of a random matrix of size 5000× 5000 obtained
as a sum/product of matrices with limit eigenvalue distributions µ1 and µ2.

Implementation details. Unless indicated otherwise, we set the following parameters for
Algorithm 1:

• For computing the Cauchy transform in a point, we use 400 quadrature points for measures
with sqrt-behavior at the boundary (semicircle, Marchenko-Pastur) and 4000 points for
other measures.

• We use 400 quadrature points to discretize the integrals corresponding to the Cauchy inte-
gral formulae for computing the R-transform of µ1 and µ2 as well as the Cauchy transform
of µ.
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• The number of points on the circle of radius rC is chosen as max
{
100,

⌊
16 log1/rC 10

⌋}

(this is to ensure that the second term in the error of Theorem 5.6 is negligible). Then we
truncate the series to the first m = 20 terms.

• We choose a parameter ε = 0.05 that quantifies how “far from the border” are the curves
and intervals we take. More specifically:

– we set rA = 1− ε;

– we use this value of ε in lines 8–9 of Algorithm 1;

– when looking for the radius of the largest circle inside

Gµ1(C ∪ {∞}\[a1, b1]) ∩Gµ2(C ∪ {∞}\[a2, b2]) ∩Gµ(C ∪ {∞}\[a, b])

we start looking at the circle of radius (1 − ε)r, where r is the radius of the largest
circle inscribed in Gµ1(C ∪ {∞}\[a1, b1]) ∩Gµ2(C ∪ {∞}\[a2, b2]);

– when choosing the radius rC we multiply by (1 − ε) the radius of the largest circle
inscribed in J−

[a,b](Γ).

• The tolerance for stopping the binary search for the computation of the support of µ is set
to 10−12. The tolerance for stopping the binary search for the computation of rB is 10−3.

For Algorithm 1, we use the same values of the parameters in the corresponding parts of the
code.

Code availablity. A Python implementation of Algorithms 1 and 2 is available at https://github.com/Alice94/FreeConvolutionCode,
together with scripts to reproduce all the numerical examples in this paper.

Example 6.1. In Figure 7, we compute the free additive convolution of two semicircle distribu-
tions. The result is known analytically, and it is a rescaled semicircle distribution, with support
in [−2

√
2, 2

√
2] and density function f(x) = 1

4π

√
8− x2. Our algorithm is able to compute the

free additive convolution with an accuracy of 10−14. We only used m = 10 coefficients of the
series (1) in this example.

Example 6.2. In Figure 8, we compute the free additive convolution of the semicircle distribution
with the uniform distribution on the interval [−4, 4]. In this case, we do not know the analytic
form of the solution, but we can compute the support of the free sum, which is

[
−1

4
log
(
4 +

√
17
)
−

√
17,

1

4
log
(
4 +

√
17
)
+

√
17

]
.

The supports that we computed numerically agree with the theoretical one up to an absolute error
of 3.6 · 10−6. The uniform distribution does not have an sqrt-behavior at the boundary; hence the
trapezoidal quadrature rule for computing the Cauchy transform converges more slowly. For this
reason, we use 4000 quadrature points for this example. Note that we could have used an explicit
expression of the Cauchy transform because it is known analytically, but we wanted to see how
our algorithm performed without this knowledge.

Example 6.3. In Figure 9, we consider the free additive convolution of the uniform distribution
on the interval [−2, 2] and the Marchenko-Pastur distribution with λ = 0.7.
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Figure 7: Free sum of semicircle and semicircle. Only 400 quadrature points. The (4, 2) subplot
is the error of the computed free sum. See Example 6.1 for a precise description.
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Figure 8: Free sum of semicircle and uniform on [−4, 4]. See Example 6.2.

Example 6.4. In Figure 10, we consider the free multiplicative convolution of a shifted semicircle
distribution (with support in [1, 5] instead of [−2, 2]) and a Marchenko-Pastur distribution with
λ = 0.2.

Example 6.5. In Figure 11, we consider the free multiplicative convolution of two identical
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Figure 9: Free sum of uniform on [−2, 2] and Marchenko-Pastur (λ = 0.7). See Example 6.3.
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Figure 10: Free multiplication of shifted semicircle and Marchenko-Pastur distribution. See
Example 6.4.

shifted semicircle distributions.
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Figure 11: Free multiplication of two shifted semicircle distributions. See Example 6.5.

6.4 Strengths and limitations of our algorithms

The numerical examples above show that Algorithms 1 and 2 give a good approximation of the
free convolution of measures in a variety of situations. In the following four examples, we show
that our algorithm can give good insights even in cases in which the input measure does not
satisfy the assumptions of Theorem 3.2.

Example 6.6. In Figure 12, we consider the free additive convolution of a uniform distribution
on the interval [−1, 1] and a uniform distribution on the interval [−2, 2]. This combination does
not fall into the theory for our algorithm, but their free additive convolution has an sqrt-behavior
at the boundary (see, e.g., [1]).

Example 6.7. In Figure 13 we consider the free multiplicative convolution of the Marchenko-
Pastur distribution with λ = 0.1 and the uniform distribution on the interval [1, 3].

Example 6.8. In Figure 14, we consider the free convolution of the semicircle distribution with
the distribution µ2 that has support in [−

√
3,
√
3] and has a density

dµ2(x) =
5
√
3

144
(x2 + 1)2.

This has the property that G′
µ2
(i) = G′

µ2
(−i) = 0 (and it does not have sqrt-behavior at the

boundary), therefore its Cauchy transform is not invertible. The image via Gµ2 of the blue circle
of radius rA is a curve with two self-intersections. This is not a problem for the application
of the Cauchy integral formula, as long as we consider a point that is inside the curve. The
disadvantage of this example is that we need rB – the radius of the orange circle – to be quite
small, and this means that we need to truncate the power series corresponding to Gµ1⊞µ2 to the
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Figure 12: Free sum of uniform distributions on [−1, 1] and [−2, 2]. See Example 6.6.
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Figure 13: Free multiplication of Marchenko-Pastur and uniform distribution. See Example 6.7.

first few terms. The numerical approximation that we get closely agrees with the histogram of the
eigenvalues of the sum of a symmetric random matrix and a random matrix whose eigenvalues
are samples from the weird distribution. We used 4000 quadrature points for the discretization of
the integral of the Cauchy transform of µ in this example.

Although the theory does not extend to this case, we can also consider measures that have
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Figure 14: Free sum of semicircle law and the distribution from Example 6.8, with m = 20.

atoms. For a point measure, it is easy to explicitly write its Cauchy transform (which is not
invertible when there are more than two atoms). In our code, we use an explicit expression
for the part of the Cauchy transform corresponding to the atoms, and quadrature for the rest.
When considering the free convolution µ of a measure with sqrt-behavior at the boundary with
a discrete measure, it can happen that the support of µ splits into two or more distinct pieces;
when this is not the case, our algorithm can successfully approximate the density of µ, as in the
next example.

Example 6.9. In Figure 15, we consider the free multiplicative convolution of a shifted semicircle
distribution with a discrete measure that has masses 1

7 in the points 1, 32 , 2,
5
2 , 3,

7
2 , 4. In this case,

the T-transform is easy to compute directly, so we do not use the trapezoidal quadrature rule for
this part of the algorithm.

We comment on a warning on the choice of the parameters (rA and ε) in our algorithms.
On the one hand, when rA is (relatively) far from 1 and ε is (relatively) large, the trapezoidal
rules for the computation of g(z) on the two intervals (max{Gµ1(−rA + ε),Gµ2(−rA + ε)}, 0) and
(0,min{Gµ1(rA − ε),Gµ2(rA − ε)}) converge very fast, allowing for a small value of quadrature
points N . On the other hand, Theorem 3.2 ensures the existence of a zero of g′ in the larger
intervals (max(Gµ1(a1), Gµ2(a2)), 0) and (0,min(Gµ1(b1), Gµ2(b2))). Therefore, an easy choice of
rA and ε may mean that we cannot successfully find the support of µ. In our implementation, we
give a warning when this happens, and then proceed to choose ξa = max{Gµ1(−rA+ε),Gµ2(−rA+
ε)} or ξb = min{Gµ1(rA − ε),Gµ2(rA − ε)}, which still gives visually good results, see the next
example.

Example 6.10. We consider the free additive convolution of a semicircle distribution with the
uniform distribution on the interval [−10, 10]. We can compute the support of the result analyti-
cally and it is [−10.3497, 10.3497]. The choice of ε = 0.05 is not small enough to allow us to find
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Figure 15: Free multiplication of shifted semicircle distribution with a discrete distribution. See
Example 6.9.

the zeros of the derivative of g(z) as defined in (2). Choosing a smaller value ε = 0.02 results in
an accurate approximation; see Figure 16.
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Figure 16: Free addition of semicircle distribution with uniform distribution on [−20, 20]. See
Example 6.10.
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7 Conclusions

In this paper, we have proposed an algorithm that allows us to approximately compute the
density of a measure with an sqrt-behavior at the boundary that results from the free (additive
or multiplicative) convolution of two measures with compact support. Our methods use numerical
quadrature, and the accuracy improves quickly when increasing the number of quadrature points.

We mention three possible directions in which our work could be extended. First, one could
find more general assumptions under which the strategy of Theorem 3.2 allows us to compute
the support of µ, or prove Theorem 4.2 under the less restrictive assumptions of Theorem 3.2.
Indeed, the numerical experiments seem to indicate that Algorithm 2 also works under the more
general assumption that one of the input measures has sqrt-behavior at the boundary and the
other one is a more general Jacobi measure. Second, it would be nice to extend the method to
the case where the support is on more than one interval, for example, when considering the free
convolution of a semicircle or Marchenko-Pastur distribution with a discrete measure. Finally,
it would be interesting to see whether this approach can be extended to operator-valued free
probability theory (see, e.g., [6]), as this would allow for an extension of the algorithm for free
additive convolution to an algorithm for the computation of rational functions in free random
variables.

Acknowledgements. The authors would like to thank Emmanuel Candès, Jorge Garza Var-
gas, and Iain Johnstone for inspiring discussions on this work.

A Proofs of the results in Section 2

Proof of Theorem 2.7. Given z ∈ C\[a, b] we are going to prove that G admits a series expansion
in a neighborhood of z. Let us consider points w ∈ C such that

|z − w| < 1

2
dist(z, [a, b]). (16)

Then, for all z ∈ [a, b] we have |w−z|/|x−z| < 1
2 . Therefore, the series

∑
n≥0

(
w−z
x−z

)n
converges

uniformly to x−z
x−w in the neighborhood (16). By rearranging the terms, we get that

(w − x)−1 = −
∑

n≥0

(x− z)−n−1(w − z)n.

Therefore, by Fubini-Tonelli’s theorem, we can exchange sum and integral in the definition of
the Cauchy transform and we get

G(z) =
∑

n≥0

[
−
∫ b

a
(x− z)−(n+1)dµ(x)

]
(w − z)n

for all w in the neighborhood (16). This proves that G is analytic on C\[a, b].
To prove that G is analytic at ∞, we need to show that g(z) := G

(
1
z

)
is analytic in zero. We

have that

g(z) =

∫ b

a

z

1− zx
dµ(x).
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The series z ·
∑

n≥0(zx)
n converges uniformly to z

1−zx for |z| < 1
2 min

{
1
|a| ,

1
|b|

}
(with the conven-

tion that 1
0 = +∞). Therefore, we can exchange sum and integral and we get

g(z) =
∑

n≥1

(∫ b

a
xn−1dµ(x)

)
zn = z +

∑

n≥2

(∫ b

a
xn−1dµ(x)

)
zn

in the region where |z| < 1
2 min

{
1
|a| ,

1
|b|

}
, which proves that G is also analytic in z = ∞.

The proof of Corollary 2.12 follows directly from the following theorem, which is a slight
generalization of Theorem 2.11.

Theorem A.1. Assume dµ(x) = f(x)dx for a continuous function f . For any c < d ∈ (a, b) we
have that

− 1

π
lim
z→0
z∈C+

∫ d

c
Im (G(t+ z)) dt = µ([c, d]).

Proof. We denote z = ε+ iy, with ε ∈ R and y ∈ R
+. We have that

Im(G(t + z)) =

∫ b

a
Im

(
1

t+ ε− x+ iy

)
dµ(x) =

∫ b

a

−y
(t+ ε− x)2 + y2

dµ(x).

Thanks to Fubini-Tonelli’s theorem, we can write

∫ d

c
Im(G(t + z))dt =

∫ b

a

(∫ d

c
− y

(t+ ε− x)2 + y2
dt

)
dµ(x)

= −
∫ b

a

(∫ (d+ε−x)/y

(c+ε−x)/y

1

1 + ⊔2
d⊔
)
dµ(x)

= −
∫ b

a

(
arctan

(
d+ ε− x

y

)
− arctan

(
c+ ε− x

y

))
dµ(x),

where we made the change of variables ⊔ = t+ε−x
y . Now consider the function F ((ε, y), x) :=

arctan
(
d+ε−x

y

)
−arctan

(
c+ε−x

y

)
. We have that |F ((ε, y), x)| ≤ 2π and that F ((ε, y), x) →(ε,y)→(0,0+)

F(x) where

F(x) =

{
0 if x /∈ [c, d];

π if x ∈ (c, d),

for all x except for x ∈ {c, d}. The function F is measurable, and it agrees µ-almost everywhere
with the µ-almost everywhere existing pointwise limit. Hence we can apply the dominated
convergence theorem. This, together with the fact that dµ({c, d}) = 0, implies

lim
(ε,y)→(0,0+)

∫ d

c
Im(G(t+ ε+ iy))dt = −

∫ b

a
F(x)dµ(x) = −πµ([c, d]).

Proof of Theorem 2.14. Theorem 17 in Chapter 3 of [7] states that if the support is contained in
an interval [−r, r], then R(z) is analytic in a disk of radius 1

6r . Now recall that the function G(z)
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is analytic on C\[a, b]; by the inverse function theorem for holomorphic functions (Theorem B.1),
it is invertible in a neighborhood of a point z ∈ C\[a, b] whenever G′(z) 6= 0. We have that

G′(z) = −
∫ b

a

1

(x− z)2
dµ(x),

which is always nonzero for z ∈ R\[a, b], from which we can conclude the second part of the
theorem.

B Proof of Theorem 4.2

Theorem B.1 (Inverse function theorem for holomorphic functions [4, Theorem 7.5]). Let U be
an open set in C, let f : U → C be holomorphic, and let p ∈ U be such that f ′(p) 6= 0. Then
there exists an open neighborhood V of p such that f : V → f(V ) is a biholomorphism.

Consequence: Under the assumptions of Theorem B.1, if f(p) ∈ R then there exists precisely
one curve in V passing through p on which f is real-valued.

Theorem B.2 (Complex Morse lemma [14]). Let U be an open set in C, let f : U → C be a
holomorphic function, and let p ∈ U be such that f ′(p) = 0 and f ′′(p) 6= 0 (a non-degenerate
critical point of f). Then there exist neighborhoods Ũ of p and V of 0, and a bijective holomorphic
function ϕ : V → Ũ such that ϕ(0) = p and f(ϕ(w)) = f(p) +w2.

Consequence: Under the assumptions of Theorem B.2, if additionally f(p) ∈ R, there exist
exactly two curves passing through p on which f is real-valued. These curves are the images via
ϕ of the intersection of V with the x-axis and y-axis.

Lemma B.3. Let µ be a measure with sqrt-behavior at the boundary. For z in a neighborhood
of 0 we have

T−1
µ (z) =

1

z
E[Xµ] + analytic function.

Proof. We have that

Tµ

(
1

z

)
=

∫ b

a

x

1/z − x
dµ(x) =

∫ b

a

zx

1− zx
dµ(x)

=

∫ b

a

(
+∞∑

n=1

(zx)ndµ(x)

)
=

+∞∑

n=1

zn
∫ b

a
xndµ(x) = zE[Xµ] + z2f(z),

for some holomorphic function f(z). The fourth inequality follows Fubini-Tonelli’s theorem
because the series converges absolutely in a neighborhood of zero. Let us apply the inverse
function theorem (Theorem B.1) to ϕ(z) := Tµ

(
1
z

)
in a neighborhood of 0, where ϕ(0) = 0 and

ϕ′(0) = E[Xµ] > 0. We get that ϕ−1(z) = z
E[Xµ]

+ ϕ̃(z) for a holomorphic ϕ(z), therefore

T−1
µ (z) =

E[Xµ]

z

(
1

1 + zϕ̃(z)E[Xµ]

)
=

E[Xµ]

z
+

ϕ̃(z)

1 + zϕ(z)E[Xµ]
,

where the function ϕ̃(z)
1+zϕ(z)E[Xµ]

is holomorphic in a neighborhood of zero.
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Proposition B.4. Assume that µ satisfies the Assumptions 4.1. Then Tµ([a, b]) is a bounded
continuous curve.

Proof. There is a similar result for the additive case [8, Proposition A.8]; Proposition B.4 is
obtained by substituting ψ(x) with xψ(x) in all the integrals in the proof of [8, Proposition
A.8].

Proposition B.5. If µ is a measure with sqrt-behavior at the boundary and the support [a, b],
then T−1

µ is analytic in a neighborhood of Tµ(a) and Tµ(b), with zero derivative and nonzero
second derivative.

Proof. Note that Tµ(z) = cGν(z) for a suitable constant c :=
∫ b
a xdµ(x) > 0 and a suitable

measure ν defined by dν(x) = 1
cxdµ(x). If µ is a measure with sqrt-behavior at the boundary,

so is ν. Therefore, we can apply [8, Proposition A.6] to ν and get the stated result.

We are now ready to prove Theorem 4.2 by following similar steps to the proof of the additive
case [8, Theorem 2.2].

Proof of Theorem 4.2. The set Tµ1(C
−) ∩ Tµ2(C

−) is bounded and has a continuous border by
Proposition B.4. Let ν be on the border, and assume without loss of generality that ν ∈
∂Tµ1(C

−). This implies that T−1
µ1

(ν) ∈ R.

Claim #1: It(ν) > 0.

Proof of claim #1: Since T−1
µ1

(ν) ∈ R we need to show that I
(

νT−1
µ2

(ν)

1+ν

)
> 0.

The function f(y) := 1
y + 1

yTµ2 (y)
is holomorphic for y ∈ C

− (this is true since Tµ2 is

holomorphic and nonzero here), therefore the function f̃(y) := I(f(y)) is harmonic.
If y /∈ [a, b] we have f̃(y) = 0; if y ∈ R\[a, b] we have, by the Stiltjes inversion theorem
(Theorem 2.11),

lim
ε→0−

I(Tµ2(y + εI)) = πydµ2(y) > 0,

therefore f̃(y) ≤ 0. By the modulus maximization property of harmonic functions, we

have that f̃(y) < 0 for all y ∈ C
−. Substituting y = T−1

µ2
(ν) we get I

(
1+ν

νT−1
µ2

(ν)

)
< 0

and therefore I
(

νT−1
µ2

(ν)

1+ν

)
> 0, which proves the claim.

By Lemma B.3, we have that, in a neighborhood of zero,

t(z) =
z

1 + z

1

z2
E[Xµ1 ]E[Xµ2 ] + f(z) =

C

z
+ f(z) (17)

for a positive real constant C and an analytic function f(z), therefore I(t(z)) < 0 in a neigh-
borhood of zero. It follows that there exists a point ζ ∈ T−1

µ1
(C−) ∩ T−1

µ2
(C−) in which t(ζ) ∈ R.

By the consequence of Theorem B.1 there exists a curve Γ in C
− on which t is real-valued. This

curve cannot intersect itself (otherwise, we would have a loop and, by analyticity, the function
t would be a constant), is bounded, and cannot touch the part of the boundary in the complex
plane. Therefore, it will connect with the real axis; there needs to be exactly one point to the
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left of 0 and one point to the right of 0, which we will call ξa and ξb, respectively. Indeed, if there
were two points on the same side of zero, we would get a closed loop on which t is real-valued
in a region where t is analytic, leading to t being a constant. For the same reason, Γ is the
only curve inside T−1

µ1
(C−) ∩ T−1

µ2
(C−) where t is real-valued. We have proved that Γ divides

T−1
µ1

(C−)∩T−1
µ2

(C−) into an interior region D where I(t(z)) > 0 and an exterior region such that
I(t(z)) < 0.

Claim #2: Let ξ1b := Tµ1(b1) and ξ2b := Tµ2(b2). Then ξb < min{ξ1b , ξ2b}.

Claim #3: t′(z) > 0 in a left neighborhood of min{ξ1b , ξ2b } on the real axis (which includes the
point min{ξ1b , ξ2b }).

Proof of claim #3: For z ∈ (0,min{ξ1b , ξ2b }) we have that

t′(z) =
z

1 + z
(T−1

µ1
)′(z)T−1

µ2
(z) +

z

1 + z
T−1
µ1

(z)(T−1
µ2

)′(z) +
1

(1 + z)2
T−1
µ1

(z)T−1
µ2

(z).

Without loss of generality, we can assume that ξ1b < ξ2b . In this case (T−1
µ1

)′(ξ1b ) = 0
(thanks to Proposition B.5), therefore we need to show that

t′(ξ1b ) =
T−1
µ1

(ξ1b )

1 + ξ1b

(
ξ1b

T ′
µ2
(T−1

µ2 (ξ1b ))
+
T−1
µ2

(ξ1b )

1 + ξ1b

)
> 0.

The first factor,
T−1
µ1

(ξ1
b
)

1+ξ1
b

, is positive. Let us look at the second factor. Letting

w = T−1
µ2

(ξ1b ), this is equivalent to show that

Tµ2(w)

T ′
µ2
(w)

+
w

1 + Tµ2(w)
=
Tµ2(w) + T 2

µ2
(w) + wT ′

µ2
(w)

(1 + Tµ2(w))T
′
µ2
(w)

> 0. (18)

• We have 1 + Tµ2(w) = 1 + ξ1b > 0.

• We have T ′
µ2
(w) = −

∫ b2
a2

x
(w−x)2dx < 0

• We have

Tµ2(w) + T 2
µ2
(w) + wT ′

µ2
(w)

=

∫ b2

a2

x

w − x
dx+

(∫ b2

a2

x

w − x
dx

)2

−
∫ b2

a2

xw

(w − x)2
dx

<

∫ b2

a2

x

w − x
dx+

∫ b2

a2

x2

(w − x)2
dx−

∫ b2

a2

xw

(w − x)2
dx = 0,

where we used Jensen’s inequality for the convex function x 7→ x
w−x .

Hence, (18) holds, proving the claim.

Proof of claim #2: The function t is analytic in a neighborhood of ξb. We have
that t′(z) goes to −∞ in a (right) neighborhood of zero (because of (17)), and t′(z)
is positive in a (left) neighborhood of min{ξ1b , ξ2b } because of Claim #3. Therefore,
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there exists at least one point in the interval (0, ξb) where t′ is zero. In each of these
points, p the consequence of Morse Lemma (Theorem B.2) tells us that there are
two curves emanating from p on which t is real-valued; however, the only real-valued
curves are the x-axis and Γ. Therefore there can be only one such point, and it has
to be ξb.

With a similar argument, defining ξ1a := Tµ1(a1) and ξ2a := Tµ2(a2), one can show that
ξa > max{ξ1a, ξ2a}.

Now, t(z) = T−1
µ (z) in a neighborhood of 0, and t(z) is a single-valued function inD, therefore

t(z) = T−1
µ (z) inside all of D (this step is because single-valuedness implies that two functions

which coincide in an open set coincide everywhere). Since the only real-valued curve contained
in Tµ(C

−) is the boundary, Γ is the boundary of Tµ(C
−).

We want to use the inverse function theorem on t inside D̄ (the closure), except for the points
ξa and ξb. We check that the derivative of t(z) is never zero on this set: we have t′(z) = 1

T ′
µ(T

−1
µ (z))

when z ∈ D (open) and I(z) 6= 0; moreover if t′(z) had other zeros in the segment (ξa, ξb) or
on Γ we would have another real-valued curve and this is impossible. The inverse function
theorem (Theorem B.1) implies that t−1 exists and is analytic everywhere in t(D), on (a, b)
where a := t(ξa) and b := t(ξb), and on Γ (except for, in general, the points a and b). Note that
we can conclude that t−1 is also analytic on (a, b) because t is defined, analytic, and invertible
also on the segments (ξa, 0) and (0, ξb) and in a domain D′ which is symmetric of D with respect
to the real axis.

Let us look at the density function f(x) of µ. We have that

xf(x) =
1

π
lim
ε→0+

I(t−1(x− iε)) for x ∈ (a, b),

therefore f(x) is analytic in (a, b). Let us look at point a (the argument for b is entirely analo-
gous). There are two real-valued curves passing from the point ξa, therefore the function t has
the form

t(z) = a+ c2(z − ξa)
2 + (z − ξa)

3h(z)

in a neighborhood of ξa, for some analytic function h(z), and similarly for ξb. By Theorem B.2,
there exists a local biholomorphism ϕ such that ϕ(0) = ξa and1 t(ϕ(z)) = a− z2. Therefore, by
setting w = a− z2 we get the expression

t−1(w) = Tµ(w) = ϕ
(√
a− w

)
= c0 + c1/2

√
a− w + c1(a− w) + c3/2(a−w)3/2 + . . . ,

where all the coefficients are real because Tµ(w) is real for w ∈ R\[a, b]. Therefore, for x ∈ (a, b)
sufficiently close to a we have

xf(x) =
1

π
lim
ε→0+

I(Tµ(x− iε))

=
1

π
lim
ε→0+

I(
√
a− x+ iε(c1/2 + c3/2(a− w) + c5/2(a− w)2 + . . .))

=
1

π
lim
ε→0+

√
x− a · h(x),

1The minus sign arises because we want to choose ϕ in such a way that a right neighborhood of ξa on the

real axis is sent into a left neighborhood of a on the real axis, and a piece of Γ close to ξa is sent to a right

neighborhood of a on the real axis.
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for a function h(x) that is analytic in a right neighborhood of a. The same argument holds in a
neighborhood of b. Therefore, µ is a measure with sqrt-behavior at the boundary, that is, with the
form dµ(x) =

√
x− a

√
b− xψ(x) for an analytic function ψ(x), with an invertible T-transform.

This proves Theorem 4.2 and allows us to reconstruct the measure using the truncated series
expansion.
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