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Abstract
Natural gradients have beenwidely used in the optimization of loss functionals over probabil-
ity space, with important examples such as Fisher–Rao gradient descent for Kullback–Leibler
divergence, Wasserstein gradient descent for transport-related functionals, and Mahalanobis
gradient descent for quadratic loss functionals. This note considers the situation in which the
loss is a convex linear combination of these examples. We propose a new natural gradient
algorithm by utilizing compactly supported wavelets to diagonalize approximately the Hes-
sian of the combined loss. Numerical results are included to demonstrate the efficiency of
the proposed algorithm.

Keywords Natural gradient · Fisher–Rao metric · Wasserstein metric · Mahalanobis
metric · Compactly supported wavelet · Diagonal approximation

Mathematics Subject Classification 65Z05 · 82B28 · 82B80

1 Introduction

Many problems in partial differential equations and machine learning can be formulated as
optimization problems over probability densities. For a domain �, let E(p) be a loss or
energy functional defined for the probability densities p over �. The goal is to find p∗ that
minimizes E(p). A common approach, especially for E(p)with a uniqueminimum, is to fol-
low the gradient descent (GD) dynamics. However, depending the metric used in the gradient
calculation, different gradient descent algorithms exhibit drastically different convergence
behavior. The term natural gradient refers to the practice of choosing an appropriate metric
depending on the loss functional E(p) as well as the probability space. Below are several
well-known examples of natural gradient.
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• Wasserstein GD that scales the Euclidean gradient δE
δ p (p) with the metric −∇ · (p∇).

Wasserstein GD is typically effective for a loss E(p) that behaves like the square of the
2nd Wasserstein distance.

• Fisher–RaoGDthat scales theEuclideangradient δE
δ p (p)with the diagonal tensor diag(p).

Fisher–RaoGD is quite effective for a loss E(p) such as theKullback–Leibler divergence∫
p(x) ln p(x)

μ(x)dx .

• Mahalanobis GD that scales the Euclidean gradient δE
δ p (p)with a positive definite metric

B. Mahalanobis GD is efficient for a quadratic loss of the form 1
2 (p − μ, A(p − μ))

with B ≈ A−1. In this note, we consider the case that A is a positive semidefinite
pseudo-differential operator, for example A = −�.

A general principle from these examples is that, for a natural gradient to be effective, the
metric used at the density p should be an approximate inverse of the Hessian of the loss E(p)
at p. In each of these three examples, an approximate inverse of the Hessian can be derived
quite explicitly.

1.1 Problem Statement

In several problems from kinetic theory and statistical machine learning, one is faced with a
loss or energy functional E(p) that is a linear combination of these three forms mentioned
above, i.e.,

E(p) = α1E1(p) + α2E2(p) + α3E3(p),

where α1, α2, α3 ≥ 0 and E1, E2, and E3 are of the Wasserstein, Fisher–Rao, and Maha-
lanobis types, respectively, i.e.,

δ2E1

δ p2
(p) ≈ (−∇ · (p∇))+,

δ2E2

δ p2
(p) ≈ diag

(
1

p

)

,
δ2E3

δ p2
(p) ≈ A

where (·)+ stands for pseudo-inverse. As a result, the Hessian of E(p) has the following
approximation

δ2E

δ p2
(p) = α1

δ2E1

δ p2
(p) + α2

δ2E2

δ p2
(p) + α3

δ2E3

δ p2
(p).

None of three natural gradients listed above is effective for this combined loss functional,

since the inverse of δ2E
δ p2

(p) looks quite different from −∇ · (p∇), diag(p), or A−1.
An immediate question is design an efficient natural gradient (or even an approximate

one) for the combined loss E(p). Due to the efficiency considerations, we prefer this natural
gradient to have the following features.

• It utilizes theHessian information of E1(p), E2(p), and E3(p) in the design of the natural
gradient.

• It avoids forming and/or inverting the Hessian δ2E
δ p2

(p) in order to avoid super-linear costs.

• The computational cost of computing the natural gradient from δE
δ p (p) should be of order

O(n logc n), where n is the number of degrees of freedom used for discretizing p.

The main idea of our approach is to adopt a basis that diagonalizes each of the three terms
δ2E1
δ p2

(p), δ2E2
δ p2

(p), and δ2E3
δ p2

(p) approximately at the same time. Among various choices,
compactly supported wavelets emerge as a natural candidate because they approximately
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diagonalize (1) differential operators, (2) diagonal scaling by functions with sufficient regu-
larity, and also (3) pseudo-differential operators.

1.2 RelatedWork

Fisher–Rao metric is essential to many branches of probability and statistics, as it is invariant
under diffeomorphisms. The study of Fisher–Rao and related metrics has evolved to become
the field of information geometry and we refer to [1,3] for detail discussions. Explicit time-
discretization of the Fisher–Rao GD gives rise the mirror descent algorithms [4,5,15], which
plays an essential role in online learning and optimization.

Originated from the theory of optimal transport, Wasserstein metric is defined formally
as the Hessian of the square of the 2nd Wasserstein distance [18,20,22,23]. Starting from
[10,16], it has been shown that many kinetic-type PDEs can be viewed as a Wasserstein GD
of free energies defined on probability spaces [6]. In recent years, a parametric version of the
Wasserstein metric has been applied to various applied problems from statistical machine
learning [7,11–13].

The quadratic term associated with the Mahalanobis metric appears quite often in partial
differential equation models, for example as the Dirichlet energy or as the interacting free
energy term in the Keller–Segel models [17].

A recent paper [24] considers the case where the loss function is the sum of the Kullback–
Leibler divergence and a quadratic interacting term. By adopting a diagonal approximation of
interacting term, it proposes new natural gradient dynamics and develops newmirror descent
algorithms.

1.3 Contents

The rest of this note is organized as follows. Section 2 proposes a newmetric for the combined
loss functional and derives the natural gradient algorithm. In Sect. 3, numerical results in 1D
and 2D show that the proposed natural gradient outperforms the existing ones for combined
loss functionals. Finally, Sect. 4 ends with some discussions on future work.

1.4 Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

2 Algorithm

2.1 Metric Design

Consider the 1Dproblemwith� = [0, 1]with the periodic boundary condition for simplicity.
As mentioned above for the loss functional E(p) = α1E1(p) + α2E2(p) + α3E3(p), the
Hessian can be approximated as follows.

δ2E

δ p2
(p) = α1

δ2E1

δ p2
(p)+α2

δ2E2

δ p2
(p)+α3

δ2E3

δ p2
(p) ≈ α1(−∇·(p∇))++α2diag

(
1

p

)

+α3A.

(1)
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For simplicity, assume that the domain � is discretized with a uniform grid with n points
S = { 0

n , 1
n , . . . , n−1

n

}
. A density p(x) for x ∈ � = [0, 1] can be represented as a vector

p ∈ Rn with entries denoted by ps for s ∈ S. We denote by D the discrete differential
operator. After the discretization, the Hessian approximation (1) takes the following discrete
form

δ2E

δ p2
(p) ≈ α1

(
DTdiag(p)D

)+ + α2diag

(
1

p

)

+ α3A. (2)

As mentioned earlier, the key idea is to diagonalize each of the three terms in (2) in a
compactly supported orthogonal wavelet basis such as the Daubechies wavelets [8,14]. Let
us denote byW ∈ Rn×n the matrix such that its j-th column is the j-th vector of the wavelet
basis. Therefore,W is thematrix for wavelet reconstruction and its transposeW T is thematrix
for wavelet decomposition. Notice that for compactly supported wavelets, W and W T are
sparse matrices with only O(n log n) non-zero entries. Applying W or W T to an arbitrary
vector of length n takes only O(n) operations by taking advantages of the filter bank structure
of the wavelet basis [14].

Applying the matrices W T to the left and W to the right of (2) leads to

W T δ2E

δ p2
(p)W ≈ α1W

T
(
DTdiag(p)D

)+
W + α2W

Tdiag

(
1

p

)

W + α3W
TAW .

The three terms on the right hand side are treated as follows.

• For the first term, consider first its pseudo-inverse W TDTdiag(p)DW . The diagonal
entries of W TDTdiag(p)DW at the (i, i) slot is given by

∑

s∈S
(DW )si ps(DW )si =

∑

s∈S
(DW )2si ps .

By defining the matrix H1 with entries given by (H1)is = (DW )2si , the whole diagonal of
W TDTdiag(p)DW can be conveniently written as H1 p, which clearly depends linearly
on p. Taking its pseudo-inverse implies that W T

(
DTdiag(p)D

)+
W can be diagonally

approximated with diag
(

1
H1 p

)
.

• For the second term, consider first its pseudo-inverse W Tdiag(p)W . The diagonal entry
W Tdiag(p)W at the (i, i) slot is given by

∑

s∈S
Wsi psWsi =

∑

s∈S
W 2

si ps .

By defining the matrix H2 p with entries given by (H1)is = W 2
si , the whole diagonal of

W Tdiag(p)W can bewritten as H2 p, which is again linear in p. Taking its pseudo-inverse

shows that W Tdiag
(
1
p

)
W can be diagonally approximated with diag

(
1

H2 p

)
.

• As opposed to the first two terms, the third termW TAW is independent of the density p.
Its diagonal can be precomputed and will be denoted by h3 ∈ Rn .

Putting the three terms together, we conclude that

W T δ2E

δ p2
(p)W ≈ diag

(
α1

H1 p
+ α2

H2 p
+ α3h3

)

,

or equivalently

δ2E

δ p2
(p) ≈ Wdiag

(
α1

H1 p
+ α2

H2 p
+ α3h3

)

W T.
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By inverting this approximation, we reach at the metric for the natural gradient

(
δ2E

δ p2
(p)

)−1

≈ Wdiag

(
1

α1
H1 p

+ α2
H2 p

+ α3h3

)

W T. (3)

With the metric ready, the ODE for the new natural gradient reads

ṗ = −Wdiag

(
1

α1
H1 p

+ α2
H2 p

+ α3h3

)

W T δE

δ p
(p). (4)

If we denote the wavelet coefficient vector by c ∈ Rn , i.e., c = W T p and p = Wc, (4) can
be written as

ċ = −diag

(
1

α1
H1Wc + α2

H2Wc + α3h3

)
δE

δc
(c). (5)

In what follows, we simply refer to them as the combined gradient descent.
The following two claims show that the objects in (4) and (5) can be computed efficiently.

Claim 1 The computational cost of forming and storing thematrices H1 and H2 is O(n log n).

Proof Let us recall the definition of the matrices H1 and H2

(H1)is = (DW )2si , (H2)is = W 2
si .

Since the wavelets are compactly supported with a constant size support at the finest scale,
applying the differential operator and taking the element-wise square for a wavelet at scale �

takes O(n/2�) steps. Summing over the wavelets from all scales gives the following bound
for the total cost:

log2 n∑

�=1

2� · n

2�
= O(n log n).

Claim 2 For a density p ∈ Rn with pi > 0, the computational cost of applying the metric
Wdiag 1(

α1
H1 p

+ α2
H2 p

+α3h3
)W T takes O(n log n) steps.

Proof As a consequence from the previous claim, forming H1 p and H2 p each takes
O(n log n) steps. Applying the wavelet decomposition operator W T or the reconstruction
operator W takes O(n) steps by taking advantages of the filter bank construction. Summing
them together gives the O(n log n) total cost.

2.2 Time Discretization

Let us now describe the time discretization of the natural gradient dynamics (4), i.e., how to
actually use (4) to find the minimizer. We adopt a backtracking line search algorithm with
Armijo condition [2]. At time step k with the current approximation pk , we introduce

sk = Wdiag

(
1

α1
H1 pk

+ α2
H2 pk

+ α3h3

)

W T δE

δ p
(pk).
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Starting from η = 1, one repetitively halves η until

E(pk − ηsk) − E(pk) ≤ −1

2
ηsk · δE

δ p
(pk).

Once it is reached, one sets

pk+1 = pk − ηsk

and move on to the next iteration until convergence.

3 Numerical Results

This section presents several numerical examples to illustrate the efficiency of the combined
gradient descent (4) for the combined loss functionals.

3.1 1D

Consider first the 1D domain � = [0, 1] with the periodic boundary condition. Let μ

be a reference measure. Among the three terms of the combined loss functional E(p) =
α1E1(p) + α2E2(p) + α3E3(p), the first term E1(p) is a functional close to the square of
the 2nd Wasserstein distance W2(p, μ) between p and μ. Because the exact computation of
W 2

2 (p, μ) and its derivative with respect to p is quite non-trivial, we replace E1(p) with the
square of the weighted semi H−1-norm

E1(p) = 1

2
‖p − μ‖2

Ḣ−1(μ)
,

which is known to be equivalent to the square of the W2 norm [19]. The Ḣ1(μ) for a signed
measure ε is defined as

‖ε‖Ḣ−1(μ) = min
θ :∇·(μθ)=ε

∫
|θ |2dμ,

or equivalently

‖ε‖Ḣ−1(μ) = sup
{
( f , ε) : ‖ f ‖Ḣ1(μ) ≤ 1

}
, ‖ f ‖Ḣ1(μ) =

∫
|∇ f |2dμ.

After discretization, E1(p) takes the following simple form

E1(p) = 1

2
(p − μ)T(DTμD)+(p − μ).

The second term E2(p) is the Kullback–Leibler divergence

E2(p) =
∑

s

ps log
ps
μs

.

Finally, the last term E3(p) is the Dirichlet energy given by

E3(p) = 1

2
(p − μ)T(−�)(p − μ) = 1

2
(p − μ)TDTD(p − μ),

so A = (−�). The minimizer of E(p) is equal to μ.
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Fig. 1 (1) Wasserstein plus Fisher–Rao terms tested with Wasserstein GD, Fisher–Rao GD, and the combined
natural gradient. (2)Wasserstein plusMahalanobis terms testedwithWassersteinGD,MahalanobisGD, and the
combined natural gradient. (3) Fisher–Rao plus Mahalanobis terms tested with Fisher–Rao GD, Mahalanobis
GD, and the combined natural gradient. (4) Wasserstein plus Fisher–Rao plus Mahalanobis terms tested with
Wasserstein GD, Fisher–Rao GD, Mahalanobis GD, and the combined natural gradient

The domain is discretized with n = 512 grid points. The reference measure μ(s) ∼
exp(−V (s))with V (s) = sin(4πs) for s ∈ S. The constant factors in front of the three terms
are chosen to be 1, 10−3, and 10−4, respectively, in order to balance the contribution from
three terms so that none of them dominates. We test with four different linear combinations,
with results summarized in Fig. 1.

(1) (α1, α2, α3) = (1, 10−3, 0), i.e., turning off theMahalanobis term. The combined natural
gradient converges much more rapidly compared to the Wasserstein GD and the Fisher–
Rao GD.

(2) (α1, α2, α3) = (1, 0, 10−4), i.e., turning off the Fisher–Rao term. The combined nat-
ural gradient converges much more rapidly compared to the Wasserstein GD and the
Mahalanobis GD.

(3) (α1, α2, α3) = (0, 10−3, 10−4), i.e., turning off the Wasserstein term. The combined
natural gradient converges much more rapidly compared to the Fisher–Rao GD and the
Mahalanobis GD.
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(4) (α1, α2, α3) = (1, 10−3, 10−4). The combined natural gradient converges much more
rapidly compared to the Wasserstein GD, the Fisher–Rao GD, and the Mahalanobis GD.

3.2 2D

Consider now the 2D domain � = [0, 1]2 with periodic boundary condition. Among the
three terms of the combined loss functional E(p) = α1E1(p)+α2E2(p)+α3E3(p), E1(p)
is again chosen to be the weighted semi H−1-norm

E1(p) = 1

2
‖p − μ‖Ḣ−1(μ).

After discretization, it takes the following form

E1(p) = 1

2
(p − μ)T(DT

1μD1 + DT
2μD2)

+(p − μ)

where D1 and D2 are the derivative operators in the first and the second directions. E2(p) is
again the Kullback–Leibler divergence

E2(p) =
∑

s

ps log
ps
μs

.

Finally, E3(p) is given by

E3(p) = 1

2
(p − μ)T(−�)(p − μ) = 1

2
(p − μ)T(DT

1D1 + DT
2D2)(p − μ)

so A = (−�).
The domain is discretized with n = 64 grid point in each direction. μ(s1, s2) ∼

exp(−V (s1, s2)) with V (s1, s2) = sin(4πs1) sin(4πs2). The constant factors of the three
terms are set to be 1, 3 × 10−4, and 10−4 in order to balance the contribution from them
so that no one dominates. We test with four different linear combinations, with the results
summarized in Fig. 2.

(1) (α1, α2, α3) = (1, 3 × 10−4, 0), i.e., turning off the Mahalanobis term. The combined
natural gradient converges much more rapidly compared to the Wasserstein GD and the
Fisher–Rao GD.

(2) (α1, α2, α3) = (1, 0, 10−4), i.e., turning off the Fisher–Rao term. The combined nat-
ural gradient converges much more rapidly compared to the Wasserstein GD and the
Mahalanobis GD.

(3) (α1, α2, α3) = (0, 3×10−4, 10−4), i.e., turning off the Wasserstein term. The combined
natural gradient converges much more rapidly compared to the Fisher–Rao GD and the
Mahalanobis GD.

(4) (α1, α2, α3) = (1, 3 × 10−4, 10−4). The combined natural gradient converges much
more rapidly compared to theWasserstein GD, the Fisher–Rao GD, and theMahalanobis
GD.

4 Discussions

This note proposes a new natural gradient for minimizing combined loss functionals by using
diagonal approximation in the wavelet basis. There are a few open questions. First, so far
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Fig. 2 (1) Wasserstein plus Fisher–Rao terms tested with Wasserstein GD, Fisher–Rao GD, and the combined
natural gradient. (2)Wasserstein plusMahalanobis terms testedwithWassersteinGD,MahalanobisGD, and the
combined natural gradient. (3) Fisher–Rao plus Mahalanobis terms tested with Fisher–Rao GD, Mahalanobis
GD, and the combined natural gradient. (4) Wasserstein plus Fisher–Rao plus Mahalanobis terms tested with
Wasserstein GD, Fisher–Rao GD, Mahalanobis GD, and the combined natural gradient

we have considered regular domains in one and two dimensions with periodic boundary
condition. One direction is to extend this to more general domains using more sophisticated
wavelet bases.

Second, we have assumed that the probability density p is non-vanishing everywhere in
deriving the interpolating natural gradient metric. It is an important question whether one
can remove this condition in order to work with more general probability densities.

Third, the dynamics in the wavelet coefficients (5) enjoys a diagonal metric. It is tempting
to askwhether it is possible to design amirror descent algorithm.Due to the coupling between
different wavelet coefficients in the metric computation H1Wc and H2Wc, this seems quite
difficult. An interesting observation is that the metric of the coarse scale wavelet coefficients
is nearly independent of the values of the fine scale coefficients, while the metric of the fine
scale ones depends heavily on the values of the coarse scale ones. This naturally brings the
question of whether the combinedmetric (or even theWassersteinmetric) has an approximate
multiscale structure. The wavelet analysis has played an important role understanding the
earth mover distance metricW1 [9,21]. It seems that it might also play a role in understanding
the W2 metric.
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Finally, it is possible to apply the general idea of this work to parametric probability
models, especially when the number of parameters are large and direct inversion of the
Hessian operator should be avoided.
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