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Abstract
We discuss some recent work on applying deep learning to inverse problems. On the algo-
rithmic side, we propose two new neural network modules, BCR-Net and Switch-Net,
motivated by pseudodifferential and Fourier integral operators that commonly appear in
the study of inverse problems. On the application side, we propose neural networks for
inverse maps in five applications: electric impedance tomography, optical tomography,
inverse acoustic scattering, seismic imaging, and traveltime tomography. In each applica-
tion, the architecture is motivated by perturbation theory and filtered backprojection and is
implemented using the new modules along with convolution layers. When translation and
rotation equivariances are available, appropriate reparameterizations in the data and model
domains results in convolutional architectures that are both general and effective. These
applications demonstrate that our approach provides a seamless way for combining the
mathematical structure of the inverse problems with the power of deep neural networks.
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1. Introduction
In the past decade, deep learning (DL) has become the dominant approach in com-

puter vision, image processing, speech recognition, and many other applications in machine
learning and data science [26, 34, 40, 42, 43, 48, 58, 60]. From a technical point of view, this suc-
cess is a synergy of several key developments: (1) deep neural networks (NNs) as a flexible
framework for representing high-dimensional functions and maps, (2) simple algorithms
such as back-propagation (BP) and stochastic gradient descent (SGD) for tuning the model
parameters, (3) efficient general software packages such as Tensorflow [1] and Pytorch [52],
and (4) unprecedented computing power provided by GPUs and TPUs. Despite the suc-
cesses, however, there remain a number of outstanding challenges: (1) NN architectural
design is still an art and lacks basic mathematical principles in many cases; (2) NN training
often requires an enormous amount of data, which is infeasible in many applications; and
(3) a general mathematical theory of deep learning is still lacking.

Many computational problems in physical sciences face the same challenges as
those in data science: high-dimensionality, complex or unspecified models, and high compu-
tational costs. Some well-known examples include many-body quantum systems, determin-
istic and stochastic control, molecular dynamics, uncertainty quantification, inverse prob-
lems, etc. There is a clear opportunity to leverage the recent developments of DL in the
study of these problems. Indeed, the past few years have witnessed a rise of activities in this
direction [2,5,7,8,12,16,18,19,30,31,35–37,41,44,46,47,54,55,57,61].

Among these topics, this paper focuses on inverse problems, i.e., recovering unknown
interior parameters from boundary measurements. It is a field of enormous importance, with
applications in physics, chemistry, medicine, earth sciences, etc. From a computational per-
spective, many inverse problems are quite challenging for several well-understood reasons:
(1) the inverse map from boundary measurements to interior parameters is high-dimensional
and nonlinear; (2) asymptotic methods based on perturbation theory often have low accu-
racy, while fully optimization-based iterative algorithms are often time-consuming; (3) most
solution methods are not designed to adapt to data priors, when they are available.

Contributions. We argue that applying deep learning to the study of inverse problems is
a fruitful mathematical research direction. On the one hand, NNs offer a flexible tool for
representing the high-dimensional inverse maps. They also learn from the data distribution
prior effectively via training. On the other hand, the rich mathematical and physical theories
behind inverse problems provide guiding principles for designing compact yet effective NN
architectures. As a result, we avoid the need for enormous amounts of data, which are often
not available for inverse problems.

The main contributions of this line of study are two-fold. On the algorithmic side,
we first identify the mathematical operators commonly used in inverse problems, with two
such examples being pseudodifferential operators (PDOs) and Fourier integral operators
(FIOs) [59]. By leveraging analytical results from partial differential equation (PDE) theory
and numerical linear algebra (NLA), we propose novel NN modules for these key types of
operators.
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Figure 1 Existing well-known NN modules

On the application side, we apply this approach to five different inverse problems:
electric impedance tomography, optical tomography, inverse acoustic scattering, seismic
imaging, and traveltime tomography. For each application, using the linearized theory and
perturbative expansion as a starting point, we approximate the inverse map with a com-
position sequence of operators. The NN for the inverse map is then assembled using the
corresponding modules, along with existing primitives such as convolution neural networks
(CNNs). Finally, the weights of the whole network are trained end-to-end with the available
training data.

Organization. The rest of the paper is organized as follows. Section 2 describes new NN
modules motivated by PDOs and FIOs. Section 3 details the five inverse problems. Finally,
Section 4 concludes with a discussion of future directions.

2. New, mathematically-motivated NN modules
If one takes a close look at the successful NN architectures in the literature (see Fig-

ure 1 for a partial list), it is not hard to see that behind each there is a powerful mathematical
structure, tabulated as follows.

NN architecture Mathematical structure
Fully-connected layer Dense operator
Convolution layer Translation-inv. local operator
Recurrent neural network (RNN) Markov chain
ResNet ODE/time-stepping/semi-group

For the inverse problem theory, two types of commonly occurring operators are
pseudodifferential operators (PDOs) and Fourier integral operators (FIOs). In this section,
we propose novel NN modules for efficient and accurate representations of these two types
of operators.
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2.1. Pseudodifferential operators
A pseudodifferential operator (PDO) K is of the form

(2.1) (K f )(x) ≡
∫

k (x, y) f (y)dy =
∫

a(x, ξ)e2πi x ·ξ f̂ (ξ)dξ,

where the symbol function a(x, ξ) of the PDO is smooth away from the origin of the
frequency variable ξ [59]. PDOs are powerful generalizations of standard differential oper-
ators. When applied to a function f , the support of the singularities in the output K f is
contained in the singularity support of the input. Some well-known examples of PDOs
include the Green’s functions of elliptic operators, fractional Laplacians, etc. When a PDO
is translation-equivariant, it becomes a convolution and thus can be represented with a con-
volution layer, though this representation is often not effective for highly nonlocal PDOs.
More importantly, non-translation-equivariant PDOs cannot be represented using convolu-
tion layers.

One of the key properties of PDOs is that, when discretized with local basis func-
tions, the off-diagonal blocks of the matrix form of a PDO are numerically low-rank [28,29].
This property gives rise to highly effective data-sparse approximations to PDOs, and the one
adopted here is based on wavelet analysis. Motivated by this approximation, we propose a
novel NN module associated with PDOs by

• representing the data-sparse approximation of PDOs as a (linear) NN,

• enriching its representation power by including intermediate layers and nonlin-
earities such as the ReLU activation function.

Figure 2 The non-standard wavelet form of a PDO. The first and third matrices on the right-hand side
are the inverse and forward transforms for the redundant wavelet/scaling function frame,
which can be implemented with fast wavelet transforms in linear complexity. The large
middle matrix represents the PDO under this redundant frame, which has a well-defined
sparsity pattern with onlyO(n) non-zero entries.

Wavelet analysis. The data-sparse approximation is based on the non-standard wavelet
form proposed in [9]. Given an n × n matrix form of a PDO K , the non-standard form rep-
resents the operator in the redundant wavelet/scaling function frame and keeps only O(n)
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significant coefficients in a well-defined sparsity pattern. Figure 2 illustrates the sparsity
pattern, shown in blue.

When applying this PDO to an input vector, the matrix-vector multiplication
(MatVec) at each wavelet scale can be written as a three-layer NN with two channels in
the middle (see Figure 3 (left) for an illustration). Putting together the networks across all
scales gives rise to a linear NN shown in Figure 3 (right).

Figure 3 A matrix-vector multiplication (MatVec) with an input vector. Left: the computation at each
scale of the wavelet-based data-sparse approximation is a three-layer NN with two channels
in the middle. Right: The NN obtained by merging across all scales. Conv and LC stand for
convolution and locally-connected layer, respectively.

In order to represent nonlinear operators similar to PDOs, we propose generalizing
the architecture in Figure 3 by inserting multiple intermediate layers and including nonlinear
activations such as the ReLU function. This results in a new NN module called a BCR-Net
[17] as shown in Figure 4.

Figure 4 The BCR-Net module based on the non-standard redundant wavelet form for PDOs.

2.2. Fourier integral operators
A Fourier integral operator (FIO) K is of the form

(2.2) (K f )(x) ≡
∫

k (x, y) f (y)dy =
∫

a(x, ξ)e2πiΦ(x,ξ) f̂ (ξ)dξ,
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where the amplitude a(x, ξ) of the FIO is smooth away form the origin of ξ and the phase
Φ(x, ξ) is homogeneous of degree one in ξ. Viewed as a map from the frequency to the
spatial domain (i.e., f̂ to K f ), FIOs are generalizations of the Fourier transforms with more
general phase and amplitude functions. When applied to a function f , the support of the
singularities in the output K f depends on the input singularities in a well-defined way gov-
erned by the Hamiltonian flow of the phase function Φ [59]. Most examples of the FIOs
appear in high-frequency wave propagations and scattering theory, and it is for this reason
that they are often key to solving wave-based inverse problems.

One key property of FIOs is that, when they are discretized with local basis func-
tions, the resulting matrix representation satisfies the so-called complementary low-rank
property [45]. More precisely, when the n × n matrix is partitioned into

√
n ×
√

n blocks each
of size

√
n ×
√

n, each block is numerically low-rank. This property allows for an efficient
data-sparse approximation, the butterfly factorization, to be detailed below. Motivated by
the butterfly factorization, we propose a new NN module associated with FIOs by

• representing the butterfly factorization of FIOs as a (linear) NN, and

• enriching its representation power by including intermediate layers and nonlinear
activations, such as the ReLU function.

Butterfly factorization. Given an n × n matrix representation of an FIO K , the simplest
form of butterfly factorization partitions the whole matrix into

√
n ×
√

n blocks and then
computes a low-rank approximation of each block. Figure 5 demonstrates that the low-rank
approximations for all blocks can be summarized compactly as the product of three sparse
matrices. Notice that the second matrix of the factorization serves essentially as a permuta-
tion.

Figure 5 Butterfly factorization of an FIO. The middle plot shows the numerical low-rank properties
of each

√
n ×
√
n block. On the right, the first and third matrices collect the low-rank bases,

while the second matrix essentially performs a permutation.

When applying the FIO to an input vector, the MatVec (as shown in Figure 6)
can be represented as a three-layer linear NN. Here the first and third matrices become a
convolution or locally-connected layer with

√
n channels, while the second matrix can be

implemented with a transpose.
In order to represent nonlinear operators similar to FIOs, we generalize the architec-

ture in Figure 6 by inserting multiple intermediate layers and including nonlinear activations
(e.g., ReLU). The resulting new NN module, shown in Figure 7, is called a Switch-Net [38].
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Figure 6 A matrix-vector multiplication (MatVec) with an input vector. The computation is
represented by a three-layer NN with a transpose operation in the middle. C/LC stands for a
convolution or locally-connected layer.

Figure 7 The Switch-Net module based on the butterfly factorization for FIOs.

3. Inverse problems
This section describes how to apply deep learning to five inverse problems: electri-

cal impedance tomography, optical tomography, inverse acoustic scattering, seismic imag-
ing, and traveltime tomography. For each problem, we proceed as follows:

• describe the basic setup,

• represent the linearized inverse map as a sequence of operators by following the
perturbation theory and filtered back-propagation,

• design the NN architecture by following this sequence and using the new modules
in Section 2 as well as CNNs.

Throughout this process, we keep in mind several guiding principles:

• the NN design should adapt to the data collection geometry,

• pre- and post-processing often significantly simplify the NN design, and

• preserving equivariances is the key to efficiency and accuracy.

3.1. Electrical impedance tomography
Consider a rectangular domainΩ (see Figure 8 (left)) with top boundary denoted by

Γ. To simplify the presentation, we assume a periodic boundary condition in the horizontal
direction. One form of the governing equation for electrical impedance tomography (EIT)
is the elliptic equation

(3.1) (Lu)(p) ≡ (−∆ − η(p))u(p) = 0, p ∈ Ω
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where we often denote p = (x, z) with x and z being the horizontal and vertical components,
respectively. Here η(p) is the unknown internal parameter field. In one common form of an
EIT experiment, for each boundary point s ∈ Γ, we enforce the delta boundary condition
δs (·) and then record the normal derivative ∂us (r )

∂n(r ) at every point r ∈ Γ, where us (·) denotes
the solution of (3.1) induced by the boundary condition δs (·). The set d(r, s) of boundary
measurements is

(3.2) d(r, s) =
∂us (r)
∂n(r)

−
∂us

0 (r)

∂n(r)
,

where us
0 (·) stands for the background solution when η(p) ≡ 0. In technical terms, d(r, s)

is the kernel of the Dirichlet-to-Neumann map of (3.1). The inverse problem is to recover
η(p) ≡ η(x, z) from d(r, s).

Figure 8 Electrical impedance tomography. Left: an experimental setup for a rectangular geometry.
Right: an experimental setup in a circular geometry.

In order to obtain an approximation to the inverse map d(r, s) → η(x, z), we first
study how d(r, s) depends on η(x, z) in the perturbative regime. Let L0 be the operator with
η(x, z) ≡ 0 and G0 = L−10 be its Green’s function. A perturbative analysis in [23] shows that,
when η is small, the data d(r, s) can be well-approximated with

(3.3) d(r, s) ≈
"

(x,z)

∂G0
∂n

(r, (x, z))
∂G0
∂n

(s, (x, z))η(x, z)dxdz.

Due to the translation-equivariance of the background operator L0, this equation can be
simplified when the data d is written in a warped coordinate system (m, h) with (r, s) ≡
(m + h,m − h):

(3.4) d(m, h) ≈
"

(x,z)

∂G0
∂n

((m − x) + h, z)
∂G0
∂n

((m − x) − h, z)η(x, z)dxdz.

The key observation is that this is a 1D convolution in m and x with h and z treated as
parameters (or as channels in the NN terminology). Furthermore, due to the elliptic nature
of the EIT problem, the forward map between η and d is numerically low-rank in h and
z. As a result, the number of channels required for this convolution operator is bounded
logarithmically in the number of degrees of freedom and the desired accuracy.

The discussion so far shows that, in the small η regime, we can approximate the
forward map K : η(x, z) → d(m, h) with a 1D CNN with a small number of channels.
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The filtered backprojection algorithm suggests that η ≈ (K∗K + εI)−1K∗d. This motivates
representing the product (K∗K + εI)−1K∗ as an NN. Regarding K∗, the analysis above for
K shows that the adjoint operator K∗ can also be approximated with a 1D CNN or BCR-Net
with a small number of channels. The operator (K∗K + εI)−1 is a PDO in the (x, z) domain
with global support, which can be approximated with a 2D BCR-Net or even a 2D CNN.
Putting them together results in the following NN architecture [23] for the inverse map of the
EIT problem:

(3.5) d(m, h) ⇒ 1D CNN/BCR-Net⇒ 2D CNN/BCR-Net⇒ η(x, z).

Such an architecture can also be applied directly to the circular geometry (see Figure
8 (right)) if the unknown field η is parameterized in polar coordinates.

Figure 9 electrical impedance tomography. Left, from top to bottom: The ground truth η(x, z), the
boundary measurement d(m, h), and the NN reconstruction. Right: The NN reconstructions
at different noise levels.

Figure 9 presents a numerical example. The NN has about 70K weights and is
trained with about 10K (d, η) training pairs. The left part shows, from top to bottom, the
ground truth internal parameters η(x, z), the boundary measurements d(m, h) in the warped
coordinate system (m, h), and the NN reconstruction obtained by applying the trained NN to
d(m, h). The images show that the NN reconstruction is close to the ground truth, though the
accuracy gradually deteriorates as the depth z grows due to the nature of the EIT problem.
The right part shows how the NN, while trained with noiseless training data, performs under
different noise levels in the testing boundary measurement d(m, h). The images demonstrate
that the trained NN is robust to measurement noise.

3.2. Optical tomography
Consider a circular domain Ω in 2D (see Figure 10) with boundary Γ = S1. The

governing equation for optical tomography (OT) is the radiative transfer equation (RTE)
(3.6)
(LΦ)(p, v) ≡ v · ∇Φ(p, v) + µt (x)Φ(p, v) = µ(p)

∫
S1
σ(v · v′)Φ(p, v′)dv′, (p, v) ∈ Ω× S1,
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where σ is a fixed scattering phase with
∫
S1
σ(v · v′)dv = 1. The transport coefficient

µt (p) = µa + µ(p) measures the total absorption, including the known physical absorp-
tion constant µa and the unknown scattering strength quantified by the term µ(p). In a
typical OT experiment, for each boundary point s ∈ S1, one specifies at s either an isotropic
scattering source or a delta source in the normal direction, and records the outgoing flux
(denoted by f s (·)) at each point r ∈ S1. The set of boundary measurements is given by

(3.7) d(r, s) = f s (r) − f s0 (r),

where f s0 (·) is the outgoing flux when µ(x) ≡ 0. The inverse problem is then to recover µ(p)
from d(r, s).

Figure 10 Optical tomography. An experimental setup in a circular geometry.

In order to obtain an approximation for the inverse map d(r, s) → µ(p), we study
how d(r, s) depends on µ(p) in the perturbative regime. By using an equivalent integral
formulation [21], one can explicitly derive the perturbative relationship between µ(p) and
d(r, s). However, for the purposes of NN design, a simple observation based on the rotation-
equivariance of the experimental setup is sufficient. By introducing a warped coordinate
system (s, h) with (r, s) ≡ (h + s, s), the data d(h, s) in the new system can be written as

(3.8) d(s, h) ≈
"

(ρ,θ)
k (h, ρ, s − θ)µ(ρ, θ)dρdθ,

which is a 1D convolution in s and θ, with h and ρ treated as parameters (i.e., channels
in the NN terminology). Since the RTE (3.6) preserves singularities, especially when the
absorption µa is weak, this map between η and d is singular in the h and ρ variables. As a
result, the number of channels required for the 1D convolution operator can scale with the
resolution in ρ and h.

The above discussion shows that, in the small µ regime, we can approximate the
forward map K : µ(ρ, θ) → d(s, h) with a 1D CNN with multiple channels. The filtered
backprojection algorithm suggests that µ ≈ (K∗K + εI)−1K∗d. This again motivates the
approach of representing the product (K∗K + εI)−1K∗ as an NN. As the adjoint to K , the
operator K∗ can also be approximated with a 1D CNN or BCR-Net with multiple channels.
The operator (K∗K + εI)−1 is a PDO in the (ρ, θ) domain with global support, which can
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be approximated efficiently with a 2D BCR-Net or CNN. Summarizing these discussions
results in the following NN architecture [21] for the OT problem:

(3.9) d(s, h) ⇒ 1D CNN/BCR-Net⇒ 2D CNN/BCR-Net⇒ µ(ρ, θ).

Figure 11 presents one numerical example. The resulting NN, with about 50K
weights, is trained with a dataset of 8K (d, µ) training pairs. The images show the refer-
ence (ground truth) parameter µ, along with the NN reconstructions µNN at different noise
levels. The results suggest that the learned NN representation of the inverse map is quite
robust to noise, even though the optical tomography problem is (weakly) ill-posed.

Figure 11 Optical tomography. Reference solution µ along with the NN reconstructions under different
noise levels in the boundary measurement d(s, h).

3.3. Inverse acoustic scattering.
Let us consider the acoustic scattering problem in 2D in the frequency domain. The

governing equation is the Helmholtz equation

(3.10) (Lu)(p) =
(
−∆ −

ω2

c(p)2

)
u(p) = 0,

where ω is a fixed angular frequency and c(p) is the unknown velocity field. Assume that
there exists a known constant background velocity c0 such that c(p) − c0 is compactly
supported in a domain Ω (see Figure 12 (left)). In a typical experimental setup, for each
incoming direction s ∈ S1, the plane wave eiωs ·p generates an outgoing scattered field us (p)
such that us (p) + eiωs ·p is a solution of (3.10). At each unit direction r ∈ S1, the far field
pattern defined as

(3.11) ûs (r) ≡ lim
ρ→∞

us (ρ · r)
√
ρe−iωρ

is recorded. The set of boundary measurements is then d(r, s) = ûs (r). Instead of trying
to recover c(p) directly, it is often convenient to treat a rescaled index-of-refraction field
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η(p) ≡ ω2

c (p)2 −
ω2

c20
as the unknown. The inverse problem is then to recover η(p) (equivalently

to c(p)) from d(r, s).

Figure 12 Inverse acoustic scattering. Left: an experimental setup in 2D. Right: the complementary
low-rank structure of the forward map from η(p) to d(r, s).

In order to obtain an approximation for the inverse map d(r, s) → η(x), as usual
we consider first how d(r, s) depends on η(x) in the perturbative regime. A perturbative
analysis for planar incoming waves and far field patterns in [20, 38] shows that, when η is
small, the data d(r, s) can be approximated up to a smooth amplitude as

(3.12) d(r, s) ≈ (Kη)(r, s) ≡
∫
p∈Ω

eiω (s−r ) ·pη(p)dp.

A rank estimate of the operator kernel [38] shows that K is an FIO from Ω to S1 × S1 (see
Figure 12 (right) for an illustration). As a result, the approximate forward operator from η

to d can be represented with a 2D Switch-Net.
The filtered backprojection states that η ≈ (K∗K + εI)−1K∗d, thus motivating the

approach of representing the product (K∗K + εI)−1K∗ as an NN. As the adjoint of an FIO is
also an FIO [59], the operator K∗ can also be approximated with a Switch-Net. The operator
(K∗K + εI)−1 is a PDO in the p variable and can therefore be implemented with a 2D BCR-
Net. Concatenating these two modules results in the NN architecture in [38] for the inverse
acoustic scattering problem:

(3.13) d(r, s) ⇒ 2D Switch-Net⇒ 2D BCR-Net⇒ η(p).

When Ω is a disk, it is natural to parameterize the unknown field η in polar coordi-
nates (ρ, θ). The boundary measurement d is also written in a new coordinate system (h,m)
with midpoint m = r+s

2 and shift h = r−s
2 . Under these two new coordinate systems, the

rotation-equivariance of the circular geometry implies that the map from η(ρ, θ) to d(m, h)
is a 1D convolution in θ and m, with h and ρ treated as the channel dimensions:

(3.14) d(m, h) ≈
∫
≥0

∫ 2π

0
k (h, ρ,m − θ)η(ρ, θ)dρdθ.
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Following the discussion that leads from (3.8) to (3.9), we can also adopt the following NN
architecture [20] for the circular geometry:

(3.15) d(h,m) ⇒ 1D CNN/BCR-Net⇒ 2D CNN/BCR-Net⇒ η(ρ, θ).

Figure 13 gives a numerical example for inverse acoustic scattering. The resulting
NN has about 400K weights and is trained with a dataset of 16K (d, η) training pairs. The
images show, for two different cases, the reference (ground truth) parameter η, along with
the NN reconstructions ηNN at different noise levels up to 100%. The results suggest that
the learned NN inverse map is highly robust to noise, thanks to the well-posedness of this
problem.

Figure 13 Inverse scattering. Each row corresponds to a different test case. For each case, we plot the
reference solution, along with the NN reconstructions up to a 100% noise level.

3.4. Seismic imaging
We consider the seismic imaging setting under a simple 2D acoustic model in the

frequency domain. The governing equation is again the Helmholtz equation

(3.16) (Lu)(p) =
(
−∆ −

ω2

c(p)2

)
u(p) = f (p), p ∈ Ω

where ω is a fixed frequency and c(p) is sound speed. We assume that the background
velocity c0(p) is given and the difference between c(p) and c0(p) is supported in Ω (see
Figure 14 (left)). In a typical experimental setup, for each point s on the top surface, one
specifies a delta source f (p) = δs (p) and records the wave solution us (·) of (3.16) at all
points r also on the top surface. The set of boundary measurements is

(3.17) d(r, s) = us (r) − us
0 (r),

where us
0 (·) is the solution of some background velocity c0(p). By again introducing the

scaled index-of-refraction field η(p) = ω2

c (p)2 −
ω2

c0 (p)2 , we obtain the inverse problem of
recovering η(p) from d(r, s).
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Figure 14 Seismic imaging. Left: A simple experimental setup in 2D. Right: The complementary
low-rank structure of the forward map from η(p) to d(r, s).

As usual, in order to obtain an approximation for the inverse map d(r, s)→ η(p), we
first study how d(r, s) depends on η(p) in the perturbative regime. A perturbative analysis
[38] of planar incoming waves and far field patterns shows that, when η is small, the boundary
measurement d(r, s) can be well-approximated with

(3.18) d(r, s) ≈ (Kη)(r, s) ≡
∫

(G0(r, p)G0(p, s)) η(p)dp,

where G0(p) is the Green’s function of the background operator L0 = −∆ − ω
2/c20 (p). A

rank estimate of the kernel G0(r, p)G0(p, s) in [38] proves that K is an FIO defined between
the domain Ω and the product (r, s) space (see Figure 14 (right) for an illustration). As a
result, the forward operator from η to d can be approximated with a 2D Switch-Net.

The filtered backprojection algorithm again suggests that η ≈ (K∗K + εI)−1K∗d,
which motivates representing the product (K∗K + εI)−1K∗ as an NN. As the adjoint of an
FIO K , K∗ can be approximated with a Switch-Net. Under generic conditions, the operator
(K∗K + εI)−1 is a PDO in the p variable, which can be approximated with a 2D BCR-
Net. Putting everything together results in the following NN architecture [38] for the seismic
imaging problem:

(3.19) d(r, s) ⇒ 2D Switch-Net⇒ 2D BCR-Net⇒ η(x, z),

where x and z are the horizontal and depth coordinates of p, respectively.
Often in seismic imaging, the background velocity c0(p) only depends on the depth

z (and is independent of the horizontal coordinate x). In this case, we can exploit the
translation-equivariance in the horizontal direction and reparameterize the boundary mea-
surement d under the coordinate system (m, h) with m = r+s

2 and offset h = r−s
2 . Under this

new coordinate system, the forward map from η(x, z) to d(m, h) is a 1D convolution with
the offset h and depth z treated as channels:

(3.20) d(m, h) ≈
∫ Z

0

∫
k (h, z,m − x)η(x, z)dxdz.

Following the discussion that leads from (3.4) to (3.5), we obtain the following NN archi-
tecture [20] for c0(p) that depends only on depth:

(3.21) d(m, h) ⇒ 1D CNN/BCR-Net⇒ 2D CNN/BCR-Net⇒ η(x, z).
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Figure 15 shows a numerical example for the seismic inversion problem. The NN
has about 1M weights in total and is trained with a dataset of 16K (d, η) pairs. The images
show the reference (ground truth) parameter η, along with the NN reconstructions ηNN at
noise levels up to 100%. The results demonstrate that the learned NN inverse map is quite
robust to noise. Notice that the reconstruction quality deteriorates with depth naturally since
the boundary measurements are all collected at the top surface.

Figure 15 Seismic imaging. The reference solution along with the NN reconstructions with different
levels of noise added to the boundary measurements.

3.5. Traveltime tomography
Here we consider a circular domain Ω in 2D with the boundary denoted by Γ (see

Figure 16). The governing equation for traveltime tomography (TT) is the eikonal equation

(3.22) |∇u(p) | =
1

c(p)
, p ∈ Ω,

where c(p) is the unknown velocity field. Assuming that c(p) has a background velocity
c0 (taken to be 1 without loss of generality), we introduce the slowness deviation η(p) ≡
1

c (p) − 1 and write (3.22) as |∇u(p) | = 1 + η(p). In a typical setup, we specify the zero
boundary condition at each boundary point s, solve for the viscosity solution us (x) of (3.22),
and record us (r) at each boundary point r . The set of boundary measurements is then given
by

(3.23) d(r, s) = us (r) − us
0 (r),

where us
0 (r) = ‖r − s‖ is the solution for η(x) ≡ 0. The inverse problem is to recover η(p) ≡

1
c (p) − 1 from d(r, s).

To obtain an approximation for the inverse map d(r, s)→ η(p), we study how d(r, s)
depends on η(p) in the perturbative regime. A simple consideration based on the rotation-
equivalence of the experimental setup suggests viewing the parameter η in polar coordinates
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Figure 16 Traveltime tomography. Experimental setup in a circular geometry.

(ρ, θ) and the boundary measurements in the warped coordinates (s, h) with (r, s) ≡ (h +
s, s). The data d(h, s) can then be written as [22]

(3.24) d(s, h) ≈ (Kη)(h, s) =
∫
≥0

∫ 2π

0
k (h, ρ, s − θ)η(ρ, θ)dρdθ,

which is a 1D convolution in s and θ, with h and ρ treated as parameters (or channels in the
NN terminology). Since the viscosity solution of the eikonal equation often has singularities,
the number of channels required for the 1D convolution operator can be quite significant.

The discussion above shows that, in the small η regime, we can approximate the
forward map K : η(ρ, θ)→ d(s, h) with a 1D CNN or BCR-Net with multiple channels. The
filtered backprojection algorithm η ≈ (K∗K + εI)−1K∗d suggests representing the product
(K∗K + εI)−1K∗ as a linear NN and then generalizing to the nonlinear regime. By invoking
the same argument used for K , the adjoint operator K∗ can also be approximated with a 1D
CNN or BCR-Net with a small number of channels. The operator (K∗K + εI)−1 is a PDO
in the (ρ, θ) domain with global support, which can be approximated with a 2D BCR-Net or
with a 2D CNN. Summarizing the discussion results in the following NN architecture [22]

for traveltime tomography:

(3.25) d(s, h) ⇒ 1D CNN/BCR-Net⇒ 2D BCR-Net/CNN⇒ η(ρ, θ).

Figure 17 gives a numerical example for the traveltime tomography. The NN for the
inverse map, with about 640K weights, is trained with a set of 16K (d, η) pairs. The three
rows correspond to test examples with negative inclusion c(p) < 1, positive inclusion c(p) >
1, and mixed inclusion, respectively. For each test example, we plot the reference solution
along with the NN reconstructions with different levels of noise added to the boundary
measurements. The results show that, even for this ill-posed problem, the NN inverse map
is accurate and robust with respect to noise.

4. Concluding remarks
In this paper, we discussed our recent work on applying deep learning to inverse

problems. On the algorithmic side, we proposed two new NN modules, BCR-Net and
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Figure 17 Traveltime tomography. The three rows correspond to negative, positive, and mixed
inclusions. For each case, the reference solution is shown along with the NN reconstructions
with different levels of noise added to the boundary measurements.

Switch-Net. They are motivated by the pseudodifferential and Fourier integral operators,
which play key roles in the study of inverse problems. On the application side, we propose
NNs that approximate the inverse maps in five settings of interest: electrical impedance
tomography, optical tomography, inverse acoustic scattering, seismic imaging, and trav-
eltime tomography. In each application, the architecture is motivated by the perturbation
theory and filtered backprojection and is implemented using the new modules along with
standard convolution layers. In several cases, we have heavily relied on the special geometry
of the domainΩ and the data collection process. When combined with appropriate reparam-
eterizations, this often results in NN architectures that are both general and effective. Our
approach provides a seamless way that combines the mathematical structure of the inverse
problems, the power of deep NNs, and the information in the data prior. Below we list some
directions for future research.

• We have considered only the case of complete measurement data. A question of
both practical and theoretical importance is how to extend to the case of partial
measurement data.

• For wave-based inverse problems, we have focused on a single frequency or a sin-
gle energy. In many applications, one often has access to boundary measurements
at multiple frequencies or energies, or even time-dependent measurements.

• The first part of the proposed NNs is closely related to the migration step in
traditional imaging pipelines (such as in seismic imaging). An interesting study
would be to compare the intermediate result after the first part of our NN with the
migration results to get a more precise understanding of the proposed NNs.
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The study of inverse problem using deep learning has grown into a relatively large subject [6,
39,49,56,62]. This paper has solely focused on one approach that is deeply rooted in microlocal
analysis (see [3,10] for related work). There are a few other highly active research directions
that we have not discussed here, but which may be of interest to the reader.

• We have not discussed the work on (linear) under-determined inverse problem in
imaging [32, 51]. This field is closely connected with sparse recovery problems,
such as compressive sensing, matrix completion, phase retrieval, etc. [11].

• In the unrolling or unfolding approach [2, 13, 15, 25, 33, 50, 53, 63] for solving inverse
problems, one writes the iterative solution algorithm as a ResNet and then trains
the network parameters to minimize the reconstruction error. In many cases, this
approach leads to a very high quality reconstruction.

• There is also active work studying stability issues when applying deep learning
to inverse problems [4, 14, 24, 27], which is particularly important for applications
with ill-posed inverse problems.
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