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Abstract. Policy gradient algorithms have been widely applied to Markov decision processes
and reinforcement learning problems in recent years. Regularization with various entropy functions
is often used to encourage exploration and improve stability. This paper proposes an approximate
Newton method for the policy gradient algorithm with entropy regularization. In the case of Shannon
entropy, the resulting algorithm reproduces the natural policy gradient algorithm. For other entropy
functions, this method results in brand-new policy gradient algorithms. We prove that all these algo-
rithms enjoy Newton-type quadratic convergence and that the corresponding gradient flow converges
globally to the optimal solution. We use synthetic and industrial-scale examples to demonstrate that
the proposed approximate Newton method typically converges in single-digit iterations, often orders
of magnitude faster than other state-of-the-art algorithms.
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1. Introduction. Consider an infinite-horizon Markov decision process (MDP)
[4, 33] \scrM = (S,A,P, r, \gamma ), where S is a set of states of the system studied, A is a
set of actions made by the agent, P is a transition probability tensor with P a

st being
the probability of transitioning from state s to state t when taking action a, r is a
reward tensor with ras being the reward obtained when taking action a at state s, and
0<\gamma < 1 is a discount factor. Throughout the paper, the state space S and the action
space A are assumed to be finite. A policy \pi is a randomized rule of action-selection
where \pi a

s denotes the probability of choosing action a at state s. For a given policy
\pi , the value function v\pi is defined as

(1.1) (v\pi )s =\BbbE 
\infty \sum 
k=0

\bigl( 
\gamma krak

sk
| s0 = s

\bigr) 
,

which satisfies the Bellman equation,

(1.2) (I  - \gamma P\pi )v\pi = r\pi ,

where (P\pi )st =
\sum 

a\in A \pi 
a
sP

a
st, (r\pi )s =

\sum 
a\in A \pi 

a
s r

a
s , and I is the identity operator.
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A2586 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

In order to promote exploration and enhance stability, one often regularizes
the problem with a function h\pi such as the negative Shannon entropy (h\pi )s
=
\sum 

a\in A \pi 
a
s log\pi 

a
s . With the regularization h\pi , the original reward r\pi is replaced

with the regularized reward r\pi  - \tau h\pi where \tau > 0 is a regularization coefficient and
(1.2) becomes

(1.3) (I  - \gamma P\pi )v\pi = r\pi  - \tau h\pi ,
where we overload the notation v\pi for the regularized value function. Other contin-
uously differentiable entropy functions can also be used, as we will show later. Since
\gamma < 1 and P\pi is a transition probability matrix, (I  - \gamma P\pi ) is invertible, and

(1.4) v\pi = (I  - \gamma P\pi )
 - 1(r\pi  - \tau h\pi ).

In a policy optimization problem, we seek a policy \pi that maximizes the value
function v\pi . According to the theory of regularized MDPs [9], when the regularization
is strongly convex, there is a unique optimal policy \pi \ast such that (v\pi \ast )s \geq (v\pi )s for
any policy \pi and state s. It thus suffices to maximize \rho \top v\pi for any positive weight
vector \rho \in \BbbR | S| 

+ . Using (1.4), the problem can be stated as

(1.5) max
\pi 

\rho \top (I  - \gamma P\pi )
 - 1(r\pi  - \tau h\pi ).

This problem can be solved by, for example, the policy gradient (PG) method. How-
ever, the vanilla PG method converges quite slowly. In [1], for instance, the vanilla
PG method is shown to have the O(T - 1) convergence rate, where T denotes the num-
ber of iterations. A widely used variant of PG is the softmax policy gradient (SPG)
method, where a softmax parameterization is applied before taking gradient updates,

which has been shown in [15] to require O(| S| 2
\Omega ( 1

1 - \gamma 
)

) iterations to converge for cer-
tain MDPs without regularization. For the PG method with entropy regularization
and some of its variants, the convergence rate can be improved to O(e - cT ), i.e., linear
convergence [17], which can still be slow since the constant c in the linear convergence
rate O(e - cT ) is in general close to 0. It is also demonstrated in numerical examples
that these algorithms with linear rates can experience slow convergence. For example,
in the example in [40], thousands of iterations are needed for the algorithm to con-
verge, even though the model is relatively small and sparse. Therefore, there is a clear
need for designing new methods with faster convergence; one idea is to consider the
problem's geometry. The Newton method, for example, preconditions the gradient
with the Hessian matrix and obtains second-order local convergence. Since the exact
Hessian matrix is usually too computationally expensive to obtain, the approximate
Newton methods (including quasi-Newton methods), which use structurally simpler
approximations of the Hessian instead, are more widely adopted in generic optimiza-
tion problems and are known to enjoy superlinear convergence [25, 26].

1.1. Contributions. This paper investigates the approximate Newton approach
for solving (1.5). The main contributions of this paper are the following.

\bullet First, we present a unified approximate Newton method for the policy op-
timization problem. The main observation is to decompose the Hessian as
a sum of a diagonal matrix and a remainder that vanishes at the optimal
solution. This inspires us to use only the diagonal matrix in the approximate
Newton method. As a result, the proposed method not only leverages the
second-order information but also enjoys low computational cost due to the
diagonal structure of the preconditioner used. When the negative Shannon
entropy is used, this method reproduces the natural policy gradient (NPG)
algorithm. This method results in brand-new policy gradient algorithms for
other forms of entropy regularization.
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2587

\bullet Second, we analyze the convergence property of the proposed approximate
Newton algorithms and demonstrate local quadratic convergence both theo-
retically and numerically. By leveraging the framework of Newton-type meth-
ods (see [8], for example), we provide a simple and straightforward proof for
quadratic convergence near the optimal policy. In the numerical tests, we
verify that the proposed method leads to fast quadratic convergence even
under small regularization and large discount rates (close to 1). Even for
industrial-size problems with hundreds of thousands of states, the approxi-
mate Newton method converges in single-digit iterations and within a few
minutes on a regular laptop. We also prove the global convergence of the
approximate Newton gradient flow to the optimal solutions.

1.2. Background and related work. A major workhorse behind the recent
success of reinforcement learning (RL) is the large family of policy gradient (PG)
methods [38, 34]---for example, the natural policy gradient (NPG) method [12], the
actor-critic method [13], the asynchronous advantage actor-critic (A3C) method [19],
the deterministic policy gradient (DPG) method [32], the trust region policy optimiza-
tion (TRPO) [28], the generalized advantage estimation (GAE) [29], and proximal
policy optimization (PPO) [30], to mention but a few. The NPG method is known to
be drastically faster than the original PG method because the policy gradient in NPG
is preconditioned by the Fisher information (an approximation of the Hessian of the
KL divergence) matrix to fit the problem geometry better. This idea is extended in
TRPO and PPO, where the problem geometry is taken into consideration via trust
region constraints (in terms of KL divergence) and a clipping function of the relative
ratio of policies in the objective function, respectively. These implicit ways (in the
sense that they do not adjust the gradient by an explicit preconditioner) of adjusting
the policy gradient are similar to the mirror descent (MD) method [20] in generic
optimization problems.

This similarity in addressing the inherent geometry of the problem is noticed by
a line of recent work including [22, 9, 31, 35, 14], and the analysis techniques in MD
methods have been adapted to the PG setting. The connection was first built explic-
itly in [22]. The authors consider a linear program formulation where the objective
function is the average reward and the domain is the set of stationary state-action
distributions, in which case the TRPO method can be viewed as an approximate mir-
ror descent method and the A3C method as an MD method for the dual-averaging
[21] objective. As a complement, [9] considers an actor-critic type method where the
policy is updated via either a regularized greedy step or an MD step, and the value
function is updated by a regularized Bellman operator, which also includes TRPO
as a special case, and error propagation analysis is provided. In [31], an adaptive
scaling that naturally arises in the policy gradient is applied to the proximity term of
the MD formulation, and the sublinear convergence result is proved with a properly
decreasing learning rate. In [35], the application to the nonstabular setting is enabled
by parameterizing the policy and applying MD to the policy parameters, and the
corresponding sublinear convergence result is presented.

Regularization, a strategy that considers the modified objective function with an
additional penalty term on the policy, is another crucial component in developing
PG-type methods. Intuitively, regularization can encourage exploration in the policy
iteration process and thus avoid local minima. It is also suggested [2] that regular-
ization makes the optimization landscape smoother and thus enables possibly faster
convergence. Linear convergence results are then established for regularized PG and
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A2588 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

NPG methods [1, 17, 6]. In these relatively earlier works [1, 17, 6], the regularization
usually takes the form of (negative) entropy or relative entropy. In the more recent
works [14] and [40], which follow the MD type methods, the regularization is extended
to general convex functions with the resulting Bregman divergences different from the
KL divergence, and linear convergence is guaranteed as well.

However, most of these algorithms are of either sublinear or linear convergence
except the entropy regularized NPG with full step length (which is a special case of
the approximate Newton method we propose), and even the linear convergence rate
O(e - cT ) can be slow since c can be close to zero. This motivates us to introduce the
approximate Newton policy gradient method in section 2.

2. Approximate Newton method.

2.1. Approximate Newton method and entropy regularized natural
policy gradient. This section derives the approximate Newton method for the en-
tropy regularized policy optimization problems. The idea is to approximate the Hes-
sian with a simpler matrix whose inverse is easy to compute. We start with the
negative Shannon entropy (h\pi )s =

\sum 
a\in A \pi 

a
s log\pi 

a
s .

In what follows, it is assumed that \pi \ast is the optimizer of the problem stated in
(1.5). By introducing Z\pi := I  - \gamma P\pi , the objective function can be written as

(2.1) E(\pi )\equiv \rho \top (I  - \gamma P\pi )
 - 1(r\pi  - \tau h\pi ) = \rho \top Z - 1

\pi (r\pi  - \tau h\pi ) =w\top 
\pi (r\pi  - \tau h\pi ),

where w\pi :=Z - \top 
\pi \rho .

Let us first outline the main idea of the approximate Newton method. The
gradient \nabla \pi E in \BbbR | S| | A| of E(\pi ) has entries given by

(2.2)
\partial E

\partial \pi a
s

= (ras  - \tau (log\pi a
s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s,

where cs(\pi ) is a multiplier associated with the constraint
\sum 

a\in A \pi 
a
s = 1 that depends

on s. Our key observation is to decompose the Hessian matrixD2E(\pi ) in \BbbR | S| | A| \times | S| | A| 

into two parts

(2.3) D2E(\pi ) = \Lambda (\pi ) +\Delta (\pi ),

where \Lambda (\pi ) is a diagonal matrix given by \Lambda (sa),(tb) = - \tau \delta \{ (sa),(tb)\} (w\pi )s
\pi a
s

and \Delta (\pi ) is

a remainder that vanishes at \pi = \pi \ast , i.e., \Delta (\pi ) = O(\| \pi  - \pi \ast \| ) (shown in Theorem
2.1). We emphasize that \Lambda (\pi ) is generally not the diagonal part of the Hessian matrix
D2E(\pi ), but a diagonal approximation to it. With this decomposition, we can ap-
proximate the Hessian matrix D2E(\pi ) by \Lambda (\pi ) and obtain the following approximate
Newton flow :

d\pi a
s

dt
= - (\Lambda  - 1\nabla \pi E)sa = - (\Lambda (sa),(sa))

 - 1 \partial E

\partial \pi a
s

= \pi a
s (r

a
s  - \tau (log\pi a

s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .

By introducing the parameterization \theta as = log\pi a
s and discretizing in time with learning

rate \eta , we arrive at

\theta as \leftarrow \eta (ras  - \tau  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau + (1 - \eta )\theta as .

Writing this update back in terms of \pi a
s leads to the following update rule:

\pi a
s \propto (\pi a

s )
1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2589

which coincides with the NPG scheme with entropy regularization. This result is
summarized in the following theorem with the proof given in subsection 5.1.

Theorem 2.1. Let h\pi \in \BbbR | S| be the negative Shannon entropy (h\pi )s =
\sum 

a\in A

\pi a
s log\pi 

a
s .

(a) There exists a diagonal approximation \Lambda (\pi ) of the Hessian matrix D2E(\pi )

given by \Lambda (sa),(tb) = - \tau \delta \{ (sa),(tb)\} (w\pi )s
\pi a
s

such that

(2.4) \Lambda (\pi ) - D2E(\pi ) =O(\| \pi  - \pi \ast \| ).

(b) The approximate Newton flow from \Lambda (\pi ) is

(2.5)
d\pi a

s

dt
= \pi a

s (r
a
s  - \tau (log\pi a

s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .

With a learning rate \eta , the gradient update is

(2.6) \pi a
s \leftarrow 

(\pi a
s )

1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )\sum 
a\in A(\pi 

a
s )

1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )
.

Remark 2.2. The policy update scheme (2.6) is the same as the entropy regularized
natural policy gradient scheme in, for example, [6].

Historical note. The natural gradient methods (including the NPG method) were
traditionally developed as a way of implementing the vanilla gradient descent method
with an intrinsic metric that is invariant to the choice of parameters (cf. [16]), and
entropy regularization was originally motivated as a way of encouraging exploration
and avoid the suboptimality caused by greedy solvers (cf. [22]). In this regard, it
was more or less a coincidence that the algorithm combines the two methods---the
regularized NPG obtains a fast quadratic convergence (cf. [6]). The reason behind
this coincidence is that the preconditioner used in the natural gradient method ap-
proximates the second-order derivatives introduced by the entropy regularization, in
this case, though the Fisher information matrix was not designed to approximate any
second-order information in the classical natural gradient literature.

2.2. Extension to other entropy functions. Theorem 2.1 can be extended
to more general entropy functions. It yields brand-new algorithms with quadratic
convergence. Here we consider the entropy functions of the form

(2.7) (h\pi )s =
\sum 
a\in A

\phi 

\biggl( 
\pi a
s

\mu a
s

\biggr) 
\mu a
s ,

where \phi is convex on (0,+\infty ) and \phi (1) = 0, and \mu s is a prior distribution over A
such that \mu a

s > 0. The term (h\pi )s is also called the ``f -divergence"" between \pi s and
\mu s [24, 3]. If there is no prior knowledge of the policy, one can use the uniform prior,
i.e., \mu a

s = 1/| A| for all a. We further assume that \phi is twice continuously differentiable
and strongly convex and that \phi \prime (x)\rightarrow  - \infty as x\rightarrow 0. Here are some examples:

\bullet When \phi (x) = x logx, (h\pi )s =
\sum 

a\in A

\Bigl( 
\pi a
s

\mu a
s
log

\pi a
s

\mu a
s

\Bigr) 
\mu a
s =

\sum 
a\in A \pi 

a
s log

\pi a
s

\mu a
s
. When

the uniform prior is used, we recover the negative Shannon entropy regu-
larization

\sum 
a\in A \pi 

a
s log\pi 

a
s used in Theorem 2.1 after omitting the constant

log 1
| A| .

\bullet When \phi (x) = 4
1 - \alpha 2 (1 - x

1+\alpha 
2 ) (\alpha < 1), we obtain the \alpha -divergence:

(2.8) (h\pi )s =
4

1 - \alpha 2
 - 4

1 - \alpha 2

\sum 
a\in A

\mu a
s (\pi 

a
s/\mu 

a
s)

1+\alpha 
2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/1

1/
24

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2590 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

In particular, when \alpha = 0 we obtain the Hellinger divergence (h\pi )s = 2  - 
2
\sum 

a\in A

\surd 
\mu a
s\pi 

a
s after dividing by 2. When \alpha \rightarrow  - 1 we obtain the reverse KL

divergence (h\pi )s =
\sum 

a\in A \mu 
a
s log

\mu a
s

\pi a
s
. Also, when \alpha \rightarrow 1, we obtain the KL

divergence (h\pi )s =
\sum 

a\in A \pi 
a
s log

\pi a
s

\mu a
s
, though the limit of \phi (x) does not exist

when \alpha \rightarrow 1.
In the following theorem, we extend the approximate Newton method in Theorem

2.1 to the entropy functions described above. The proof of this theorem can be found
in subsection 5.2.

Theorem 2.3. Assume that \pi \ast is the optimizer of (1.5), where h\pi is the entropy
function defined in (2.7).

(a) The Hessian matrix D2E(\pi ) can be approximated by a diagonal matrix \Lambda (\pi )
given by

(2.9) \Lambda (sa),(tb) = - \tau \delta \{ (sa),(tb)\} 
(w\pi )s\phi 

\prime \prime (\pi a
s/\mu 

a
s)

\mu a
s

near \pi \ast such that \Lambda (\pi ) - D2E(\pi ) =O(\| \pi  - \pi \ast \| ).
(b) The approximate Newton flow from \Lambda is

(2.10)
d\pi a

s

dt
= \mu a

s(\phi 
\prime \prime (\pi a

s/\mu 
a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .

With parameterization \theta as = \phi \prime (\pi a
s/\mu 

a
s), the approximate Newton method from \Lambda (\pi )

can be expressed as

(2.11) \theta as \leftarrow \eta (ras  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau + (1 - \eta )\theta as ,

where 0 < \eta \leq 1 is the learning rate and cs(\pi ) is a multiplier introduced by the
constraint

\sum 
a\in A \pi 

a
s = 1.

For particular choices of \phi , the corresponding approximate Newton update scheme
can be obtained directly by plugging \phi into (2.11).

\bullet For the case \phi (x) = x logx and (h\pi )s =
\sum 

a\in A \pi 
a
s log

\pi a
s

\mu a
s
, one can solve the

multipliers cs(\pi ) explicitly as in Theorem 2.1 and obtain the NPG method
with prior distribution \mu :

(2.12) \pi a
s \leftarrow 

(\mu a
s)

\eta (\pi a
s )

1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )\sum 
a\in A(\mu 

a
s)

\eta (\pi a
s )

1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )
.

\bullet For the case \phi (x) = 4
1 - \alpha 2 (1 - x

1+\alpha 
2 ) (\alpha < 1) and h\pi given by the \alpha -divergence

(2.8), we have \theta as = - 2
1 - \alpha (\pi 

a
s/\mu 

a
s)

\alpha  - 1
2 ; thus by (2.11) the update scheme is

(2.13)

\pi a
s \leftarrow \mu a

s

\biggl( 
(1 - \eta )(\pi a

s/\mu 
a
s)

\alpha  - 1
2 +

\alpha  - 1

2
\eta (ras  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau 

\biggr) 2
\alpha  - 1

.

The remaining problem in the update schemes is the determination of the mul-
tipliers cs(\pi ), since they cannot be solved explicitly, as in the case of the nega-
tive Shannon entropy (cf. Theorem 2.1). Since \phi is strongly convex, we know that
\phi \prime is strictly increasing, and thus  - \phi \prime is a strictly decreasing function mapping
from (0,+\infty ) to ( - sup\phi \prime ,+\infty ) since limx\rightarrow 0+0 \phi 

\prime (x) =  - \infty . Let \psi := ( - \phi \prime ) - 1;
then \psi : ( - sup\phi \prime ,+\infty ) \rightarrow (0,+\infty ) is a strictly decreasing function that satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2591

limx\rightarrow  - sup\phi \prime +0\psi (x) = +\infty and limx\rightarrow +\infty \psi (x) = 0. From (2.11), the equation of the
multiplier cs(\pi ) corresponding to

\sum 
a\in A \pi 

a
s = 1 is

(2.14)
\sum 
a\in A

\mu a
s\psi 
\Bigl( 
 - \eta 
\tau 
cs(\pi ) - (1 - \eta )\phi \prime (\pi a

s/\mu 
a
s) - 

\eta 

\tau 
(ras  - [(I  - \gamma P a)v\pi ]s)

\Bigr) 
= 1,

or equivalently,

(2.15)
\sum 
a\in A

\mu a
s\psi (\~cs + xa) = 1,

where

(2.16) \~cs = - 
\eta 

\tau 
cs(\pi ), xa = - (1 - \eta )\phi \prime (\pi a

s/\mu 
a
s) - 

\eta 

\tau 
(ras  - [(I  - \gamma P a)v\pi ]s).

We claim that the determination of \~cs in (2.15) (and thus the determination of cs(\pi ))
can be done similarly as in [39] based on the following lemma. The proof of this
lemma can be found in subsection 5.3.

Lemma 2.4. Let L\in \BbbR \cup \{  - \infty \} . Assume that \psi : (L,+\infty )\rightarrow (0,+\infty ) is a strictly
decreasing function that satisfies limx\rightarrow L+0\psi (x) = +\infty and limx\rightarrow +\infty \psi (x) = 0 and
assume also that \mu i > 0; then for any x1, x2, . . . , xk, there is a unique solution to the
equation:

\mu 1\psi (x+ x1) + \cdot \cdot \cdot + \mu k\psi (x+ xk) = 1.(2.17)

Moreover, the solution is on the interval

(2.18)

\biggl[ 
max

\biggl\{ 
L - min

1\leq i\leq k
xi, min

1\leq i\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) 
 - xi

\biggr\} \biggr\} 
, max
1\leq i\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) 
 - xi

\biggr\} \biggr] 
.

Leveraging Lemma 2.4 and the monotonicity of the function \mu 1\psi (x+ x1) + \cdot \cdot \cdot +
\mu k\psi (x + xk)  - 1, many of the established numerical methods (e.g., bisection) for
nonlinear equations can be applied to determine the solution for (2.17). This routine
can be used to find \~cs in (2.15) and thus the multipliers cs(\pi ) in (2.14) as stated in
Proposition 2.5, whose proof is given in subsection 5.4.

Proposition 2.5. The multipliers cs(\pi ) in the update scheme (2.11) can be de-
termined uniquely such that the updated policy \pi satisfies \pi a

s \geq 0 and
\sum 

a\in A \pi 
a
s = 1.

When the \alpha -divergence is used, we have \phi = 4
1 - \alpha 2 (1 - x

1+\alpha 
2 ) and \phi \prime (x) = 2

\alpha  - 1x
\alpha  - 1
2 ;

then L =  - sup\phi \prime = 0 and \psi (x) = ( - \phi \prime ) - 1(x) = (\phi \prime ) - 1( - x) = ( 1 - \alpha 
2 x)

2
\alpha  - 1 . The

algorithm proposed in this section is summarized in Algorithm 2.1 below.

2.3. Convergence of the approximate Newton gradient flow. Recall from
(2.10) that the approximate Newton gradient flow with the general entropy functions is

d\pi a
s

dt
= \mu a

s(\phi 
\prime \prime (\pi a

s/\mu 
a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau ,

from which we can obtain the dynamics of the objective function E:
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Algorithm 2.1 Approximate Newton method for the regularized MDP.
Require: The MDP model\scrM = (S,A,P, r, \gamma ), initial policy \pi init, convergence

threshold \epsilon tol, regularization coefficient \tau , learning rate \eta , the regularization type
(KL or \alpha -divergence).

1: Initialize the policy \pi = \pi init.
2: Set \xi = 1+ \epsilon tol and k= | A| .
3: while \xi > \epsilon tol do
4: Calculate the regularization term h\pi by (h\pi )s =

\sum 
a\in A \mu 

a
s\phi (\pi 

a
s/\mu 

a
s).

5: Calculate P\pi and r\pi by (P\pi )st =
\sum 

a\in A \pi 
a
sP

a
st, (r\pi )s =

\sum 
a\in A \pi 

a
s r

a
s .

6: Calculate v\pi by (1.4), i.e., v\pi = (I  - \gamma P\pi )
 - 1(r\pi  - \tau h\pi ).

7: if the KL divergence is used then

8: (\pi new)
a
s \leftarrow 

(\mu a
s )

\eta (\pi a
s )

1 - \eta exp(\eta (ras+(\gamma Pav\pi )s)/\tau )\sum 
a\in A(\mu a

s )
\eta (\pi a

s )
1 - \eta exp(\eta (ras+(\gamma Pav\pi )s)/\tau )

for

a= 1,2, . . . , | A| , s= 1,2, . . . , | S| .
9: end if
10: if the \alpha -divergence is used then
11: for s= 1,2, . . . , | S| do
12: Set L= 0 and \psi (x) = ( 1 - \alpha 

2 x)
2

\alpha  - 1

13: Calculate xa= - (1 - \eta )\phi \prime (\pi a
s/\mu 

a
s) - 

\eta 
\tau (r

a
s  - [(I - \gamma P a)v\pi ]s), a= 1, . . . , | A| .

14: Solve for \~cs = - \eta 
\tau cs(\pi ) with the bisection method on the interval

described in (2.18).
15: Update (\pi new)

a
s \leftarrow \mu a

s\psi (\~cs + xa) for a= 1,2, . . . , | A| .
16: end for
17: end if
18: \xi = \| \pi new  - \pi \| F /\| \pi \| F .
19: \pi = \pi new
20: end while

(2.19)
dE(\pi )

dt
=

\sum 
s\in S,a\in A

\partial E

\partial \pi a
s

d\pi a
s

dt

=
\sum 

s\in S,a\in A

\biggl[ 
(ras  - \tau \phi \prime (\pi a

s/\mu 
a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s

\cdot \mu a
s(\phi 

\prime \prime (\pi a
s/\mu 

a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau 

\biggr] 
=

\sum 
s\in S,a\in A

\mu a
s(\tau \phi 

\prime \prime (\pi a
s/\mu 

a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))

2(w\pi )s

\geq 0,

where we have used the gradient

(2.20)
\partial E

\partial \pi a
s

= (ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s.

As a result, we have shown that dE(\pi )
dt \geq 0. Since E(\pi ) is upper-bounded by \rho \top v\pi \ast ,

E(\pi ) converges. With a closer look, the following theorem states that the limiting
policy is exactly the optimal policy \pi \ast , and the proof is given in subsection 5.5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/1

1/
24

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Theorem 2.6. Suppose that \phi is twice continuously differentiable and strongly
convex and that \phi \prime (x) \rightarrow  - \infty as x \rightarrow 0; then the approximate Newton flow (2.10)
converges globally to the optimal policy \pi \ast .

3. Quadratic convergence. In this section, we study the quadratic conver-
gence of the approximate Newton method at the learning rate \eta = 1, which corre-
sponds to the step size used in the Newton method. Our analysis is inspired by
the results in [8, 37]. The following theorem states the second-order convergence
when \eta = 1, with the proof given in subsection 5.6. For simplicity of notation, we
let f(\pi )sa =  - (ras  - ((I  - \gamma P a)v\pi )s), which is the additive inverse of the advantage
function.

Theorem 3.1. Let

\Phi (\pi ) = \tau 
\sum 

s\in S,a\in A

\mu a
s\phi 

\biggl( 
\pi a
s

\mu a
s

\biggr) 
,

where \phi is twice continuously differentiable and strongly convex and \phi \prime (x)\rightarrow  - \infty as
x\rightarrow 0. Denote the kth policy obtained in Algorithm 2.1 by \pi (k). For \eta = 1, the update
scheme in Algorithm 2.1 can be summarized as

(3.1) \nabla \Phi (\pi (k+1)) - \nabla \Phi (\pi (k)) = - 
\Bigl( 
f(\pi (k)) +\nabla \Phi (\pi (k)) - B\top c(\pi (k))

\Bigr) 
,

where f(\pi )sa =  - (ras  - ((I  - \gamma P a)v\pi )s) and we denote by B the | S| -by-(| S| \times | A| )
matrix such that Bij = 1 for | A| (i - 1) + 1 \leq j \leq | A| i and Bij = 0 otherwise. Then
\pi (k) enjoys a quadratic local convergence to \pi \ast , i.e., limk\rightarrow \infty \pi (k) = \pi \ast and

(3.2)
\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \leq C \bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \bigm\| 2 ,

for some constant C, given that the initial policy \pi (0) is sufficiently close to \pi \ast .

Remark 3.2. It is clear that the quadratic convergence also occurs if \pi (k) is in a
sufficiently small neighborhood of \pi \ast for some k \geq 1 even if \pi (0) is not. The precise
description of this small neighborhood is provided in the proof (see subsection 5.6).
For a special case of this result, where \phi (x) = x logx and \mu a

s = 1/| A| , the algorithm
is reduced to the entropy regularized NPG. A similar local convergence result for
this special case has been obtained in [6], where the proof leverages the particular
structure of Shannon entropy.

Connection with mirror descent. The approximate Newton algorithm (3.1) for
\eta = 1 has a deep connection with mirror descent. The vanilla mirror descent of
 - E(\pi ) with a learning rate \beta and the Bregman divergence associated with \Phi is given
by

\pi (k+1) = argmin
\pi 

\biggl\{ 
 - E(\pi (k)) - \nabla E(\pi (k))\top (\pi  - \pi (k))

+
1

\beta 
(\Phi (\pi ) - \Phi (\pi (k)) - \nabla \Phi (\pi (k))\top (\pi  - \pi (k)))

\biggr\} 
= argmin

\pi 

\biggl\{ \Bigl( 
(diag(w\pi (k))\otimes I| A| )(f(\pi 

(k)) +\nabla \Phi (\pi (k)))
\Bigr) \top 

(\pi  - \pi (k))

+
1

\beta 
(\Phi (\pi ) - \nabla \Phi (\pi (k))\top \pi )

\biggr\} 
,
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where diag(w\pi (k)) is the diagonal matrix with the diagonal equal to w\pi (k) := (I  - 
\gamma P\top 

\pi (k))
 - 1\rho , \otimes denotes the Kronecker product, and I| A| denotes the | A| by | A| identity

matrix. In the last equality, the terms independent of \pi are dropped and the multiplier
term in \nabla E is canceled out using B\pi = B\pi (k) = 1| S| . The first-order stationary
condition of this minimization problem reads

\nabla \Phi (\pi (k+1)) - \nabla \Phi (\pi (k)) = - \beta (diag(w\pi (k))\otimes I| A| )(f(\pi 
(k)) +\nabla \Phi (\pi (k)) - B\top c(\pi (k))).

(3.3)

This suggests that (3.1) can be reinterpreted as an accelerated mirror descent method
with adaptive learning rates \beta s \equiv 1/(w\pi (k))s that depend on the state s and the
current iterate \pi (k). Observation of the connection between mirror descent and the
natural gradient method (which is similar to the approximate Newton method in this
paper when the Shannon entropy is used) is given in [23, 10].

In [40], a variant of mirror descent is proposed based on an implicit update scheme:

(\nabla \Phi (\pi (k+1)))sa  - (\nabla \Phi (\pi (k)))sa = - \beta \prime 
\Bigl( 
f(\pi (k))sa +\nabla \Phi (\pi (k+1))sa  - (c(\pi (k)))s

\Bigr) 
,

(3.4)

with a state-independent learning rate \beta \prime . In the next section, we will compare this
variant with our approximate Newton method (3.1) and show that the approximate
Newton method converges orders of magnitudes faster than the ones in [40].

4. Numerical results.

4.1. Experiment I. We first test the approximate Newton methods derived in
section 2 on the model in [40]. For the sake of completeness, we include the model's
description here. The MDP considered has a state space S of size 200 and an action
space A of size 50. For each state t and action a, a subset Sa

t of S is uniformly
randomly chosen such that | Sa

t | = 20, and P a
tt\prime = 1/20 for any t\prime \in Sa

t . The reward is
given by ras = Ua

s Us, where U
a
s and Us are independently uniformly chosen on [0,1].

The discount rate \gamma is set as 0.99, and the regularization coefficient \tau = 0.001.
In the numerical experiment, we implement Algorithm 2.1 with the KL divergence,

the reverse KL divergence, the Hellinger divergence, and the \alpha -divergence with \alpha =
 - 3. We adopt the uniform prior \mu a

s = 1/| A| to make a fair comparison with the
policy mirror descent (PMD) and the general policy mirror descent (GPMD) method
in [40]. We set the initial policy as the uniform policy, the convergence threshold as
\epsilon tol = 10 - 12, and the learning rate \eta as 1. Figure 1(a) demonstrates that, for these
four tests, the approximate Newton algorithm converges in 7, 7, 7, and 6 iterations,
respectively. In comparison, we apply PMD and GPMD to the same MDP with the
same stopping criterion. As also shown in Figure 1(a), many more iterations are
needed for GPMD and PMD to reach the same precision: GPMD converges in 14822
iterations, and PMD does not reach the desired precision after 3\times 105 iterations. For
the implementation of GPMD and PMD, a quadratic regularization is used, and we
have already tuned the hyperparameters to optimize their performance. The number
of iterations needed for GPMD and PMD to converge accords with the numerical
results provided in [40].

In order to verify the quadratic convergence proved in section 3, we draw the plots
of log | log \| \pi  - \pi \ast \| | in Figure 1(b), Figure 1(c), Figure 1(d), and Figure 1(e), where \pi \ast 

is the final policy and the norm used is the Frobenius norm. A green reference line with
slope log 2 through the origin is plotted for comparison. If the error converges exactly
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(a) Relative change of the pol-
icy using Algorithm 2.1 and
methods from [40].

(b) The policy error in the
training process using KL-
divergence.

(c) The policy error in the train-
ing process using reverse KL-
divergence.

(d) The policy error in the
training process using Hellinger
divergence.

(e) The policy error in the
process of training using α-
divergence with α = −3.

Fig. 1. Figures for the synthetic medium scale MDP. (a) Relative change of the policy
\| \pi new  - \pi \| F /\| \pi \| F during training of Algorithm 2.1 compared with PMD and GPMD in [40], with
the logarithmic scale used for both axes. Notice that Algorithm 2.1 converges in 6--7 iterations to
10 - 12 in all cases, while PMD and GPMD take more than 104 iterations. Here the quadratic regu-
larization is used for PMD and GPMD. (b)--(e) Blue: The convergence of log | log\| \pi  - \pi \ast \| F | in the
training process with the KL divergence, the reverse KL divergence, the Hellinger divergence, and
the \alpha -divergence with \alpha = - 3, respectively. Green: A line through the origin with slope log 2. Com-
parison of the convergence plots with the green reference lines shows a clear quadratic convergence
for Algorithm 2.1. (Color available online.)

at a quadratic rate, the plot of log | log \| \pi  - \pi \ast \| | shall be parallel to the reference
line. The convergence curves approach the reference lines at the end (and are even
steeper than the reference lines in the beginning), demonstrating clearly a quadratic
convergence for all forms of regularization used here.

4.2. Experiment II. Next, we apply the approximate Newton methods derived
in section 2 to an MDP model constructed from the search logs of an online shopping
store, with two different ranking strategies. Each issued query is represented as a
state in the MDP. In response to a query, one can choose one of the two ranking
strategies (actions) to return a ranked list of products shown to the customer. Based
on the shown products, the customer can refine or update the query, thus entering a
new state. The reward at each state-action pair is a weighted sum of the clicks and
purchases resulting from the action. Based on the data collected from two separate
5-week periods for both ranking strategies, we construct an MDP with 135k states
and a very sparse transition tensor P with only 0.01\% nonzero entries. The discount
rate \gamma is set as 0.99, and the regularization coefficient is \tau = 0.001. We use the uniform
prior \mu a

s = 1/| A| in the implementation.
When calculating v\pi by v\pi = (I - \gamma P\pi )

 - 1(r\pi  - \tau h\pi ), we apply the iterative solver
Bi-CGSTAB [36], a widely used numerical method with high efficiency and robustness
for solving large sparse nonsymmetric systems of linear equations [27, 7], to leverage
the sparsity of the transition tensor.
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(a) Relative change of the pol-
icy ‖πnew − π‖F / ‖π‖F in the
training process.

(b) The policy error in the
training process using KL-
divergence.

(c) The policy error in the train-
ing process using reverse KL-
divergence.

(d) The policy error in the
training process using Hellinger
divergence.

(e) The policy error in the
process of training using α-
divergence with α = −3.

Fig. 2. Figures for the industrial-size MDP. (a) Relative change of the policy \| \pi new - \pi \| F /\| \pi \| F
in the training process of Algorithm 2.1. A logarithmic scale is used for the vertical axis. (b)--(e)
Blue: The convergence of log | log\| \pi  - \pi \ast \| F | in the training process with the KL divergence, the
reverse KL divergence, the Hellinger divergence, and the \alpha -divergence with \alpha =  - 3, respectively.
Green: A line through the origin with slope log 2. (Color available online.)

Table 1
Number of approximate Newton iterations and BiCGSTAB steps used in the training process.

Regularizer KL Reverse-KL Hellinger \alpha -divergence (\alpha = - 3)

Approx-Newton iterations 6 6 6 5

Total Bi-CGSTAB steps 110 109 110 83
Average Bi-CGSTAB steps 18.3 18.2 18.3 16.6

In the numerical experiment, we implement Algorithm 2.1 with the KL diver-
gence, the reverse KL divergence, the Hellinger divergence, and the \alpha -divergence with
\alpha =  - 3. We set the initial policy as the uniform policy, the convergence threshold
as \epsilon tol = 10 - 12, and the learning rate \eta as 1. All the tests have fast convergence,
as shown in Figure 2(a), where logarithmic scale is used for the vertical axis. More
specifically, the approximate Newton algorithm using the KL divergence, the reverse
KL divergence, the Hellinger divergence, and the \alpha -divergence with \alpha = - 3 converges
in 6,6,6,5 iterations, respectively. It is worth noticing that even though the size of
the state space S here is some magnitudes larger than the examples in subsection 4.1,
the number of approximate Newton iterations used is about the same. The compar-
ison with GPMD and PMD is not given for this example since they are intractable
to implement due to the high computational cost caused by the large MDP model.

In Table 1, we report the number of BiCGSTAB steps used in the algorithm.
In each approximate Newton iteration, fewer than 20 BiCGSTAB steps are used in
order to find v\pi . For all four regularizers used here, only about 100 BiCGSTAB
steps are needed in the whole training process, thanks to the fast convergence of
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2597

Table 2
Number of approximate Newton iterations and BiCGSTAB steps used in the training process.

Regularizer KL Reverse-KL Hellinger \alpha -divergence (\alpha = - 3)

Approx-Newton iterations 6 6 6 7
Total Bi-CGSTAB steps 370 379 492 452

Average Bi-CGSTAB steps 61.7 63.2 82.0 64.6

the approximate Newton method. As a comparison, the regularized value iteration
(a special case for the method in [9]) typically needs thousands of matrix-vector
multiplication with the MDP transition matrix, since its convergence rate is O(\gamma T ).

As in the previous numerical example, in Figure 2(b), Figure 2(c), Figure 2(d),
and Figure 2(e) we verify the quadratic convergence by comparing the plot of log
| log \| \pi  - \pi \ast \| | with a green reference line through the origin with slope log 2. As the
convergence curves are approximately parallel to the reference lines, this verifies that
the proposed algorithm converges quadratically with all the regularizations in this
example as well.

4.3. Experiment III. In this section, we are concerned with an MDP with
a relatively large action space and state space at the same time. We consider the
state space and action space with size | S| = 10000 and | A| = 300 with (S,A) =
(\{ 0,1, . . . , | S|  - 1\} ,\{ 0,1, . . . , | A|  - 1\} ). Here the transition tensor is defined as P a

tt\prime = 1
when t\prime = (t+ a) mod | S| , t \not = | S|  - 1 or t = t\prime = | S|  - 1, and P a

tt\prime = 0 otherwise. The
reward is set as ras = 1 - \gamma if s= | S|  - 1 and ras = 0 otherwise, where \gamma = 0.99.

Similar to the previous tests, we apply the approximate Newton algorithm with
the KL divergence, the reverse KL divergence, the Hellinger divergence, and the \alpha -
divergence with \alpha = - 3 and the uniform prior \mu a

s = 1/| A| . For this experiment, we use
\tau = 0.01 and \epsilon tol = 10 - 9. Similar to the previous examples, in all 4 tests the algorithm
converges with single-digit approximate Newton iterations, as shown in Figure 3(a).
The quadratic convergence can be verified in the plots of log | log \| \pi  - \pi \ast \| | displayed
in Figure 3(b), Figure 3(c), Figure 3(d), and Figure 3(e). Due to the size and sparsity
of the transition tensor, we also adopt Bi-CGSTAB for calculating v\pi , and the number
of Bi-CGSTAB iterations used is reported in Table 2. Around 400 Bi-CGSTAB steps
are used, which also involves fewer matrix-vector multiplications with the transition
matrix compared to traditional value iteration methods.

5. Proofs.

5.1. Proof of Theorem 2.1.
Proof. Step 1: Expand E(\pi ) and prove the first-order condition (5.2). For any

\epsilon \in \BbbR | S| \times | A| , introduce r\epsilon \in \BbbR | S| and Z\epsilon \in \BbbR | S| \times | S| such that

(5.1) (r\epsilon )s :=
\sum 
a\in A

\epsilon asr
a
s , (Z\epsilon )st :=

\sum 
a\in A

\epsilon as(\delta st  - \gamma P a
st),

where \delta st = 1 if s = t and \delta st = 0 otherwise. Then r\epsilon and Z\epsilon are linear with respect
to \epsilon , which is helpful when expressing the first-order conditions and simplifying the
expansion of E(\pi ).

Now we proceed to prove that for any \epsilon with
\sum 

a\in A \epsilon 
a
s = 0 and | \epsilon as | <\pi a

s , at \pi = \pi \ast 

(5.2) r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z
 - 1
\pi (r\pi  - \tau h\pi ) = 0,

where Dh\pi \in \BbbR | S| \times | S| | A| is the gradient matrix of h\pi with respect to \pi .
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(a) Relative change of the pol-
icy ‖πnew − π‖F / ‖π‖F in the
training process.

(b) The policy error in the
training process using KL-
divergence.

(c) The policy error in the train-
ing process using reverse KL-
divergence.

(d) The policy error in the
training process using Hellinger
divergence.

(e) The policy error in the
process of training using α-
divergence with α = −3.

Fig. 3. Figures for an MDP with relatively large state and action spaces. (a) Relative change
of the policy \| \pi new - \pi \| F /\| \pi \| F in the training process of Algorithm 2.1. A logarithmic scale is used
for the vertical axis. (b)--(e) Blue: The convergence of log | log\| \pi  - \pi \ast \| F | in the training process with
the KL divergence, the reverse KL divergence, the Hellinger divergence, and the \alpha -divergence with
\alpha = - 3, respectively. Green: A line through the origin with slope log 2. (Color available online.)

Since \pi is a policy,
\sum 

a\in A \pi 
a
s = 1 for any s. Thus

(5.3) (Z\pi )st = \delta st  - \gamma 
\sum 
a\in A

\pi a
sP

a
st =

\sum 
a\in A

\pi a
s (\delta st  - \gamma P a

st).

Now consider a policy \pi + \epsilon , i.e.,
\sum 

a\in A \epsilon 
a
s = 0 and \pi a

s + \epsilon as \geq 0; then, thanks to (5.3),
one can obtain

(5.4) Z\pi +\epsilon =Z\pi +Z\epsilon , r\pi +\epsilon = r\pi + r\epsilon ,

where Z\epsilon and r\epsilon are defined in (5.1), i.e., (Z\epsilon )st =
\sum 

a\in A \epsilon 
a
s(\delta st  - \gamma P a

st), (r\epsilon )s =\sum 
a\in A \epsilon 

a
sr

a
s . Leveraging the linearity (5.4), we obtain the expansion:

E(\pi + \epsilon ) = \rho \top Z - 1
\pi +\epsilon (r\pi +\epsilon  - \tau h\pi +\epsilon ) = \rho \top (Z\pi +Z\epsilon )

 - 1(r\pi + r\epsilon  - \tau h\pi +\epsilon )

= \rho \top Z - 1
\pi 

\bigl( 
I  - Z\epsilon Z

 - 1
\pi +Z\epsilon Z

 - 1
\pi Z\epsilon Z

 - 1
\pi 

\bigr) \biggl( 
r\pi + r\epsilon  - \tau h\pi  - \tau Dh\pi \epsilon  - 

1

2
\epsilon \top \tau D2h\pi \epsilon 

\biggr) 
+O(\| \epsilon \| 3)

=E(\pi ) +w\top 
\pi 

\bigl[ 
 - Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi ) + (r\epsilon  - \tau Dh\pi \epsilon )

\bigr] 
+w\top 

\pi 

\biggl( 
 - 1

2
\epsilon \top \tau D2h\pi \epsilon 

\biggr) 
+w\top 

\pi 

\bigl[ 
 - Z\epsilon Z

 - 1
\pi (r\epsilon  - \tau Dh\pi \epsilon ) +Z\epsilon Z

 - 1
\pi Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi )

\bigr] 
+O(\| \epsilon \| 3),

(5.5)

where Dh\pi is a second-order tensor that maps from S \times A to S, and D2h\pi is a
third-order tensor that maps from (S \times A)\otimes 2 to S. With this expansion, one can see
that
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2599

\partial E

\partial \pi a
s

= (ras  - \tau (log\pi a
s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s,

where cs(\pi ) is a multiplier that depends only on s. Then at \pi = \pi \ast ,

\partial E

\partial \pi a
s

= (ras  - \tau (log\pi a
s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s = 0.

Since w\pi = (I  - \gamma P\top 
\pi ) - 1\rho = \rho +

\sum \infty 
i=1 \gamma 

i(P\top 
\pi )ie and all elements of \rho are positive, we

also know that all elements of w\pi are positive. Thus at \pi = \pi \ast ,

ras  - \tau (log\pi a
s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ) = 0.

Multiplying the left-hand side with \epsilon as and taking the sum over a, we obtain

(r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon v\pi )s + cs(\pi )
\sum 
a\in A

\epsilon as = 0 \forall s, \forall \epsilon .

Since
\sum 

a\in A \epsilon 
a
s = 0 for any s and v\pi =Z - 1

\pi (r\pi  - \tau h\pi ), we have

r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z
 - 1
\pi (r\pi  - \tau h\pi ) = 0 \forall \epsilon ,

at \pi = \pi \ast , which proves (5.2).
Step 2: Derive the decomposition (2.3) with the obtained expansion and first-

order condition. With (5.2), one can approximate the second-order term in (5.5) for
\pi near\pi \ast :

w\top 
\pi 

\biggl( 
 - 1

2
\epsilon \top \tau D2h\pi \epsilon 

\biggr) 
+w\top 

\pi 

\bigl[ 
 - Z\epsilon Z

 - 1
\pi (r\epsilon  - \tau Dh\pi \epsilon ) +Z\epsilon Z

 - 1
\pi Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi )

\bigr] 
=

1

2
\epsilon \top \Lambda (\pi )\epsilon  - w\top 

\pi Z\epsilon Z
 - 1
\pi 

\bigl( 
r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi )

\bigr) 
\approx 1

2
\epsilon \top \Lambda (\pi )\epsilon .

By (5.2) and that h is twice continuously differentiable, the approximate Hes-
sian \Lambda converges to the true Hessian as \pi converges to \pi \ast , and their difference
\Lambda (\pi )  - D2E(\pi ) = O(\| \pi  - \pi \ast \| ). Hence, the second-order derivatives of E(\pi ) can
be approximated by

(5.6)
\partial 2E

\partial \pi a
s\partial \pi 

b
t

\approx \Lambda (sa),(tb) = - \tau \delta \{ (sa),(tb)\} 
(w\pi )s
\pi a
s

,

from which we have shown that \Lambda is diagonal.
Step 3: Derive the approximate Newton flow and the policy update scheme with

the obtained decomposition. Using this approximate second-order derivative as a pre-
conditioner, w\pi is canceled out in the policy gradient algorithm, which yields the
gradient flow

d\pi a
s

dt
= \pi a

s (r
a
s  - \tau (log\pi a

s + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .

Adopting the parameterization \pi a
s = exp(\theta as ), we have

(5.7)
d\theta as
dt

= (ras  - \tau (\theta as + 1) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .
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A2600 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

With a learning rate \eta , this becomes

(5.8) \theta as \leftarrow \eta (ras  - \tau  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau + (1 - \eta )\theta as ,

which corresponds to

(5.9) \pi a
s \leftarrow (\pi a

s )
1 - \eta exp(\eta (ras  - \tau  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau ),

and cs(\pi ) is determined by the condition that
\sum 

a\in A \pi 
a
s = 1. Equivalently, we have

\pi a
s \leftarrow 

(\pi a
s )

1 - \eta exp(\eta (ras  - \tau  - [(I  - \gamma P a)v\pi ]s)/\tau )\sum 
a\in A

(\pi a
s )

1 - \eta exp(\eta (ras  - \tau  - [(I  - \gamma P a)v\pi ]s)/\tau )

=
(\pi a

s )
1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )\sum 

a\in A

(\pi a
s )

1 - \eta exp(\eta (ras + (\gamma P av\pi )s)/\tau )
,

where we cancel out the factors independent of a and obtain (2.6). This finishes the
proof.

5.2. Proof of Theorem 2.3.
Proof. Similar to (5.2), we first prove that for any \epsilon with

\sum 
a\in A \epsilon 

a
s = 0 and

| \epsilon as | <\pi a
s , at \pi = \pi \ast 

(5.10) r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z
 - 1
\pi (r\pi  - \tau h\pi ) = 0.

Similar to the proof of Theorem 2.1, by direct calculations, one can get

(5.11)
\partial E

\partial \pi a
s

= (ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))(w\pi )s,

where cs(\pi ) is a multiplier that only depends on s. Since all elements of w\pi are
positive, at \pi = \pi \ast ,

(5.12) (ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi )) = 0.

By multiplying (5.12) with \epsilon as and summing over a, one can obtain

r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z
 - 1
\pi (r\pi  - \tau h\pi ) = 0 \forall \epsilon ,

at \pi = \pi \ast , which proves (5.10). Since the only difference between the functional E(\pi )
defined here and the E(\pi ) in Theorem 2.1 lies in the regularizer h, one can still obtain
the expansion:

E(\pi + \epsilon ) - E(\pi ) - w\top 
\pi 

\bigl[ 
 - Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi ) + (r\epsilon  - \tau Dh\pi \epsilon )

\bigr] 
=w\top 

\pi 

\biggl( 
 - 1

2
\epsilon \top \tau D2h\pi \epsilon 

\biggr) 
 - w\top 

\pi Z\epsilon Z
 - 1
\pi 

\bigl( 
r\epsilon  - \tau Dh\pi \epsilon  - Z\epsilon Z

 - 1
\pi (r\pi  - \tau h\pi )

\bigr) 
+O(\| \epsilon \| 3)

=
1

2
\epsilon \top \Lambda (\pi )\epsilon +O(\| \epsilon \| 2\| \pi  - \pi \ast \| ) +O(\| \epsilon \| 3).

Hence we have D2E(\pi ) - \Lambda (\pi ) =O(\| \pi  - \pi \ast \| ). Using this expansion, one can derive
an approximation for the second-order derivatives:

\partial 2E

\partial \pi a
s\partial \pi 

b
t

\approx \Lambda (sa),(tb) = - \tau \delta \{ (sa),(tb)\} 
(w\pi )s\phi 

\prime \prime (\pi a
s/\mu 

a
s)

\mu a
s

,
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2601

which proves (2.9) and shows that \Lambda is diagonal. The approximate Newton flow thus
becomes

d\pi a
s

dt
= \mu a

s(\phi 
\prime \prime (\pi a

s/\mu 
a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau ,

which proves (2.10), or equivalently,

d(\phi \prime (\pi a
s/\mu 

a
s))

dt
= (ras  - \tau \phi \prime (\pi a

s/\mu 
a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .(5.13)

Let \theta as = \phi \prime (\pi a
s/\mu 

a
s); then

d\theta as
dt

= (ras  - \tau \theta as  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau .

With a learning rate \eta , this becomes

\theta as \leftarrow \eta (ras  - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau + (1 - \eta )\theta as ,

which proves (2.11).

5.3. Proof of Lemma 2.4.
Proof. Let

g(x) = \mu 1\psi (x+ x1) + \cdot \cdot \cdot + \mu k\psi (x+ xk).

Since \psi : (L,+\infty )\rightarrow (0,+\infty ) is decreasing, g(x) is positive and decreasing on (L - 
min1\leq i\leq k xi,+\infty ). When x\rightarrow  - min1\leq i\leq k xi from the right, g(x)\rightarrow +\infty since at least
one of the terms goes to +\infty . If min1\leq i\leq k \{ \psi  - 1( 1

k\mu i
) - xi\} \geq L - min1\leq i\leq kxi, when

x=min1\leq i\leq k \{ \psi  - 1( 1
k\mu i

) - xi\} 

g(x) =

k\sum 
i=1

\mu i\psi 

\biggl( 
min

1\leq j\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu j

\biggr) 
 - xj

\biggr\} 
+ xi

\biggr) 

=

k\sum 
i=1

\mu i\psi 

\biggl( 
min

1\leq j\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu j

\biggr) 
 - xj

\biggr\} 
+ xi  - \psi  - 1

\biggl( 
1

k\mu i

\biggr) 
+\psi  - 1

\biggl( 
1

k\mu i

\biggr) \biggr) 

\geq 
k\sum 

i=1

\mu i\psi 

\biggl( 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) \biggr) 
=

k\sum 
i=1

\mu i \times 
1

k\mu i
= k\times 1

k
= 1.

Since \psi  - 1
\bigl( 

1
k\mu i

\bigr) 
\geq L, we have max1\leq i\leq k

\bigl\{ 
\psi  - 1

\bigl( 
1

k\mu i

\bigr) 
 - xi

\bigr\} 
\geq max1\leq i\leq k

\bigl\{ 
L  - xi

\bigr\} 
=

L - min1\leq i\leq k xi. Then when x=max1\leq i\leq k

\bigl\{ 
\psi  - 1

\bigl( 
1

k\mu i

\bigr) 
 - xi

\bigr\} 
,

g(x) =

k\sum 
i=1

\mu i\psi 

\biggl( 
max
1\leq j\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu j

\biggr) 
 - xj

\biggr\} 
+ xi

\biggr) 
\leq 

k\sum 
i=1

\mu i\psi 

\biggl( 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) \biggr) 
= 1.

By the continuity of g, there exists a solution x to (2.17) on\biggl[ 
max

\biggl\{ 
L - min

1\leq i\leq k
xi, min

1\leq i\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) 
 - xi

\biggr\} \biggr\} 
, max
1\leq i\leq k

\biggl\{ 
\psi  - 1

\biggl( 
1

k\mu i

\biggr) 
 - xi

\biggr\} \biggr] 
,

and the solution is unique by the strict monotonicity of g on (L - min1\leq i\leq k xi,\infty ).
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5.4. Proof of Proposition 2.5.
Proof. By Lemma 2.4 there is a unique solution \~cs to the equation

\sum 
a\in A \mu 

a
s\psi (\~cs+

xa) = 1, where xa is defined as in (2.16). Now update the policy by

\pi a
s \leftarrow \mu a

s\psi (\~cs+xa)=
\sum 
a\in A

\mu a
s\psi 
\Bigl( 
 - \eta 
\tau 
cs(\pi ) - (1 - \eta )\phi \prime (\pi a

s/\mu 
a
s) - 

\eta 

\tau 
(ras - [(I - \gamma P a)v\pi ]s)

\Bigr) 
;

one ensures that \pi a
s \geq 0 and

\sum 
a\in A \pi 

a
s = 1, and that the multiplier cs(\pi ) with this

property is unique.

5.5. Proof of Theorem 2.6.
Proof. In subsection 2.3, we have proved that the approximate Newton flow

d\pi a
s

dt
= \mu a

s(\phi 
\prime \prime (\pi a

s/\mu 
a
s))

 - 1(ras  - \tau \phi \prime (\pi a
s/\mu 

a
s) - [(I  - \gamma P a)v\pi ]s + cs(\pi ))/\tau 

converges globally, so it suffices to show that the limiting policy is optimal. Denote
the limiting policy by \pi \diamond . Since \mu a

s > 0 and (\phi \prime \prime ((\pi \diamond )as/\mu 
a
s))

 - 1 > 0, we have

(5.14) ras  - \tau \phi \prime ((\pi \diamond )as/\mu 
a
s) - [(I  - \gamma P a)v\pi \diamond ]s + cs(\pi 

\diamond ) = 0,

and cs(\pi 
\diamond ) is a multiplier that ensures

\sum 
a\in A(\pi 

\diamond )as = 1. From the theory of regularized
MDP (cf. [9]), we know that the optimal policy \pi \ast is the unique solution to the
Bellman maximal equation:

(5.15) v=max
\pi 

r\pi + \gamma P\pi v - \tau h\pi .

Since v\pi \diamond = (I  - \gamma P\pi \diamond ) - 1(r\pi \diamond  - \tau h\pi \diamond ), we have v\pi \diamond  - \gamma P\pi \diamond v\pi \diamond = r\pi \diamond  - \tau h\pi \diamond , or
equivalently

v\pi \diamond = r\pi \diamond + \gamma P\pi \diamond v\pi \diamond  - \tau h\pi \diamond .

Thus it now suffices to show that \pi \diamond is the optimizer of the constrained maximization
problem max\pi r\pi + \gamma P\pi v\pi \diamond  - \tau h\pi , or in the component form

(5.16) max
\pi 

\sum 
a\in A

(ras + \gamma (P av\pi \diamond )s)\pi 
a
s  - \tau 

\sum 
a\in A

\mu a
s\phi (\pi 

a
s/\mu 

a
s).

Since \phi is convex and \mu is positive, \tau 
\sum 

a\in A \mu 
a
s\phi (\pi 

a
s/\mu 

a
s) is also a convex function in \pi s.

By the theory of convex optimization (cf. [5, chapter 5]), the Karush--Kuhn--Tucker
(KKT) condition is sufficient for the optimality when the objective function is convex,
and the KKT condition for the problem (5.16) is

ras + \gamma (P av\pi \diamond )s  - \tau \phi \prime (\pi a
s/\mu 

a
s) + \lambda s = 0,\sum 
a\in A

\pi a
s = 1,

\pi a
s \geq 0,

where \lambda s is the Lagrange multiplier. Now let \pi = \pi \diamond and \lambda s = cs(\pi 
\diamond ) - (v\pi \diamond )s. From

the first-order condition (5.14), one can directly observe that the KKT condition
above is satisfied, which makes \pi \diamond the optimizer for (5.16) and v\pi \diamond the solution to the
Bellman equation (5.15). Thus v\pi \diamond and \pi \diamond are indeed the optimal value function and
the optimal policy, which closes the proof.
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2603

5.6. Proof of Theorem 3.1.
Proof. The proof is divided into three steps. First, we present some results needed

to prove the local convergence. Using induction in the second step, we then demon-
strate the local convergence of \pi (k) to \pi \ast . Finally, we prove that the convergence rate
is quadratic.

Step 1. Preparation. From the scheme

\nabla \Phi (\pi (k+1)) - \nabla \Phi (\pi (k)) = - 
\Bigl( 
f(\pi (k)) +\nabla \Phi (\pi (k)) - B\top c(\pi (k))

\Bigr) 
,(5.17)

one can obtain the inequality
(5.18)

\| f(\pi (k+1)) - f(\pi (k))\| \geq (f(\pi (k)) - f(\pi (k+1)))\top (\pi (k+2)  - \pi (k+1))

\| \pi (k+2)  - \pi (k+1)\| 

=
 - 
\bigl( 
f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k))

\bigr) \top 
(\pi (k+2)  - \pi (k+1))\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)

\bigm\| \bigm\| 
=
 - 
\bigl( 
f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k+1))

\bigr) \top 
(\pi (k+2) - \pi (k+1))\bigm\| \bigm\| \pi (k+2) - \pi (k+1)

\bigm\| \bigm\| 
=

\bigl( 
\nabla \Phi (\pi (k+2)) - \nabla \Phi (\pi (k+1))

\bigr) \top 
(\pi (k+2)  - \pi (k+1))\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| ,

where we use the constraint B\pi (k+1) = B\pi (k+2) = 1| S| . By directly calculating \nabla 2\Phi 
from the definition of \Phi , we can see that \nabla 2\Phi is diagonal and \Phi is strongly convex
since \phi is strongly convex. As a result, there is some constant \omega > 0 such that

(5.19) (\nabla \Phi (\pi ) - \nabla \Phi (\~\pi ))\top (\pi  - \~\pi )\geq \omega \| \pi  - \~\pi \| 2

for any \pi and \~\pi . Thus from (5.18) one can deduce that

(5.20)

\bigm\| \bigm\| \bigm\| f(\pi (k+1)) - f(\pi (k))
\bigm\| \bigm\| \bigm\| \geq \bigl( \nabla \Phi (\pi (k+2)) - \nabla \Phi (\pi (k+1))

\bigr) \top 
(\pi (k+2)  - \pi (k+1))\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| 

\geq 
\omega 
\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)

\bigm\| \bigm\| 2\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| = \omega 

\bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| \bigm\| .

Let K be a closed set contained in \{ \pi : B\top \pi = 1| S| , \pi 
a
s > 0\} such that K contains a

ball centered at \pi \ast with radius \delta 0 > 0, which is guaranteed to exist since (\pi \ast )as > 0.
Define the conjugate function of \Phi as

\Phi \ast (x) =max
\pi \in \Delta 

\left[  \sum 
s\in S,a\in A

\pi a
sxsa  - \Phi (\pi )

\right]  ,(5.21)

where \Delta = \{ \pi : B\top \pi = 1| S| , \pi 
a
s \geq 0\} . Since \Phi is \omega -strongly convex and \Delta is a

closed convex set, it can be deduced from classical convex analysis results (see [11],
for example) that \nabla \Phi \ast is 1

\omega -Lipschitz continuous, and \pi = \nabla \Phi \ast (\nabla \Phi (\pi )). Moreover,
from the definition of \Phi \ast one can observe that \Phi \ast (x+B\top c) =\Phi \ast (x)+1\top 

| S| c, and thus

\nabla \Phi \ast (x + B\top c) = \nabla \Phi \ast (x). Similar results concerning the conjugate functions have
also been used in [18] and [9]. Thanks to the properties of \Phi \ast , we have the identity

\pi (k+1) =\nabla \Phi \ast (\nabla \Phi (\pi (k+1))) =\nabla \Phi \ast (B\top c(\pi (k)) - f(\pi (k))) =\nabla \Phi \ast ( - f(\pi (k))),(5.22)
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A2604 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

where we have used the update scheme (5.17). Moreover, by the result of Theorem

2.6 we have d(\nabla \Phi (\pi ))
dt = 0 at \pi = \pi \ast , so f(\pi \ast ) +\nabla \Phi (\pi \ast ) =B\top c(\pi \ast ) and

\pi \ast =\nabla \Phi \ast (\nabla \Phi (\pi \ast )) =\nabla \Phi \ast (B\top c(\pi \ast ) - f(\pi \ast )) =\nabla \Phi \ast ( - f(\pi \ast )).(5.23)

Since \nabla \Phi \ast and  - f are continuous on K, it can be concluded from (5.22) and
(5.23) that there exists \delta 1 > 0 such that

\bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| < 1

16 min\{ \omega 
M , \delta 0\} whenever\bigm\| \bigm\| \pi (k)  - \pi \ast 

\bigm\| \bigm\| \leq \delta 1, where M = sup\pi \in K | \nabla 2f(\pi )| .
Step 2. Prove the convergence by induction. Now let \delta = min\{ \omega 

16M , \delta 016 , \delta 1\} .
Assuming that

\bigm\| \bigm\| \pi (0)  - \pi \ast 
\bigm\| \bigm\| < \delta , we proceed to prove that

\bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \leq 1

2 min\{ \omega 
M , \delta 0\} 

for any k by induction. To this end, we first strengthen the induction hypothesis to\bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq \biggl( 1

2
 - 1

2k+2

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
, k= 0,1, . . . , n,\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\| \leq \biggl( 1

2
 - 1

2k+2

\biggr) \bigm\| \bigm\| \bigm\| \pi (k)  - \pi (k - 1)
\bigm\| \bigm\| \bigm\| , k= 1,2, . . . , n.

(5.24)

We first prove (5.24) for n= 1. Note that\bigm\| \bigm\| \bigm\| \pi (0)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq \delta \leq \biggl( 1

2
 - 1

20+2

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
,(5.25)

by the definition of \delta , and that\bigm\| \bigm\| \bigm\| \pi (1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq 1

16
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
\leq 
\biggl( 
1

2
 - 1

21+2

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
,(5.26)

by the definition of \delta 1 and the fact that
\bigm\| \bigm\| \pi (0)  - \pi \ast 

\bigm\| \bigm\| \leq \delta 1. Then\bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| \leq \bigm\| \bigm\| \bigm\| \pi (1)  - \pi \ast 

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \pi (0)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq 1

8
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
.(5.27)

In addition, from (5.25) and (5.26) we know that \pi (0) \in K and \pi (1) \in K. Then by
(5.20), \bigm\| \bigm\| \bigm\| \pi (2)  - \pi (1)

\bigm\| \bigm\| \bigm\| \leq 1

\omega 

\bigm\| \bigm\| \bigm\| f(\pi (1)) - f(\pi (0))
\bigm\| \bigm\| \bigm\| 

=
1

\omega 

\bigm\| \bigm\| \bigm\| \nabla f(\pi (0) + \zeta ((\pi (1)  - \pi (0))))(\pi (1)  - \pi (0))
\bigm\| \bigm\| \bigm\| 

=
1

\omega 

\bigm\| \bigm\| \bigm\| (\nabla f(\pi (0) + \zeta ((\pi (1)  - \pi (0)))) - \nabla f(\pi \ast ))(\pi (1)  - \pi (0))
\bigm\| \bigm\| \bigm\| 

\leq M

\omega 

\bigm\| \bigm\| \bigm\| (\pi (0) + \zeta ((\pi (1)  - \pi (0))) - \pi \ast )(\pi (1)  - \pi (0))
\bigm\| \bigm\| \bigm\| 

\leq M

\omega 
max

\Bigl\{ \bigm\| \bigm\| \bigm\| \pi (1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| ,\bigm\| \bigm\| \bigm\| \pi (0)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \Bigr\} \bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| ,

(5.28)

where we have used the identity \nabla f(\pi \ast )(\pi (1)  - \pi (0)) = 0 and the fact that \pi (1) and
\pi (0) are contained in K. In fact, we can prove that

\nabla f(\pi \ast )(\pi (k+1)  - \pi (k)) = 0 for any k,

as follows. Since f(\pi )sa =  - (ras  - ((I  - \gamma P a)v\pi )s) has a similar form with E(\pi ), we
can directly obtain \nabla f(\pi ):

(\nabla f(\pi ))sa,tb = \lambda sa,t(\pi ) ( - f(\pi )tb + \~c(\pi )t  - \nabla \Phi (\pi )tb) ,(5.29)
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2605

where \lambda sa,t(\pi ) =Z - \top 
\pi \~\rho sa and \~\rho sa is the sth row of I  - \gamma P a. Since f(\pi \ast ) +\nabla \Phi (\pi \ast ) =

B\top c(\pi \ast ), we have

(5.30)

(\nabla f(\pi \ast )(\pi (k+1)  - \pi (k)))sa

=
\sum 

t\in S,b\in A

\lambda sa,t(\pi 
\ast ) ( - f(\pi \ast )tb + \~c(\pi \ast )t  - \nabla \Phi (\pi \ast )tb) (\pi 

(k+1)
tb  - \pi (k)

tb )

=
\sum 

t\in S,b\in A

\lambda sa,t(\pi 
\ast ) (\~c(\pi \ast )t  - c(\pi \ast )t) (\pi 

(k+1)
tb  - \pi (k)

tb )

=
\sum 
t\in S

\Biggl[ \Biggl( 
\lambda sa,t(\pi 

\ast ) (\~c(\pi \ast )t  - c(\pi \ast )t)

\Biggr) \Biggl( \sum 
b\in A

(\pi 
(k+1)
tb  - \pi (k)

tb )

\Biggr) \Biggr] 
= 0,

where the last equality results from the fact that
\sum 

b\in A \pi 
(k+1)
tb =

\sum 
b\in A \pi 

(k)
tb = 1 for

any t. Now from (5.25), (5.26), and (5.28), we obtain\bigm\| \bigm\| \bigm\| \pi (2)  - \pi (1)
\bigm\| \bigm\| \bigm\| \leq M

\omega 
max

\Bigl\{ \bigm\| \bigm\| \bigm\| \pi (1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| ,\bigm\| \bigm\| \bigm\| \pi (0)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \Bigr\} \bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| 

\leq M

\omega 
\cdot 1
16

min
\Bigl\{ \omega 
M
,\delta 0

\Bigr\} \bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| 

\leq 
\biggl( 
1

2
 - 1

21+2

\biggr) \bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| .

(5.31)

Now, assuming that the induction hypothesis (5.24) holds for some n\geq 1, we have\bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (\ast )
\bigm\| \bigm\| \bigm\| \leq \bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (n)

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \pi (n)  - \pi \ast 
\bigm\| \bigm\| \bigm\| 

\leq 

\Biggl( 
n\prod 

k=1

\biggl( 
1

2
 - 1

2k+2

\biggr) \Biggr) \bigm\| \bigm\| \bigm\| \pi (1)  - \pi (0)
\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \pi (n)  - \pi \ast 

\bigm\| \bigm\| \bigm\| 
\leq 1

2n
\cdot 1
8
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
+

\biggl( 
1

2
 - 1

2n+2

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
=

\biggl( 
1

2
 - 1

2n+2
+

1

2n+3

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
=

\biggl( 
1

2
 - 1

2(n+1)+2

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} 
,

(5.32)

which also implies that \pi (n+1) \in K. Now using the same reasoning as (5.28) but with
(\pi (0), \pi (1), \pi (2)) replaced by (\pi (n), \pi (n+1), \pi (n+2)), one obtains\bigm\| \bigm\| \bigm\| \pi (n+2)  - \pi (n+1)

\bigm\| \bigm\| \bigm\| \leq M

\omega 
max

\Bigl\{ \bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| ,\bigm\| \bigm\| \bigm\| \pi (n)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \Bigr\} \bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (n)
\bigm\| \bigm\| \bigm\| .(5.33)

After plugging (5.32) and the induction hypothesis into this inequality, we get\bigm\| \bigm\| \bigm\| \pi (n+2)  - \pi (n+1)
\bigm\| \bigm\| \bigm\| \leq M

\omega 
\cdot 
\biggl( 
1

2
 - 1

2n+3

\biggr) 
min

\Bigl\{ \omega 
M
,\delta 0

\Bigr\} \bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (n)
\bigm\| \bigm\| \bigm\| 

\leq 
\biggl( 
1

2
 - 1

2(n+1)+2

\biggr) \bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (n)
\bigm\| \bigm\| \bigm\| .(5.34)

With (5.32) and (5.34) we have shown that (5.24) holds with n replaced by n+1. As
a result, (5.24) holds for any n. From the second inequality in (5.24), it is clear that
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A2606 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

\pi (k) converges (at least exponentially fast). Denote the limit of \pi (k) by \~\pi for now; we
obtain from (5.17) that

f(\~\pi ) +\nabla \Phi (\~\pi ) - B\top c(\~\pi ) = 0,(5.35)

and thus \~\pi = \pi \ast by Theorem 2.6.
Step 3. Prove the convergence rate is quadratic. Since \pi (k) converges to \pi \ast and

\nabla f is Lipschitz continuous on K, we have

lim
k\rightarrow \infty 

f(\pi (k+1)) - f(\pi (k)) - \nabla f(\pi \ast )
\bigl( 
\pi (k+1)  - \pi (k)

\bigr) \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| = 0.(5.36)

On the other hand, we have

(5.37)

f(\pi (k+1)) - f(\pi (k)) - \nabla f(\pi \ast )
\Bigl( 
\pi (k+1)  - \pi (k)

\Bigr) 
= f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k)) - \nabla f(\pi \ast )

\Bigl( 
\pi (k+1)  - \pi (k)

\Bigr) 
= f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k)),

where we have used (5.30). Combining with (5.36), we arrive at

lim
k\rightarrow \infty 

f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k))\bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| = 0.(5.38)

With the last three lines of (5.18), we obtain

lim
k\rightarrow \infty 

\bigl( 
\nabla \Phi (\pi (k+2)) - \nabla \Phi (\pi (k+1))

\bigr) \top 
(\pi (k+2)  - \pi (k+1))\bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| = 0,(5.39)

by multiplying the unit vector \pi (k+2) - \pi (k+1)

\| \pi (k+2) - \pi (k+1)\| to the fraction in (5.38). Then by (5.19)

we get

0 = lim
k\rightarrow \infty 

\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| 2\bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| = lim

k\rightarrow \infty 

\bigm\| \bigm\| \pi (k+2)  - \pi (k+1)
\bigm\| \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| ,(5.40)

from which we can conclude that \pi (k) converges to \pi \ast superlinearly, i.e.,

(5.41) lim
k\rightarrow \infty 

\| \pi (k+1)  - \pi \ast \| 
\| \pi (k)  - \pi \ast \| 

= 0.

In fact, for any \epsilon (assume \epsilon < 1/2 without loss of generality), there is some k(\epsilon ) such

that for any k > k(\epsilon ),
\| \pi (k+2) - \pi (k+1)\| 
\| \pi (k+1) - \pi (k)\| < \epsilon ; then for any k > k(\epsilon )

\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq \infty \sum 

n=k+1

\bigm\| \bigm\| \bigm\| \pi (n+1)  - \pi (n)
\bigm\| \bigm\| \bigm\| \leq \infty \sum 

n=k+1

\epsilon n - k
\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\| 
\leq \epsilon 

1 - \epsilon 

\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| \bigm\| \leq 2\epsilon 

\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| \bigm\| .

Then \bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \geq \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\|  - \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| 

\geq 
\biggl( 

1

2\epsilon 
 - 1

\biggr) \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| .
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS A2607

For any G> 0, take \epsilon = 1/(2G+ 2); then for any k > k(\epsilon ),

\bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \geq \biggl( 1

2\epsilon 
 - 1

\biggr) \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| = (G+ 1)

\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| >G\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 

\bigm\| \bigm\| \bigm\| ,
(5.42)

which shows that limk\rightarrow \infty 
\| \pi (k) - \pi \ast \| 

\| \pi (k+1) - \pi \ast \| =+\infty and thus (5.41) holds. Now, from (5.17)

and (5.30) we have\bigm\| \bigm\| \bigm\| f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k))
\bigm\| \bigm\| \bigm\| 

=
\bigm\| \bigm\| \bigm\| f(\pi (k+1)) - f(\pi (k)) - \nabla f(\pi \ast )

\Bigl( 
\pi (k+1)  - \pi (k)

\Bigr) \bigm\| \bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( \int 1

0

\Bigl[ 
\nabla f(\pi (k) + t(\pi (k+1)  - \pi (k))) - \nabla f(\pi \ast )

\Bigr] 
dt

\biggr) \Bigl( 
\pi (k+1)  - \pi (k)

\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq \~C

\bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)

\bigm\| \bigm\| \bigm\| 
for some constant \~C, where we used (5.41) and the Lipschitz continuity of \nabla f in the
last equality. Multiplying both sides by \pi (k+2)  - \pi (k+1), and by (5.19) and the last
three lines of (5.18), we have

\omega 
\bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)

\bigm\| \bigm\| \bigm\| 2
\leq 
\Bigl( 
\nabla \Phi (\pi (k+2)) - \nabla \Phi (\pi (k+1))

\Bigr) \top 
(\pi (k+2)  - \pi (k+1))

=
\Bigl( 
f(\pi (k+1)) +\nabla \Phi (\pi (k+1)) - B\top c(\pi (k))

\Bigr) \top 
(\pi (k+2)  - \pi (k+1))

\leq \~C
\bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)

\bigm\| \bigm\| \bigm\| ,
which implies that\bigm\| \bigm\| \bigm\| \pi (k+2)  - \pi (k+1)

\bigm\| \bigm\| \bigm\| \leq \~C
\bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi (k)
\bigm\| \bigm\| \bigm\| ,(5.43)

with some constant \~C. From (5.41), we have

lim
k\rightarrow \infty 

\| \pi (k)  - \pi (k+1)\| 
\| \pi (k)  - \pi \ast \| 

= lim
k\rightarrow \infty 

\| \pi (k+1)  - \pi (k+2)\| 
\| \pi (k+1)  - \pi \ast \| 

= 1.(5.44)

Combining this with (5.43) leads to\bigm\| \bigm\| \bigm\| \pi (k+1)  - \pi \ast 
\bigm\| \bigm\| \bigm\| \leq C \bigm\| \bigm\| \bigm\| \pi (k)  - \pi \ast 

\bigm\| \bigm\| \bigm\| 2(5.45)

for some constant C, which closes the proof.

6. Conclusion and discussion. This paper presents a fast approximate New-
ton method for the policy gradient algorithm with provable quadratic convergence.
The proposed method gives a systematic theory that includes the well-known natural
policy gradient algorithm as a particular case and naturally extends to other regulariz-
ers such as the reverse KL divergence, the Hellinger divergence, and the \alpha -divergence.

With a relatively simple proof, we show the local quadratic convergence of the
proposed approximate Newton method and the global convergence of the approximate
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Newton gradient flow to the optimal solution. The quadratic convergence is confirmed
numerically on both medium and large sparse models. In contrast with mirror descent
type first-order methods (e.g., [40]) that take up to tens of thousands of iterations even
with a manually tuned learning rate, the proposed approximate Newton algorithms
typically converge in fewer than 10 iterations, despite the significant discount rate
(\approx 1) and small regularization coefficient (\approx 0).

For future work, we plan to adapt the technique used here to other gradient-
based algorithms for solving the MDP problems. Other forms of f -divergence can
also be included. An interesting direction is to apply different types of numerical
schemes for ordinary differential equations to the approximate Newton gradient flow
presented in subsection 2.3, which can help obtain a good initial policy such that
the discrete approximate Newton method can achieve fast quadratic convergence.
Another direction is considering continuous-state-space MDP problems by leveraging
function approximation, effective spatial discretization, or model reduction.
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