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The Gaussian beam method is an asymptotic method for wave equations with
highly oscillatory data. In a recent published paper by two of the authors,
a multiscale Gaussian beam method was first proposed for wave equations by
utilizing the parabolic scaling principle and multiscale Gaussian wavepacket
transforms, and numerical examples there demonstrated excellent performance
of the multiscale Gaussian beam method. This article is concerned with the
important convergence properties of this multiscale method. Specifically, the
following results are established. If the Cauchy data are in the form of non-truncated
multiscale Gaussian wavepackets, the multiscale Gaussian beam method provides
a convergent parametrix for the wave equation with highly oscillatory data,
and the convergence rate is 1√

�
, where � is the smallest frequency contained

in the highly oscillatory data. If the highly oscillatory Cauchy data are in
the form of truncated multiscale Gaussian wavepackets, the multiscale Gaussian
beam method converges with a rate controlled by 1√

�
+ �, where � is the error

from initializing the Gaussian beam method by multiscale Gaussian wavepacket
transforms. To prove these convergence results, it is essential to characterize
multiscale properties of wavepacket interaction and beam decaying by carrying out
some highly-oscillatory integrals of Fourier-integral-operator type, so that those
multiscale properties lead to precise convergence orders for the multiscale Gaussian
beam method.
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A Convergent Multiscale Gaussian-Beam Parametrix 93

1. Introduction

The Gaussian beam method is a high-frequency asymptotic method which can be
used to construct parametrices for wave equations with highly oscillatory data. The
idea of Gaussian beams dates back to 1960s; see [2]. Since then, Gaussian beams
have been used for many different applications, such as propagation of singularities
[24] and seismic modeling and imaging [7, 13, 14, 19, 21, 30]. However, all these
Gaussian beam methods cited above only deal with single frequency data. In a
recent work [23], Qian and Ying proposed a multiscale computational Gaussian
beam method for wave equations with highly oscillatory data by making use of
the parabolic scaling principle and multiscale Gaussian wavepacket transforms,
and the multiscale method is able to handle the Cauchy data with a broad band
of frequencies simultaneously. The aim of the current paper is to analyze the
convergence properties of this multiscale Gaussian beam method.

In order to apply the Gaussian beam methods efficiently and accurately, one
has to generate a beam decomposition for a general initial condition. There have
been some recent advances in beam decomposition for the wave equation [19,
26, 27] and the Schrödinger equation [17, 18, 22]. In particular, [22] introduced
single-scale Gaussian wavepacket transforms and developed on top of them a
highly efficient initialization algorithm for the Schrödinger equation. For the wave
equation, since the Hamiltonian is homogeneous of degree one, which essentially
constrains the resulting Hamiltonian flow to the cosphere bundle, a Gaussian beam
of the wave equation should satisfy the parabolic scaling principle [4, 25] at any
given time. Motivated by this principle, [23] introduced a set of multiscale Gaussian
wavepacket transforms that enable to decompose arbitrary initial conditions of the
wave equation and polarize mixed high-frequency initial data into different wave
modes at multiscale resolutions. Based on this multiscale decomposition, [23] further
proposed a multiscale Gaussian beam method for the wave equation with general
initial conditions.

From the work in [4, 25], it is well-known that for the wave equation with
smooth coefficients, a wavepacket remains a wavepacket at a later time if it
satisfies the so-called parabolic scaling principle, i.e., the wavelength of the typical
oscillation of the wavepacket being equal to the square of the width of the
wavepacket. Examples of such wavepackets include curvelets [1, 5, 6, 9, 25] and
wave atoms [10, 11]. The multiscale Gaussian wavepackets proposed in [23] were
inspired by these constructions and in fact inherited the overall architecture of
the wave atom construction; however, the transforms were modified appropriately
so that the wavepackets maintain a Gaussian profile. Such multiscale Gaussian
wavepackets are also similar to the wavepackets of Cordoba-Fefferman [8], which
are sufficiently localized in phase space. From a more general perspective, such
multiscale wavepackets are also related to phase space transforms which were
recently used to construct parametrices for wave operators with rough coefficients
in [12, 28].

It was further shown in [23] that the multiscale Gaussian beam method
yields an asymptotic solution for the wave equation. In this paper, we carry
out the convergence study of the multiscale method. Specifically, we prove the
following results. If the Cauchy data are in the form of non-truncated multiscale
Gaussian wavepackets, the multiscale Gaussian beam method provides a convergent
parametrix for wave equations with highly oscillatory data, and the convergence rate
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94 Bao et al.

is 1√
�
, where � is the smallest frequency contained in the highly oscillatory data. If

the highly oscillatory Cauchy data are in the form of truncated multiscale Gaussian
wavepackets, the multiscale Gaussian beam method converges with a rate controlled
by 1√

�
+ �, where � is the error due to initializing the Gaussian beam method with

multiscale Gaussian wavepacket transforms.
At this point, we mention that in [3] some convergence results for single-scale

Gaussian beams are given for wave equations; our convergence analysis aims at
multiscale Gaussian beams for wave equations so that our starting framework and
analysis tools are different from [3].

The accuracy of parametrices for this problem is tied to the regularity of the
coefficients of the wave equation. In [29] Waters constructed a parametrix for
general second-order wave equations assuming the minimal regularity as in Smith
[25], and following [25] she also proved that it was sufficiently accurate to allow
correction to an exact solution by a Volterra integral equation. She used a frame of
(modulated) Gaussians and also observed that in the presence of more coefficient
regularity this frame could be propagated as Gaussian beams. At essentially the
same time Qian and Ying [23] constructed a parametrix for the wave equation using
Gaussian beams initialized by a frame closer to the one in [25]. In the present
paper we prove the accuracy of that parametrix. Naturally at quite a few places the
arguments are close to those in [29].

The rest of the paper is organized as follows. Section 2 summarizes the
construction of a multiscale Gaussian beam parametrix, including Gaussian
beam setup and multiscale Gaussian wavepacket transforms. Section 3 details
some properties of Hamiltonian flows and wavepacket interactions and presents
convergence analysis of the multiscale Gaussian beam parametrix. Section 4 proves
some technical lemmas that are needed in the analysis.

The following notations are needed:

1. Let x be a vector in �d, and let its usual Euclidean norm be denoted by �x�.
2. Let A be a symmetric matrix and c be a real number. The expression A > c

means that the matrix A− cI is positive definite and symmetric. Here I denotes
the identity matrix.

3. Let A be a matrix, and denote by �A� the matrix norm defined by �A� =
supx �=0

�Ax�
�x� .

4. Let f ∈ Ck��d�, where k ≥ 0 is an integer. Write �f�Ck = supx∈�d �� ��f�x�
�	 ��� ≤ k
.

5. Let f be a function defined in �d, x0 a point in �d, and k an integer. The
expression f = O��x − x0�k� means that ��f

�x�
�x0� = 0 for all ��� ≤ k− 1.

6. Let a, b, and c be three positive numbers. The expression a �c b means that there
exists a constant C depending on c such that a ≤ Cb.

2. Multiscale Gaussian Beam Parametrix Construction

2.1. Gaussian Beams

Consider the following wave equation,

Utt − V 2�x��U = 0� x ∈ �d� t > 0� (1)

U �t=0 = f1�x�� (2)

Ut�t=0 = f2�x�� (3)
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A Convergent Multiscale Gaussian-Beam Parametrix 95

where the velocity function V�x� is smooth, positive, and bounded away from zero;
the functions f1�x� and f2�x� belong to H1��d� and L2��d�, respectively, and they
are assumed to be highly oscillatory.

We are looking for asymptotic solutions to the wave equation in the
geometrical-optics form,

A�x� t�e
√−1��x�t�� (4)

where �x� t� is the phase function and A�x� t� the amplitude function. In the ansatz
(4), the frequency � is a large parameter and an asymptotic solution for the wave
equation is sought in the sense that the wave equation (1) and its associated initial
conditions (2) and (3) are satisfied approximately with a small error for large �.
After substituting the ansatz (4) into the wave equation (1) and considering the
leading orders in inverse powers of the large parameter �, we arrive at the following
eikonal and transport equations,

2t − V 2�x���x�x� t��2 = 0� (5)

2Att − 2V 2�xA · �x+ A�tt − V 2trace�xx�� = 0� (6)

Factorizing the eikonal equation (5) gives

±t +G±�x� �x
±�x� t�� = 0� (7)

where G±�x� �x
±�x� t�� = ±V�x���x

±�x� t�� correspond to two polarized wave
modes in the second-order wave equation. Accordingly, we define the Hamiltonians,

G±�x� p� = ±V�x��p� = ±V�x�√p · p�

where the square root is defined in the complex plane except the non-positive axis
by analytical continuation. Here G±�x� p� is clearly homogeneous of degree one in
the momentum variable p.

To construct asymptotic solutions for the wave equation, we employ Gaussian
beams [20, 24, 27]. Because the two polarized wave modes may be treated essentially
in the same way, we consider the following generic situation for the eikonal
equation:

t +G�x� �x�x� t�� = 0� (8)

where G can be taken to be either G+ or G− and  to be either + or −. According
to the Gaussian beam theory [20, 24, 27], a single Gaussian beam is an asymptotic
solution to the wave equation, and it is concentrated near a ray path which is the
x-projection of a certain bicharacteristic. To obtain Gaussian beam ingredients, we
solve the following system of equations,

ẋ = dx

dt
= Gp� x�t=0 = x0� (9)

ṗ = dp

dt
= −Gx� p�t=0 = p0� (10)

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
] 

at
 1

6:
35

 1
8 

A
ug

us
t 2

01
4 



96 Bao et al.

Ṁ = dM�t�

dt
= −�Gxx +M�t�Gxp +GT

xpM�t�+M�t�GppM�t��� M�t=0 =
√−1�I�

(11)

Ȧ= dA

dt
=

(
A�x�t�� t�

2G

(
Gx ·Gp +GT

pM�t�Gp −V 2�x�t��trace�M�t��
))

� A�t=0 =A0�

(12)

where t is time parameterizing bicharacteristics. See [20, 23, 24, 27] for detailed
derivations.

Since the corresponding ray path is � = ��x�t�� t� � t ≥ 0
, by construction,
we have p�t� = x�x�t�� t�, M�t� = xx�x�t�� p�t��, and A�t� = A�x�t�� t� along �. In
addition, by homogeneity of the Hamiltonian G, �t� = �x�t�� t� can be taken to
be zero along �. It follows from the symplectic structure of the Hamiltonian system
that the Hessian M�t� along � has a positive-definite imaginary part provided that it
initially does; see [20, 24, 27].

We are now ready to construct a single Gaussian beam along the ray path � by
defining the following two global, smooth approximate functions for the phase and
amplitude:

�x� t� ≡ p�t� · �x − x�t��+ 1
2
�x − x�t��TM�t��x − x�t��� (13)

A�x� t� ≡ A�x�t�� t� = A�t�� (14)

which are accurate near the ray path � = ��x�t�� t� � t ≥ 0
. These two functions
allow us to construct a single-beam asymptotic solution,

��x� t� = A�x� t� exp
(√−1��x� t�

)
� (15)

This beam solution is concentrated on a single smooth curve � = ��x�t�� t� � t ≥ 0

which is the x-projection of the bicharacteristic ��x�t�� p�t�� � t ≥ 0
 emanating from
�x0� p0� at t = 0. Since the phase �x� t� has an imaginary part, Im��x� t�� = 1

2 �x −
x�t��T Im�M�t���x − x�t��, the function ��x� t� has a Gaussian profile of the form,

exp
(
−�

2
�x − x�t��T Im�M�t���x − x�t��

)
�

which is concentrated on the smooth ray path �.
Applying the above construction to the two polarized modes with G = G±

results in two sets of solutions x±�t�, p±�t�, M±�t�, A±�t�, ±�x� t�, A±�x� t�, and
�±�x� t�. These functions are uniquely determined by the initial data x0, p0, M0,
and A0. We denote these initial data collectively by a tuple � = �x0� p0�M0� A0�. In
the rest of this paper, in order to emphasize the dependence on �, the solutions
are denoted, respectively, by x±� �t�, p±

� �t�, M±
� �t�, A±

� �t�, ±� �x� t�, A±
� �x� t�, and

�±
� �x� t�.

For a given tuple � = �x0� p0�M0� A0�, the Gaussian beams �±
� �x� t� have a

simple Gaussian profile in the spatial variable x. For a general initial condition
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A Convergent Multiscale Gaussian-Beam Parametrix 97

�U�x� 0�� Ut�x� 0��, one needs to find two sets I+ and I− of tuples such that at
time t = 0

U�x� 0� ≈ ∑
�∈I+

�+
� �x� 0�+

∑
�∈I−

�−
� �x� 0��

Ut�x� 0� ≈
∑
�∈I+

�+
��t�x� 0�+

∑
�∈I−

�−
��t�x� 0��

Once this initial decomposition is given, the linearity of the wave equation gives the
Gaussian beam solution

U�x� t� ≈ ∑
�∈I+

�+
� �x� t�+

∑
�∈I−

�−
� �x� t��

To justify that the beam solution constructed this way is a valid asymptotic
solution for the wave equation (1) with initial conditions (2) and (3), one
must take into account the initial conditions in the beam construction as well.
However, this depends on how the initial conditions are decomposed into Gaussian
profiles and how the beam propagation is initialized; see [17–19, 22] for several
different approaches for the Helmholtz and the Schrödinger equations. In the
Schrödinger case, the Hamiltonian is not homogeneous, hence one cannot restrict
the Hamiltonian flow to the cosphere bundle; consequently, the single-scale
Gaussian wavepacket transform is used to initialize the beam propagation for
the Schrödinger equation. For the wave equation, since the Hamiltonian G±�x� p�
is homogeneous of degree one, the initialization requires multiscale transforms
with basis functions satisfying the parabolic scaling principle. In [23], Qian and
Ying designed such multiscale transforms, called multiscale Gaussian wavepacket
transforms, to carry out the needed multiscale decomposition. These multiscale
transforms follow the architecture of the wave atoms proposed in [10, 11].

In the next subsection, we summarize the formulation of these multiscale
Gaussian wavepacket transforms and prove some approximation properties of the
resulting frames.

2.2. Multiscale Gaussian Wavepacket Transforms

We start by partitioning the Fourier domain �d into Cartesian coronae �C�
 for
� ≥ 1 as follows:

C1 = �−4� 4�d�

C� = �� = ��1� �2� � � � � �d� � max
1≤s≤d

��s� ∈ �4�−1� 4��
� � ≥ 2�

It is clear that � ∈ C� implies that ��� = O�4��. Each corona C� is further partitioned
into boxes

B��i =
d∏
s=1

[
2� · is� 2� · �is + 1�

]
�

where the integer multi-index i = �i1� i2� � � � � id� ranges over all possible choices that
satisfy B��i ⊂ C�. All boxes in a fixed C� have the same length W� = 2� in each
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98 Bao et al.

dimension and the center of the box B��i is denoted by ���i = ����i�1� ���i�2� � � � � ���i�d�.
To each box B��i, we associate a Gaussian function g̃��i��� by

g̃��i��� = e
−
( ��−���i �

��

)2
�

where �� = W�/2.
To construct a Gaussian-beam parametrix, we need to decompose the Cauchy

data into Gaussian wavepackets; however, computationally it is highly nontrivial
since a Gaussian function is not compactly supported in the Fourier domain.
Consequently, we introduce truncated Gaussian bumps. To do that, we first choose
a cut-off function � ∈ C�

0 ��
n� with 0 ≤ � ≤ 1 such that ���� = 1 for � ∈ �� �

max1≤s≤d ��s� ≤ 1
 and ���� = 0 for � ∈ �� � max1≤s≤d ��s� ≥ 2
. Since �� = W�

2 = 2�−1,
we define a truncation function ���i for each box B��i by

���i��� = �

(
�− ���i
��

)
�

The truncated Gaussian bump g��i in the frequency domain is given by

g��i��� = ���i���g̃��i����

where g��i��� is compactly supported in a box centered at ���i of length L� = 2W�.
Now, we define a conjugate filter h��i for the truncated Gaussian bump g��i by

setting

h��i��� =
���i���∑

��i ���i���g��i���
�

We notice that this conjugate filter is slightly different from the one used in [23].
We have following properties about the conjugate filter h��i.

Lemma 2.1.

1. For any given �, there exist at most 3d indices ��� i� such that ���i��� �= 0.
2. The denominator of h��i is always positive. Moreover, there exist positive constants

C1 and C2 such that

C1 ≤ h��i��� ≤ C2 for all � ∈ B��i�

Proof. Let ��� i� be an index such that ���i��� �= 0. By the definition of ���i, we have

max
1≤s≤d

��s − ���i�s� < 2���

or ��s − ���i�s� < 2�� for all 1 ≤ s ≤ d. Since for each s there exist at most three real
numbers of ���i�s’s such that ��s − ���i�s� < 2��, it follows that there are at most 3d

numbers of ���i’s such that max1≤s≤d ��s − ���i�s� < 2��. The first part of the lemma is
proved.

Next we show the second part. Assume that � ∈ B��i, which implies that

max
1≤s≤d

��s − ���i�s� ≤ ���
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A Convergent Multiscale Gaussian-Beam Parametrix 99

Thus ���i��� = 1 and

g��i��� = ���i���g̃��i��� ≥ e
−
( ��−���i �

��

)2
≥ e−d�

Therefore ∑
��i

���i���g��i��� ≥ e−d�

On the other hand,∑
��i

���i���g��i��� ≤
∑
��i

���i���g̃��i��� ≤
∑
��i

���i��� ≤ 3d�

where we have used the result in the first part of the lemma.
Consequently, we have proved that

e−d ≤ ∑
��i

���i���g��i��� ≤ 3d� (16)

The second part of the lemma follows. �

By construction, the products of g��i��� and h��i��� form a partition of unity:∑
��i

g��i���h��i��� = 1�

and h��i��� is a smooth function compactly supported in a box centered at ���i with
size L� = 2W� in each dimension (i.e.,

∏d
s=1����i�s −W�� ���i�s +W��).

We then introduce three sets of functions ����i�k�x�
, ��̃��i�k�x�
, and ����i�k�x�
,
defined in the Fourier domain by

�̂��i�k��� =
1

L
d/2
�

e
−2�

√−1 k·�
L� g��i���� ∀k ∈ �d�

ˆ̃���i�k��� =
1

L
d/2
�

e
−2�

√−1 k·�
L� g̃��i���� ∀k ∈ �d�

�̂��i�k��� =
1

L
d/2
�

e
−2�

√−1 k·�
L� h��i���� ∀k ∈ �d�

Taking the inverse Fourier transforms gives their definitions in the spatial
domain:

���i�k�x� =
1

L
d/2
�

∫
�d

e
2�

√−1�x− k
L�

�·�
g��i���d�� ∀k ∈ �d� (17)

�̃��i�k�x� =
1

L
d/2
�

∫
�d

e
2�

√−1�x− k
L�

�·�
g̃��i���d�� ∀k ∈ �d� (18)

���i�k�x� =
1

L
d/2
�

∫
�d

e
2�

√−1�x− k
L�

�·�
h��i���d�� ∀k ∈ �d� (19)
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100 Bao et al.

As shown in [23], the definition of g̃��i��� implies that

�̃��i�k�x� =
(√

�

L�

��

)d

· e2�
√−1�x− k

L�
�·���i · e−�2��2�x− k

L�
�2
	 (20)

i.e., �̃��i�k�x� is a Gaussian function that is spatially centered at k/L�, oscillates
at frequency ���i with ����i� = O�4��, and has an O���� = O�W�� = O�2�� effective
width in the Fourier domain and an O�1/��� = O�2−�� effective width in the spatial
domain.

For ease of notation, following [25] we introduce the triple � = ��� i� k� ∈ �×
�d × �d. Then �̃��i�k�x� = �̃��x�, ���i�k�x� = ���x�, and ���i�k�x� = ���x�. We also
write �� = ���� = ����i�, �� = ���i, and B� = B��i. Furthermore, we define x� = k

L�
and

D� =
∏d

s=1�x��s − 1
2L�

� x��s + 1
2L�

�. Note that the products of the boxes D� × B� form a
tiling of the phase space �2d.

We next present some properties about the three sets of functions ����x�
,
��̃��x�
 and ����x�
. First functions ����x�
 and ����x�
 are dual frames for the
space L2��d� as shown in [23].

Lemma 2.2. [23] For any f ∈ L2��d�,

f�x� = ∑
�

��� f����x�� (21)

Proof. See [23] for the proof. �

We then give the following stability estimate for the co-frame ����x�
.

Lemma 2.3. There exist positive constants K1 and K2 such that the following hold:

K1�f�22 ≤
∑
�

���� f��2 ≤ K2�f�22� (22)

K1�f�2H1 ≤
∑
�

�2� ���� f��2 ≤ K2�f�2H1 � (23)

Proof. Note that

∑
�

���� f��2 =
∑
��i

∑
k

∣∣∣∣ 1

L
d/2
�

∫
�d

e
2�

√−1· k·�L� h��i���f̂ ���d�
∣∣∣∣2

= ∑
��i

∫
�d

�h��i���f̂ ����2d�

=
∫
�d

(∑
��i

�h��i����2
)
�f̂ ����2d�	

∑
�

�2� ���� f��2 =
∑
��i

����i�2
∑
k

∣∣∣∣ 1

L
d/2
�

∫
�d

e
2�

√−1· k·�L� h��i���f̂ ���d�
∣∣∣∣2
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A Convergent Multiscale Gaussian-Beam Parametrix 101

= ∑
��i

∫
�d

����i�2�h��i���f̂ ����2d�

=
∫
�d

(∑
��i

����i�2�h��i����2
)
�f̂ ����2d��

Using properties of functions h��i’s in Lemma 2.1, one can check that there exist
positive numbers K1 and K2 such that

K1 ≤
∑
��i

�h��i����2 ≤ K2�

K1����2 + 1� ≤ ∑
��i

����i�2�h��i����2 ≤ K2����2 + 1��

which yield (22) and (23). �

Since the proof of Lemma 2.2 relies on g��i being compactly supported in
an essential way, the representation f�x� = ∑

���� f����x� holds only for the set
of (truncated) Gaussian wavepackets ����x�
, not for the set of (non-truncated)
Gaussian wavepackets ��̃��x�
; namely, f�x� �= ∑

���� f��̃��x�. However, when
initializing multiscale Gaussian beam propagation as illustrated in [23], we need
the Cauchy data to be in the form of (non-truncated) Gaussian wavepackets �̃�.
Therefore, a natural question is: what is the difference between ����x�
 and ��̃�
?

To illustrate this point, we estimate ��̂� − ˆ̃���L2��d�. By direct calculation,

��̂� − ˆ̃���2L2��d� =
∫
�d

1
Ld
�

· �g̃��i����2 · �1− ���i����
2d�

= 1
Ld
�

∫
�d

e
− 2��−���i �2

�2
�

(
1− �

(
�− ���i
��

))2

d�

= 1
4d

∫
�d

e−2���2 · �1− �����2d�

<
1
4d

∫
���>1

e−2���2d�

< �0�0072�d�

which is a small number. Moreover, the above approximation error �0�0072�d can
be made arbitrarily small by increasing the support of the truncation function �.

Consequently, we may substitute ����x�
 with ��̃��x�
 in the expansion of f .
Moreover, we have the following two results.

Lemma 2.4. Let f ∈ L2��d� be such that

f�x� = ∑
�

��� f����x� =
∑
�

c����x��

Define

f̃ �x� = ∑
�

c��̃��x��
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102 Bao et al.

Then there is a number � > 0 which is independent of f such that �f − f̃�L2��d� ≤
��f�L2��d�.

Proof. See Subsection 4.2. �

Similarly, we have

Lemma 2.5. Let f ∈ H1��d� satisfy

f�x� = ∑
�

��� f����x� =
∑
�

c����x��

Define

f̃ �x� = ∑
�

c��̃��x��

Then there is a number � > 0 which is independent of f such that �f − f̃�H1��d� ≤
��f�H1��d�.

2.3. Multiscale Gaussian Beam Parametrix

We construct the multiscale Gaussian beam parametrix for the wave equation
(1)–(3) in this section. We begin by assuming that the initial conditions (2) and (3)
are highly oscillatory. By Lemma 2.2, we have the following decompositions for the
initial conditions:

f1�x� =
∑

� a����x�� (24)

f2�x� =
∑

� b����x� � (25)

where a� = f1� ��� and b� = f2� ���.
To construct the Gaussian beam parametrix, we need to decompose initial

conditions (2) and (3) into non-truncated Gaussian wavepackets. Since �̃��x� is
a good approximation for ���x�, we can get approximate decompositions by
substituting ���x� with �̃��x� in (24) and (25). Although this introduces an extra
error in the approximation of initial data, it is reasonable as long as the error is
small.

Therefore, to simplify subsequent discussions, we consider the wave equation
with the following approximate initial data instead of the exact data (24) and (25):

Utt − V 2�x��U = 0� x ∈ �d� t > 0� (26)

U �t=0 =
∑

� a��̃��x�� (27)

Ut�t=0 =
∑

� b��̃��x�� (28)

Motivated by the approximation

�̃��x� =
(√

�

L�

��

)d

· e
√−1·���x− k

L�
�· 2����� · e−��

(
�2
�
�2

��
�x− k

L�
�2
)
�
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A Convergent Multiscale Gaussian-Beam Parametrix 103

where �� = ����i� behaves like a large parameter �, as shown in [23] we can construct
one Gaussian beam for each wave mode, respectively, by solving

ẋ = Gp� x�t=0 =
k

L�

� (29)

ṗ = −Gx� p�t=0 = 2�
��

��
� (30)

Ṁ = −GT
xpM −MGpx −MGppM −Gxx� M�t=0 =

√−1 · 2�
2�2

�

��
I� (31)

Ȧ = − A

2G

(
V 2trace�M�−Gx ·Gp −GT

pMGp

)
� A�t=0 =

(√
�

L�

��

)d

� (32)

where we take G = G+ to obtain the “+” wave mode and G = G− to obtain the “−”
wave mode, respectively. Denote the solutions by x±� �t�, p

±
� �t�, M

±
� �t�, and A±

� �t�.
By the homogeneity of the Hamiltonian function G�x� p� we can easily verify

that ���t� = �� · p��t� and x��t� also satisfy differential equations (30) and (29),
respectively.

We are now ready to construct the multiscale Gaussian beam parametrix for
the wave equation (26). For each wave mode, we define the corresponding phase
function ±� �x� t�, amplitude function A±

� �x� t�, and Gaussian beam �±
� �x� t� by

±� �x� t� = p±
� �t� · �x − x±� �t��+

1
2
�x − x±� �t��

TM±
� �t��x − x±� �t��� (33)

A±
� �x� t� = A±

� �t�� (34)

�±
� �x� t� = A±

� �x� t� exp
(√−1 · �� · ±� �x� t�

)
� (35)

The global multiscale Gaussian beam parametrix to the wave equation (26)
takes the following form:

Ũ �x� t� = ∑
�

c+� �
+
� �x� t�+

∑
�

c−� �
−
� �x� t�� (36)

where the coefficients c±� are determined by matching the beam asymptotic
solution with initial conditions (27) and (28). As derived in [23], these coefficients
are given by

c+� = 1
2

a� − b�√−1 ·G+
(

k
L�
� 2���

)
 � (37)

c−� = 1
2

a� + b�√−1 ·G+
(

k
L�
� 2���

)
 � (38)

This finishes our construction of the multiscale Gaussian beam parametrix.
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104 Bao et al.

3. Analysis of Multiscale Gaussian Beam Parametrix

In this section, we prove the convergence of the multiscale Gaussian beam
parametrix (36) for the linear wave equation (26)-(28). To do that, we need some
technical lemmas.

3.1. Properties of Hamiltonian Flows and Phase Functions

First we present some properties of solutions to the system (29)–(32) which are
crucial to our analysis.

Lemma 3.1. For T > 0 fixed, assume that �M��t�� ≤ C for all 0 ≤ t ≤ T . There exist
positive constants C1, C2, C3, and C4 depending on �V�C1 , T and C such that

C1 ≤ �p��t�� ≤ C2� (39)

C3�
d
4
� ≤ �A��t�� ≤ C4�

d
4
� � (40)

Proof. For simplicity, we suppress the index � and take G�x� p� = V�x��p�. To prove
(39), we note that ṗ�t� = −Vx�x�t���p�t��. By using the Gronwall inequality, we have

d

dt
�p�t��2 = −2p�t�TVx�x�t���p�t�� ≤ 2�p�t��2�V�C1

⇒ �p�t��2 ≤ �p�0��2e2T�V�C1 �

Similarly,

d

dt
�p�t��2 = −2p�t�TVx�x�t���p�t�� ≥ −2�p�t��2�V�C1

⇒ �p�t��2 ≥ �p�0��2e−2T�V�
C1 �

Since �p�0�� = 2�, we may choose C ′
1 = e−T�V�C1 and C ′

2 = eT�V�C1 , so that (39)
holds for C1 = 2�C ′

1 and C2 = 2�C ′
2.

We next show (40). Rewrite equation (32) as

d logA�t�
dt

= − 1
2G

(
V 2trace�M�−Gx ·Gp −GT

pMGp

)
�

Recall that G�x� p� = V�x��p�, Gp�x� p� = V�x� p

�p� , and Gx�x� p� = Vx�x��p�, we
have

d logA�t�
dt

= − 1
2�p�t��

(
V�x�t��trace�M�t��

− Vx�x�t�� · p�t�− V�x�t��

(
p�t�

�p�t��
)T

M�t�

(
p�t�

�p�t��
))

�

Denote the right hand side of the above equation by f�t�. Note that f is a complex
valued function. Since �trace�M�t��� ≤ d · �M�t�� ≤ d · C and C2 ≥ �p�t�� ≥ C1, we
see that �f�t�� ≤ �V�

C1 �dC+C+C2�

C1
. We can check that

A�t� = A�0�e
1
2

∫ t
0 f�s� ds

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
] 

at
 1

6:
35

 1
8 

A
ug

us
t 2

01
4 



A Convergent Multiscale Gaussian-Beam Parametrix 105

is the solution to the equation (32). It follows that

e
−T �V�

C1
�dC+C+C2�
2C1 ≤ �A�t��

�A�0�� ≤ e
T

�V�
C1

�dC+C+C2�
2C1 �

Now, since A�0� =
(√

�
L�
��

)d = (√
�
2� 2

�−1
)d = � �8 �

d
2 · �4�� d

4 = O��
d
4 �, (40) follows for

properly chosen constants C3 and C4. �

We also have the following two lemmas about the Hamiltonian flow.

Lemma 3.2. Let T > 0 be fixed. Then there exist positive constants C5 and C6,
depending on �V�C2 and T such that the following holds for all t ∈ �0� T�:

C5�����′ �x��t�− x�′�t��2 + ����t�− ��′�t��2�
≤ ����′ �x��0�− x�′�0��2 + ����0�− ��′�0��2
≤ C6�����′ �x��t�− x�′�t��2 + ����t�− ��′�t��2�� (41)

Proof. Denote v�t� = x��t�− x�′�t�, w�t� = ���t�− ��′�t� = ��p��t�− ��′p�′�t�. We
have ∣∣∣∣dv�t�dt

∣∣∣∣ =
∣∣∣∣V�x��t�� ���t�����t��

− V�x�′�t��
��′�t�

���′�t��
∣∣∣∣

≤ ��V�x��t��− V�x�′�t����
∣∣∣∣ ���t�����t��

∣∣∣∣+ V�x�′�t��

∣∣∣∣ ���t�����t��
− ��′�t�

���′�t��
∣∣∣∣

≤ �V�C1 �v�t�� + �V�C0

2�w�t��
����t��

≤ �V�C1 �v�t�� + 2�V�C0

��C1

�w�t���

where we have used the inequality � x
�x� − y

�y� � = � x�y�−y�x��x�·�y� � = � x��y�−�x��+�x��x−y�
�x�·�y� � ≤ 2�x−y�

�y� for
all x� y �= 0. By the symmetry between � and �′, we also have∣∣∣∣dv�t�dt

∣∣∣∣ ≤ �V�C1 �v�t�� + 2�V�C0

��′C1

�w�t���

Thus ∣∣∣∣dv�t�dt

∣∣∣∣ ≤ �V�C1 �v�t�� + 2�V�C0 �w�t��min
{

1
��C1

�
1

��′C1

}
≤ �V�C1 �v�t�� + 2�V�C0

C1

1√
����′

�w�t���

It follows that ∣∣∣∣∣d�
√
����′v�t��

dt

∣∣∣∣∣ ≤ �V�C1 �
√
����′v�t�� +

2�V�C0

C1

�w�t���
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106 Bao et al.

Using the fact that d�f�t��2
dt

= 2 df�t�

dt
· f�t� ≤ 2� df�t�

dt
� · �f�t�� and the Cauchy-

Schwartz inequality, we further get

d�����′ �v�t��2�
dt

≤
(
2�V�C1 + 4�V�2

C0

C2
1

)
����′ �v�t��2 + �w�t��2� (42)

We next estimate � dw�t�
dt

�,∣∣∣∣dw�t�dt

∣∣∣∣ = ∣∣Vx�x��t������t�� − Vx�x�′�t�����′�t��
∣∣

≤ �Vx�x��t��− Vx�x�′�t��� · ����t�� + �Vx�x�′�t�������t�� − ���′�t����
≤ �V�C2 �v�t�� · ��C2 + �V�C1 �w�t��
= C2�V�C2 ���v�t�� + �V�C1 �w�t���

The symmetry between �� �′ yields∣∣∣∣dw�t�dt

∣∣∣∣ ≤ C2�V�C2 ���′v�t�� + �V�C1 �w�t���

Thus ∣∣∣∣dw�t�dt

∣∣∣∣ ≤ C2�V�C2 ·min���� ��′
 · �v�t�� + �V�C1 �w�t��

≤ C2�V�C2

√
����′ �v�t�� + �V�C1 �w�t���

It follows that

d�w�t��2
dt

≤ �2�V�C1 + �V�2C2C
2
2� · �w�t��2 + ����′ �v�t��2� (43)

Define E�t� = ����′ �v�t��2 + �w�t��2. Then (42) and (43) yield

dE

dt
≤
(
1+ 2�V�C1 + �V�2C2C

2
2 +

4�V�2
C0

C2
1

)
E�t��

A direct application of Gronwall’s inequality gives the second inequality in (41).
A similar consideration for ṽ�t� = v�T − t� and w̃�t� = w�T − t� yields the first
inequality in (41). �

We remark that the inequality in Lemma 3.2 stated in a different form has also
been proved in [29] by a different argument.

Lemma 3.3. For a fixed constant T > 0, the following estimate holds,

�x��t�− x�′�t��2 ≥ e−T�1+2�V�
C1 � · �x��0�− x�′�0��2 − 4T · �V�C0 (44)
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A Convergent Multiscale Gaussian-Beam Parametrix 107

Proof. Denote v�t� = x��t�− x�′�t�. By direct calculation∣∣∣∣dv�t�dt

∣∣∣∣ =
∣∣∣∣V�x��t�� p��t��p��t��

− V�x�′�t��
p�′�t�

�p�′�t��
∣∣∣∣

≤ �V�x��t��− V�x�′�t���
∣∣∣∣ p��t��p��t��

∣∣∣∣+ V�x�′�t��

∣∣∣∣ p��t��p��t��
− p�′�t�

�p�′�t��
∣∣∣∣

≤ �V�C1 �v�t�� + 2�V�C0 �

Using the fact that d�v�t��2
dt

= 2 dv
dt
· v�t� ≥ −2� dv�t�

dt
� · �v�t�� and the Cauchy-

Schwartz inequality, we further get

d�v�t��2
dt

≥ −�1+ 2�V�C1� · �v�t��2 − 4�V�2C0 �

By Gronwall’s inequality, (44) follows. �

The following result is implied in a theorem shown in [15, page 101].

Lemma 3.4 [15]. For any given T > 0, the solutionM±
� �t� for the Riccati equation (31)

is well defined for 0 ≤ t ≤ T . Furthermore, there exist positive constants c0, c1, and
c2 which depend on T and the velocity field V�x�, such that c0 ≤ Im�M±

� �t�
 ≤ c1 and
�Re�M±

� �t�
� ≤ c2 uniformly for all 0 ≤ t ≤ T and �.

Next we present two lemmas about the phase function � and the single
beam ��.

Lemma 3.5. Assume that Lemma 3.4 holds.

��t�t� x� = −G�x� ��x�t� x��+ O��x − x��t��3��

Proof. We suppress the index �. Direct calculation yields

t�t� x� =
dp

dt
· �x − x�t��+ p�t� ·

(
−dx

dt

)
+ 1

2
�x − x�t��T

dM

dt
�x − x�t��− �x − x�t��TM�t�

dx

dt

= −Gx�x�t�� p�t�� · �x − x�t��− p�t� ·Gp�x�t�� p�t��

+1
2
�x − x�t��T · �−GT

xp ·MT −M ·Gpx −MTGppM −Gxx� · �x − x�t���

x�t� x� = p�t�+M�t��x − x�t��� (45)

On the other hand, by using the Taylor expansion for G around x = x�t� up to
the third order term, we have

G�x� x�t� x�� = G�x� p�t�+M�t� · �x − x�t��

= G�x�t�+ x − x�t�� p�t�+M�t��x − x�t���
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108 Bao et al.

= G�x�t�� p�t��+Gx · �x − x�t��+GT
pM�t��x − x�t��

+ 1
2
�x − x�t��TGxx�x − x�t��

+ 1
2
�x − x�t��TM�t�TGppM�t��x − x�t��

+ �x − x�t��TGxpM�t��x − x�t��

+ ∑
���+���=3

1
6

∫ 1

0

�3G

��x��p
�x�t�+ s�x − x�t��� p�t�+ sM�t��x − x�t���

× �x − x�t����M�t��x − x�t����ds� (46)

We may write the last term as
∑

���=3�x − x�t���F��t� x�. It is clear that

�F��t� ·��Cm��d� � �V�Cm+3��d��

provided that the norm of the matrix M�t� is bounded.
Summing up (45) and (46), we have

t�t� x�+G�x� x�t� x�� = −p�t�T ·Gp�x�t�� p�t��+G�x�t�� p�t��

+ ∑
���=3

�x − x�t���F��t� x��

By the homogeneity of G, pT ·Gp�x� p� = G�x�t�� p�t��. It follows that

t +G�x� x�t� x� =
∑
���=3

�x − x�t���F��t� x�� �

Lemma 3.6.

���t�t� x� = −���t� x� · �� ·G�x��t�� p��t��+���t� x� ·D��t�

−√−1 ·���t� x� · �� · O��x − x��t���+
√−1 · �����t� x� · O��x − x��t��3��

where D��t� is defined as

D��t� =
Ȧ��t�

A��t�

= −
V 2�x��t��trace�M��t��−Gp�x��t�� p��t�� · �Gx�x��t�� p��t��

+M��t� Gp�x��t�� p��t���

2G�x��t�� p��t��
�

Proof. Suppressing the index �, we have

�t�t� x� = ��t� x�

(
Ȧ�t�

A�t�
+√−1 · � · t�t� x�

)

= ��t� x�
(
D�t�+√−1 · � · �−G�x� x�t� x��+ O��x − x�t��3��

)
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A Convergent Multiscale Gaussian-Beam Parametrix 109

= ��t� x�
(
D�t�+√−1 · � · �−G�x� p�t�+M�t� · �x − x�t���

+O��x − x�t��3��) �
A Taylor expansion of the function G�x� p�t�+M�t� · �x − x�t��� around x =

x�t� yields

G�x� p�t�+M�t��x − x�t��� = G�x�t�� p�t��+ O��x − x�t����

Since � ·G�x�t�� p�t�� = G�x�t�� ��t��, we have

� ·G�x� p�t�+M�t� · �x − x�t��� = G�x�t�� ��t��+ � · O��x − x�t����

The lemma follows. �

3.2. Wavepacket Interaction and Beam Decaying

The following lemma describes interaction between Gaussian wavepackets which
plays an important role in the proof of Lemmas 3.8 and 3.9.

Lemma 3.7. Assume that M1 and M2 are two symmetric and positive definite matrices
satisfying 0 < c0I < M1�M2 < c1I , and that N1 and N2 are two symmetric matrices such
that �N1�� �N2� ≤ c2. Assume also that �x and �� are two vectors in �d, and �1 and �2
are two positive numbers. Let c∗1 = 32c31c

2
2

c20
. Then

∣∣∣∫
�d

x� · �x − �x�� · e
√−1��·x−�1xT �M1+

√−1·N1�x−�2�x−�x�T �M2+
√−1·N2��x−�x� dx

∣∣∣
�c0

1

��1 + �2�
d
2

e
− c0�1�2

4��1+�2� ��x�
2− ����2

c∗1 ��1+�2� · 1

�
���
2
1 · � ���

2
2

�

Proof. See Subsection 4.3. �

We remark that the special case of Lemma 3.7 corresponding to � = � = 0,
N1 = N2 = 0, and M1 = M2 = I can be evaluated directly as done in [29].

Furthermore, the following two lemmas show that different Gaussian beams are
“almost orthogonal” to some extent.

Lemma 3.8. Assume that ���t� x� is defined as in (35), and b� are complex numbers
with

∑
� �b��2 < � and b� = 0 for all � = ��� i� k� with � ≤ 1. Let m be a non-negative

integer. If ������ ≥ m for all �, then∥∥∥∥∑
�

�
m
2
� b����t� ·� · �· − x��t��

����

∥∥∥∥2
L2��d�

�
∑
�

�b��2�

uniformly for 0 ≤ t ≤ T , where T is given.

Proof. See Subsection 4.4. �
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110 Bao et al.

In Lemma 3.8, we have characterized interactions between propagated
multiscale Gaussian wavepackets along bicharacteristics in terms of various
vanishing orders, and these vanishing orders in turn define the orders of the
accumulated interaction. A similar result has been established in [29] (Theorem 2.1
in [29]) for the interaction between propagated Gaussian wavepackets with Gaussian
frame functions, and the proof relies on some specific properties of the frame
constructed there, such as the specific form of the scale factor inherent in that frame.

Lemma 3.9. Let ���t� x� be defined as in (35); let b� be complex numbers such that∑
� �b��2 < � and b� = 0 for all � = ��� i� k� such that � ≤ 1. Assume that F��t� x� =

O��x − x��t��m� for each �. Then∥∥∥∥∑
�

�
m
2
� b����t� ·� · F��t� ·�

∥∥∥∥2
L2��d�

�
∑
�

�b��2�

uniformly for 0 ≤ t ≤ T , where T is given.

Proof. Taylor expanding F��t� x� about x = x�t� up to the N0-th order, where N0 is
to be determined later, we can write

F��t� x� =
N0∑

���=m
d����x − x�t��� + ∑

���=N0+1

F����t� x��x − x�t��� ≡ F�1�
� �t� x�+ F�2�

� �t� x��

where all d��� are uniformly bounded complex numbers and F����t� x� � O�1�.
By Lemma 3.8, the following holds:∥∥∥∥∑

�

�
m
2
� b����t� ·� · F�1�

� �t� ·�
∥∥∥∥2
L2��d�

�
∑
�

�b��2� (47)

Next we show that∥∥∥∥∑
�

�
m
2
� b����t� ·� · F�2�

� �t� ·�
∥∥∥∥2
L2��d�

�
∑
�

�b��2� (48)

To see this, we first apply Lemma 4.6 to get

� < �
m
2
� ��F

�2�
� �t� ·�� � m

2
�′ ��′F

�2�
�′ �t� ·� > �

�
�����′�

d
4

��� + ��′�
d
2

· e−
c0����′

2���+��′ �
�x��t�−x�′ �t��2 · 1

�
������−m

2
� · � ����′��−m

2
�′

�

Since �� > 1 for those � with � > 1, we further get

∣∣ < �
m
2
� ��F

�2�
� �t� ·�� � m

2
�′ ��′F

�2�
�′ �t� ·� >

∣∣ � e−
c0
4 �x��t�−x�′ �t��2 · �

−N0−1+m
2

� · �
−N0−1+m

2
�′

� e−
c0
4 �x��t�−x�′ �t��2 · �−d−1

� · �−d−1
�′ �

where we have taken N0 = 2d + 1+m.
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A Convergent Multiscale Gaussian-Beam Parametrix 111

Define

d���′ = e−
c0
4 �x��t�−x�′ �t��2 · �−d−1

� �−d−1
�′ �

Similar to the proof of Lemma 3.8, we can show with the help of Lemma 3.3
that

d���′ � min
x∈D���∈B��x′∈D�′ ��′∈B�′

e−c
′
0�x−x′ �2 · ���−d−1��′�−d−1 (49)

for some properly chosen c′0 > 0, where D� and B� are defined in Subsection 2.2.
Defining function b�x� �� by letting b�x� �� = b� for all x ∈ D�� � ∈ B�, we have∑

���′
�b�b�′d���′ � �

∫
�4d

�b�x� ��b�x′� �′��e−c′0�x−x′ �2 · ���−d−1��′�−d−1dxd�dx′d�′

≤
∫
�4d

��b�x� ���2 + �b�x′� �′��2�e−c′0�x−x′ �2 · ���−d−1��′�−d−1dxd�dx′d�′

= 2
∫
�4d

�b�x� ���2e−c′0�x−x′ �2 · ���−d−1��′�−d−1 dx′d�′dxd�

�
∫
�2d

�b�x� ���2���−d−1 dxd�

≤
∫
�2d

�b�x� ���2 dxd�

= 1
2d

∑
�

�b��2� (50)

This proves (48). Combining this with (47) yields the lemma. �

3.3. Main Convergence Results

With Lemmas 3.8 and 3.9 at our disposal, we are ready to estimate the error between
the Gaussian beam solution and the exact solution. We first estimate the error that
comes from approximating the Cauchy data.

Lemma 3.10. Assume that U�0� and Ut�0� are defined as in (27) and (28). Assume
also that c+� , c

−
� and Ũ �t� x� are defined as in (37), (38), and (36). Then

(a).
∑

� �
2
� ��c+� �2 + �c−� �2� �

∑
���

2
� �a��2 + �b��2�;

(b). Ũ �0� = U�0�;

(c). �Ũt�0�− Ut�0��L2��d� �
1

�
1
2
min

(∑
���

2
� �a��2 + �b��2�

) 1
2 ,

where a�� b� = 0 for all � such that �� ≤ �min with �min > 4.

Proof. We first show (a). Using (37), we have

∑
�

�2� �c+� �2 ≤
∑
�

�2� ·
(
�a��2 +

�b��2
V 2� k

L�
��2����2

)

= ∑
�

�2� · �a��2 +
∑
�

�b��2
V 2� k

L�
��2��2

�
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112 Bao et al.

Since V�x� is bounded away from zero, we get∑
�

�2� · �c+� �2 �
∑
�

��2� �a��2 + �b��2��

Similarly, it is easy to show that∑
�

�2� · �c−� �2 �
∑
�

��2� �a��2 + �b��2��

which completes the proof of (a).
The proof of (b) follows from the fact that �+

� �0� x� = �−
� �0� x�.

Next, we prove (c). By Lemma 3.6, we have

Ũt�0� x�− Ut�0� x� =
∑
�

c+� �
+
� �0� x�D

+
� �0�−

√−1 ·∑
�

��c
+
� �

+
� �0� x� · O��x − x��0���

+√−1 ·∑
�

��c
+
� �

+
� �0� x� · O��x − x��0��3�

+∑
�

c−� �
−
� �0� x�D

−
� �0�

−√−1 ·∑
�

��c
−
� �

−
� �0� x� · O��x − x��0���

+√−1 ·∑
�

��c
−
� �

−
� �0� x� · O��x − x��0��3�� (51)

By Lemma 3.8 and Lemma 3.9, we have∥∥∥∥∑
�

c+� �
+
� �0� ·�D+

� �0�

∥∥∥∥2
L2��d�

�
∑
�

�c+� �2 ≤
1

�2min

∑
�

�2� · �c+� �2�∥∥∥∥∑
�

��c
+
� �

+
� �0� ·� · O�� · −x��0���

∥∥∥∥2
L2��d�

�
1

�min

∑
�

�2� · �c+� �2�∥∥∥∥∑
�

��c
+
� �

+
� �0� ·� · O�� · −x��0��3�

∥∥∥∥2
L2��d�

�
1

�3min

∑
�

�2� · �c+� �2�

The same results hold for other terms in (51) with sup-script “-”. Using part (a), (c)
follows. �

Now, we estimate the error that comes from beam propagation.

Lemma 3.11. Assume that T > 0 is fixed and �min > 4. Assume also that c� are complex
numbers such that

∑
� �c��2�2� < � and c� = 0 for all �� < �min. Define u�t� x� =∑

� c����t� x�. Then

�Pu�2L2��d� �
1

�min

∑
�

�2� �c��2� uniformly for all 0 ≤ t ≤ T�

where Pu ≡ ��tt − V 2�x���u.
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A Convergent Multiscale Gaussian-Beam Parametrix 113

Proof. By a direct calculation, we have

P���t� x� = ��tt − V 2�x���A��t�e
√−1·����t�x�

= −�2� �2��t�t� x�− V 2�x�2��x�t� x�� · A��t�e
√−1·����t�x�

+√−1 · ��
{
2��t�t� x�A��t�t�

+ A��t����tt − V 2�x�trace���xx�t� x���
}
e
√−1·����t�x�

= −�2� ·���t� x� · �2��t�t� x�− V 2�x�2��x�t� x�


+√−1 · �� ·���t� x�

{
2��t�t� x�

A��t�t�

A��t�

+ ��tt�t� x�− V 2�x�trace���xx�t� x��
}
�

Let

g��1�t� x� = 2��t�t� x�− V 2�x�2��x�t� x��

g��2�t� x� = 2��t�t� x�
A��t�t�

A��t�
+ ��tt�t� x�− V 2�x�trace���xx�t� x���

Then

P���t� x� = −�2� ·���t� x� · g��1�t� x�+
√−1 · �� ·���t� x� · g��2�t� x��

By Lemma 3.5, we have

g��1�t� x� = O��x − x�t��3��

Then Lemma 3.9 yields∥∥∥∥∑
�

c��
2
� ·���t� ·� · g��1�t� ·�

∥∥∥∥2
L2��d�

=
∥∥∥∥∑

�

(
c��

1
2
�

)
· � 3

2
� ·���t� ·� · g��1�t� ·�

∥∥∥∥2
L2��d�

�
∑
�

(
c��

1
2
�

)2

≤ 1
�min

∑
�

�2� �c��2� (52)

We can also show that∥∥∥∥∑
�

c��� ·���t� ·� · g��2�t� ·�
∥∥∥∥2
L2��d�

≤ 1
�min

∑
�

�2� �c��2� (53)

Indeed, using Lemma 3.9, we need only show that g��2�t� x� = O��x − x��t���. This is
done in the next lemma, namely Lemma 3.12. Thus we have proved (53). Combining
this with (52) yields the theorem. �
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114 Bao et al.

Lemma 3.12.

g��2�t� x� = 2��t�t� x�
Ȧ��t�

A��t�
+ ��tt�t� x�− V 2�x�trace���xx�t� x�� = O��x − x��t����

Proof. We suppress the index �. By Lemma 3.5, we have

t�t� x� = −G�x� x�t� x��+ O��x − x�t��3�
= −G�x� p�t�+M�t��x − x�t���+ O��x − x�t��3��

Furthermore, direct calculation shows that

tt�t� x� = −Gp�x� p�t�+M�t��x − x�t����ṗ�t�+ Ṁ�t��x − x�t��+M�t��−ẋ�t��

+ O��x − x�t��2��

xx�t� x� = M�t��

Thus

g2�t� x� = 2t�t� x�
Ȧ�t�

A�t�
+ tt�t� x�− V 2�x�trace�M�t��

= −2
Ȧ�t�

A�t�
·G�x� x�t� x��

−Gp�x� p�t�+M�t��x − x�t��� · �ṗ�t�+ Ṁ�t��x − x�t��+M�t��−ẋ�t��

+ O��x − x�t��2�− V 2�x�trace�M�t��+ O��x − x�t��3�� (54)

When x = x�t�, we have

g2�t� x�t�� = 2t�t� x�t��
Ȧ�t�

A�t�
+ tt�t� x�t��− V 2�x�t��trace�M�t��� (55)

Substituting the equalities

2
Ȧ�t�

A�t�
= −V 2�x�t��traceM�t�−Gp ·Gx −GT

p�x�t�� p�t��M�t�Gp�x�t�� p�t��

G�x�t�� p�t��
�

t�t� x�t�� = −G�x�t�� p�t���
tt�t� x� = −Gp�x�t�� p�t�� · ṗ�t��+GT

p�x�t�� p�t��M�t�Gp�x�t�� p�t��

= Gp�x�t�� p�t�� ·Gx�x�t�� p�t��+GT
p�x�t�� p�t��M�t�Gp�x�t�� p�t��

into (55), we get

g2�t� x�t�� = 0�

Using Taylor expansion about x = x�t� for the function g2�t� x� with expression
(54), the result g2�t� x� = O��x − x�t��� follows. �

Before we state the main result, we first recall the following estimate from [16].
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A Convergent Multiscale Gaussian-Beam Parametrix 115

Theorem 3.1 [16]. Suppose that f1 ∈ H1��d�, f2 ∈ L2��d�, and f ∈ L��0� T	 L2��d��.
Then there exists an unique solution u ∈ C1�0� T	 L2��d��

⋂
C�0� T	H1��d�� to the

following wave equation

Utt − V 2�x��U = f� x ∈ �d� 0 < t < T�

U �t=0 = f1�x��

Ut�t=0 = f2�x��

Furthermore, the following estimate holds,

�u�C1�0�T	L2��d��
⋂
C�0�T	H1��d�� � �f1�H1��d� + �f2�L2��d� + �f�L��0�T	L2��d���

Finally, we can state and prove our main result.

Theorem 3.2. Consider the following wave equation

Utt − V 2�x��U = 0� x ∈ �d� 0 < t < T�

U �t=0 =
∑
�

a��̃��x��

Ut�t=0 =
∑
�

b��̃��x��

Assume that
∑

���
2
� �a��2 + �b��2� < �, �min � 1, and a� = b� = 0 for all � such that

�� ≤ �min. Let c
+
� and c−� be defined as in (37) and (38). Define the Gaussian beam

parametrix by

Ũ �t� x� = ∑
�

c+� �
+
� �t� x�+

∑
�

c−� �
−
� �t� x��

Then

Ũ ∈ C1�0� T	 L2��d��
⋂

C�0� T	H1��d��� (56)

Furthermore, the following error estimate holds for the Gaussian beam solution:

�Ũ − U�C1�0�T	L2��d��
⋂
C�0�T	H1��d�� �

1

�
1
2
min

(∑
�

(
�2� �a��2 + �b��2

)) 1
2

� (57)

where U ∈ C1�0� T	 L2��d��
⋂
C�0� T	H1��d�� is the exact solution.

Proof. Denote u�t� x� = ∑
� c����t� x�, where c����t� x� can be either c+� �

+
� �t� x� or

c−� �
−
� �t� x�. It is clear that we need only show the relation (56) for u�t� x�. Without

loss of generality, we take c����t� x� = c+� �
+
� �t� x�. By direct calculation, we have

ux�t� x� =
∑
�

��c����t� x��p��t�+M��t��x − x��t���

= ∑
�

��c����t� x�p��t�+
∑
�

��c����t� x�M��t��x − x��t���
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116 Bao et al.

Using the fact that both �p��t�� and �M��t�� are uniformly bounded for 0≤ t≤T
(Lemmas 3.1 and 3.4), we can apply Lemma 3.9 to conclude that∥∥∥∥∑

�

��c����t� ·�p��t�
∥∥∥∥ �

∑
�

�2� �c��2�∥∥∥∥∑
�

��c����t� ·�M��t��· − x��t��

∥∥∥∥ �
∑
�

���c��2�

Thus the series representing ux converges uniformly for 0≤ t≤T . It follows that
ux ∈C�0� T	 L2��d�� and hence u∈C�0� T	H1��d��.

The fact that u ∈ C1�0� T	 L2��d�� follows from

ut�t� x� = −∑
�

���t� x� · ��c� ·G�x��t�� p��t��+
∑
�

c����t� x� ·D��t�

−∑
�

√−1 ·���t� x� · ��c� · O��x − x��t���

+∑
�

√−1 · ��c����t� x� · O��x − x��t��3��

Since G�x��t�� p��t�� and �D��t�� are uniformly bounded for 0 ≤ t ≤ T , we can apply
Lemma 3.8 and Lemma 3.9 to conclude that∥∥∥∥∑

�

���t� ·� · ��c� ·G�x��t�� p��t��
∥∥∥∥2
L2��d�

�
∑
�

�2� �c��2	∥∥∥∥∑
�

c����t� ·� ·D��t�

∥∥∥∥2
L2��d�

�
∑
�

�c��2	∥∥∥∥∑
�

���t� ·� · ��c� · O�� · −x��t���
∥∥∥∥2
L2��d�

�
∑
�

���c��2	∥∥∥∥∑
�

��c����t� ·� · O�� · −x��t��3�
∥∥∥∥2
L2��d�

�
∑
�

�−1
� �c��2�

Thus the series representing ut converges uniformly for 0 ≤ t ≤ T and hence ut ∈
C�0� T	 L2��d��. Besides, it is also easy to see that u ∈ C�0� T	 L2��d��. Therefore
we have u ∈ C1�0� T	 L2��d��. (56) is proved.

Now we show (57). Let w�t� x� = Ũ �t� x�− U�t� x�. It follows that

wtt − V 2�x��w = −PU�t� x�� x ∈ �d� t > 0�

w�t = 0� = 0�

wt�t = 0� = Ũt�0�− Ut�0��

It follows from Lemma 3.10, Lemma 3.11, and Theorem 3.1 that

�w�C1�0�T	L2��d��
⋂
C�0�T	H1��d�� �

1

�
1
2
min

(∑
�

(
�2� �a��2 + �b��2

)) 1
2

�

which completes the proof of (57). �
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A Convergent Multiscale Gaussian-Beam Parametrix 117

Theorem 3.2 combined with Lemmas 2.4 and 2.5 yields

Theorem 3.3. Consider the following wave equation

Utt − V 2�x��U = 0� x ∈ �d� 0 < t < T�

U �t=0 = f1�x� =
∑
�

a����x��

Ut�t=0 = f2�x� =
∑
�

b����x��

Assume that f1 ∈ H1��d�, f2 ∈ L2��d�, �min � 1, and a� = b� = 0 for all � such that
�� ≤ �min. Let c

+
� and c−� be defined as in (37) and (38). Define the multiscale Gaussian

beam solution by

Ũ �t� x� = ∑
�

c+� �
+
� �t� x�+

∑
�

c−� �
−
� �t� x��

Then

Ũ ∈ C1�0� T	 L2��d��
⋂

C�0� T	H1��d��� (58)

Furthermore, the following error estimate holds for the multiscale Gaussian beam
solution:

�Ũ − U�C1�0�T	L2��d��
⋂
C�0�T	H1��d�� �

(
1

�
1
2
min

+ �

) (�f1�H1��d� + �f2�L2��d�

)
� (59)

where U ∈ C1�0� T	 L2��d��
⋂
C�0� T	H1��d�� is the exact solution and � is

determined in Lemmas 2.4 and 2.5.

We conclude the paper with the following remarks.

Remark 3.1. The method and results in this work can also be applied to the
general second order wave equation Utt�t� x�−

∑d
i�j=1 ai�j�t� x�Uxi�xj

�t� x� = 0 with
highly oscillatory Cauchy data, where ai�j’s are assumed to be smooth functions
and the matrix �ai�j


d
i�j=1 formed by ai�j’s is assumed to be symmetric and uniformly

positive definite.

Remark 3.2. The method and results may also be applied to the general first
order wave equation �Dt − a�x�Dx��U�t� x� = 0 with highly oscillatory Cauchy data,
where a�x�Dx� is a first-order homogeneous pseudo-differential operator.

4. Proof of Technical Lemmas

4.1. Some Nonstandard Inequalities

Lemma 4.1. Let A be a symmetric, positive-definite matrix in �d, and c0 be a positive
number. Then

A ≥ c0I ⇔ A−1 ≤ c−1
0 I�
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118 Bao et al.

Proof. Since A is symmetric and positive-definite, there exists an orthogonal basis
in �d: ẽ1,� � � ẽd, and positive numbers �1, � � � �d such that

A =
d∑

j=1

�jẽj ẽ
T
j �

Then

A ≥ c0I ⇔ min
1≤j≤d

�j ≥ c0 ⇔ max
1≤j≤d

�−1
j ≤ c−1

0

⇔ A−1 =
d∑

j=1

�−1
j ẽj ẽ

T
j ≤ c−1

0 I�
�

Lemma 4.2. Assume that A = �ai�j� is a symmetric, positive-definite matrix in �d,
and c1 is a positive upper bound of A, i.e. A ≤ c1I . Then �A� = supx �=0

�Ax�
�x� ≤ c1 and

�ai�j� ≤ c1.

Proof. Since A is symmetric, we have

�A� = sup
x �=0

�Ax�
�x� = sup

x �=0

< Ax� x >

< x� x >
≤ c1�

�ai�j� = � < Aei� ej > � ≤ �Aei� ≤ �A� ≤ c1� �

Lemma 4.3. If f�x� = e−x2xn with x > 0, then

f�x� �
1


n
2
�

Proof. We have f ′�x� = e−x2xn�−2x + n
x
�. For 0 ≤ x ≤ √

n
2 , f

′�x� > 0; for x ≥√
n
2 , f

′�x� < 0. Thus

max
x>0

f�x� = f

(√
n

2

)
= e−

n
2

(n
2

) n
2 · 1


n
2
�

1


n
2
� �

Lemma 4.4. If � is any multi-index in �d, then∣∣∣∫
�d

e
√−1·�·y−�y�2y� dy

∣∣∣ � e−
���2
4 �

Proof. The following proof is based on direct evaluation which is analogous to
the one used in [29]. Denote the integral with multi-index � by I���. We prove by
induction. For � = 0, it is well known that

I�0� =
∫
�d

e
√−1·�·y−�y�2 dy = ���

d
2 e−

���2
4 �

Next we assume that the result holds for any multi-index � ≤  ∈ �d. Let  j ∈
Zd be such that only the j’s component is 1 and all others are 0. Consider the
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A Convergent Multiscale Gaussian-Beam Parametrix 119

integral I� +  j�. We have

I� +  j� =
∫
�d

e
√−1·�·y−�y�2y + 

j

dy = 1
2

∫
�d

e
√−1·�·yy 

�e−�y�2

�yj
dy

= −1
2

∫
�d

e−�y�2 �

�yj

(
e
√−1·�·yy 

)
dy

= −1
2

∫
�d

e−�y�2e
√−1·�·yy · √−1 · �j dy −

1
2

∫
�d

e−�y�2e
√−1·�·y �y

 

�yj
dy�

Thus

�I� +  j�� ≤ 1
2
��j� · �I� �� +

1
2

∣∣∣∣∫
�d

e−�y�2e
√−1·�·y �y

 

�yj
dy

∣∣∣∣ � ���� + 1�e−
���2
4 � e−

���2
4 �

This closes our induction and the lemma is proved. �

Lemma 4.5. For a positive number c, let g��� �′� = e
− c��−�′ �2

���+��′ �

��′ � d4
be a function defined on

�d ×�d and I��� = ∫
�d g��� �

′� d�′. Then

I��� � ��� d4 � for ��� ≥ 1�

Proof. We divide the integral I��� into three parts: I1��� =
∫

1
2 ���≤��′ �≤2��� g��� �

′� d�′,
I2��� =

∫
��′ �≤ 1

2 ��� g��� �
′� d�′ and I3��� =

∫
��′ �≥2��� g��� �

′� d�′. We estimate these three
integrals one by one.

In the region I: 1
2 ��� ≤ ��′� ≤ 2���, we have g��� �′� ≤ e−

c��−�′ �2
��� · 2

d
4

��� d4
. Thus

I1��� ≤
∫
�d

e−
c��−�′ �2

��� · 2
d
4

��� d4 d�
′

= 2
d
4

��� d4
∫
�d

e−
c��′ �2
��� d�′ �

1

��� d4 ·
( ���
c

) d
2

= 1

c
d
2

��� d4 �

In the region II: ��′� ≤ 1
2 ���, we have g��� �′� ≤ e−

c���2
2��� · ��′�− d

4 = e−
c���
2 · ��′�− d

4 . Thus

I2��� ≤
∫
��′ �≤ 1

2 ���
e−

c���
2 · ��′�− d

4 d�′ � e−
c���
2 ·

∫ ���

0
r−

d
4 +d−1 dr

� e−
c���
2 · ��� 3d4 � ��� d4 �

In the region III: ��′� ≥ 2���, we have ��− �′� ≥ ��′� − ��� > ��′ �
2 > 1

3 ���� + ��′��.
Thus ��−�′ �2

���+��′ � ≥ ��−�′ �
3 and consequently g��� �′� ≤ e−

c��′ �
6 · �2����− d

4 . It follows that

I3��� ≤
∫
��′ �≥2���

e−
c��′ �
6 · �2����− d

4 d�′ ≤ ���− d
4

∫
��′ �≥2���

e−
c��′ �
6 d�′

� ���− d
4

∫ �

2���
e−

cr
6 · rd−1 dr ≤ ���− d

4

∫ �

2���
e−

cr
6 dr

� ���− d
4 e−

c���
3 � ��� d4 � �
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120 Bao et al.

4.2. Proof of Lemma 2.4

Proof. Step 1. Denote x� = 2� k
L�
, x�′ = 2� k

L�′
, �� = ���i − ��′�i′ , �x = x� − x�′ and

a���′ = �̃� − ��� �̃�′ − ��′ �. Then

a���′ =  ˆ̃�� − �̂��
ˆ̃��′ − �̂�′ �

= 1

L
d/2
� L

d/2
�′

∫
�d

e−
√−1·�x·�e

− ��−���i �2
�2
�

− ��−��′ �i′ �2
�2
�′

·
(
1− �

(
�− ���i
��

))
·
(
1− �

(
�− ��′�i′

��′

))
d��

We want to estimate a���′ . Without loss of generality, assume that � ≤ �′. By the
change of variable, � = ��z+ ��, we get

�a���′ � =
1
4d

L
d/2
�

L
d/2
�′

∣∣∣∣ ∫
�d

e−
√−1·�x·��ze−�z�2−� ����′ z−

���i−��′ �i′
��′ �2 · �1− ��z��

·
(
1− �

(
��
��′

z− ���i − ��′�i′

��′

))
dz

∣∣∣∣
= d/2

4d

∣∣∣∣∫
�d

e−
√−1·�x·��ze−�z�2−�z− ��

��′ �
2 · �1− ��z�� ·

(
1− �

(
z− ��

��′

))
dz

∣∣∣∣ �
where  = ��

��′
≤ 1 by the assumption that � ≤ �′.

Step 2. Let

I =
∫
�d

e−
√−1·�x·��ze−�z�2−�z− ��

��′ �
2 · �1− ��z�� ·

(
1− �

(
z− ��

��′

))
dz�

Define the differential operator L = −�+1
1+�2� ��x�2

about the variable z. We have

Le−
√−1·�x·��z = e−

√−1·�x·��z�

Then

I =
∫
�d

Lm�e−
√−1·�x·��z�e−�z�2−�z− ��

��′ �
2 · �1− ��z�� ·

(
1− �

(
z− ��

��′

))
dz

= 1

�1+ �2
���x�2�m

∫
�d

e−
√−1·�x·��z�1−��m

(
e
−�z�2−�z− ��

��′ �
2 · �1− ��z��

·
(
1− �

(
z− ��

��′

)))
dz

where m is an integer to be determined later. Since 0 <  ≤ 1, we can check that∣∣∣∣�1−��m
(
e
−�z�2−�z− ��

��′ �
2 · �1− ��z�� ·

(
1− �

(
z− ��

��′

)))∣∣∣∣
� e

−�z�2−�z− ��
��′ �

2

(
1+ �z�2m +

∣∣∣∣ ����′
∣∣∣∣2m

)
�
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A Convergent Multiscale Gaussian-Beam Parametrix 121

Thus

�I� � 1

1+ �2m
� ��x�2m

∫
�z�≥1

e
−�z�2−�z− ��

��′ �
2

dz

�
1

1+ �2m
� ��x�2m e

− ����2
3�2
�′
∫
�z�≥1

e−
�z�2
2 dz

�
1

1+ �2m
� ��x�2m e

− ����2
3�2
�′ �

Step 3. By the result in Step 2, we have

�a���′ � �
d/2

4d
1

1+ �2m
� ��x�2m e

− ����2
3�2
�′ <

1

1+ �2m
� ��x�2m e

− ����2
3�2
�′ �

provided that � ≤ �′. We now claim that∑
�′
�a���′ � ≤ O�1�

uniformly for all fixed �.
To prove this claim, we first let k0 be the least integer such that 4k0 ≥ 8

√
d. We

then divide all �′’s into four regions, where regions I, II, III and IV consist of �′’s
such that �′ ≥ �+ k0, �

′ ≤ �− k0, � ≤ �′ < �+ k0, and �− k0 < �′ < �, respectively.
In what follows, we estimate

∑
�′ �a���′ � in these four regions, respectively.

In the region I, we have

���′ � ≥ 4�
′−1 ≥ 4�+k0−1 ≥ 2

√
d4� ≥ 2�����

Thus

����2
3�2

�′
= ��� − ��′ �2

3�2
�′

≥ 3
4

���′ �2
3�2

�′
≥ ���′ �

4
�

Hence

�a���′ � �
1

1+ �2m
� ��x�2m e

− ���′ �
4 �

It follows that

∑
�′ ��′≥�+k0

�a���′ � �
∑

�′≥�+k0

∑
i′

∑
k′

1

1+ �2m
� � 2�k′

L�′
− 2�k

L�
�2m e

− ���′ �
4

�
∑

�′≥�+k0

∑
i′
e−

���′ �
4

∫
�d

1

1+ �2m
� � 2�k′

L�′
− 2�k

L�
�2m dk′

�
∑

�′≥�+k0

∑
i′
e−

���′ �i′ �
4

(
L�′

��

)d

where we take m =
[
d + 1
2

]
+ 1
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122 Bao et al.

�

(
2
��

)d ∑
�′≥�+k0

∑
i′
e−

���′ �i′ �
4 Wd

�′

�
∫
��′ �≥�4��

e−
��′ �
4 d�′ � O�1��

By symmetry, in the region II, we have

�a���′ � ≤
1

1+ �2m
�′ ��x�2m

e−
��� �
4 �

Thus

∑
�′ ��′≤�−k0

�a���′ � �
∑

�′≤�−k0

∑
i′

∑
k′

1

1+ �2m
�′ � 2�k′L�′

− 2�k
L�
�2m e

− ��� �
4

�
∑

�′≤�−k0

∑
i′
e−

��� �
4

∫
�d

1

1+ �2m
�′ � 2�k′L�′

− 2�k
L�
�2m dk′

�
∑

�′≤�−k0

∑
i′
e−

����i �
4 where we take m =

[
d + 1
2

]
+ 1

�
∑

�′≤�−k0

∑
i′
e−

4�−1
4

≤
�′=�−k0∑
�′=1

2d�
′
e−4�−2

� 2d��−2�e−4�−2
� O�1��

In the region III, we have

�a���′ � ≤
1

1+ �2m
� ��x�2m e

− ���−��′ �2
3�2
�′ ≤ 1

1+ 4−k0m�2m
�′ ��x�2m

e
− ���−��′ �2

3�2
�′ �

∑
�′ ��≤�′≤�+k0−1

�a���′ � �
∑

�≤�′≤�+k0−1

∑
i′

∑
k′

1

1+ 4−k0m�2m
�′ � 2�k′L�′

− 2�k
L�
�2m e

− ���−��′ �2
3�2
�′

�
∑

�≤�′≤�+k0−1

∑
i′
e
− ���−��′ �2

3�2
�′

∫
�d

1

1+ 4−k0m�2m
�′ � 2�k′L�′

− 2�k
L�
�2m dk′

�
∑

�≤�′≤�+k0−1

∑
i′
e
− ����i−��′ �i′ �2

3�2
�′ where we take m =

[
d + 1
2

]
+ 1

�
∑

�≤�′≤�+k0−1

∫
�d

1
Wd

�′
e
− ����i−�′ �2

3�2
�′ d�′

�
∑

�≤�′≤�+k0−1

O�1� = O�1��
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A Convergent Multiscale Gaussian-Beam Parametrix 123

In the region IV, i.e. �− k0 < �′ < �, we have

�a���′ � ≤
1

1+ �2m
�′ ��x�2m

e
− ����2

3�2
� �

Thus

∑
�′ ��−k0<�′<�

�a���′ � �
∑

�−k0<�′<�

∑
i′

∑
k′

1

1+ �2m
�′ � 2�k′L�′

− 2�k
L�
�2m e

− ���−��′ �2
3�2
�

�
∑

�−k0<�′<�

∑
i′
e
− ���−��′ �2

3�2
�

∫
�d

1

1+ �2m
�′ � 2�k′L�′

− 2�k
L�
� dk

′

�
∑

�−k0<�′<�

∑
i′
e
− ����i−��′ �i′ �2

3�2
� where we take m =

[
d + 1
2

]
+ 1

�
∑

�−k0<�′<�

∫
�d

1
Wd

�′
e
− ����i−�′ �2

3�2
� d�′

= ∑
�−k0<�′<�

O�1� = O�1��

By combining the above results, we can conclude that
∑

�′ �a���′ � ≤ O�1�.

Step 4. Finally, we have

�f − f̃�2L2��d� =
∣∣∣∣∑
���′

c�c�′a���′

∣∣∣∣
≤ ∑

���′

�c��2 + �c�′ �2
2

�a���′ �

= ∑
���′

�c��2�a���′ �

≤ ∑
�

�c��2
∑
�′
�a���′ �

�
∑
�

�c��2 � �f�2L2��d�� �

4.3. Proof of Lemma 3.7

This subsection is devoted to the proof of Lemma 3.7. We begin with two technical
lemmas.

Lemma 4.6. Let M1 and M2 be two symmetric and positive definite matrices such that
M1�M2 > c0I > 0, �1 and �2 be two positive numbers, and �x be a vector in �d. Then
the following estimate holds:∫
�d

�x�� · ��x − �x��� · e−�1xTM1x−�2�x−�x�TM2�x−�x�dx �c0

1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2 · 1

�
���
2
1 · � ���

2
2

�
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124 Bao et al.

Proof. Denote the integral on the left hand side of the above inequality by I . Let
A be the symmetric positive definite matrix such that �1M1 + �2M2 = A2. By the
change of variable, x → y = Ax, we have

�1x
TM1x + �2�x − �x�TM2�x − �x� = xTA2x − 2�2Ax�A−1M2�x� + �2�x�M2�x�

= �y − �2A
−1M2�x�2 − �22�x�M2A

−2M2�x�
+ �2�x�M2�x��

Since

�2M2 − �22M2A
−2M2 = �2M2A

−2��1M1 + �2M2�− �2M2A
−2��2M2� = �1�2M2A

−2M1�

we have

�1x
TM1x + �2�x − �x�TM2�x − �x� = �y − �2A

−1M2�x�2 + �x� �1�2M2A
−2M1�x��

Thus the integral I becomes

I = � det�A−1��e−�1�2�x�M2A
−2M1�x�

∫
�d

��A−1y��� · ��A−1y − �x��� · e−�y−�2A−1M2�x�2dy�

By the change of variable, y → z = y − �2A
−1M2�x, and using the fact that

A−1y − �x = A−1z+ �2A
−2M2�x − �x = A−1z− �1A

−2M1�x�

we obtain

I = � det�A−1��e−�1�2�x�M2A
−2M1�x�

∫
��A−1z+ �2A

−2M2�x�
��

· ��A−1z− �1A
−2M1�x�

�� · e−�z�2dz� (60)

Let B = �1�2M2A
−2M1. Then

B−1 = �−1
1 �−1

2 M−1
1 A2M−1

2 = �−1
2 M−1

2 + �−1
1 M−1

1 �

Since M1�M2 > c0I > 0, Lemma 4.1 implies that M−1
1 �M−1

2 < 1
c0
I . Thus B−1 < � 1

�1
+

1
�2
� 1
c0
I . It follows that B > � 1

�1
+ 1

�2
�−1c0I = c0

�1�2
�1+�2 I . Hence

e−�1�2<�x�M2A
−2M1�x> ≤ e

− c0�1�2
��1+�2� ��x�

2

� (61)

In addition, since A2 = �1M1 + �2M2 ≥ ��1 + �2�c0I , Lemma 4.1 yields
� detA−2� ≤ � 1

��1+�2�c0 �
d. It follows that

� detA−1� �c0

1

��1 + �2�
d
2

� (62)
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A Convergent Multiscale Gaussian-Beam Parametrix 125

Next, we estimate the term ��A−1z+ �2A
−2M2�x�

�� · ��A−1z− �1A
−2M1�x�

��. We
have

��A−1z+ �2A
−2M2�x�

�� · ��A−1z− �1A
−2M1�x�

��
� ��A−1z���� + ��2A−2M2�x����� · ��A−1z���� + ��1A−2M1�x�����

�

(
�z����

��1 + �2�
���
2

+ �
���
2 · ��x����

��1 + �2�
���

)
·
(

�z����
��1 + �2�

���
2

+ �
���
1 · ��x����

��1 + �2�
���

)
� (63)

Substituting inequalities (61), (62), (63) into (60) and integrating over z, we get

I �
1

��1 + �2�
d
2

e
− c0�1�2

��1+�2� ��x�
2 · 1

��1 + �2�
���+���

2

(
1+ �

���
2 · ��x����

��1 + �2�
���
2

)
·
(
1+ �

���
1 · ��x����

��1 + �2�
���
2

)

�
1

��1 + �2�
d
2

e
− c0�1�2

��1+�2� ��x�
2 · 1

��1 + �2�
���+���

2

�1+ �
���
2
2 · ��x����� · �1+ �

���
2
1 · ��x������

Applying Lemma 4.3, we have

e
− c0�1�2

2��1+�2� ��x�
2

�1+ �
���
2
2 · ��x����� · �1+ �

���
2
1 · ��x�����

�c0

(
1+ �

���
2
2 ·

(
�1 + �2
�1�2

) ���
2

)
·
(
1+ �

���
2
1 ·

(
�1 + �2
�1�2

) ���
2

)

≤ 4
��1 + �2�

���+���
2

�
���
2
1 · � ���

2
2

�

It follows that

I �c0

1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2 · 1

�
���
2
1 · � ���

2
2

�
�

Lemma 4.7. Let M1 and M2 be two symmetric and positive definite matrices such that
0 < c0I < M1�M2 < c1I . Assume that �1 and �2 are two positive numbers; �x and ��
are two vectors in �d. Then the following estimate holds,∣∣∣∫

�d
x� · �x − �x�� · e

√−1��·x−�1xTM1x−�2�x−�x�TM2�x−�x�
∣∣∣

�
1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2− ����2

4c1��1+�2� · 1

�
���
2
1 · � ���

2
2

�

Proof. As in the proof of Lemma 4.6, we denote the integral by I and let A be
the symmetric positive-definite matrix such that �1M1 + �2M2 = A2. After changing
variables twice, we can transform the integral into

I = � det�A−1��e−�1�2<�x�M2A
−2M1�x>e−

√−1��·�2A−1M2�x ·∫
�A−1z+ �2A

−2M2�x�
� · �A−1z− �1A

−2M1�x�
� · e−

√−1A−1��·z−�z�2dz�
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126 Bao et al.

Letting B = �bi�j� = A−1, u = �1A
−1M1�x, and v = �2A

−1M2�x, we first show
that

�Bz+ v���Bz− u�� = ∑
� �≤���+���

d z
 �

where d ’s are algebraic combinations of bi�j’s, uj’s and vj’s, and they satisfy the
following estimate,

�d � �
∑

 1+ 2= 
 1≤�� 2≤�

�
���−� 1�
2 �

���−� 2�
1

��1 + �2�
���+���− � �

2

· ���x�����+���−� �� (64)

Indeed, by Lemma 4.2, we have

�bi�j� �c0

1

��1 + �2�
1
2

≡ b	 �uj� ≤ �u� �c0

�1
�1 + �2

��x�	 �vj� ≤ �v� �c0

�1
�1 + �2

��x��

Consider the term �Bz+ v��. Direct calculation gives

�Bz+ v�� = ∑
 ≤�

d�1�
 z 

with d�1�
 � b� ��v����−� �.

Similarly,

�Bz− u�� = ∑
 ≤�

d�2�
 z 

with d�2�
 � b� ��u����−� �.

As a result, we have

�Bz+ v���Bz− u�� = ∑
 1≤�� 2≤�

d�1�
 1
d�2�
 2
z 1+ 2 �

It follows that

d =
∑

 1+ 2= 
 1≤�� 2≤�

d�1�
 1
d�2�
 2
�

and moreover,

�d � �c0

∑
 1+ 2= 
 1≤�� 2≤�

b� 1�+� 2� · �u����−� 1� · �v����−� 2�

�c0

∑
 1+ 2= 
 1≤�� 2≤�

1

��1 + �2�
� �
2

·
(

�2
�1 + �2

)���−� 1�
·
(

�1
�1 + �2

)���−� 2�
· ��x����+���−� �

= ∑
 1+ 2= 

 1≤��  2≤�

�
���−� 1�
2 �

���−� 2�
1 ��x����+���−� �

��1 + �2�
���+���− � �

2

�

Inequality (64) is proved.
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A Convergent Multiscale Gaussian-Beam Parametrix 127

Now, we estimate I . We have

�I� �c0

1

��1 + �2�
d
2

e
− c0�1�2

��1+�2� ��x�
2 ∑
� �≤���+���

�d � ·
∣∣∣∫

�d
z e−

√−1A−1��·z−�z�2dz
∣∣∣ �

Using the inequality

e
− c0�1�2

2��1+�2� ��x�
2 · ��x�n �c0

(
�1 + �2
�1�2

) n
2

�

Lemma 4.4, and the fact that �A−1���2 = ����TA−2�� ≥ 1
��1+�2�c1 ����2, we get

�I� �c0

1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2− ����2

4c1��1+�2� · ∑
� �≤���+���

∑
 1+ 2= 
 1≤�� 2≤�

�
���−� 1�
2 �

���−� 2�
1

��1 + �2�
���+���− � �

2 �
·
(
�1 + �2
�1�2

) ���+���−� �
2

 �

Note that for each  1 ≤ � and  2 ≤ �,

�
���−� 1�
2 �

���−� 2�
1

��1 + �2�
���+���− � �

2 �
·
(
�1 + �2
�1�2

) ���+���−� �
2

=
(

1
�1 + �2

) ���+���
2

·
(
�1
�2

) � 1 �−� 2 �
2

·
(
�1
�2

) ���−���
2

≤
(

1
�1 + �2

) ���+���
2

·
((

�1
�2

) ���
2

+
(
�1
�2

)− ���
2

)
·
(
�1
�2

) ���−���
2

≤
(

1
�1 + �2

) ���+���
2

·
((

�1
�2

) ���
2

+
(
�1
�2

)− ���
2

)

≤
(

1
�1 + �2

) ���+���
2

· ��1 + �2�
���+���

2

�
���
2
1 · � ���

2
2

≤ 1

�
���
2
1 · � ���

2
2

�

Thus,

I �c0

1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2− ����2

4c1��1+�2� · 1

�
���
2
1 · � ���

2
2

�

Now we are ready to show Lemma 3.7.

Proof of Lemma 3.7. Following the proof of Lemma 4.7, we denote the integral by
I and let A be the symmetric positive-definite matrix such that �1M1 + �2M2 = A2.
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128 Bao et al.

After changing variables twice, we get

�I� = � det�A−1�� · e−�1�2<�x�M2A
−2M1�x>∣∣∣∣ ∫ �A−1z+ �2A

−2M2�x�
� · �A−1z− �1A

−2M1�x�
�

· e
√−1·�·z−�z�2−√−1·zTA−1��1N1+�2N2�A

−1zdz

∣∣∣∣�
where � = A−1��− �1�2A

−1N1A
−2M2�x + �1�2A

−1N1A
−2M1�x.

Since A−1��1N1 + �2N2�A
−1 is symmetric and

�A−1��1N1 + �2N2�A
−1� ≤ �1c2 + �2c2

c0��1 + �2�
= c2

c0
�

we can find an orthogonal matrix T such that

TTA−1��1N1 + �2N2�A
−1T = diag��1� �2� � � � � �d��

where �j’s are eigenvalues of A−1��1N1 + �2N2�A
−1 and satisfy ��j� ≤ c2

c0
.

By the change of variable, z → T−1z = w, we have

J =
∣∣∣∣ ∫ �A−1z+ �2A

−2M2�x�
� · �A−1z− �1A

−2M1�x�
�

· e
√−1·�·z−�z�2−√−1·zTA−1��1N1+�2N2�A

−1zdz

∣∣∣∣
=
∣∣∣∣ ∫ �A−1Tw + �2A

−2M2�x�
� · �A−1Tw − �1A

−2M1�x�
�

· e
√−1·TT �·w−�w�2−√−1·�1w2

1−···−√−1·�dw2
ddw

∣∣∣∣�
As in the proof of Lemma 4.7, we can show that

�A−1Tw + �2A
−2M2�x�

��A−1Tw − �1A
−2M1�x�

� = ∑
� �≤���+���

d z
 �

where d ’s satisfy the following estimate,

d �
∑

 1+ 2= 
 1≤�� 2≤�

�
���−� 1�
2 �

���−� 2�
1

��1 + �2�
���+���− � �

2 �
· ���x�����+���−� ��

Let TT� = �. Then

J ≤ ∑
� �≤���+���

�d � ·
∣∣∣∫

�d
w e

√−1·�·w−�1+√−1·�1�w2
1−···−�1+√−1·�d�w2

ddw
∣∣∣ � (65)
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A Convergent Multiscale Gaussian-Beam Parametrix 129

Using the well-known fact that

∫
�
e−zx

2−√−1·�·x dx =
(
�

z

) 1
2

e−
���2
4z

for any complex number z with a positive real part, we can show by a similar
procedure as in the proof of Lemma 4.4 that∣∣∣∫

�
xne−zx

2−√−1·�·x dx
∣∣∣ � 1

�z� 12 e
−Re�z
 ���2

4�z�2

for any nonnegative integer n and any complex number z with a positive real part.
Applying this fact to the right hand side of (65) we get

J �
∑

� �≤���+���
�d � · e

− ���2
4�1+� c2

c0 �
2
� = ∑

� �≤���+���
�d � · e

− ���2
4�1+� c2

c0 �
2
� ≤ ∑

� �≤���+���
�d � · e

− ���2
4�1+� c2

c0 �
2
� �

where  ≥ 1 will be determined later. Moreover,

�A−1N1A
−2M2�x� ≤ �A−1�3 · �N1� · �M2� · ��x� ≤

1

�c0��1 + �2��
3
2

c1c2��x��

�A−1N2A
−2M1�x� ≤ �A−1�3 · �N2� · �M1� · ��x� ≤

1

�c0��1 + �2��
3
2

c1c2��x��

Let u = �1�2A
−1N1A

−2M2�x, and v = −�1�2A−1N2A
−2M1�x. Then

���2 = �A−1��− u− v�2
≥ �A−1���2 + �u+ v�2 − 2�A−1��� · �u+ v�

≥ �A−1���2
2

− �u+ v�2

≥ �A−1���2
2

− ��u� + �v��2

≥ ����2
2c1��1 + �2�

− 4c21c
2
2�

2
1�

2
2��x�2

�c0��1 + �2��
3

≥ ����2
2c1��1 + �2�

− 4c21c
2
2�1�2��x�2

c0��1 + �2�
�

Thus

J ≤ ∑
� �≤���+���

�d � · e
− ����2

8c1��1+�2��1+�
c2
c0 �

2
�

+ c21c
2
2�1�2

c0��1+�2��1+�
c2
c0 �

2
�

��x�2
�

As in the proof of Lemma 4.7, this combined with (65) and Lemma 4.3 gives

�I� �c0

1

��1 + �2�
d
2

e
− c0�1�2

2��1+�2� ��x�
2+ c21c

2
2�1�2

c0��1+�2��1+�
c2
c0 �

2
�

��x�2− ����2
8c1��1+�2��1+�

c2
c0 �

2
� · 1

�
���
2
1 · � ���

2
2

�
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130 Bao et al.

By choosing  = 4c1c2
c20+c22

and c∗1 = 32c31c
2
2

c20
, it follows that

�I� �c0

1

��1 + �2�
d
2

e
− c0�1�2

4��1+�2� ��x�
2− ����2

c∗1 ��1+�2� · 1

�
���
2
1 · � ���

2
2

�

which completes the proof. �

4.4. Proof of Lemma 3.8

Proof. Step 1. Let a���′ = �
m
2
� �

m
2
�′ < ���t� x� · �x − x��t��

����� ��′�t� x� · �x −
x�′�t��

���′� >. Then

�a���′ � = �
m
2
� �

m
2
�′ �A��t�� · �A�′�t�� ·

∣∣∣∫
�d
�x − x��t��

���� · �x − x�′�t��
���′�

· e
√−1·����t�−��′ �t��·x−���x−x��t��TM��t��x−x��t��−��′ �x−x�′ �t��TM�′ �t��x−x�′ �t�� dx

∣∣∣ �
Using Lemma 3.1 and Lemma 3.7, we further get

�a���′ � � �
m
2
� �

m
2
�′

�����′�
d
4

��� + ��′�
d
2

e
− c0����′

2���+��′ �
�x��t�−x�′ �t��2−

����t�−��′ �t��2
4c1���+��′ � · 1

�
������
2

� · � ����′��
2

�′

≤ �����′�
d
4

��� + ��′�
d
2

e
− c0����′

2���+��′ �
�x��t�−x�′ �t��2−

����t�−��′ �t��2
4c1���+��′ � � (66)

where c0 and c1 are some constants.

Step 2. Denote

d���′ =
�����′�

d
4

��� + ��′�
d
2

e
− c0����′

2���+��′ �
�x��t�−x�′ �t��2−

����t�−��′ �t��2
4c1���+��′ � � (67)

By Lemma 3.2, we have

�a���′ � ≤ d���′ ≤
�����′�

d
4

��� + ��′�
d
2

e
− c0C

′
3����′

2���+��′ �
�x��0�−x�′ �0��2−

C′3 ����0�−��′ �0��2
4c1���+��′ �

for some C ′
3 > 0.

Step 3. We claim that

e
− c0C

′
3����′

2���+��′ �
�x��0�−x�′ �0��2

� min
x∈D���∈B��x′∈D�′ ��′∈B�′

e
− c′0 �����′ �

���+��′ � �x−x′ �2� (68)

e
− C′3 ����0�−��′ �0��2

4c1���+��′ � � min
x∈D���∈B��x′∈D�′ ��′∈B�′

e
− ��−�′ �2

c′1����+��′ �� � (69)

for some properly chosen c′0 and c′1.
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A Convergent Multiscale Gaussian-Beam Parametrix 131

To see (68), we recall that ��� ∼ ��, ��′� ∼ ��′ . Thus

�����′�
���� + ��′�� ∼ ����′

��� + ��′�
�

Moreover,

�x − x′�2 = �x − x� + x� − x�′ + x�′ − x′�2
≤ 3�x� − x�′ �2 + 3�x� − x�2 + 3�x�′ − x′�2

≤ 3�x� − x�′ �2 +
3
L2
�

+ 3

L2
�′
�

Since �� =O�4��, ��′ =O�4�
′
�, L� =O�2��, and L�′ =O�2�

′
�, we have

����′
�� + ��′

� 1
L�

+ 1
L�′
�=

O�1�. The inequality (68) follows. Similarly, we can prove (69).

Step 4. For the given b�, we define function b̃�x� �� by letting b̃�x� �� = b� for
all x ∈ D�� � ∈ B�. We can check that �b̃�2

L2��2d�
= 1

2d
∑

� �b��2.
Define

f�x� �� x′� �′� = b̃�x� ��b̃�x′� �′�
��� d4 ��′� d4

���� + ��′�� d
2

e
− c′0 �����′ �

���+��′ � �x−x′ �2−
��−�′ �2

c′1����+��′ �� �

The inequalities (68) and (69) yield

�b�b�′d���′ � � min
x∈D���∈B��x′∈D�′ ��′∈B�′

�f�x� �� x′� �′���

It follows that

J = ∑
���′

�b�b�′d���′ � �
∫
�4d

�f�x� �� x′� �′��dxd�dx′d�′� (70)

Step 5. To estimate the integral
∫
�4d f�x� �� x

′� �′� dxd�dx′d�′, we define

I��� �′� =
∫
b̃�x� ��b̃�x′� �′�e−��x−x

′ �2 dxdx′�

where � = c′0�����′ �
���+��′ � . By the change of variable, x = u+ v and x′ = v− u, we have

�I��� �′�� =
∣∣∣∫ b̃�u+ v� ��b̃�v− u� �′�e−22d��u�2dudv

∣∣∣
=
∣∣∣2d ∫ e−22d��u�2 du

∫
b̃�u+ v� ��b̃�v− u� �′�dv

∣∣∣
≤ 2d

∫
e−22d��u�2 du

(∫
�b̃�2�u+ v� ��dv+

∫
�b̃�2�v− u� �′�dv

)
≤ 1

�
d
2

(∫
�b̃�2�x� �� dx +

∫
�b̃�2�x� �′�dx

)
=
(
c′0���� + ��′��

�����′�
) d

2 (∫
�b̃�2�x� ��dx +

∫
�b̃�2�x� �′�dx

)
�
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132 Bao et al.

Thus ∣∣∣∫
�4d

f�x� �� x′� �′� dxd�dx′d�′
∣∣∣

=
∣∣∣∣∣∫ I��� �′�

��� d4 ��′� d4
���� + ��′�� d

2

e
− ��−�′ �2

c′1����+��′ �� d�d�′
∣∣∣∣∣

�
∫ 1

��� d4 ��′� d4 e
− ��−�′ �2

c′1����+��′ �� d�d�′
(∫

�b̃�2�x� ��dx +
∫

�b̃�2�x� �′�dx
)

= 2
∫ �b̃�2�x� ��

��� d4 dxd�
∫
e
− ��−�′ �2

c′1����+��′ �� ��′�− d
4 d�′

�
∫

�b̃�2�x� ��dxd� by Lemma 4�5

= 1
2d

∑
�

�b��2� (71)

Step 6. Finally, combining (66), (67), (70), and (71), we have∥∥∥∥∑
�

b��
m
2
� ���t� ·� · �· − x��t��

����

∥∥∥∥2
L2��d�

≤ ∑
���′

b�b�′ �a���′ � �
∑
���′

b�b�′d���′ �
∑
�

�b��2�

The lemma is proved. �
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