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Abstract. Entropy regularized Markov decision processes have been widely used in reinforce-
ment learning. This paper is concerned with the primal-dual formulation of the entropy regular-
ized problems. Standard first-order methods suffer from slow convergence due to the lack of strict
convexity and concavity. To address this issue, we first introduce a new quadratically convexified
primal-dual formulation. The natural gradient ascent descent of the new formulation enjoys global
convergence guarantee and exponential convergence rate. We also propose a new interpolating metric
that further accelerates the convergence significantly. Numerical results are provided to demonstrate
the performance of the proposed methods under multiple settings.
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1. Introduction.

1.1. Setup. Consider an infinite-horizon Markov decision process (MDP) [4, 35, 29]
\scrM = (S,A,P, r, \gamma ), where S is a set of states of the Markov chain and A is a set of
actions. P is a transition probability tensor with Pass\prime being the probability of tran-
sitioning from state s to state s\prime when taking action a, r is a reward matrix with
rsa being the reward obtained when taking action a at state s, and \gamma \in (0,1) is the
discount factor. In this paper, we assume that the state space S and the action space
A are finite.

A policy \pi is a randomized strategy over the actions at each state, i.e., for each
state s, \pi sa is the probability of choosing action a at s. For a given policy, the value
function v\pi \in R| S| is a vector defined as

(v\pi )s :=\BbbE 
\infty \sum 
k=0

\bigl( 
\gamma krskak

| s0 = s
\bigr) 
,(1.1)

where the expectation is taken over all possible trajectories \{ (sk, ak)\} k\geq 0 starting
from s0 = s following the policy \pi . The value function v\pi satisfies the well-known
Bellman equation [4]

(I  - \gamma P\pi )v\pi = r\pi ,(1.2)

where (P\pi )ss\prime :=
\sum 

a\in A \pi saPass\prime , (r\pi )s :=
\sum 

a\in A \pi sarsa, and I is the identity operator.
In a Markov decision problem, the goal is to find the optimal policy \pi \ast such that

v\pi \ast (s)\geq v\pi (s) \forall s\in S,
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 765

for any other policy \pi . The corresponding optimal value function v\pi \ast will also be
referred to as v\ast in this paper. The existence of v\ast and \pi \ast is guaranteed by the
theory of MDP [29].

In recent studies, entropy regularization has been widely used in MDP problems to
encourage exploration and enhance the robustness [27, 10, 12, 2, 1, 24, 7, 42]. With
the entropy regularization, the value function is defined by

(v\pi )s :=\BbbE 
\infty \sum 
k=0

\bigl( 
\gamma k(rskak

 - \tau log\pi skak
) | s0 = s

\bigr) 
,(1.3)

where \tau > 0 is the regularization coefficient. v\pi satisfies the regularized Bellman
equation

(I  - \gamma P\pi )v\pi = r\pi  - \tau h\pi ,(1.4)

where h\pi is a vector in R| S| with each entry (h\pi )s given by the negative Shannon
entropy of (\pi sa)a\in A

(h\pi )s =
\sum 
a\in A

\pi sa log\pi sa.

Here we overload the notation v\pi for the regularized value function and for the rest of
the paper v\pi shall always denote the regularized value function (1.3) unless otherwise
specified. For the entropy regularized MDP (see [12]), there exists a unique optimal
policy \pi \ast , such that

v\ast (s) := v\pi \ast (s)\geq v\pi (s) \forall s\in S,(1.5)

for any other policy \pi .
Without loss of generality, the reward rsa is assumed to be nonnegative throughout

this paper. This can be guaranteed by adding to the rewards a sufficiently large
constant C. Note that such a uniform shift keeps the optimal policy \pi \ast unchanged
and shifts v\ast by a constant C

1 - \gamma .

1.2. Primal-dual formulation. Entropy regularized MDPs enjoy regularized
linear programming formulations, in the primal, dual, and primal-dual forms. In this
paper, we are concerned with the primal-dual formulation (see, for example, [27, 41]):

min
v\in R| S| 

max
u\in R| S| \times | A| 

\sum 
s\in S

esvs +
\sum 

s\in S,a\in A

usa(rsa  - ((I  - \gamma Pa)v)s) - \tau 
\sum 

s\in S,a\in A

usa log(usa/\~us),

where \~us :=
\sum 

a\in A usa. The policy \pi is related to u via the relationship

\pi sa = usa/\~us.

The main advantage of working with the primal-dual formulation is that the transi-
tion matrix Pa appears linearly in the objective function of the primal-dual problem.
This linearity brings an important benefit when a stochastic gradient method is used
to solve the primal-dual formulation: an unbiased estimator of the transition matrix
Pa guarantees an unbiased estimator for the gradient-based update rule. This avoids
the famous double-sampling problem [35] that affects any formulation that performs
a nonlinear operation to the transition matrix Pa. Examples of these affected for-
mulations include the primal formulation, where a nonlinear max or exponentiation
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766 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

operator is applied to Pa, and the dual formulation, where the inverse of I  - \gamma P\pi 

is needed. From this perspective, the primal-dual formulation is convenient in the
model-free setting, where the transition probability tensor can only be estimated
from samples and is thus inherently noisy.

In what follows, we shall simplify the notation by denoting Ka = I  - \gamma Pa and
K\pi = I  - \gamma P\pi . With this simplification, the primal-dual problem can be rewritten
more compactly as

min
v

max
u

\sum 
s

esvs +
\sum 
sa

usa(rsa  - (Kav)s) - \tau 
\sum 
sa

usa log(usa/\~us).(1.6)

Though theoretically appealing, the primal-dual formulation (1.6) often poses
computational challenges because it is a minimax optimization. Newton-type methods
are often impractical to apply because either Pa is only accessible via samples or its
size is too large for practical inversion. A close look at the objective function of
(1.6) suggests that it is linear with respect to both the value function v and the dual
variable u in the radial direction. This lack of strict convexity/concavity makes it
difficult for the first-order methods to converge.

1.3. Contributions. To overcome this difficulty, this paper proposes a quadrat-
ically convexified reformulation of (1.6) that shares the same solution with (1.6) and
an interpolating natural gradient ascent descent method that significantly speeds up
the convergence. More specifically, the main contributions of this paper are listed as
follows:

\bullet We propose a new quadratically convexified primal-dual formulation in which
the linear weighted sum e\sansT v of (1.6) is replaced with a quadratic term \alpha 

2 \| v\| 
2.

The surprising feature is that the solution (v\ast , u\ast ) is unchanged and is inde-
pendent of the hyperparameter \alpha > 0. We prove that the vanilla natural
gradient ascent descent (NGAD) of this quadratically convexified problem
enjoys a Lyapunov function [23] and converges linearly. To the best of our
knowledge, this is the first quadratically convexified primal-dual formulation
of Markov decision problems.

\bullet We propose an interpolating natural gradient ascent descent (INGAD) by
introducing a new interpolating metric for the u variable. The corresponding
Lyapunov function is constructed, and the convergence of the new dynamics
is proved. The acceleration is verified by numerical tests under multiple
settings.

1.4. Related work. Regarding the primal-dual formulation, the first primal-
dual learning algorithm is given in [39]. A follow-up work [38] leverages the binary-tree
data structure and adaptive importance sampling techniques to reduce the complexity.
The convergence result for these two papers is, however, only for the average of all
the policies rather than the policy obtained in the last iteration. In these papers,
no regularization is used in the formulation and no preconditioner is used in the
iterative update scheme. As a comparison, the current paper proves a last-iteration
convergence result with the help of the Lyapunov method and entropy regularization,
and derives an interpolating metric that accelerates the algorithm. Various studies
have been carried out following the primal-dual formulation in [39]. For example, a
modified form with the Q-function is proposed in [20], and the corresponding primal-
dual type algorithm is derived. An extension to the infinite-horizon average-reward
setting is provided in [37], but only the average-case convergence result is given. A
later work [8] further extends this method to the function approximation setting. A
comprehensive review of the primal-dual methods in the average reward setting is
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 767

given in a recent thesis [13], and a generalization to the general utility maximization
formulation is provided. The primal-dual method has also been used to find risk-
sensitive policies, for example, in [43], where a risk function is integrated into the
primal-dual objective through the dual variable. In the optimization literature, the
primal-dual formulation is often called the saddle-point problem: for example, [34]
considers a linear relaxation version of the saddle-point problem in [37] to address
large-scale problems. However, it is worth noting that no (entropy) regularization
is used in the papers mentioned above. Entropy regularization is known to be able
to make the landscape of the optimization problem smoother and is thus a crucial
element of recent linear convergence results [7, 22, 19]. Linear convergence results
can be developed with the presence of preconditioners. For example, in [18], the
authors show that the natural policy gradient method with an exact evaluation of the
gradient has a linear convergence rate after sufficiently many gradient steps, where
the convergence rate relies on an advantage function gap. Without regularization or
preconditioners, gradient-type methods can take exponential time to converge [21].

Besides the primal-dual formulations, the discussion below briefly touches on the
primal and dual formulations. For the entropy regularized Markov decision process,
the primal formulation [41] takes the form

vs = \tau log

\Biggl( \sum 
a

exp

\biggl( 
rsa + \gamma 

\sum 
s\prime Pass\prime vs\prime 

\tau 
,

\biggr) \Biggr) 
,(1.7)

which leads to a value iteration algorithm. Let \varphi (v) : \BbbR | S| \rightarrow \BbbR | S| be the fixed-point
map such that \varphi (v)s = \tau log

\bigl( \sum 
a\in A exp

\bigl( 
\tau  - 1(rsa + \gamma 

\sum 
s\prime \in S Pass\prime vs\prime )

\bigr) \bigr) 
. By calculat-

ing the derivative matrix, we have

\| D\varphi (v)\| \infty =max
s

\sum 
s\prime 

| (D\varphi (v))ss\prime | 

=max
s

\sum 
s\prime 

\gamma 
\sum 

aPass\prime exp
\bigl( 
\tau  - 1(rsa + \gamma 

\sum 
s\prime \prime Pass\prime \prime vs\prime \prime )

\bigr) \sum 
a exp (\tau 

 - 1(rsa + \gamma 
\sum 

s\prime \prime Pass\prime \prime vs\prime \prime ))
= \gamma .

Hence \varphi is a contraction map and converges to a fixed point, which is the solution to
(1.7) at a linear rate O(\gamma T ), where T is the number of iterations. After obtaining the
optimal value function v, the corresponding policy \pi is given by [41]:

\pi sa =
exp

\bigl( 
\tau  - 1

\bigl( 
rsa + \gamma 

\sum 
s\prime \in \scrS Pass\prime vs\prime 

\bigr) \bigr) \sum 
a exp

\bigl( 
\tau  - 1

\bigl( 
rsa + \gamma 

\sum 
s\prime \in \scrS Pass\prime vs\prime 

\bigr) \bigr) = exp

\Biggl( 
\tau  - 1

\Biggl( 
rsa  - 

\sum 
s\prime 

(I  - \gamma Pa)ss\prime vs\prime 

\Biggr) \Biggr) 
.

(1.8)

As a result of the aforementioned double-sampling problem, the value-iteration algo-
rithm based on (1.7) is mainly used in the model-based setting, but due to the nice
properties of \varphi , it appears as an important ingredient in various other algorithms.
For example, in [3] and [30], the authors use the function \varphi as an alternative softmax
operator and form a Q-learning type algorithm, and in [26], the function \varphi appears
as a result of the inner optimization of an entropy regularized trust region--type for-
mulation and is used to form the loss function. In [10], the mean squared regularized
Bellman error is employed to establish the optimization problem.

An alternative way to solve a regularized Markov decision problem in the model-
based setting is the dual formulation [41], in which one seeks a policy \pi that solves
the following optimization problem:

max
\pi 

e\sansT v\pi := e\sansT (I  - \gamma P\pi )
 - 1(r\pi  - \tau h\pi ),(1.9)
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768 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

where e \succ 0 is a weight vector. By the existence and uniqueness of the optimal
value function and optimal policy and the optimality (1.5), it is clear that any choice
of e leads to the optimal policy and the optimal value function. A variety of pol-
icy gradient algorithms can be used to solve the dual problem. Examples include
[40, 36, 15, 32, 31, 33], to mention only a few. Recently, [22] proposes a quasi-Newton
policy gradient algorithm, where an approximate Hessian of the objective function in
(1.9) is used as a preconditioner for the gradient, resulting in a quadratic convergence
rate by better fitting the problem geometry.

The word primal-dual also appears in other types of formulations where the dual
variables do not represent the policy. For example, in [11], the authors apply the nat-
ural policy gradient method to constrained MDPs (CMDPs), where the dual variables
are the multipliers of the constraints. Similarly, in [9], the dual variables come from
the constraints in CMDPs. In this paper, the Lyapunov method is used to give a
theoretical analysis of the natural gradient flow of the method we propose. The idea
of Lyapunov methods has also been applied to discrete time control problems [17, 16]
and to discrete Markovian systems [25]. Recently it has also been used to address the
safety problem, where safety usually appears as additional constraints in the model
[28, 9, 5], and the Lyapunov function is usually defined on the state space and is used
explicitly in the policy iteration or in finding the controller.

1.5. Notation. For a vector x\in \BbbR d, diag(x) denotes a diagonal matrix with size
d\times d and the kth diagonal element being xk, 1 \leq k \leq d. For u \in \BbbR | S| | A| , we denote
the ((s - 1)| A| + a)th element as usa. While us\cdot denotes the vector in \BbbR | A| with the
ath element being usa, u\cdot a denotes the vector in \BbbR | S| with the sth element being usa.
The states of the MDP are typically referred to as s, s\prime , and s\prime \prime , while the actions
are referred to as a and a\prime . The vector with length d and all elements equal to 1
is denoted by 1d, and the subscript d is often omitted when there is no ambiguity.
The d\times d identity matrix is denoted by Id, again with the subscript d often omitted
when there is no ambiguity. For a matrix B, BH denotes its Hermitian transpose. If
a scalar function is applied to a vector, then the result is defined elementwise unless
otherwise specified, e.g., for x\in \BbbR d, exp(x)\in \BbbR d with exp(x)k = exp(xk) for 1\leq k\leq d.

1.6. Contents. The rest of the paper is organized as follows. Section 2 derives
the quadratically convexified primal-dual formulation, proves its equivalence with
(1.6), and shows that the vanilla NGAD of the new formulation converges linearly
using a Lyapunov function method. Section 3 introduces an interpolating metric by
leveraging the flexibility of the underlying metric described by the block diagonal part
of the Hessian. The convergence rate of the INGAD based on this new interpolating
metric is significantly improved. We also provide a Lyapunov-style proof for global
convergence and an analysis of the exponential convergence rate in the last-iterate
sense. Finally, section 4 demonstrates the numerical performance of these proposed
natural gradient methods.

2. Quadratically convexified primal-dual formulation.

2.1. Formulation. In what follows, we use E0(v,u) to denote the objective of
the standard entropy regularized primal-dual formulation

min
v

max
u

E0(v,u) :=
\sum 
s

esvs +
\sum 
sa

usa(rsa  - (Kav)s) - \tau 
\sum 
sa

usa log
usa
\~us
.(2.1)

Since E0(v,u) is linear in v and linear along the radial direction of u, first-order
optimization methods typically experience slow convergence. To address the issue in
the v variable, we propose a quadratically convexified primal-dual formulation:
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 769

min
v

max
u

E(v,u) :=
\alpha 

2

\sum 
s

v2s +
\sum 
sa

usa(rsa  - (Kav)s) - \tau 
\sum 
sa

usa log
usa
\~us
.(2.2)

Though these two formulations look quite different, they are indeed equivalent when
rsa > 0 in the following sense:

\bullet They share the same optimal value function v\ast .
\bullet The optimal dual variable u\ast differs only by an s-dependent scaling factor.

This implies that the optimal policy \pi \ast 
sa \equiv u\ast sa/\~u\ast s are the same.

One geometric way to see this equivalence is to go through the associated primal
formulations

min
v
e\sansT v, s.t. \forall s, vs \geq \tau log

\Biggl( \sum 
a\in A

exp

\biggl( 
rsa + \gamma 

\sum 
s\prime Pass\prime vs\prime 

\tau 

\biggr) \Biggr) 
(2.3)

and

min
v

\alpha 

2
\| v\| 2, s.t. \forall s, vs \geq \tau log

\Biggl( \sum 
a\in A

exp

\biggl( 
rsa + \gamma 

\sum 
s\prime Pass\prime vs\prime 

\tau 

\biggr) \Biggr) 
.(2.4)

Figure 1 illustrates the primal formulations of a randomly generated MDP with | S| =
| A| = 2, where the yellow region represents the feasible set and the red dot represents
the optimal value v\ast . Due to the key assumption rsa \geq 0, the feasible set lies in the
first quadrant. From the contour plots of the objective function e\sansT v and \| v\| 2 shown
by the dotted curves, it is clear that both objective functions are minimized at v\ast 

when constrained to the feasible set.
The following theorem states this equivalence formally, with its proof given in

section 6.

Fig. 1. This plot heuristically demonstrates the correctness of the quadratically convexified
primal-dual formulation on a randomly generated MDP with | S| = | A| = 2. The yellow region
represents the feasible set of the primal problem (2.3), whose boundary corresponds to the solution
to (1.7) and is shown by the blue and green curves. The red dot denotes the optimal value v\ast . The
cyan and orange dotted curves are contour lines of \| v\| 2 and e\sansT v, respectively. It can be seen from
this plot that the solution to the quadratically convexified formulation (2.4) is also v\ast . (Color figure
available online.)
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770 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

Theorem 2.1. For an infinite-horizon discounted MDP with finite state space S,
finite action space A, and nonnegative reward r, we have the following properties:

(a) There is a unique solution (v\ast , u\circ ) to the primal-dual problem:

min
v

max
u

E0(v,u) =
\sum 
s

esvs +
\sum 
sa

usa

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) 
 - \tau 
\sum 
sa

usa log
usa
\~us
,

where v\ast is the optimal value function defined by (1.5) and
u\circ 
sa

\~u\circ 
s

gives the
optimal policy \pi \ast 

sa.
(b) There is a unique solution (v\ast , u\ast ) to the quadratically convexified problem:

min
v

max
u

E(v,u) =
\alpha 

2

\sum 
s

v2s +
\sum 
sa

usa

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) 
 - \tau 
\sum 
sa

usa log
usa
\~us
,

where v\ast is the optimal value function, and
u\ast 
sa

\~u\ast 
s

coincides with the optimal
policy \pi \ast 

sa.

Remark 2.2. With the same method as the one used for the proof of Theorem 2.1,
one can show that the conclusions of Theorem 2.1 still hold if the term \alpha 

2

\sum 
s v

2
s in

the formulation (2.2) is replaced with a strictly increasing convex function of v. The
intuition provided in Figure 1 also applies.

2.2. Natural gradient ascent descent. As mentioned earlier, the gradient-
based methods for the primal-dual formulation (2.1) suffer from slow convergence,
partly due to the linearity of E0(v,u) in v. Since the quadratically convexified scheme
(2.2) gives the same value function v\ast and policy \pi \ast as the original primal-dual prob-
lem (2.1), we work instead with (2.2) and propose an NGAD algorithm.

The first-order derivatives of the new objective function E(v,u) are

\partial E

\partial vs\prime 
= \alpha vs\prime  - 

\sum 
sa

Kass\prime usa, s\prime \in S,

\partial E

\partial usa
=

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) 
 - \tau log usa

\~us
, (s, a)\in S \times A.

(2.5)

The diagonal blocks of the second-order derivatives \partial 2E
\partial v2 and \partial 2E

\partial u2 are

\partial 2E

\partial vs\partial vs\prime 
= \alpha \delta ss\prime , (s, s\prime )\in S \times S,

\partial 2E

\partial usa\partial us\prime a\prime 
= - \tau \delta ss\prime 

\biggl( 
\delta aa\prime 

usa
 - 1

\~us

\biggr) 
, (s, s\prime , a, a\prime )\in S2 \times A2.

(2.6)

Of the two diagonal blocks above, \partial 2E
\partial v2 is easy to invert since it is diagonal with

positive diagonal entries, whereas \partial 2E
\partial u2 is the sum of a diagonal part and a low-rank

part. In the natural gradient dynamics below, we only keep the first part of \partial 2E
\partial u2 ,
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 771

namely  - \tau \delta ss\prime \delta aa\prime /usa (or more compactly  - \tau diag(1/u) in the matrix form). The
resulting NGAD flow is

dvs\prime 

dt
= - 1

\alpha 

\Biggl( 
\alpha vs\prime  - 

\sum 
sa

Kass\prime usa

\Biggr) 
, s\prime \in S,

dusa
dt

= - 1

\tau 
usa

\Biggl( 
\tau log

usa
\~us
 - 

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) \Biggr) 
, (s, a)\in S \times A,

or equivalently,

dvs\prime 

dt
= - 

\Biggl( 
vs\prime  - 

1

\alpha 

\sum 
sa

Kass\prime usa

\Biggr) 
, s\prime \in S,

dusa
dt

= - usa

\Biggl( 
log

usa
\~us
 - 1

\tau 

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) \Biggr) 
, (s, a)\in S \times A.

(2.7)

To analyze its convergence, we start by identifying a Lyapunov function of this
dynamics. By Theorem 2.1 there is a unique solution (v\ast , u\ast ) to problem (2.2). Based
on the solution (v\ast , u\ast ), define

L(v,u) =
\alpha 

2

\sum 
s\in S

| vs  - v\ast s | 2 + \tau 
\sum 

s\in S,a\in A

\biggl( 
u\ast sa log

u\ast sa
usa

+ usa  - u\ast sa
\biggr) 
.(2.8)

The following lemma summarizes some key properties of L(v,u).

Lemma 2.3. L(v,u) \geq 0 is strictly convex, and the unique minimum is (v\ast , u\ast ),
which satisfies L(v\ast , u\ast ) = 0. In addition, any sublevel set of L is bounded.

The next lemma states that L(v,u) is a Lyapunov function of (2.7).

Lemma 2.4. L(v,u) is a Lyapunov function for the dynamics (2.7), i.e., dL
dt \leq 0

when dv
dt and du

dt are defined in (2.7), and the only trajectory of the dynamics (2.7)
satisfying dL

dt = 0 is (v,u) = (v\ast , u\ast ).

The proofs of these two lemmas are given in section 6.

Theorem 2.5. The dynamics of (2.7) converges globally to (v\ast , u\ast ).

Proof. By Lemma 2.3, Lemma 2.4, and the Barbashin--Krasovskii--LaSalle the-
orem [14], the dynamics of (2.7) is globally asymptotically stable, which means the
NGAD dynamics converges globally to (v\ast , u\ast ).

To show the exponential convergence of (2.7), we follow Lyapunov's indirect
method, i.e., analyzing the linearization of (2.7) at (v\ast , u\ast ) and demonstrating that
the real part of the eigenvalues of the corresponding matrix is negative. This result
is the content of Theorem 2.6, with the proof given in section 6.

Theorem 2.6. The dynamics of (2.7) converges at rate O(e - ct) to (v\ast , u\ast ) for
some c > 0.

Below we discuss the implementation of (2.7). By introducing usa = exp(\theta sa),
(2.7) can be rewritten as
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772 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

dvs\prime 

dt
= - 

\Biggl( 
vs\prime  - 

1

\alpha 

\sum 
sa

Kass\prime exp(\theta sa)

\Biggr) 
, s\prime \in S,

d\theta sa
dt

= - 

\Biggl( 
\theta sa  - log

\Biggl( \sum 
a

exp(\theta sa)

\Biggr) 
 - 1

\tau 

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) \Biggr) 
, (s, a)\in S \times A.

(2.9)

With a learning rate \eta > 0, this leads to the update rule

vs\prime \leftarrow (1 - \eta )vs\prime +
\eta 

\alpha 

\sum 
sa

Kass\prime exp(\theta sa), s\prime \in S,

\theta sa\leftarrow (1 - \eta )\theta sa + \eta log

\Biggl( \sum 
a

exp(\theta sa)

\Biggr) 
+
\eta 

\tau 

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime vs\prime 

\Biggr) 
, (s, a)\in S \times A.

(2.10)

The details of the algorithm are summarized in Algorithm 2.1.

3. Interpolating natural gradient method. In subsection 2.2, NGAD is in-
troduced using the diagonal part of \partial 2E

\partial u2 . A natural question is whether the whole

matrix \partial 2E
\partial u2 can be used. Under the matrix notation, \partial 2E

\partial u2 in (2.6) takes the form

\partial 2E

\partial u2
=

\left[   H1

. . .

H| S| 

\right]   , Hs =diag
\bigl( 
(us\cdot )

 - 1
\bigr) 
 - 1

\~us
1| A| 1

\sansT 
| A| , s\in S.(3.1)

Since the Hessian matrix describes the local geometry of the problem, the standard
NGAD in subsection 2.2 can be viewed as approximating the Hessian diagonally,

\partial 2E

\partial u2
\approx 

\left[   diag
\bigl( 
(u1\cdot )

 - 1
\bigr) 

. . .

diag
\bigl( 
(u| S| \cdot )

 - 1
\bigr) 
\right]   ,

Algorithm 2.1. Standard NGAD for quadratically convexified formulation.

Require: the MDP model\scrM = (S,A,P, r, \gamma ), initialization (vinit, \theta init), convergence
threshold \epsilon tol, coefficient \alpha > 0 for the quadratic term in (2.2), regularization
coefficient \tau , learning rate \eta .

1: Initialize the value and parameters v= vinit, \theta = \theta init.
2: Calculate usa = exp(\theta sa), (s, a)\in S \times A.
3: Set q= 1+ \epsilon tol.
4: while q > \epsilon tol do
5: Calculate (vnew)s\prime = (1 - \eta )vs\prime + \eta 

\alpha 

\sum 
saKass\prime usa, s\prime \in S.

6: Update \theta by

\theta sa\leftarrow (1 - \eta )\theta sa + \eta log
\sum 
a

usa +
\eta 

\tau 

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime (vnew)s\prime 

\Biggr) 
, (s, a)\in S \times A.

7: Calculate (unew)sa = exp(\theta sa), (s, a)\in S \times A.
8: Calculate q=max\{ \| vnew  - v\| /\| v\| ,\| unew  - u\| /\| u\| \} .
9: Update (v,u) by v\leftarrow vnew, u\leftarrow unew.
10: end while
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 773

and using its inverse,\left[   diag(u1\cdot ) . . .

diag(u| S| \cdot )

\right]   \equiv 
\left[   \~u1(diag(\pi 1\cdot )) . . .

\~u| S| (diag(\pi | S| \cdot ))

\right]   ,
to precondition the gradient. However, Hs is in fact singular with Null(Hs) =
Span(us\cdot ) and its pseudoinverse reads\left[   \~u1(diag(\pi 1\cdot ) - \pi 1\cdot \pi 

\sansT 
1\cdot )

. . .

\~u| S| (diag(\pi | S| \cdot ) - \pi | S| \cdot \pi 
\sansT 
| S| \cdot )

\right]   .
If we had constructed the natural gradient method with this pseudoinverse, the com-
ponent in the 1| A| direction would not have been updated in the dynamics.

The key idea is that one can interpolate between these two extreme cases; i.e., we
propose to use\left[   \~u1(diag(\pi 1\cdot ) - c\pi 1\cdot \pi 

\sansT 
1\cdot )

. . .

\~u| S| (diag(\pi | S| \cdot ) - c\pi | S| \cdot \pi 
\sansT 
| S| \cdot )

\right]   (3.2)

for 0< c< 1 to precondition the gradient.
Under this interpolating metric (3.2), the new interpolating NGAD (INGAD) is

given by

dvs\prime 

dt
= - 

\Biggl( 
vs\prime  - 

1

\alpha 

\sum 
sa

Kass\prime usa

\Biggr) 
, s\prime \in S,

dus\cdot 
dt

= - \~us
\bigl( 
diag(\pi s\cdot ) - c\pi s\cdot \pi \sansT 

s\cdot 
\bigr) \Biggl( 

log
us\cdot 
\~us
 - 1

\tau 

\Biggl( 
rs\cdot  - 

\sum 
s\prime 

K\cdot ss\prime vs\prime 

\Biggr) \Biggr) 
, s\in S,

(3.3)

where us\cdot \in \BbbR | A| . When c= 0, this dynamics reduces to (2.7).
A Lyapunov function of this dynamics can also be identified. Using the unique

solution (v\ast , u\ast ) to (2.2), we define

Lc(v,u) =
\alpha 

2

\sum 
s

| vs  - v\ast s | 2

(3.4)

+ \tau 

\Biggl( \sum 
sa

\biggl( 
u\ast sa log

u\ast sa
usa

+ usa  - u\ast sa
\biggr) 
+

c

1 - c
\sum 
s

\biggl( 
\~u\ast s log

\~u\ast s
\~us

+ \~us  - \~u\ast s

\biggr) \Biggr) 
,

where the subscript c denotes the hyperparameter in the function. Some key proper-
ties of Lc(v,u) are summarized in the following lemma.

Lemma 3.1. Lc(v,u) is convex, and the unique minimum is Lc(v
\ast , u\ast ) = 0. The

sublevel sets of Lc are bounded.

The next lemma states that Lc(v,u) is a Lyapunov function for (3.3).
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774 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

Lemma 3.2. Lc(v,u) is a Lyapunov function for the dynamics (3.3), i.e., dLc

dt \leq 0
when dv

dt and du
dt are defined by (3.3), and the only trajectory of the dynamics (3.3)

satisfying dLc

dt = 0 is (v,u) = (v\ast , u\ast ).

The proofs of these two lemmas can be found again in section 6.

Theorem 3.3. The dynamics of (3.3) converges globally to (v\ast , u\ast ).

Proof. Similar to Theorem 2.5, by Lemma 3.1, Lemma 3.2, and the Barbashin--
Krasovskii--LaSalle theorem [14], the dynamics of (3.3) is globally asymptotically sta-
ble and hence converges globally to (v\ast , u\ast ).

The local exponential convergence of (3.3) can also be shown with Lyapunov's
indirect method. This result is stated in Theorem 3.4.

Theorem 3.4. The dynamics of (3.3) converges at rate O(e - ct) to (v\ast , u\ast ) for
some c > 0.

Finally, we discuss the implementation of (2.7). By letting usa = exp(\theta sa), (3.3)
can be written as

dvs\prime 

dt
= - 

\Biggl( 
vs\prime  - 

1

\alpha 

\sum 
sa

Kass\prime exp(\theta sa)

\Biggr) 
, s\prime \in S,

d\theta s\cdot 
dt

= - 
\biggl( 
I - c1 exp(\theta s\cdot )

\sansT 

1\sansT exp(\theta s\cdot )

\biggr) \Biggl( 
\theta s\cdot  - log

\sum 
a

exp(\theta sa)1 - 
1

\tau 

\Biggl( 
rs\cdot  - 

\sum 
s\prime 

K\cdot ss\prime vs\prime 

\Biggr) \Biggr) 
, s\in S.

(3.5)

With a learning rate \eta > 0, this becomes

vs\prime \leftarrow (1 - \eta )vs\prime +
\eta 

\alpha 

\sum 
sa

Kass\prime exp(\theta sa), s\prime \in S,

\theta s\cdot \leftarrow \theta s\cdot  - \eta 
\biggl( 
I  - c1 exp(\theta s\cdot )

\sansT 

1\sansT exp(\theta s\cdot )

\biggr) \Biggl( 
\theta s\cdot  - log

\sum 
a

exp(\theta sa)1

 - 1

\tau 

\Biggl( 
rs\cdot  - 

\sum 
s\prime 

K\cdot ss\prime vs\prime 

\Biggr) \Biggr) 
, s\in S.

(3.6)

The details of the algorithm can be found in Algorithm 3.1 below.

4. Numerical results. In this section, we examine the performance of Algo-
rithms 2.1 and 3.1 with several different examples. Subsection 4.1 compares Algo-
rithms 2.1 and 3.1 in a complete-information case where the transition probabilities
and the rewards are known exactly. A comparison with an existing method in [42] is
showcased in this setting as well. The sample-based setting is investigated in subsec-
tion 4.2, where we give an adapted version of INGAD with sample access and test its
performance on two different MDPs.

4.1. Experiments with complete information. Here we test the numerical
performance of the standard natural gradient in Algorithm 2.1 and the interpolating
natural gradient in Algorithm 3.1 in a complete-information situation. The MDP
used is from [42], where | S| = 200, | A| = 50, and the transition probabilities and
rewards are randomly generated. More specifically, the transition probabilities are
set as Pass\prime = 1/20 for any s\prime \in Ssa, where Ssa is a uniformly randomly chosen subset
of S such that | Ssa| = 20, and the reward rsa = UsaUs for (s, a) \in S \times A, where Usa

and Us are independently uniformly sampled from [0,1].
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 775

Algorithm 3.1. INGAD for quadratically convexified formulation.

Require: the MDP model\scrM = (S,A,P, r, \gamma ), initialization (vinit, \theta init),
convergence threshold \epsilon tol, coefficient \alpha > 0 for the quadratic term in (2.2),
regularization coefficient \tau , metric coefficient 0\leq c < 1, learning rate \eta .

1: Initialize the value and parameters v= vinit, \theta = \theta init.
2: Calculate usa = exp(\theta sa), (s, a)\in S \times A.
3: Set q= 1+ \epsilon tol.
4: while q > \epsilon tol do
5: Calculate (vnew)s\prime = (1 - \eta )vs\prime + \eta 

\alpha 

\sum 
saKass\prime usa, s\prime \in S.

6: Update \theta by

\theta s\cdot \leftarrow \theta s\cdot  - \eta 
\biggl( 
I  - c1u\sansT s\cdot 

1\sansT us\cdot 

\biggr) \Biggl( 
\theta s\cdot  - 

\Biggl( 
log
\sum 
a

usa

\Biggr) 
1

 - 1

\tau 

\Biggl( 
rs\cdot  - 

\sum 
s\prime 

K\cdot ss\prime (vnew)s\prime 

\Biggr) \Biggr) 
, s\in S.

7: Calculate (unew)sa = exp(\theta sa), (s, a)\in S \times A.
8: Calculate q=max\{ \| vnew  - v\| /\| v\| ,\| unew  - u\| /\| u\| \} .
9: Update (v,u) by v\leftarrow vnew, u\leftarrow unew.
10: end while

A comparison of Algorithms 2.1 and 3.1 is carried out using the same discount
rate \gamma = 0.99 and hyperparameters (\epsilon tol, \alpha , \tau ) = (1 \times 10 - 5,0.1,0.01). Since both
algorithms are explicit discretizations of the corresponding flow, a sufficiently small
learning rate is needed to ensure convergence. In the tests, the learning rates are set
as \eta = 3 \times 10 - 4 for Algorithm 2.1 and \eta = 8 \times 10 - 3 for Algorithm 3.1, which are
both manually tuned to be close to the largest learning rates such that convergence
is achieved. For Algorithm 3.1, we set c= 0.98.

As a result, Algorithm 2.1 takes 59296 iterations to converge while Algorithm
3.1 takes 2213 iterations, demonstrating that the interpolating metric introduced in
section 3 gives rise to an acceleration of more than 1 magnitude. Plotted in Figures
2(a) and 2(c) are the errors of the value and policy with respect to the ground truth
in the training process, which verifies that Algorithm 3.1 achieves the same precision
more than a magnitude faster than Algorithm 2.1. Moreover, it can be observed from
Figures 2(b) and 2(d) that the Lyapunov function decreases monotonically in both
cases, confirming the theoretical analyses in sections 2 and 3.

Comparison with PMD [42]. Next, we compare the performance of Algorithm
3.1 (INGAD) with an existing method, namely the policy mirror descent (PMD)
method used in [42]. The underlying MDP of the problem is the same as in subsection
4.1. For the hyperparameters of INGAD, we take (Niter, \alpha , c) = (2000,0.1,0.98). In
order to make a fair comparison, the learning rate is set as \eta = 8 \times 10 - 3, and the
regularization coefficient is set as \tau = 0.01 for both methods. For the PMD method,
we take the first 20000 iterations.

It can be seen from Figure 3 that Algorithm 3.1 admits a faster convergence
than PMD. For both the value function and the policy, Algorithm 3.1 achieves a
higher precision in 2000 iterations than PMD with 20000 iterations. The final errors
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(a) Error of the value function and
policy using Algorithm 2.1.

(b) The Lyapunov function.

(c) Error of the value function and
policy using Algorithm 3.1.

(d) The Lyapunov function.

Fig. 2. Comparison of Algorithms 2.1 and 3.1. (a) Convergence of the value and policy during
training of Algorithm 2.1; (b) Lyapunov function (2.8); (c) Convergence of the value and policy during
training of Algorithm 3.1; (d) Lyapunov function (3.4). Blue curves in (a) and (c): The convergence
of \| \pi  - \pi \ast \| F /\| \pi \ast \| F in the training process. Orange curves in (a) and (c): The convergence of
\| v  - v\ast \| 2/\| v\ast \| 2 in the training process. A logarithmic scale is used for all vertical axes. (Color
figure available online.)

(a) Comparison of the error curves
of the value function.

(b) Comparison of the error curves
of the policy function.

Fig. 3. Comparison of Algorithm 3.1 with PMD [42]. (a) Convergence of the value function;
(b) Convergence of the policy. Blue curves: The convergence of \| \pi  - \pi \ast \| F /\| \pi \ast \| F in the training
process. Orange curves: The convergence of \| v - v\ast \| 2/\| v\ast \| 2 in the training process. A logarithmic
scale is used for all vertical axes. (Color figure available online.)

in the value function and policy are approximately (0.0034,0.0025) for INGAD and
(0.39,0.0049) for PMD.

4.2. Experiments with random samples. Finally, we test the INGAD algo-
rithm on the case where the transition probabilities are unknown. In each iteration, a
size-Nb batch of samples is used to estimate the transition probabilities and used for
the INGAD update, as presented in Algorithm 4.1. In order to stabilize the training
dynamics, we use a decaying learning rate starting with \eta init and ending with \eta end.
If \eta init = \eta end, then the algorithm reduces to the constant learning rate case. We first
use the MDP introduced in subsection 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 4.1. INGAD for quadratically convexified formulation (sample version).

Require: the discount rate \gamma , initialization (vinit, \theta init), convergence threshold \epsilon tol,
maximum number of iterations Niter, coefficient \alpha > 0 for the quadratic term in
(2.2), regularization coefficient \tau , metric coefficient 0\leq c < 1, the initial and
the final learning rate (\eta init, \eta end).

1: Initialize the value and parameters v= vinit, \theta = \theta init.
2: Calculate usa = exp(\theta sa), (s, a)\in S \times A.
3: Set q= 1+ \epsilon tol and i= 0.
4: Initialize a buffer \scrB with N transition samples (s, a, s\prime , r).
5: while q > \epsilon tol and i <Niter do
6: Calculate \eta i = (1+ i(Niter\eta end)

 - 1(\eta init  - \eta end)) - 1\eta init.
7: Randomly sample a batch of samples from \scrB with size Nb.

8: Estimate \^K(i) from the samples.

9: Calculate (vnew)s\prime = (1 - \eta )vs\prime + \eta 
\alpha 

\sum 
sa

\^K
(i)
ass\prime usa, s\prime \in S.

10: Update \theta by

\theta s\cdot \leftarrow \theta s\cdot  - \eta 
\Bigl( 
I  - c1u\sansT 

s\cdot 
1\sansT us\cdot 

\Bigr) \Biggl( 
\theta s\cdot  - (log

\sum 
a usa)1

 - 1
\tau 

\Bigl( 
rs\cdot  - 

\sum 
s\prime 

\^K
(i)
\cdot ss\prime (vnew)s\prime 

\Bigr) \Biggr) 
, s\in S.

11: Calculate (unew)sa = exp((\theta new)sa), (s, a)\in S \times A.
12: Calculate q=max\{ \| vnew  - v\| /\| v\| ,\| unew  - u\| /\| u\| \} .
13: Update (v,u) by v\leftarrow vnew, u\leftarrow unew.
14: i\leftarrow i+ 1.
15: end while

(a) Error of the value function and
policy.

(b) The Lyapunov function.

Fig. 4. Performance of Algorithm 4.1 for the MDP problem described in subsection 4.1. (a)
Convergence of the value and policy during training of Algorithm 4.1; blue curve: the convergence
of \| \pi  - \pi \ast \| F /\| \pi \ast \| F in the training process; orange curve: the convergence of \| v  - v\ast \| 2/\| v\ast \| 2 in
the training process. (b) Lyapunov function (3.4). A logarithmic scale is used for all vertical axes.
(Color figure available online.)

In this experiment, we adopt (\gamma ,Niter,Nb, \alpha , \tau , c) = (0.9,12000,1\times 105,0.1,0.1,0.9)
and (\eta init, \eta end) = (0.001,0.001). Altogether 1\times 108 samples are used in the training
process.

It can be seen from Figure 4 that the approximate value function and policy given
by Algorithm 4.1 converge to the ground truth and oscillate around it at the final
stage. The final errors in the value function and policy are approximately 0.015 and
0.030, respectively. It can also be seen from Figure 4(b) that the Lyapunov function
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778 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

mostly decreases in the training process even though the transition probabilities used
are just unbiased estimators of the ground truth.

Experiment with the FrozenLake environment. In this part, the MDP we
consider is from the FrozenLake environment (see [6]). The environment describes the
problem where the player aims to walk on a frozen lake from one corner to another
without falling into the holes. In the example we use below, the map is an 8 \times 8
square grid with 10 randomly generated holes. Therefore, the size of the state space
is 64, and there are 4 actions, corresponding to the 4 directions one can choose at
each position. In order to model the low-friction property of ice, the transition is
not deterministic. More specifically, the agent has a 1/3 probability of moving in the
intended direction or the two perpendicular directions. An illustration of the lake
map is given in Figure 5.

In the numerical experiment, we set (\gamma ,Niter,Nb, \alpha , \tau , c) = (0.9,80000,2000,0.1,
0.1,0.9) and (\eta init, \eta end) = (0.002,0.0002). The buffer size N and the batch-size Nb

are chosen as 2\times 106 and 2000, respectively.
Similar to the previous example, both the error of the value function and the

error of the policy function reduce in the training process, indicating the effectiveness
of Algorithm 4.1 given sample access to the MDP (see Figure 6). The oscillations
represent the randomness in the samples gathered in each batch. The final errors for
the value and policy are 0.012 and 0.026, respectively. The Lyapunov function also
shows a clear decreasing trend along the training process.

Fig. 5. Map of the FrozenLake environment with size 8\times 8 and 10 randomly generated holes.
The green and the orange boxes represent the starting position and the target position, respectively.
The blue area represents the positions with ice, while the gray spots indicate the positions of holes.
(Color figure available online.)

(a) Error of the value function and
policy.

(b) The Lyapunov function.

Fig. 6. Performance of Algorithm 4.1 for the 8\times 8 FrozenLake problem. (a) Convergence of the
value and policy during training of Algorithm 4.1; blue curve: the convergence of \| \pi  - \pi \ast \| F /\| \pi \ast \| F
in the training process; orange curve: the convergence of \| v  - v\ast \| 2/\| v\ast \| 2 in the training process.
(b) Lyapunov function (3.4). A logarithmic scale is used for all vertical axes. (Color figure available
online.)
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 779

5. Conclusion and discussion. In this paper, we focused on the primal-dual
formulation of entropy regularized Markov decision problems. We proposed a quadrat-
ically convexified primal-dual formulation that makes the landscape of the objective
function smoother and enables faster numerical algorithms. We proved the equivalence
of the quadratically convexified primal-dual formulation with the original primal-dual
formulation. Leveraging the enhanced convexity of the objective function, we pro-
posed an NGAD method and proved its convergence properties using the Lyapunov
methods. We further introduced an INGAD algorithm that accelerates convergence
significantly. The efficiency and robustness of the proposed algorithms are demon-
strated through multiple numerical experiments.

For future directions, one can potentially extend the convergence analysis here to
the finite sample case with standard statistical methods. Another interesting direc-
tion to explore is the application of other optimization techniques to the convexified
formulation proposed here.

6. Proofs.

6.1. Proof of Theorem 2.1. First, we show that there exists a unique solution
to (2.1). By [12], there exist a unique optimal policy \pi \ast and a unique optimal value
function v\ast = v\pi \ast such that (1.5) or, equivalently, (1.7) and (1.8) hold. From [41], we
know that this optimal value function and policy (v\ast , \pi \ast ) also yield a solution (v\ast , u\circ )
to the primal-dual problem by u\circ sa = \pi \ast 

sa(K
 - \sansT 
\pi \ast e)s. Also from [41] we know that any

solution to the primal-dual formulation (2.1) satisfies v = v\ast , usa/\~us = \pi \ast 
sa, (s, a) \in 

S\times A, and \~u=K - \sansT 
\pi \ast e, which combined with the uniqueness of (v\ast , \pi \ast ) shows that the

solution (v\ast , u\circ ) to (2.1) is unique.
Next, we show that (v\ast , u\ast ) satisfies the first-order condition of (2.2), where

u\ast sa :=
ws

\~u\circ s
u\circ sa, w := \alpha K - \sansT 

\pi \ast v\ast .(6.1)

The first-order condition of (2.1) gives

es\prime  - 
\sum 
sa

Kass\prime u
\circ 
sa = 0 \forall s\prime \in S,

rsa  - 
\sum 
s\prime 

Kass\prime v
\ast 
s\prime  - \tau log(u\circ sa/\~u\circ s) = 0 \forall (s, a)\in S \times A.

(6.2)

Since es\prime =
\sum 

saKass\prime u
\circ 
sa =

\sum 
s

\sum 
aKass\prime \pi 

\ast 
sa\~u

\circ 
s =

\sum 
sK\pi \ast ss\prime \~u

\circ 
s, we have \~u\circ =K - \sansT 

\pi \ast e=
e+

\sum \infty 
k=1 \gamma 

k(P\sansT 
\pi \ast )ke, and thus \~u\circ s \geq es > 0 for all s \in S. Similarly, ws \geq \alpha v\ast s for all

s\in S since w= \alpha K - \sansT 
\pi \ast v\ast . By (1.8), it is also known that \pi \ast 

sa > 0 for all (s, a)\in S\times A,
so (r\pi \ast  - \tau h\pi \ast )s > 0 for all s\in S since r is nonnegative. Again by an expansion ofK - 1

\pi \ast ,
one can show that v\ast s =K - 1

\pi \ast (r\pi \ast  - \tau h\pi \ast )\geq (r\pi \ast  - \tau h\pi \ast )s > 0. Hence u\ast sa =
ws

\~u\circ 
s
u\circ sa > 0

is well defined. In addition, \~u\ast =w and

u\ast sa
\~u\ast sa

=
u\circ sa
\~u\circ s

= \pi \ast 
sa.(6.3)

As a result,

rsa  - 
\sum 
s\prime 

Kass\prime v
\ast 
s\prime = \tau log

u\circ sa
\~u\circ s

= \tau log
u\ast sa
\~u\ast sa

\forall (s, a)\in S \times A.(6.4)
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780 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

Moreover, one can show that

\alpha v\ast s\prime =K\sansT 
\pi \ast w=

\sum 
s

K\pi \ast ss\prime 
u\ast sa
\pi \ast 
sa

=
\sum 
s

\Biggl( \sum 
a

Kass\prime \pi 
\ast 
sa

\Biggr) 
u\ast sa
\pi \ast 
sa

=
\sum 
sa

Kass\prime u
\ast 
sa \forall s\prime \in S.

(6.5)

Combining (6.4) and (6.5), we conclude that (v\ast , u\ast ) is a solution to

\alpha vs\prime  - 
\sum 
sa

Kass\prime usa = 0 \forall s\prime \in S,

rsa  - 
\sum 
s\prime 

Kass\prime vs\prime  - \tau log
usa
\~us

= 0 \forall (s, a)\in S \times A.
(6.6)

This is the first-order stationary condition for the problem (2.2).
Finally, we show that (v\ast , u\ast ) is the unique solution to (6.6). Assume that (v1, u1)

and (v2, u2) are both solutions to (6.6). If v1 \not = v2, then E(v1, u1) < E(v2, u1) and
E(v2, u2) < E(v1, u2) since for any u, E(v,u) is strictly convex in v. On the other
hand, for any v, E(v,u) is concave in u (see, for example, [27] or [41]). So E(v1, u1)\geq 
E(v1, u2) and E(v2, u2)\geq E(v2, u1) and

E(v1, u1)\geq E(v1, u2)>E(v2, u2)\geq E(v2, u1)>E(v1, u1),

which is a contradiction, so we must have v1 = v2 instead. By the second equation in
(6.6),

u1sa
\~u1s

= exp

\Biggl( 
\tau  - 1

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime v
1
s\prime 

\Biggr) \Biggr) 
= exp

\Biggl( 
\tau  - 1

\Biggl( 
rsa  - 

\sum 
s\prime 

Kass\prime v
2
s\prime 

\Biggr) \Biggr) 
=
u1sa
\~u1s

;

thus \pi 1 = \pi 2, where \pi 1
sa =

u1
sa

\~u1
s
, \pi 2

sa =
u2
sa

\~u2
s
. Since (\pi 1, v1) = (\pi 2, v2), by the first

equation in (6.6),

\~u1 = \alpha K - \sansT 
\pi 1
v1 = \alpha K - \sansT 

\pi 2
v2 = \~u2.

As a result,

u1sa = \~u1s \cdot 
u1sa
\~u1s

= \~u2s \cdot 
u2sa
\~u2s

= u2sa \forall (s, a)\in S \times A,

and (v1, u1) = (v2, u2). Hence the solution to (6.6) is unique. Therefore, (v\ast , u\ast ) is
the unique solution to (6.6). By (6.3), the policy yielded by u\ast coincides with the
optimal policy \pi \ast , which finishes the proof.

6.2. Proof of Lemma 2.3. From the definition of L we know that \partial 2L
\partial usa\partial vs\prime 

= 0.
Moreover,

\partial 2L

\partial vs\partial vs\prime 
= \alpha \delta ss\prime ,

\partial 2L

\partial usa\partial us\prime a\prime 
= \tau \delta (s,a),(s\prime ,a\prime )

u\ast sa
u2sa

, (s, s\prime , a, a\prime )\in S2 \times A2,

which means that the Hessian matrix of L is a diagonal matrix with positive diagonal
elements on the domain \BbbR | S| \times \BbbR | S| \times | A| 

+ . Hence L is strictly convex. Since the first-
order condition

\partial L

\partial vs
= \alpha (vs  - v\ast s ) = 0,

\partial L

\partial usa
= \tau 

\biggl( 
1 - u\ast sa

usa

\biggr) 
= 0, (s, a)\in S \times A,(6.7)
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 781

has a unique solution (v,u) = (v\ast , u\ast ), it is also the unique global minimum of L. Let

\varphi s(x) =
1

2
\alpha | x - v\ast s | 2, \psi sa(x) = \tau (u\ast sa logu

\ast 
sa/x+ x - u\ast sa).

By the calculation above, one can also show that \varphi s and \psi sa are strictly convex and
nonnegative. Moreover, since limx\rightarrow +\infty \psi sa(x) =+\infty , we haveM(C) =maxsa sup\{ x>
0 | \psi sa(x)\leq C\} <+\infty . As a result, the sublevel set

\{ (v,u) | L(v,u)\leq C\} \subset \{ (v,u) | | vs\prime  - v\ast s\prime | 
\leq 
\sqrt{} 
2C/\alpha ,0<usa <M(C), s\prime \in S, (s, a)\in S \times A\} 

is bounded.

6.3. Proof of Lemma 2.4. We first prove the following lemma.

Lemma 6.1. Define H : \BbbR | A| 
+ \rightarrow \BbbR by H(z) =

\sum 
a za log za  - \=z log \=z, where \=z =\sum 

a za, then H is convex. Moreover, (z1  - z2) \cdot (\nabla H(z1)  - \nabla H(z2)) \geq 0, and the
equality is achieved if and only if z2 = cz1 for some c > 0.

Proof. The second-order derivatives of H read \partial 2H
\partial za\partial za\prime 

= \delta aa\prime 
za
 - 1

\=z . By the Cauchy--

Schwarz inequality, for any x\in \BbbR | A| 

\sum 
aa\prime 

xa
\partial 2H

\partial za\partial za\prime 
xa\prime =

\sum 
aa\prime 

xa

\biggl( 
\delta aa\prime 

za
 - 1

\=z

\biggr) 
xa\prime =

\sum 
a

x2a
za
 - 1

\=z

\Biggl( \sum 
a

xa

\Biggr) 2

\geq 0.

Hence the Hessian matrix of H is positive semidefinite and H is convex. By convexity
(z1 - z2) \cdot (\nabla H(z1) - \nabla H(z2))\geq 0. Suppose now that equality holds. If z1 = z2, then
clearly z2 = cz1 for c= 1. If z1 \not = z2, let h(t) =H(z1+ t(z2 - z1)); then h is also convex
and h\prime (0) = (z2  - z1) \cdot \nabla H(z1) = (z2  - z1) \cdot \nabla H(z2) = h\prime (1), so h\prime (t) = h\prime (0) for any
t\in [0,1], and thus

0 = h\prime \prime (0) = (z2  - z1)\sansT \nabla 2H(z1)(z2  - z1).

Hence from the equality condition of the Cauchy--Schwarz inequality, we conclude
z2  - z1 = \~cz1 and thus z2 = cz1 for some c, and we have c > 0 since z1, z2 \in \BbbR | A| 

+ .

Proof of Lemma 2.4. By Theorem 2.1, (v\ast , u\ast ) is also the unique solution to (6.6),
so

\alpha v\ast s\prime  - 
\sum 
sa

Kass\prime u
\ast 
sa = 0, s\prime \in S,\Biggl( 

rsa  - 
\sum 
s\prime 

Kass\prime v
\ast 
s\prime 

\Biggr) 
 - \tau log u

\ast 
sa

\~u\ast s
= 0, (s, a)\in S \times A.

(6.8)

Subtracting this from the dynamics (2.7) leads to

dvs\prime 

dt
= - 

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime (usa  - u\ast sa)

\Biggr) 
, s\prime \in S,

dusa
dt

= - usa

\Biggl( \biggl( 
log

usa
\~us
 - log

u\ast sa
\~u\ast s

\biggr) 
+

1

\tau 

\sum 
s\prime 

Kass\prime (vs\prime  - v\ast s\prime )

\Biggr) 
, (s, a)\in S \times A.

(6.9)
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782 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

Taking the derivative of L gives

dL

dt
= - \alpha 

\sum 
s\prime 

(vs\prime  - v\ast s\prime )

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime (uas  - u\ast as)

\Biggr) 

 - \tau 
\sum 
sa

usa  - u\ast sa
usa

\cdot usa

\Biggl( \biggl( 
log

usa
\~us
 - log

u\ast sa
\~u\ast s

\biggr) 
+

1

\tau 

\sum 
s\prime 

Kass\prime (vs\prime  - v\ast s\prime )

\Biggr) 

= - \alpha 
\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)
\biggl( 
log

usa
\~us
 - log

u\ast sa
\~u\ast s

\biggr) 
,

(6.10)

where we have used (6.7). By Lemma 6.1,\sum 
sa

(usa  - u\ast sa)(logusa/\~us  - logu\ast sa/\~u
\ast 
s) =

\sum 
s

(us  - u\ast s) \cdot (\nabla H(us) - \nabla H(u\ast s))\geq 0,

where H is defined in Lemma 6.1. Therefore,

 - \alpha 
\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)
\biggl( 
log

usa
\~us
 - log

u\ast sa
\~u\ast s

\biggr) 
\leq 0.

By Lemma 6.1 the equality holds only when v = v\ast and usa = csu
\ast 
sa for cs > 0,

(s, a)\in S \times A. Let

\scrR =

\biggl\{ 
(v,u) |  - \alpha 

\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)(logusa/\~us  - logu\ast sa/\~u
\ast 
s) = 0

\biggr\} 
;

then \scrR = \{ (v,u) | v = v\ast , usa = csu
\ast 
sa, cs \in \BbbR +, s \in S\} . We proceed to prove that

the only trajectory of (6.9) in \scrR is (v,u) = (v\ast , u\ast ). Since v = v\ast for any (v,u) \in \scrR ,
dvs\prime 
dt = 0 for any s\prime \in S. The equality

0 =
\sum 
sa

Kass\prime (usa  - u\ast sa) =
\sum 
sa

Kass\prime (cs  - 1)u\ast sa

=
\sum 
sa

Kass\prime (cs  - 1)\~u\ast s\pi 
\ast 
sa =

\sum 
s

K\pi \ast ss\prime (cs  - 1)\~u\ast s
(6.11)

means that, for any point (v,u) on the trajectory of (6.9) in \scrR , K\sansT 
\pi \ast ((c - 1)\~u\ast ) = 0.

Here (c  - 1)\~u\ast is the vector with length | S| whose sth element is (cs  - 1)\~u\ast s. Thus
cs = 1 for any s\in S, and the trajectory is a single point (v,u) = (v\ast , u\ast ).

6.4. Proof of Theorem 2.6. The linearized dynamic of the standard natural
gradient (2.7) is

dvs\prime 

dt
= - 

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime (usa  - u\ast sa)

\Biggr) 
, s\prime \in S,

dusa
dt

= - u\ast sa

\Biggl( 
1

\tau 

\sum 
s\prime 

Kass\prime (vs\prime  - v\ast s\prime ) +
usa  - u\ast sa
u\ast sa

 - \~us  - \~u\ast s
\~u\ast s

\Biggr) 
, (s, a)\in S \times A.

(6.12)

Define matrix \~K by \~K(s - 1)| A| +a,s\prime = Kass\prime , and let \delta v = v  - v\ast , \delta u = u - u\ast . Then
(6.12) becomes

d

dt

\biggl[ 
\delta v
\delta u

\biggr] 
= - 

\biggl[ 
I| S|  - 1

\alpha 
\~K\sansT 

1
\tau diag(u

\ast ) \~K diag(u\ast )M

\biggr] \biggl[ 
\delta v
\delta u

\biggr] 
,(6.13)
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 783

where diag(u\ast ) is a diagonal matrix whose ((s - 1)| A| + a)th diagonal element is u\ast sa.
Here M is a block-diagonal matrix defined as

M =

\left[   M1

. . .

M| S| 

\right]   , Ms =diag
\bigl( 
(u\ast s)

 - 1
\bigr) 
 - 1

\~u\ast s
1| A| 1

\sansT 
| A| , s\in S,(6.14)

where diag
\bigl( 
(u\ast s)

 - 1
\bigr) 
is a diagonal | A| \times | A| matrix with the ath diagonal element equal

to 1/u\ast sa. Notice that M is symmetric and by the Cauchy--Schwarz inequality, for any
x\in \BbbR | A| 

\sum 
aa\prime 

xaMsxa\prime =
\sum 
a

x2a
u\ast sa
 - 1

\=u\ast s

\Biggl( \sum 
a

xa

\Biggr) 2

\geq 0, s\in S.(6.15)

Hence Ms is positive semidefinite for all s and thus M is also positive semidefinite.
Define invertible matrix P as

P =

\biggl[ \surd 
\tau I| S| \surd 

\alpha diag
\bigl( \surd 
u\ast 
\bigr) \biggr] ,

where diag
\bigl( \surd 
u\ast 
\bigr) 
is a diagonal | S| | A| \times | S| | A| matrix with the ((s  - 1)| A| + a)th

diagonal element equal to
\surd 
u\ast sa. Denote the matrix in the linearized dynamics (6.13)

as  - J , i.e.,

J =

\biggl[ 
I| S|  - 1

\alpha 
\~K\sansT 

1
\tau diag(u

\ast ) \~K diag(u\ast )M

\biggr] 
.

Then

P - 1JP

=

\Biggl[ 
1\surd 
\tau 
I| S| 

1\surd 
\alpha 
diag

\bigl( 
(
\surd 
u\ast ) - 1

\bigr) \Biggr] \biggl[ I| S|  - 1
\alpha 
\~K\sansT 

1
\tau diag(u

\ast ) \~K diag(u\ast )M

\biggr] \biggl[ \surd 
\tau I| S| \surd 

\alpha diag
\bigl( \surd 
u\ast 
\bigr) \biggr] 

=

\Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT diag

\bigl( \surd 
u\ast 
\bigr) 

1\surd 
\alpha \tau 

diag
\bigl( \surd 
u\ast 
\bigr) 
\~K diag

\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \Biggr] .

It suffices to show that the real part of the eigenvalues of P - 1JP is positive. Denote
P - 1JP by \~J . Using the positive semidefiniteness of M , for any eigenpair (\lambda ,x) of \~J
we can deduce

Re(\lambda ) =
1

2

\Biggl( 
xH \~Jx

xHx
+
xH \~JHx

xHx

\Biggr) 

=
1

2xHx
xH

\Biggl( \Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT diag

\bigl( \surd 
u\ast 
\bigr) 

1\surd 
\alpha \tau 

diag
\bigl( \surd 
u\ast 
\bigr) 
\~K diag

\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \Biggr] 

+

\Biggl[ 
I| S| 

1\surd 
\alpha \tau 

\~K\sansT diag
\bigl( \surd 
u\ast 
\bigr) 

 - 1\surd 
\alpha \tau 

diag
\bigl( \surd 
u\ast 
\bigr) 
\~K diag

\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \Biggr] \Biggr) x

=
1

xHx
xH
\biggl[ 
I| S| 

diag
\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \biggr] x

\geq 0,

(6.16)
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784 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

where the superscript H denotes the Hermitian transpose. Now we proceed to show
Re(\lambda ) \not = 0. Let x=

\bigl[ 
x1
x2

\bigr] 
, where x1 \in \BbbR | S| , x2 \in \BbbR | S| | A| . If Re(\lambda ) = 0, then

0 = xH
\biggl[ 
I| S| 

diag
\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \biggr] x= xH1 x1

+ (diag(
\surd 
u\ast )x2)

HM(diag(
\surd 
u\ast )x2)\geq 0;

thus x1 = 0 and the equality condition of the Cauchy--Schwarz inequality (6.15) must
hold. Hence (x2)sa = cs

\surd 
u\ast sa for some cs \in \BbbR , s \in S. We also know that cs is not all

zero for s\in S; otherwise, x2 = 0 and x= 0 is not an eigenvector. Thus

\~Jx=

\Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT diag

\bigl( \surd 
u\ast 
\bigr) 

1\surd 
\alpha \tau 

diag
\bigl( \surd 
u\ast 
\bigr) 
\~K diag

\bigl( \surd 
u\ast 
\bigr) 
Mdiag

\bigl( \surd 
u\ast 
\bigr) \Biggr] x=  - 1\surd 

\alpha \tau 

\biggl[ 
\~K\sansT diag

\bigl( \surd 
u\ast 
\bigr) 
x2

0

\biggr] 
,

which is not a scalar multiple of x unless \~K\sansT diag
\bigl( \surd 
u\ast 
\bigr) 
x2 = 0. However, as\Bigl( 

\~K\sansT diag
\Bigl( \surd 

u\ast 
\Bigr) 
x2

\Bigr) 
s\prime 
=
\sum 
sa

Kass\prime csu
\ast 
sa =

\sum 
s

K\pi \ast ss\prime cs\~u
\ast 
s, s\prime \in S,

\~K\sansT diag
\bigl( \surd 
u\ast 
\bigr) 
x2 = K\sansT 

\pi \ast c\~u\ast , where c\~u\ast denotes the elementwise product. Thus
K\sansT 

\pi \ast c\~u\ast = 0 and then c\~u\ast = 0, contradicting the fact that cs is not all zero. The
contradiction means that Re(\lambda ) \not = 0. Together with the inequality (6.16) we have
Re(\lambda )> 0 for any eigenvalue \lambda of J . Hence Re(\lambda )< 0 for any eigenvalue \lambda of  - J , the
matrix in the linearized dynamics (6.13). By Lyapunov's indirect theorem [14], (2.7)
has locally exponential convergence.

6.5. Proof of Lemma 3.1. Similar to Lemma 2.3, we first note that \partial 2L
\partial usa\partial vs\prime 

=
0. Moreover,

\partial 2Lc

\partial vs\partial vs\prime 
= \alpha \delta ss\prime ,

\partial 2Lc

\partial usa\partial us\prime a\prime 
= \tau \delta ss\prime 

\biggl( 
\delta aa\prime 

u\ast sa
u2sa

+
c\~u\ast s

(1 - c)\~u2s

\biggr) 
, (s, s\prime , a, a\prime )\in S2 \times A2.

Hence the Hessian matrix of Lc is\biggl[ 
\alpha I| S| 0
0 \tau diag(u\ast /u2) + c\tau 

1 - cB

\biggr] 
,

where (u\ast /u2)sa = u\ast sa/u
2
sa and B is a positive definite block-diagonal matrix:

B :=

\left[     
\~u\ast 
1

\~u2
1
1| A| 1

\sansT 
| A| 

. . .
\~u\ast 
| S| 

\~u2
| S| 

1| A| 1
\sansT 
| A| 

\right]     .(6.17)

Thus the Hessian of Lc is positive definite and Lc is strictly convex. The derivatives
of Lc are

\partial Lc

\partial vs
= \alpha (vs  - v\ast s ), s\in S,

\partial Lc

\partial usa
= \tau 

\biggl( 
usa  - u\ast sa
usa

+
c

1 - c
\~us  - \~u\ast s

\~us

\biggr) 
, (s, a)\in S \times A,

(6.18)
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PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 785

from which we can see that (v\ast , u\ast ) is a solution to the first-order condition \partial Lc

\partial v = 0,
\partial Lc

\partial u = 0. Since Lc is strictly convex, it is also the unique minimizer of Lc. Now we
prove that Lc has bounded sublevel sets. Let \ell (u) =

\sum 
s(\~u

\ast 
s log \~u

\ast 
s/\~us+\~us - \~u\ast s). Then

Lc(v,u) = L0(v,u) +
c\tau 
1 - c\ell (u). Since \partial 2\ell 

\partial u2 =B is positive definite, \ell is strictly convex.

Moreover, \partial \ell 
\partial usa

= (\~us  - \~u\ast s)/\~us equals 0 when u= u\ast , so by the strict convexity of \ell ,
u\ast is the unique minimizer of \ell , and thus \ell (u) \geq \ell (u\ast ) = 0. Hence the sublevel set
\{ (v,u) | Lc(v,u)\leq C\} \subset \{ (v,u) | L0(v,u)\leq C\} . Since the latter is bounded according
to Lemma 2.3, the sublevel set of Lc is also bounded.

6.6. Proof of Lemma 3.2. Plugging the first-order condition (6.8) for the exact
solution (v\ast , u\ast ) into the interpolating natural gradient (3.3) results in

dvs\prime 

dt
= - 

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime (usa  - u\ast sa)

\Biggr) 
, s\prime \in S,

dus\cdot 
dt

= - \~us
\bigl( 
diag(\pi s\cdot ) - c\pi s\cdot \pi \sansT 

s\cdot 
\bigr) \Biggl( \biggl( 

log
us\cdot 
\~us
 - log

u\ast s\cdot 
\~u\ast s

\biggr) 
+
1

\tau 

\sum 
s\prime 

K\cdot ss\prime (vs\prime  - v\ast s\prime )

\Biggr) 
, s\in S,

(6.19)

where \pi sa is defined as usa/\~us. A direct calculation shows that

(us\cdot  - u\ast s\cdot )/us\cdot +
c

1 - c
(\~us  - \~u\ast s)/\~us1| A| =

\biggl( 
diag(1/\pi s\cdot ) +

c

1 - c
1| A| 1

\sansT 
| A| 

\biggr) \biggl( 
us\cdot  - u\ast s\cdot 

\~us

\biggr) 
.

(6.20)

Then

dL

dt
= - \alpha 

\sum 
s\prime 

(vs\prime  - v\ast s\prime )

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime (usa  - u\ast sa)

\Biggr) 

 - \tau 
\sum 
s

\Biggl[ \biggl( 
us\cdot  - u\ast s\cdot 

\~us

\biggr) \sansT \biggl( 
diag(1/\pi s\cdot ) +

c

1 - c
1| A| 1

\sansT 
| A| 

\biggr) 
\~us
\bigl( 
diag(\pi s\cdot ) - c\pi s\cdot \pi \sansT 

s\cdot 
\bigr) 

\Biggl( \biggl( 
log

us\cdot 
\~us
 - log

u\ast s\cdot 
\~u\ast s

\biggr) 
+

1

\tau 

\sum 
s\prime 

K\cdot ss\prime (vs\prime  - v\ast s\prime )

\Biggr) \Biggr] 

= - \alpha 
\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)
\biggl( 
log

uas
\~us
 - log

u\ast as
\~u\ast s

\biggr) 
,

(6.21)

where we have used the fact that\biggl( 
diag(1/\pi s\cdot ) +

c

1 - c
1| A| 1

\sansT 
| A| 

\biggr) \bigl( 
diag(\pi s\cdot ) - c\pi s\cdot \pi \sansT 

s\cdot 
\bigr) 

= diag(1/\pi s\cdot )diag(\pi s\cdot ) +
c

1 - c
1| A| 1

\sansT 
| A| diag(\pi s\cdot ) - 

c2

1 - c
1| A| 1

\sansT 
| A| \pi s\cdot \pi 

\sansT 
s\cdot 

 - cdiag(1/\pi s\cdot )\pi s\cdot \pi \sansT 
s\cdot = I +

\biggl( 
c

1 - c
 - c2

1 - c
 - c
\biggr) 
1| A| \pi 

\sansT 
s\cdot = I.

Therefore,

dLc

dt
= - \alpha 

\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)
\biggl( 
log

uas
\~us
 - log

u\ast as
\~u\ast s

\biggr) 
,
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786 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

where the right-hand side coincides with that of (6.10). Hence dLc

dt = dL0

dt \leq 0 by the
proof of Lemma 2.4. Let

\scrR =

\biggl\{ 
(v,u) |  - \alpha 

\sum 
s\prime 

(vs\prime  - v\ast s\prime )2  - \tau 
\sum 
sa

(usa  - u\ast sa)(logusa/\~us  - logu\ast sa/\~u
\ast 
s) = 0

\biggr\} 
.

Then by the proof of Lemma 2.4, \scrR = \{ (v,u) | v = v\ast , usa = csu
\ast 
sa, cs \in \BbbR +, s \in S\} .

We proceed to prove that the only trajectory of (6.19) in \scrR is (v,u) = (v\ast , u\ast ). Since
v= v\ast for any (v,u)\in \scrR , dvs\prime 

dt = 0 for s\prime \in S. In addition, for any s\prime \in S we have

0 =
\sum 
sa

Kass\prime (usa  - u\ast sa) =
\sum 
s

K\pi \ast ss\prime (cs  - 1)\~u\ast s,

by the same calculation as (6.11). This means that for point (v,u) on the trajectory
of (6.19) in \scrR , K\sansT 

\pi \ast ((c - 1)\~u\ast ) = 0; thus (c - 1)\~u\ast = 0 and cs = 1 for any s\in S. Since
this is true for any (v,u) on the trajectory, the trajectory is a single point (v,u) =
(v\ast , u\ast ).

6.7. Proof of Theorem 3.4. The linearized dynamic of the interpolating nat-
ural gradient (3.3) is

dvs\prime 

dt
= - 

\Biggl( 
(vs\prime  - v\ast s\prime ) - 

1

\alpha 

\sum 
sa

Kass\prime y(usa  - u\ast sa)

\Biggr) 
, s\prime \in S,

dus\cdot 
dt

= - 
\biggl( 
diag(u\ast s\cdot ) - 

c

\~u\ast s
u\ast s\cdot (u

\ast 
s\cdot )

\sansT 

\biggr) \Biggl( 
1

\tau 

\sum 
s\prime 

K\cdot ss\prime (vs\prime  - v\ast s\prime )+
us\cdot  - u\ast s\cdot 
u\ast s\cdot 

 - \~us - \~u\ast s
\~u\ast s

1

\Biggr) 
, s\in S.

(6.22)

Define \~K by \~K(s - 1)| A| +a,s\prime = Kass\prime and let \delta v = v  - v\ast , \delta u = u  - u\ast . Then (6.22)
becomes

d

dt

\biggl[ 
\delta v
\delta u

\biggr] 
= - 

\biggl[ 
I| S|  - 1

\alpha 
\~K\sansT 

1
\tau G

\~K GM

\biggr] \biggl[ 
\delta v
\delta u

\biggr] 
,(6.23)

where M is a block-diagonal matrix defined as in (6.14) and G is a block-diagonal
matrix \left[   G1

. . .

G| S| 

\right]   ,(6.24)

with Gs = diag(u\ast s\cdot )  - c
\~u\ast 
s
u\ast s\cdot (u

\ast 
s\cdot )

\sansT . Notice that Gs is symmetric. By the Cauchy--
Schwarz inequality

x\sansT Gsx=
\sum 
a

u\ast sax
2
a  - 

c

\~u\ast s

\Biggl( \sum 
a

u\ast saxa

\Biggr) 2

\geq 1

\~u\ast s

\Biggl( \sum 
a

u\ast saxa

\Biggr) 2

 - c

\~u\ast s

\Biggl( \sum 
a

u\ast saxa

\Biggr) 2

=
1 - c
\~u\ast s

\Biggl( \sum 
a

u\ast saxa

\Biggr) 2

> 0 \forall x\in \BbbR | A| , x \not = 0, \forall s\in S.
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Thus G is positive definite, and we can define the positive definite square root F of
G, i.e., F 2 =G. Define an invertible matrix Q as

Q=

\biggl[ \surd 
\tau I| S| \surd 

\alpha F

\biggr] 
,

and denote the matrix in the linearized dynamics (6.23) as  - J , i.e.,

J =

\biggl[ 
I| S|  - 1

\alpha 
\~K\sansT 

1
\tau G

\~K GM

\biggr] 
.

Then

Q - 1JQ=

\Biggl[ 
1\surd 
\tau 
I| S| 

1\surd 
\alpha 
F - 1

\Biggr] \biggl[ 
I| S|  - 1

\alpha 
\~K\sansT 

1
\tau G

\~K GM

\biggr] \biggl[ \surd 
\tau I| S| \surd 

\alpha F

\biggr] 

=

\Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT F

1\surd 
\alpha \tau 
F \~K FMF

\Biggr] 
.

It suffices to show that the real part of the eigenvalues of Q - 1JQ is positive. Denote
Q - 1JQ by \~J . Using the positive semidefiniteness of FMF , for any eigenpair (\lambda ,x)
of \~J we can deduce

Re(\lambda ) =
1

2

\Biggl( 
xH \~Jx

xHx
+
xH \~JHx

xHx

\Biggr) 

=
1

2xHx
xH

\Biggl( \Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT F

1\surd 
\alpha \tau 
F \~K FMF

\Biggr] 
+

\Biggl[ 
I| S| 

1\surd 
\alpha \tau 

\~K\sansT F

 - 1\surd 
\alpha \tau 
F \~K FMF

\Biggr] \Biggr) 
x

=
1

xHx
xH
\biggl[ 
I| S| 

FMF

\biggr] 
x\geq 0.

(6.25)

It remains to show Re(\lambda ) \not = 0. Let x =
\bigl[ 
x1
x2

\bigr] 
, where x1 \in \BbbR | S| , x2 \in \BbbR | S| | A| . Then if

Re(\lambda ) = 0,

0 = xH
\biggl[ 
I| S| 

FMF

\biggr] 
x= xH1 x1 + (Fx2)

HM(Fx2)\geq 0.

Thus x1 = 0, and the equality condition of the Cauchy--Schwarz inequality (6.15) must
hold. Hence (Fx2)sa = csu

\ast 
sa for some cs \in \BbbR , s \in S. We also know that cs is not all

zero for s\in S; otherwise, x2 = 0, so x= 0 is not an eigenvector. Thus

\~Jx=

\Biggl[ 
I| S|  - 1\surd 

\alpha \tau 
\~K\sansT F

1\surd 
\alpha \tau 
F \~K FMF

\Biggr] 
x=

 - 1\surd 
\alpha \tau 

\biggl[ 
\~K\sansT Fx2

0

\biggr] 
,

which is not a scalar multiple of x unless \~K\sansT Fx2 = 0. Since\Bigl( 
\~K\sansT Fx2

\Bigr) 
s\prime 
=
\sum 
sa

Kass\prime csu
\ast 
sa =

\sum 
s

K\pi \ast ss\prime cs\~u
\ast 
s, s\prime \in S,

\~K\sansT Fx2 =K\sansT 
\pi \ast c\~u\ast . Thus c\~u\ast = 0, contradicting the fact that cs is not all zero. This

contradiction means that Re(\lambda ) \not = 0. Together with the inequality (6.16), Re(\lambda ) > 0
for any eigenvalue \lambda of J . Hence Re(\lambda ) < 0 for any eigenvalue \lambda of  - J , the matrix
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788 H. LI, H.-F. YU, L. YING, AND I. S. DHILLON

in the linearized dynamics (6.23). Finally, by Lyapunov's indirect theorem [14], (3.3)
has locally exponential convergence.

REFERENCES

[1] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, Optimality and approximation
with policy gradient methods in Markov decision processes, in Thirty-Third Conference on
Learning Theory, PMLR 125, 2020, pp. 64--66.

[2] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans, Understanding the impact of
entropy on policy optimization, in 36th International Conference on Machine Learning,
PMLR 97, 2019, pp. 151--160.

[3] K. Asadi and M. L. Littman, An alternative softmax operator for reinforcement learning, in
34th International Conference on Machine Learning, PMLR 70, 2017, pp. 243--252.

[4] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University
Press, 2015.

[5] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, Safe Model-based Rein-
forcement Learning with Stability Guarantees, preprint, https://arxiv.org/abs/1705.08551,
2017.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, OpenAI Gym, preprint, arXiv:1606.01540, 2016.

[7] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, Fast Global Convergence of Natural
Policy Gradient Methods with Entropy Regularization, preprint, https://arxiv.org/abs/
2007.06558, 2020.

[8] W. S. Cho and M. Wang, Deep Primal-Dual Reinforcement Learning: Accelerating Actor-
Critic Using Bellman Duality, preprint, https://arxiv.org/abs/1712.02467, 2017.

[9] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, A Lyapunov-based Ap-
proach to Safe Reinforcement Learning, preprint, https://arxiv.org/abs/1805.07708, 2018.

[10] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song, SBEED: Conver-
gent reinforcement learning with nonlinear function approximation, in 35th International
Conference on Machine Learning, PMLR 80, 2018, pp. 1125--1134.

[11] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, Natural policy gradient primal-dual method
for constrained Markov decision processes, in Advances in Neural Information Processing
Systems 33, Curran Associates, 2020, pp. 8378--8390.

[12] M. Geist, B. Scherrer, and O. Pietquin, A theory of regularized Markov decision processes,
in 36th International Conference on Machine Learning, PMLR 97, 2019, pp. 2160--2169.

[13] H. Gong, Primal-Dual Method for Reinforcement Learning and Markov Decision Processes,
Ph.D. thesis, Princeton University, 2021.

[14] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control, Princeton
University Press, 2011.

[15] S. M. Kakade, A natural policy gradient , in Advances in Neural Information Processing Sys-
tems 14, MIT Press, 2001, pp. 1531--1538.

[16] R. Kalman and J. Bertram, Control system analysis and design via the second method of
Lyapunov: (I) continuous-time systems (II) discrete time systems, IRE Trans. Automat.
Control, 4 (1959), pp. 112--112.

[17] R. E. Kalman and J. E. Bertram, Control system analysis and design via the ``second
method"" of Lyapunov: I. Continuous-time systems, Trans. ASME Ser. D. J. Basic En-
grg., 82 (1960), pp. 371--393.

[18] S. Khodadadian, P. R. Jhunjhunwala, S. M. Varma, and S. T. Maguluri, On the linear
convergence of natural policy gradient algorithm, in 2021 60th IEEE Conference on Decision
and Control (CDC), IEEE, 2021, pp. 3794--3799.

[19] G. Lan, Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes, Math. Program., 198 (2023), pp. 1059--1106.

[20] D. Lee and N. He, Stochastic Primal-Dual Q-Learning, preprint, https://arxiv.org/abs/
1810.08298, 2018.

[21] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, Softmax Policy Gradient Methods Can Take
Exponential Time to Converge, preprint, https://arxiv.org/abs/2102.11270v2, 2021.

[22] H. Li, S. Gupta, H. Yu, L. Ying, and I. Dhillon, Approximate Newton policy gradient
algorithms, SIAM J. Sci. Comput., 45 (2023), pp. A2585--A2609.

[23] A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55
(1992), pp. 531--534.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
24

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/1705.08551
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2007.06558
https://arxiv.org/abs/2007.06558
https://arxiv.org/abs/1712.02467
https://arxiv.org/abs/1805.07708
https://arxiv.org/abs/1810.08298
https://arxiv.org/abs/1810.08298
https://arxiv.org/abs/2102.11270v2


PRIMAL-DUAL METHODS FOR REGULARIZED MDPs 789

[24] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, On the global convergence rates of
softmax policy gradient methods, in 37th International Conference on Machine Learning,
PMLR 119, 2020, pp. 6820--6829.

[25] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer Science \&
Business Media, 2012.

[26] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, Trust-PCL: An Off-Policy Trust
Region Method for Continuous Control , preprint, https://arxiv.org/abs/1707.01891, 2017.

[27] G. Neu, A. Jonsson, and V. G\'omez, A Unified View of Entropy-Regularized Markov Decision
Processes, preprint, https://arxiv.org/abs/1705.07798, 2017.

[28] T. J. Perkins and A. G. Barto, Lyapunov design for safe reinforcement learning, J. Mach.
Learn. Res., 3 (2002), pp. 803--832.

[29] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming,
John Wiley \& Sons, 2014.

[30] K. Rawlik, M. Toussaint, and S. Vijayakumar, On stochastic optimal control and reinforce-
ment learning by approximate inference (extended abstract), in Twenty-Third International
Joint Conference on Artificial Intelligence, AAAI Press, 2013, pp. 3052--3056.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy op-
timization, in 32nd International Conference on Machine Learning, PMLR 37, 2015, pp.
1889--1897.

[32] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-Dimensional Contin-
uous Control Using Generalized Advantage Estimation, preprint, https://arxiv.org/abs/
1506.02438, 2015.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal Policy
Optimization Algorithms, preprint, https://arxiv.org/abs/1707.06347, 2017.

[34] J. B. Serrano and G. Neu, Faster saddle-point optimization for solving large-scale Markov
decision processes, in Conference on Learning for Dynamics and Control, PMLR 120, 2020,
pp. 413--423.

[35] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.
[36] R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour, Policy gradient methods for

reinforcement learning with function approximation, in Advances in Neural Information
Processing Systems 12, MIT Press, 2000, pp. 1057--1063.

[37] M. Wang, Primal-Dual \pi Learning: Sample Complexity and Sublinear Run Time for Ergodic
Markov Decision Problems, preprint, https://arxiv.org/abs/1710.06100, 2017.

[38] M. Wang, Randomized linear programming solves the Markov decision problem in nearly linear
(sometimes sublinear) time, Math. Oper. Res., 45 (2020), pp. 517--546.

[39] M. Wang and Y. Chen, An online primal-dual method for discounted Markov decision pro-
cesses, in IEEE 55th Conference on Decision and Control, IEEE, 2016, pp. 4516--4521.

[40] R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning, Mach. Learn., 8 (1992), pp. 229--256.

[41] L. Ying and Y. Zhu, A note on optimization formulations of Markov decision processes,
Commun. Math. Sci., 20 (2022), pp. 727--745.

[42] W. Zhan, S. Cen, B. Huang, Y. Chen, J. D. Lee, and Y. Chi, Policy Mirror Descent for
Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence,
preprint, https://arxiv.org/abs/2105.11066, 2021.

[43] J. Zhang, A. S. Bedi, M. Wang, and A. Koppel, Cautious reinforcement learning via distri-
butional risk in the dual domain, IEEE J. Sel. Areas Inform. Theory, 2 (2021), pp. 611--626.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
24

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/1707.01891
https://arxiv.org/abs/1705.07798
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1710.06100
https://arxiv.org/abs/2105.11066

	Introduction
	Setup
	Primal-dual formulation
	Contributions
	Related work
	Notation
	Contents

	Quadratically convexified primal-dual formulation
	Formulation
	Natural gradient ascent descent

	Interpolating natural gradient method
	Numerical results
	Experiments with complete information
	Experiments with random samples

	Conclusion and discussion
	Proofs
	Proof of Theorem&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the2-1" >2.1</0:xref>
	Proof of Lemma&#x00A0;<0:xref 0:ref-type="statement" 0:rid="lem2-3" ><0:bold >2.3</0:bold></0:xref>
	Proof of Lemma&#x00A0;<0:xref 0:ref-type="statement" 0:rid="lem2-4" ><0:bold >2.4</0:bold></0:xref>
	Proof of Theorem&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the2-6" ><0:bold >2.6</0:bold></0:xref>
	Proof of Lemma&#x00A0;<0:xref 0:ref-type="statement" 0:rid="lem3-1" >3.1</0:xref>
	Proof of Lemma&#x00A0;<0:xref 0:ref-type="statement" 0:rid="lem3-2" ><0:bold >3.2</0:bold></0:xref>
	Proof of Theorem&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the3-4" ><0:bold >3.4</0:bold></0:xref>

	References

