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Abstract

This note introduces a method for sampling Ising models with mixed boundary con-

ditions. As an application of annealed importance sampling and the Swendsen-Wang al-

gorithm, the method adopts a sequence of intermediate distributions that keeps the tem-

perature fixed but turns on the boundary condition gradually. The numerical results show

that the variance of the sample weights is relatively small.
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1. Introduction

This note is concerned with the Monte Carlo sampling of Ising models [7, 12] with mixed

boundary conditions. Consider a graph G = (V,E) with the vertex set V and the edge set E.

We assume that V = I ∪ B, where I is the subset of interior vertices and B the subset of

boundary vertices. Throughout the note, we use i, j to denote the vertices in I and b for the

vertices in B. In addition, ij ∈ E denotes an edge between two interior vertices i and j, while

ib ∈ E denotes an edge between an interior vertex i and a boundary vertex b. The boundary

condition is specified by f = (fb)b∈B with fb = ±1.

A spin configuration s = (si)i∈I over the interior vertex set I is an assignment of ±1 value to

each vertex i ∈ I. The energy of the spin configuration s is given by the Hamiltonian function

H(s) defined via

H(s) = −
∑

ij∈E

sisj −
∑

ib∈E

sifb.

At an inverse temperature β > 0, the configuration probability of s = (si)i∈I is given by the

Gibbs or Boltzmann distribution

pI(s) =
e−βH(s)

Zβ
∼ exp

(

β
∑

ij∈E

sisj + β
∑

ib∈E

sifb

)

, (1.1)

where Zβ =
∑

s e
−βH(s) is the renormalization constant or the partition function. More detailed

discussions about the Ising models can be found for example in [3, 11].

A key feature of this Ising model is that, for certain mixed boundary conditions, the distri-

bution (1.1) exhibits macroscopically different profiles below the critical temperature. Fig. 1.1

showcases two such examples. On the left, the square Ising lattice has the +1 condition on

* Received July 26, 2022 / Revised version received November 2, 2022 / Accepted November 28, 2022 /

Published online xx xx, 2023 /
1) Corresponding author



2 L.X. YING

(a) (b)

Fig. 1.1. Ising models with mixed boundary conditions. (a) A square model. (b) A model support on

a disk. In each case, a mixed boundary condition is specified and the model exhibits two dominant

profiles on the macroscopic scale.

the vertical sides but the −1 condition on the horizontal sides. The two dominant macroscopic

profiles are a −1 cluster linking two horizontal sides and a +1 cluster linking two vertical sides,

shown in Fig. 1.1(a). On the right, a triangular Ising lattice supported on a disk has the +1

condition on two disjoint arcs and the −1 condition on the other two. Its two dominant profiles

are given in Fig. 1.1(b). Notice that in each case, the two dominant profiles have comparable

probability. Hence, it is important for any sampling algorithm to transition between these

macroscopically different profiles efficiently.

One of the most well-known methods for sampling Ising models is the Swendsen-Wang

algorithm [13], which will be briefly reviewed in Section 2. For Ising models with free boundary

condition for example, the Swendsen-Wang algorithm exhibits rapid mixing for all temperatures.

However, for the mixed boundary conditions shown in Fig. 1.1, the Swendsen-Wang algorithm

experiences slow convergence under the critical temperatures, i.e., T <Tc or equivalently β > βc.

The reason is that, for such a boundary condition, the energy barrier between the two dominant

profiles is much higher than the typical energy fluctuations. In other words, the Swendsen-

Wang algorithm needs to break a macroscopic number of edges between aligned adjacent spins

in order to transition from one dominant profile to the other. However, breaking so many edges

simultaneously is an event with exponentially small probability when the mixed boundary

condition is specified.

Annealed importance sampling is a method proposed by Neal [10], designed for sampling

distributions with multiple modes. The main idea is to

(1) introduce an easily-to-sample initial distribution,

(2) design a sequence of (typically temperature-dependent) intermediate distributions that

interpolates between the initial and the target distributions,

(3) generate sample paths that connects the simple initial distribution and the hard target

distribution,

(4) compute a path-dependent scalar to weight the samples at the target distribution.

Annealed importance sampling has been widely applied in Bayesian statistics and data assimi-

lation for sampling and estimating partition functions.

In this note, we address the problem of sampling (1.1) by combining the Swendsen-Wang

algorithm with annealed importance sampling. The main novelty of our approach is that,

instead of adjusting the temperature, we freeze the temperature and adjust the mixed boundary

condition.
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Related works. Alexander and Yoshida [1, 2] studied the spectral gap of the 2D Ising

models with mixed boundary conditions. In [14], the double flip move is introduced for models

with mixed boundary conditions that enjoy exact or approximate symmetry. When combined

with the Swendsen-Wang algorithm, it can accelerate the mixing of these Ising model under the

critical temperature significantly. However, it only applies to problem with exact or approximate

symmetries, but not more general settings.

Recently Gheissari and Lubetzky [6] studied the effect of the boundary condition for the 2D

Potts models at the critical temperature. Chatterjee and Diaconis [4] showed that most of the

deterministic jumps can accelerate the Markov chain mixing when the equilibrium distribution

is uniform.

The rest of the note is organized as follows. Sections 2 and 3 review the Swendsen-Wang

algorithm and annealed importance sampling, respectively. Section 4 describes the algorithm

and provides several numerical examples. Section 5 discusses some future directions.

2. Swendsen-Wang Algorithm

In this section, we briefly review the Swendsen-Wang algorithm. First, notice that

pI(s) ∼ exp

(

β
∑

ij∈E

sisj + β
∑

ib∈E

fbsi

)

= exp

(

β
∑

ij∈E

sisj + β
∑

i∈I

(

∑

ib∈E

fb

)

si

)

.

Therefore, we can interpret hi ≡
∑

ib∈E fb as an external field and view the mixed boundary

condition problem as a special case of the model with external field h = (hi)i∈I

pI(s) ∼ exp

(

β
∑

ij∈E

sisj + β
∑

i∈I

hisi

)

. (2.1)

This viewpoint simplifies the discussion and the description of the Swendsen-Wang algorithm

is given below under this setting.

The Swendsen-Wang algorithm is a Markov Chain Monte Carlo method for sampling pI(s).

In each iteration, it generates a new configuration (ti)i∈I based on the current configuration

(si)i∈I with two substeps:

• Generate an edge configuration w = (wij)ij∈E . If the spin values si and sj are different,

set wij = 0. If si and sj are the same, wij is sampled from the Bernoulli distribution

Ber(1− e−2β), i.e., equal to 1 with probability 1− e−2β and 0 with probability e−2β .

• Regards all edges ij ∈ E with wij = 1 as linked. Compute the connected components.

For each connected component γ, define hγ =
∑

i∈γ hi. Set the spins (ti)i∈γ of the

new configuration t to 1 with probability eβhγ/(eβhγ + e−βhγ ) and to 0 with probability

e−βhγ/(eβhγ + e−βhγ ).

Associated with (2.1), two other probability distributions are important for analyzing the

Swendsen-Wang algorithm [5]. The first one is the joint vertex-edge distribution

pIE(s, w) ∼
∏

ij∈E

(

(

1− e−2β
)

δsi=sj δwij=1 + e−2βδwij=0

)

· eβ
∑

i∈I
hisi . (2.2)
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The second one is the edge distribution

pE(w) ∼
∏

wij=1

(

1− e−2β
)

∏

wij=0

e−2β ·
∏

γ∈Cw

(

e−βhγ + eβhγ
)

, (2.3)

where Cw is the set of the connected components induced by w.

Summing pIE(s, w) over s or w gives the following two identities:
∑

s

pIE(s, w) = pE(w),
∑

w

pIE(s, w) = pI(s) (2.4)

(see for example [5]). A direct consequence of (2.4) is that the Swendsen-Wang algorithm can

be viewed as a data augmentation method [8]: The first substep samples the edge configura-

tion w conditioned on the spin configuration s, while the second substep samples a new spin

configuration conditioned on the edge configuration w.

Eq. (2.4) also imply that Swendsen-Wang algorithm satisfies the detailed balance. To see

this, let us fix two spin configurations s and t and consider the transition between them.

Since such a transition in the Swendsen-Wang move happens via an edge configuration w, it is

sufficient to show

pI(s)Pw(s, t) = pI(t)Pw(t, s)

for any compatible edge configuration w. Here Pw(s, t) is the transition probability from s to t

via w and similarly for Pw(t, s). Since the transition probabilities from w to the spin configu-

rations s and t are proportional to eβ
∑

i hisi and eβ
∑

i hiti respectively, it reduces to showing

pI(s)P (s, w)eβ
∑

i
hiti = pI(t)P (t, w)eβ

∑
i
hisi , (2.5)

where P (s, w) is the probability of obtaining the edge configuration w from s and similarly for

P (t, w).

Using (2.1), this is equivalent to showing

eβ
∑

ij∈E sisj+β
∑

i∈I hisiP (s, w)eβ
∑

i∈I
hiti

= eβ
∑

ij∈E
titj+β

∑
i∈I

hitiP (t, w)eβ
∑

i∈I
hisi . (2.6)

The next observation is that

eβ
∑

ij∈E sisjP (s, w) = eβ
∑

ij∈E titjP (t, w), (2.7)

i.e., this quantity is independent of the spin configuration. To see this, notice first that if

an edge ij ∈ E has configuration wij = 1 then si = sj . Second, if ij ∈ E has configuration

wij = 0, then si and sj can either be the same or different. In the former case, the contribution

to eβ
∑

ij∈E
sisjP (s, w) from ij is e2β · e−2β = 1 up to a uniform normalization constant. In the

latter case, the contribution is also 1 · 1 = 1 up to the same uniform constant. After canceling

the two terms of (2.7) in (2.6), proving (2.5) is equivalent to

eβ
∑

i∈I hisi · eβ
∑

i∈I hiti = eβ
∑

i∈I hiti · eβ
∑

i∈I hisi ,

which is trivial.

The Swendsen-Wang algorithm however does not encourage transitions between the macro-

scopic profiles shown for example in Fig. 1.1. With certain mixed boundary conditions, such

a transition requires breaking a macroscopic number of edges between aligned adjacent spins,

which has an exponentially small probability.
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3. Annealed Importance Sampling

Given a target distribution p(s) that is hard to sample directly, annealed importance sam-

pling (AIS), proposed by Neal [10], introduces a sequence of distributions

p0(·), . . . , pL(·) ≡ p(·),

where p0(·) is easy to sample and each pl(·) is associated with a detailed balance Markov Chain

Tl(s, t), i.e.,

pl(s)Tl(s, t) = pl(t)Tl(t, s). (3.1)

Though the detailed balance condition can be relaxed, it simplifies the description.

Given this sequence of intermediate distributions, AIS proceeds as follows:

1. Sample a configuration s1/2 from p0(·).

2. For l = 1, . . . , L − 1, take one step (or a few steps) of Ti(·, ·) (associated with the distri-

butions pl(·)) from sl−1/2. Let sl+1/2 be the resulting configuration.

3. Set s := sL−1/2.

4. Compute the weight

w :=
p1(s1/2)

p0(s1/2)
· · ·

pL(sL−1/2)

pL−1(sL−1/2)
.

The claim is that the configuration s with weight w samples the target distribution pL(·). To

see this, consider the path (s1/2, . . . , sL−1/2). This path is generated with probability

p0(s1/2)T1(s1/2, s3/2) · · ·TL−1(sL−3/2, sL−1/2).

Multiplying this with w and using the detailed balance (3.1) of Tl gives

p0(s1/2)T1(s1/2, s3/2) · · ·TL−1(sL−3/2, sL−1/2) ·
p1(s1/2)

p0(s1/2)
· · ·

pL(sL−1/2)

pL−1(sL−1/2)

= pL(sL−1/2)TL−1(sL−1/2, sL−3/2) · · ·T1(s3/2, s1/2),

which is the probability of going backward, i.e., starting from a sample sL−1/2 of pL(·) ≡ p(·).

Taking the margin of the last slot sL−1/2 proves that s := sL−1/2 with weight w samples the

distribution pL(·) ≡ p(·).

4. Algorithm and Results

Our proposal is to combine AIS with the Swendsen-Wang algorithm in order for sampling

Ising models with mixed boundary conditions. The key ingredients are:

• Set the initial p0(·) to be

p0(s) ∼ exp

(

β
∑

ij∈E

sisj

)

.

This initial distribution has no external field and hence can be sampled efficiently with

the Swendsen-Wang algorithm.
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• Choose a monotone sequence of (θl)0≤l≤L with θ0 = 0 and θL = 1 and set at level l

pl(s) ∼ exp

(

β
∑

ij∈E

sisj + β
∑

i∈I

(θlhi)si

)

,

i.e., the distribution with external field θhh. The Markov transition matrix Tl(·, ·) is

implemented with the Swendsen-Wang algorithm associated with pl(·). As proven in

Section 2, Tl(·, ·) satisfies the detailed balance.

Below we demonstrate the performance of the proposed method with several examples.

In each example, K = 500 samples (s(k), w(k))1≤k≤K are generated. For each sample s(k),

the initial choice s
(k)
1/2 is obtained by running 100 iterations of the Swendsen-Wang algorithm at

p0(·). In our implementation, the monotone sequence (θl)0≤l≤L is chosen to be an equally spaced

sequence with L = 400, i.e., θl = l/L. Although the equally-spaced sequence is not necessarily

the ideal choice in terms of variance minimization, it work reasonably well numerically.

In order to monitor the variance of the algorithm, we record the weight history within each

level l

w
(k)
l :=

p1
(

s
(k)
1/2

)

p0
(

s
(k)
1/2

)

· · ·
pl
(

s
(k)
l−1/2

)

pl−1

(

s
(k)
l−1/2

)

for l = 1, . . . , L. These weights are then normalized at each level l

w̃
(k)
l =

w
(k)
l

K−1
K
∑

g=1
w

(g)
l

.

Following the practice of [10], we shall plot the empirical variance of the logarithm of the

normalized weights Var[{log w̃
(k)
l }] as a function of level l = 1, . . . , L. On the other hand,

the sample efficiency, a quantity between 0 and 1, is defined as (1 + Var[{w̃
(k)
L }])−1 using the

empirical variance of the normalized weights.

Example 4.1. The Ising model is a square lattice, as shown in Fig. 4.1(a). The mixed bound-

ary condition is +1 on the two vertical sides and −1 on the two horizontal sides. The ex-

periments are performed for the problem size n1 = n2 = 40 at the inverse temperature

β = 0.5. Fig. 4.2(b) plots the empirical variance of the logarithm of the normalized weights,

(a) (b)

Fig. 4.1. (a) The lattice along with the external field. (b) The empirical variance of the logarithm of

the normalized weights as a function of level l.
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Var[{log w̃
(k)
l }], as a function of the level l. The sample efficiency (1 + Var[{w̃

(k)
L }])−1 is 0.26,

which translates to L(1 + Var[{w̃
(k)
L }]) ≈ 1530 Swendsen-Wang iterations per effective sample.

Example 4.2. The Ising lattice is again a square as shown in Fig. 4.2(a). The mixed boundary

condition is +1 in the first and third quadrants but −1 in the second and fourth quadrants.

The experiments are performed for the problem size n1 = n2 = 40 at the inverse temperature

β = 0.5. Fig. 4.2(b) plots Var[{log w̃
(k)
l }] as a function of the level l. The sample efficiency

(1+Var[{w̃
(k)
L }])−1 is 0.09, which translates to about L(1+Var[{w̃

(k)
L }]) ≈ 4470 Swendsen-Wang

iterations per effective sample.

(a) (b)

Fig. 4.2. (a) The lattice along with the external field. (b) The empirical variance of the logarithm of

the normalized weights as a function of level l.

Example 4.3. The Ising model is a random quasi-uniform triangular lattice supported on the

unit disk, as shown in Fig. 4.3(a). The lattice does not have rotation and reflection symmetry

due to the random triangulation. The mixed boundary condition is +1 in the first and third

quadrants but −1 in the second and fourth quadrants. The experiments are performed with

a fine triangulation with mesh size h = 0.05 at the inverse temperature β = 0.3. Fig. 4.3(b) plots

Var[{log w̃
(k)
l }] as a function of the level l, which remains quite small. The sample efficiency

(1+Var[{w̃
(k)
L }])−1 is 0.67, which translates to about L(1+Var[{w̃

(k)
L }]) ≈ 600 Swendsen-Wang

iterations per effective sample.

(a) (b)

Fig. 4.3. (a) The lattice along with the external field. (b) The empirical variance of the logarithm of

the normalized weights as a function of level l.
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Example 4.4. The Ising model is again a random quasi-uniform triangular lattice supported

on the unit disk, as shown in Fig. 4.4(a). The mixed boundary condition is +1 on the two arcs

with angle in [0, π/3] and [π, 5π/3] but −1 on the remaining two arcs. The experiments are

performed with a fine triangulation with mesh size h = 0.05 at the inverse temperature β = 0.3.

Fig. 4.4(b) plots Var[{log w̃
(k)
l }] as a function of the level l, which remains quite small. The

sample efficiency (1+Var[{w̃
(k)
L }])−1 is 0.55, which translates to about L(1+Var[{w̃

(k)
L }]) ≈ 730

Swendsen-Wang iterations per effective sample.

(a) (b)

Fig. 4.4. (a) The lattice along with the external field. (b) The empirical variance of the logarithm of

the normalized weights as a function of level l.

5. Discussions

This note introduces a method for sampling Ising models with mixed boundary conditions.

As an application of annealed importance sampling and the Swendsen-Wang algorithm, the

method adopts a sequence of intermediate distributions that fixes the temperature but turns

on the boundary condition gradually. The numerical results show that the variance of the

sample weights remain to be relatively small.

There are many unanswered questions. First, the sequence of (θl)0≤l≤L that controls the in-

termediate distributions is empirically specified to be equally-spaced. Two immediate questions

are (1) what the optimal (θl)0≤l≤L sequence is and (2) whether there is an efficient algorithm

for computing it.

Second, historically annealed importance sampling is introduced following the work of tem-

pered transition [9]. We have implemented the current idea within the framework of tempered

distribution. However, the preliminary results show that it is less effective compared to annealed

importance sampling. A more thorough study in this direction will be useful.

Finally, annealed importance sampling (AIS) is a rather general framework. For a specific

application, the key to efficiency is the choice of the distribution p0(·): it should be easy-to-

sample, while at the same time sufficiently close to the target distribution p(·). However, since

the target distribution is hard-to-sample, these two objectives often compete with each other.

Since there are many other hard-to-sample models in statistical mechanics, a potentially fruitful

direction of research is to apply AIS with cleverly chosen p0(·) to these models.
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