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a b s t r a c t

This paper presents a new directional multilevel algorithm for solving N-body or N-point
problems with highly oscillatory kernels. We address the problem by first proving that
the interaction between a ball of radius r and a well-separated region has an approximate
low rank representation, as long as the well-separated region belongs to a cone with a
spanning angle of O(1/r) and is at a distance which is at least O(r2) away from the ball.
Based on this representation, our algorithm organizes the high frequency computation
using amultidirectional andmultiscale strategy. Our algorithm is proved tohave anoptimal
O(N logN) computational complexity for any given accuracy when the points are sampled
from a two-dimensional surface.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the rapid solutions to a class of N-body problems. Let {fi}1≤i≤N be a set of N charges located
at points {pi}1≤i≤N in R3, with |pi| ≤ K/2, where | · | is the Euclidean norm and K is a fixed constant. Our goal is to compute
the potentials {ui}1≤i≤N defined by

ui =
N∑
j=1

G(pi, pj) · fj, (1)

where G(x, y) = e2π ı|x−y|/|x − y| is Green’s function of the Helmholtz equation and is usually called the Helmholtz kernel.
Throughout this paper, we use ı to denote the complex number

√
−1.We have scaled the problem such that thewavelength

is equal to one (λ = 1) and thus high frequencies correspond to problems with large computational domains.
Such a computation comes mainly from applications in acoustic and electromagnetic scattering, where the usual partial

differential equations (PDEs) are transformed into boundary integral equations (BIEs) that involve only quantities on the
domain boundary. The advantages of the integral formulations are better condition numbers, convenience of handling the
boundary conditions at infinity, and reduction in the dimensionality of the unknown field. The discrete versions of the
BIEs are, however, dense linear systems which require iterative solution methods. At each step of the iteration, we need to
perform the summation in (1).
In most scattering applications, the complexity of a problem scales with the size of its boundary in terms of the

wavelength. For a prescribed accuracy, the complexity of (1) depends on K because the wavelength λ = 1 in our setup.
Assuming that the boundary surface in R3 is discretized with a fixed number of points per wavelength, the number of
samplesN is then of orderO(K 2). Moreover, since the unknown field in a BIE formulation is supported only on the boundary,
the quadrature points {pi} on the boundary have highly non-uniform distribution.

∗ Corresponding author.
E-mail addresses: engquist@math.utexas.edu (B. Engquist), lexing@math.utexas.edu (L. Ying).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.08.036

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:engquist@math.utexas.edu
mailto:lexing@math.utexas.edu
http://dx.doi.org/10.1016/j.cam.2009.08.036


1852 B. Engquist, L. Ying / Journal of Computational and Applied Mathematics 234 (2010) 1851–1859

Fig. 1. Two sets Y and X that satisfy the directional parabolic separation condition.

Fig. 2. For each box B, its far field is partitioned into multiple wedges. Our algorithm constructs one low rank separated representation for each wedge.
Each resulting representation can be used to accelerate the interaction computation between B and all of the boxes in that wedge.

Direct computation of (1) requires O(N2) operations, which can be very slow for large values of N . During the past
few decades, much attention has been devoted to the development of algorithms which evaluate (1) efficiently without
compromising accuracy (see, for example, [1–3] for methods using fast Fourier transforms, [4,5] for methods based on local
Fourier bases, and [6–8] for FMM-type methods). In this paper, we describe a new directional multilevel algorithm that has
O(N logN) complexity.
The starting point of our approach is a geometric consideration. Suppose Y is a ball of radius r centered at a point c , and X

is the set of all points which are at a distance r2 or greater from the origin and belong to a cone centered at c with spanning
angle 1/r (see Fig. 1 for an illustration). Whenever two sets Y and X obey this geometric configuration, we say that Y and
X satisfy the directional parabolic separation condition. At the heart of our algorithm is a directional low rank property, which
states that the interaction between Y and X via the Helmholtz kernel G(x, y) is approximately of low rank for any fixed
accuracy ε. More precisely, there exist functions {αi(x)} and {βi(y)} of x and y such that for any x ∈ X and y ∈ Y :∣∣∣∣∣G(x, y)− T (ε)∑

i=1

αi(x)βi(y)

∣∣∣∣∣ < ε

where the rank T (ε) has an upper bound that is independent of r .
Our algorithm starts by partitioning the domain recursively using an octree, which is similar to the standard FMM [9].

The top part of the octree that contains the boxes with widths greater than or equal to 1 is called the high frequency regime,
while the bottom part that contains the boxes with widths less than 1 is called the low frequency regime. In the low
frequency regime, the interactions are computed using the kernel-independent FMM [10]. In the high frequency regime,
the computation is organized in a multidirectional way. For a box B of size r , its far field, defined to be the region at least
r2 away from B, is partitioned into a group of wedges that satisfy the directional parabolic separation condition (see Fig. 2).
The calculation of the interactions between B and all of the boxes in a specific wedge can be accelerated using the low
rank representation associated with this wedge. This framework is repeated recursively at all levels to achieve the optimal
O(N logN) complexity.
The presentation of this paper follows [11]. The new contribution, which is presented in Section 2, is an improved

algorithm for the construction of low rank separated representation, which gives better efficiency and stability.

2. Directional low rank property

The main theoretical result of this paper is the directional low rank property. Suppose r ≥
√
3, and let Y = B(0, r) and

X = {x : θ(x, `) ≤ 1/r, |x| ≥ r2}. where ` is a given unit vector and θ(x, `) is the angle between vectors x and `. The
geometric relationship between Y and X is illustrated in Fig. 1.
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Fig. 3. Constructions of the separated representation between X and Y . {bq} are the samples associated with the columns in Ac (Step 2). {ap} are the
samples associated with the columns in Ar (Step 3).

Definition 2.1. Let f (x, y) be a function for x ∈ X and y ∈ Y . We say f (x, y) has a T -term ε-expansion for X and Y if there
exist functions {αi(x), 1 ≤ i ≤ T } and {βi(y), 1 ≤ i ≤ T } such that, for all x ∈ X and y ∈ Y ,∣∣∣∣∣f (x, y)− T∑

i=1

αi(x)βi(y)

∣∣∣∣∣ ≤ ε.
The importance of this definition is that {αi(x)} and {βi(y)} depend only on x and y, respectively. Expansions of this type are
called separated. The following theorem is a precise statement of the directional low rank property.

Theorem 2.2. Suppose ε > 0. For X and Y defined above, there exists a number T (ε), which is independent of r, such that
e2π ı|x−y|/|x− y| has a T (ε)-term ε-expansion.

The proof of Theorem 2.2 can be found in [11]. The message of this theorem is that, for a fixed ε, the number of terms in
an ε-expansion is independent of r , as long as X and Y satisfy the directional parabolic separation condition; i.e., X belongs
to a cone with spanning angle 1/r and it is an order O(r2) distance away from Y .
The ε-expansion for X and Y introduced here is a directional separated representation. It is directional since for a given

direction ` the expansion is valid only for X centered along `. It is separated since the two sets of functions {αi(x)} and
{βi(y)} depend only on x and y, respectively. In [11], we described a randomized algorithm for constructing these functions.
In the rest of this section, we propose an improved version which gives better results in practice. This new version, which
is again based on random sampling, consists of the following steps:

(1) Sample Y randomly by a set of samples {yj}1≤j≤NY with 2 to 3 points per wavelength. Similarly, sample X to obtain a set
of samples {xi}1≤i≤NX . Let A be the matrix defined by Aij = G(xi, yj), for 1 ≤ i ≤ NX and 1 ≤ j ≤ NY . In fact, Theorem 2.2
states that A can be factorized, within error O(ε), into the product of twomatrices, the first containing T (ε) columns and
the second containing T (ε) rows.

(2) We look for a set of T (ε) columns of A that has large T (ε)-dimensional volume. To do this efficiently, we use a version
of the random projection techniques that are known to preserve the volume [12,13]. We define A1 be a submatrix of
A containing a set of N1 randomly selected rows with N1 ≈ 3 · T (ε). The pivoted QR factorization of A1 gives us a
decomposition A1P1 = Q1R1, where P1 is a permutation matrix, Q1 is orthonormal and R1 is upper triangular. Now
identify the diagonal elements of R1 which are less than ε and truncate the associated columns of Q1 and rows of R1.
Denote the resultingmatrices byQ1,c and R1,c . It is clear thatQ1,cR1,c = A1,c , where A1,c is the submatrix of A1 containing
the columns from which the matrix Q1,c is generated. We denote by Ac the submatrix of A that consists of the same
columns. The samples (of Y ) associated with these columns are denoted {bq} (see Fig. 3).

(3) We look for a set of T (ε) rows of A that has large T (ε)-dimensional volume. Let A2 be a submatrix of A containing a set
of N2 randomly selected columns with N2 ≈ 3 · T (ε). After repeating the previous step on A∗2 , we have the factorization
R∗2,rQ

∗

2,r = A2,r where A2,r is a submatrix of A2, Q2,r is orthonormal, and R2,r is upper triangular. We denote by Ar the
submatrix of A that consists of the rows that appeared in A2,r and by {ap} the samples (of X) associated with these rows
(see Fig. 3).

(4) We randomly pick a set of rows S and a set of columns T . SetA3 to be theminor containing the elements in these rows and
columns,Ac,S to be the submatrix ofAc containing the rows in S, andAr,T to be the submatrix ofAr containing the columns
in T . Next, we choose D = (Ac,S)+A3(Ar,T )+, where ( )+ stands for pseudoinverse. We claim that |A− AcDAr | = O(ε).
Such an approximate factorization is often called a pseudoskeleton approximation of A in the literature (see [14]). Notice
that the matrix D has only O(T (ε)) rows and columns. Denoting the entries of D by dqp, we can rewrite the previous
statement as for all xi and yj∣∣∣∣∣G(xi, yj)−∑p,q G(xi, bq) · dqp · G(ap, yj)

∣∣∣∣∣ = O(ε).
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(5) Finally, since {xi} and {yj} sample the sets X and Y with a constant number of points per wavelength, it is reasonable to
expect for any x ∈ X ∩ B(0, K) and y ∈ Y ,∣∣∣∣∣G(x, y)−∑p,q G(x, bq) · dqp · G(ap, y)

∣∣∣∣∣ = O(ε). (2)

This randomprocedureworks quitewell aswewill see in Section 4. The randomprojections reduce the skeleton selection
problem in a high-dimensional space (NX or NY ) to a much smaller dimensional space (O(T (ε))), while at the same time
preserving the volume approximately. Although the pivoted QR factorization is a greedy algorithm, it works well in practice
and selects columns with almost the maximal volume efficiently.
As we can see from Fig. 3, the samples {bq} and {ap} generated above are highly non-uniform. In fact, they have a strong

directional preference and cluster at the parts of Y and X that are close to each other. This is a clear illustration of the
advantage of the directionality: we only need to sample the part close to X (or Y ) densely, and everywhere else, we can use
very sparse grids.
In order to prepare for the discussion of our main algorithm in Section 3, it is useful to introduce several definitions here.

Suppose we have a set of charges {fi} located at points {yi} in Y . Using the representation obtained from the randomized
procedure, we have∣∣∣∣∣∑

i

G(x, yi)fi −
∑
q

G(x, bq)

(∑
p

dqp
∑
i

G(ap, yi)fi

)∣∣∣∣∣ = O(ε).
This states that we can place a set of charges {

∑
p dqp

∑
i G(ap, yi)fi} at points {bq} in order to reproduce the potential

generated by the charges {fi} located at points {yi}. To this end, these charges are called the directional outgoing equivalent
charges of Y in direction `, and the points {bq} are called the directional outgoing equivalent points of Y in direction `. In
addition, we refer to the quantities {

∑
i G(ap, yi)fi} as the directional outgoing check potentials of Y in direction ` and the

points {ap} as the directional outgoing check points of Y in direction `.
Now, let us reverse the roles of X and Y . Suppose we have a set of charges {fi} located at points {xi} in X . For the potential

at y inside Y , we have∣∣∣∣∣∑
i

G(y, xi)fi −
∑
p

G(y, ap)

(∑
q

dqp
∑
i

G(bq, xi)fi

)∣∣∣∣∣ = O(ε).
This states that we can put a set of charges {

∑
q dqp

∑
i G(bq, xi)fi} at points {ap}, and they reproduce the potential generated

by the charges {fi} located at points {xi}. Therefore, we call these charges the directional incoming equivalent charges of Y in
direction ` and the locations {xcq} the directional incoming equivalent points of Y in direction `. Similarly, {

∑
i G(bq, xi)fi} are

called the directional incoming check potentials of Y in direction `, and the locations {bq} are called the directional incoming
check points of Y in direction `.
So far, we have assumed that Y = B(0, r). However, if Y is centered at a different location, the locations {ap} and {bq} can

be obtained through a simple translation since the kernel G(x, y) is translation invariant. Moreover, the matrix D remains
the same. We note that none of these quantities depends on the positions {pi} and {fi} and, therefore, all of them can be
precomputed and used over and over for different evaluations of (1). The representation in (2) is highly storage efficient. For
any fixed r and `, we only need to store {ap}, {bq}, and D, all of which have size O(1) for a fixed accuracy ε.

3. Algorithm description

Without loss of generality, we assume that K = 22L for a positive integer L. Similar to the HF–FMM [7], our main data
structure is an octree. The top level box of width K contains all of the points {pi}. In the rest of this paper, B denotes a box in
the octree andw its width. We say a box B is in the low frequency regime ifw < 1, and B is in the high frequency regime if
w ≥ 1.
In the high frequency regime of the octree, no adaptivity is used; i.e., every nonempty box is further partitioned until the

width of the box is less than 1. In the low frequency regime, a box B is partitioned as long as the number of points in B is
greater than a fixed constant Np. In practice, the value of Np is chosen to optimize the computational complexity.
As we have mentioned already, an FMM algorithm for the Laplace kernel can be easily modified to handle the low

frequency case. For a box B in the low frequency regime, its data structure follows the description of the kernel-independent
FMM in [10]. We modify the notation slightly to accommodate the discussion of the current algorithm.

• {yB,ok }, {f
B,o
k }, {x

B,o
k }, and {u

B,o
k } are, respectively, the outgoing equivalent points, equivalent charges, check points, and

check potentials.
• {yB,ik }, {f

B,i
k }, {x

B,i
k }, and {u

B,i
k } are, respectively, the incoming equivalent points, equivalent charges, check points, and check

potentials.

Now let us consider a box B in the high frequency regime. The near field NB is the union of all of the boxes {A} that satisfy
dist(A, B) ≤ w2. The far field F B is the complement of NB. In light of the preceding discussion, we need to partition F B into
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Fig. 4. The wedges cut the unit sphere into 96 · w2 pieces. From left to right,w = 1, 2, 4.

a group of directional regions, each belonging to a cone with spanning angle O(1/w). We index these wedges using their
center directions {`}. In Fig. 4, we illustrate how these wedges cut the unit sphere into 96 · w2 pieces forw = 1, 2, 4.
This construction has the advantage of ensuring a hierarchical structure of the wedges across adjacent levels. For any

directional index ` of B, one can always find an index `′ of the box with widthw/2 such that the `th wedge of B is contained
in the `′th wedge of each of B’s children.
For each box B and each direction `, we summarize the relevant quantities as follows:

• {yB,o,`k }, {f
B,o,`
k }, {xB,o,`k }, and {u

B,o,`
k } are the outgoing directional equivalent points, equivalent charges, check points, and

check potentials respectively.
• {yB,i,`k }, {f

B,i,`
k }, {xB,i,`k }, and {u

B,i,`
k } are the incoming directional equivalent points, equivalent charges, check points, and

check potentials respectively.

Similar to a standard FMM algorithm, our new algorithm utilizes several translation operators. Following tradition, we
name these operators M2M, M2L, and L2L translations. The translation operators for boxes in the low frequency regime
are detailed already in [10]. The operators in the high frequency regime are more complicated. The main reason is that the
computations are now directional.
For a box B in the high frequency regime, theM2M operator constructs the outgoing directional equivalent charges of B

from the outgoing equivalent charges of B’s children. There are two cases to consider. In the first case, w = 1. The children
boxes have only nondirectional equivalent charges. The M2M operator iterates over all of the directional indices {`} of B,
and the steps for a fixed direction ` are as follows:

(1) Use
⋃
C {y

C,o
k } as source points in B and

⋃
C {f

C,o
k } as source charges. Here the union is taken over all of the children boxes

of B.
(2) Compute {uB,o,`k } at points {x

B,o,`
k }with kernel evaluation, and then obtain {f

B,o,`
k } bymultiplying {uB,o,`k }with the matrix

D associated with B and direction `.

In the second case,w > 1. Now the children boxes have directional equivalent charges as well. The M2M operator again
iterates over all of the directional indices {`} of B. The steps for a fixed direction ` are as follows:

(1) Pick `′, which is a direction associated with the boxes of widthw/2, such that the wedge of B indexed by ` is contained
in the wedge indexed by `′ of each of B’s children. The existence of `′ is ensured by the way we partition F B.

(2) Use
⋃
C {y

C,o,`′
k } as source points in B and

⋃
C {f

C,o,`′
k } as source charges. Here the union is taken over all the children

boxes of B.
(3) Compute {uB,o,`k } at {x

B,o,`
k } with kernel evaluation and then obtain {f

B,o,`
k } by multiplying {uB,o,`k } with the matrix D

associated with B and direction `.

The L2L operator constructs the incoming check potentials of B’s children from the incoming directional check potentials
of B. Again there are two cases to consider. In the first case w = 1. The children boxes have only nondirectional check
potentials. The L2L operator iterates over all of the directional indices {`} of B, and the steps for a fixed direction ` are as
follows:

(1) Compute {f B,i,`k } from {uB,i,`k } by multiplying it with the appropriate Dmatrix.
(2) For each child C of the box B, add to {uC,ik } the potentials evaluated at {x

C,i
k } using {f

B,i,`
k } as the source charges at {yB,i,`k }.

In the second case, w > 1. Now the children boxes have directional equivalent charges. The L2L operator iterates over
all of the directional indices {`} of B. The steps for a fixed direction ` are as follows:

(1) Pick `′, which is a direction associated with the boxes of widthw/2, such that the wedge of B indexed by ` is contained
in the wedge indexed by `′ of each of B’s children. The existence of `′ is ensured by the way we partition F r .

(2) Compute {f B,i,`k } from {uB,i,`k } by multiplying it with the appropriate Dmatrix.
(3) For each child C of the box B, add to {uC,i,`

′

k } the potentials evaluated at {xC,i,`
′

k } using {f B,i,`k } as the source charges at
{yB,i,`k }.
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Fig. 5. A small part of the octree used in the computation. Each rectangular region stands for a box of the octree. The diagram shows how the outgoing
nondirectional equivalent charges from a leaf box have been transformed into incoming nondirectional check potentials at other leaf boxes. Far field
interaction involves directional computation in the high frequency regime.

Finally, the M2L operator is applied to pairs of boxes A and B on the same level of the octree. They need to be on each
other’s interaction lists. Consider ` and `′ such that B falls into the wedge of A indexed by ` while A falls into the wedge of
B indexed by `′. The implementation of the M2L operator contains only one step:

(1) Add to {uB,i,`
′

k } the potentials evaluated at {xB,i,`
′

k } using the charges {f A,o,`k } at points {yA,o,`
′

k }.

To summarize the discussion on the transition operators, we would like to emphasize that all of these operators
involve only kernel evaluation and matrix–vector multiplication with precomputed matrices. Therefore, they are simple
to implement and highly efficient.
Now we are ready to give the overall structure of our new algorithm. It contains the following steps:

(1) Construct the octree. In the high frequency regime, the boxes are partitioned uniformly. In the low frequency regime, a
leaf box contains at most Np points.

(2) Travel up in the octree and visit the boxes in the low frequency regime. For each box B, compute {f B,ok }. This is done using
the low frequency nondirectional M2M operator.

(3) Travel up in the octree and visit the boxes in the high frequency regime. For every such box B, use the high frequency
directional M2M operator to compute {f B,o,`k } for each outgoing direction `. We skip the boxes with width greater than
√
K since their interaction lists are empty.

(4) Travel down in the octree and visit the boxes in the high frequency regime. For every such box B and for each direction
`,
(a) Use the high frequency directional M2L operator to transform {f A,o,`k } of all of the boxes {A} in B’s interaction list and
in direction `. Next, add the result to {uB,i,`k }.

(b) Perform the high frequency directional L2L operator to transform {uB,i,`k } to the incoming check potentials for B’s
children.

Again, we skip the boxes with width greater than
√
K .

(5) Travel down in the octree. For every box B in the low frequency regime,
(a) Transform {f A,ok } of all of the boxes {A} in B’s interaction list via the low frequency nondirectionalM2L operator. Next,
add the result to {uB,ik }.

(b) Perform the low frequency directional L2L operator. Depending on whether B is a leaf box or not, add the result to
the incoming check potentials of B’s children or to the potentials at the original points inside B.

An illustration of the structure of the algorithm is given in Fig. 5. In the description of the algorithm, we have assumed
that the octree is full. This ensures that the M2L operator itself is sufficient to transform outgoing data to incoming data.
When the octree is constructed adaptively, the situation is much more complicated as one needs to keep the so-called U ,
V , W , and X lists for each box B in the low frequency regime. The necessary modifications to include this can be found
in [15,9,10].
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Table 1
The separation rank of the directional separated representation for different choices of requested accuracy ε and box sizew.

w = 1 w = 2 w = 4 w = 8

ε = 1e−4 45 45 45 45
ε = 1e−6 84 82 80 80
ε = 1e−8 122 113 111 111

a

b

Fig. 6. (a) The sphere. (b) The F16 model.

The following theorem from [11] shows that our algorithm has optimal complexity.

Theorem 3.1. Let S be a surface in B(0, 1/2). Suppose that for a fixed K the points {pi, 1 ≤ i ≤ N} are samples of KS, where
N = O(K 2) and KS = {K · p, p ∈ S} (the surface obtained by magnifying S by a factor of K). Then, for any prescribed accuracy,
the proposed algorithm has a computational complexity O(K 2 log K) = O(N logN).

4. Numerical results

Our algorithm is implemented in C++ and all of the computational results in this sections are obtained on a desktop with
a 3.0 GHz CPU. Due to memory constraint, we restrict ourselves to problems which are at most 256 wavelengths.
As we have mentioned earlier, the equivalent positions, along with the matrix D, can be computed for all sizes w and

directions `. This precomputation step takes about 30 min on our desktop even for the highest accuracy ε = 1e−8, and the
resulting data is less than 100 MB.
Let us first study the performance of the randomized procedure presented in Section 2. In Table 1, we list the number of

terms in the separated representation for a box B of widthw and one of its wedges for different accuracy ε. We can see from
the results that the separation rank is bounded by a constant which is independent of the values ofw. This is consistent with
our theoretical estimate in Theorem 2.2. In fact, as w grows, it seems that the separation rank decays slightly. The results
also show that the separation rank seems to increase linearly with respect to log(1/ε).
We use two objects to test the proposed algorithm: a sphere in Fig. 6(a) and an F16model in Fig. 6(b). In our experiments,

the surface of each object is represented by a triangularmesh. The point set {pi} is generated by sampling the triangularmesh
randomly with several points per wavelength.
Before reporting the results, let us summarize some relevant notations: N is the number of points, K is the size of the

problem in terms of the wavelength, ε is the prescribed error threshold such that the final error is to be bounded by a
constant multiple of ε, Ta is the running time of our algorithm in seconds, Td is the running time of the direct evaluation in
seconds, Td/Ta is the speedup factor, and εa is the estimated error of our algorithm.
Next, we study the performance of the proposed algorithm for increasing values of K with the sampling rate fixed at 20

points per wavelength. The results of the sphere (see Fig. 6(a)) are summarized in Table 2, and the ones of the F16 model
are given in Table 3. It is clear from these results that the complexity of our algorithm grows almost linearly with respect to
the number of points. Our algorithm is also quite accurate and stable. The error grows very slowly with K , which indicates
that our low rank separated representation does not introduce numerical stability. This is to a large extent attributed to the
pivoted QR factorization. A rigorous proof of the stability of the randomized construction process is still missing and we are
currently looking at this issue.
The running times in these two tables show that for the same K our algorithm performs much better on the airplane

model than the sphere. The reason is rooted in the directional nature of our algorithm: Since the plane is relatively fat and
has a preferred direction, there are much fewer directions ` to visit in our algorithm.
Finally, we report in Table 4 the performance of the proposed algorithm for different sampling densities. In this test, we

use only the sphere model, since low sampling rates such as 5 point per wavelength cannot be achieved for complicated
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Table 2
Results of the sphere with the Helmholtz kernel.

(K , ε) N Ta (s) Td (s) Td/Ta εa

(16, 1e−4) 3.22e+5 9.50e+1 1.21e+4 1.28e+2 5.08e−4
(32, 1e−4) 1.29e+6 4.28e+2 1.95e+5 4.55e+2 5.91e−4
(64, 1e−4) 5.15e+6 1.97e+3 3.04e+6 1.54e+3 6.30e−4
(16, 1e−6) 3.22e+5 2.42e+2 1.18e+4 4.86e+1 2.92e−6
(32, 1e−6) 1.29e+6 1.21e+3 1.87e+5 1.54e+2 2.12e−6
(64, 1e−6) 5.15e+6 5.95e+3 3.13e+6 5.27e+2 3.70e−6
(16, 1e−8) 3.22e+5 5.11e+2 1.22e+4 2.39e+1 7.16e−8
(32, 1e−8) 1.29e+6 2.62e+3 1.96e+5 7.51e+1 9.19e−8
(64, 1e−8) 5.15e+6 1.25e+4 3.15e+6 2.52e+2 9.14e−8

Table 3
Results of the F16 model with the Helmholtz kernel.

(K , ε) N Ta (s) Td (s) Td/Ta εa

(32, 1e−4) 1.87e+5 5.00e+1 4.17e+3 8.34e+1 6.13e−4
(64, 1e−4) 7.46e+5 2.27e+2 6.58e+4 2.90e+2 6.69e−4
(128, 1e−4) 2.98e+6 1.04e+3 1.03e+6 9.87e+2 6.89e−4
(256, 1e−4) 1.19e+7 5.04e+3 1.64e+7 3.25e+3 7.63e−4
(32, 1e−6) 1.87e+5 1.18e+2 4.06e+3 3.44e+1 2.72e−6
(64, 1e−6) 7.46e+5 6.12e+2 6.56e+4 1.07e+2 3.30e−6
(128, 1e−6) 2.98e+6 3.07e+3 1.06e+6 3.45e+2 4.16e−6
(32, 1e−8) 1.87e+5 2.38e+2 4.07e+3 1.71e+1 6.34e−8
(64, 1e−8) 7.46e+5 1.29e+3 6.64e+4 5.14e+1 8.10e−8
(128, 1e−8) 2.98e+6 6.42e+3 1.06e+6 1.64e+2 6.55e−8

Table 4
Results of different sampling rates of the sphere with K = 32.

Points per λ N Ta (s) Td(s) Td/Ta εa

5 8.06e+4 3.56e+2 7.62e+2 2.14e+0 4.98e−4
10 3.22e+5 3.88e+2 1.21e+4 3.12e+1 5.34e−4
20 1.29e+6 4.28e+2 1.95e+5 4.55e+2 5.91e−4

geometries such as the airplane model in general. The results show that at low sampling rates the running time of the direct
evaluation is greatly reduced, while the time of our algorithm is mostly unaffected since its complexity mostly depends on
the size of the object in wavelengths. At low sampling rates, one needs to work with larger values of K in order to reproduce
the speedup factors reported in Tables 2 and 3.
Though we sample the object with a uniform distribution in these examples, our algorithm handles adaptive sampling.

In fact, the randomly generated points automatically test the adaptivity of our algorithm since these points will cluster at
certainly locations. A closer look at different parts of the running time shows that our algorithm spends most of the time
in the high frequency regime. Therefore, for problems that require adaptive sampling to capture sub-wavelength features,
our algorithm would have virtually the same running time. On the other hand, the running time of direct evaluation will
increase significantly.
Compared with the results reported in [7], our algorithm has a relatively small constant, though both algorithms have

the optimal O(N logN) complexity. Due to its directional nature, our algorithm performs significantly better for elongated
objects such as the airplane model in Table 3. Finally, we would like to point out that our algorithm is more general in the
sense that it can handle other oscillatory kernels such as e2π i|x−y| without any modification (see [11]).
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