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ANALYTICAL LOW-RANK COMPRESSION VIA PROXY POINT
SELECTION\ast 

XIN YE\dagger , JIANLIN XIA\dagger , AND LEXING YING\ddagger 

Abstract. It has been known in potential theory that, for some kernel matrices corresponding
to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of
proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out
approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or
used in the numerical linear algebra community. It still needs clear algebraic understanding of the
theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable
criteria for the selection of the proxy points are still missing. In this work, we use contour integration
to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive
accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points.
The analytical compression is then combined with fast rank-revealing factorizations to get compact
low-rank approximations and also to select certain representative points. We provide the error bounds
for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy
for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding
the proxy point method and bridges the gap between this useful analytical strategy and practical
low-rank approximations. Some numerical examples help to further illustrate the ideas.

Key words. kernel matrix, proxy point method, low-rank approximation, approximation error
analysis, hybrid compression, strong rank-revealing factorization
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1. Introduction. In this paper, we focus on the low-rank approximation of some
kernel matrices: those generated by a smooth kernel function \kappa (x, y) evaluated at two
well-separated sets of points X = \{ xj\} mj=1 and Y = \{ yj\} nj=1. We suppose \kappa (x, y) is
analytic and a degenerate approximation as follows exists:

\kappa (x, y) \approx 
r\sum 

j=1

\alpha j\psi j(x)\varphi j(y),(1.1)

where \psi j 's and \varphi j 's are appropriate basis functions and \alpha j 's are coefficients indepen-
dent of x and y. X and Y are well separated in the sense that the distance between
them is comparable to their diameters so that r in (1.1) is small. In this case, the
corresponding discretized kernel matrix as follows is numerically low rank:

K(X,Y ) \equiv (\kappa (x, y)x\in X,y\in Y ).(1.2)

This type of problem frequently arises in a wide range of computations such as
numerical solutions of PDEs and integral equations, Gaussian processes, regression
with massive data, machine learning, and N -body problems. The low-rank approxi-
mation to K(X,Y ) enables fast matrix-vector multiplications in methods such as the
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1060 XIN YE, JIANLIN XIA, AND LEXING YING

fast multipole method (FMM) [15]. It can also be used to quickly compute matrix
factorization and inversion based on rank structures such as \scrH [19], \scrH 2 [2, 20], and
HSS [5, 48] forms. In fact, relevant low-rank approximations play a key role in rank-
structured methods. The success of the so-called fast rank-structured direct solvers
relies heavily on the quality and efficiency of low-rank approximations.

According to the Eckhart--Young theorem [9], the best 2-norm low-rank approxi-
mation is given by the truncated SVD, which is usually expensive to compute directly.
More practical algebraic compression methods include rank-revealing factorizations
(especially strong rank-revealing QR (SRRQR) [18] and strong rank-revealing LU
factorizations [37]), mosaic-skeleton approximations [44], interpolative decomposition
[7], CUR decompositions [29], etc. Some of these algebraic methods have a useful
feature of structure preservation for K(X,Y ): relevant resulting basis matrices can
be submatrices of the original matrix and are still discretizations of \kappa (x, y) at some
subsets. This is a very useful feature that can greatly accelerate some hierarchi-
cal rank-structured direct solvers [49, 27, 47]. However, these algebraic compression
methods have \scrO (rmn) complexity and are very costly for large-scale applications.
The efficiency may be improved by randomized SVDs [21, 16, 31], which still cost
\scrO (rmn) flops.

Unlike fully algebraic compression, there are also various analytical compression
methods that take advantage of degenerate approximations like in (1.1) to compute
low-rank approximations. The degenerate approximations may be obtained by Taylor
expansions, multipole expansions [15], spherical harmonic basis functions [42], Fourier
transforms with Poisson's formula [1, 30], Laplace transforms with the Cauchy inte-
gral formula [28], Chebyshev interpolations [10], etc. Various other polynomial basis
functions may also be used [38].

These analytical approaches can quickly yield low-rank approximations to K(X,Y )

by explicitly producing approximate basis matrices. On the other hand, the resulting
low-rank approximations are usually not structure preserving in the sense that the
basis matrices are not directly related to K(X,Y ). This is because the basis functions
\{ \psi j\} and \{ \varphi j\} are generally different from \kappa (x, y).

As a particular analytical compression method, the proxy point method has at-
tracted a lot of interest in recent years. It is tailored for kernel matrices and is very
attractive for different geometries of points [10, 32, 50, 52, 53]. While the methods
vary from one to another, they all share the same basic idea and can be summarized
in the surprisingly simple Algorithm 1.1, where the details are omitted and will be
discussed in later sections. Note that an explicit degenerate form (1.1) is not needed
and the algorithm directly produces the matrix K(X,Z) \equiv (\kappa (x, y)x\in X,y\in Z) as an
approximate column basis matrix in step 2. This feature enables the extension of
the ideas of the classical FMM [15] to more general situations, and examples include
the recursive skeletonization [22, 32, 36] and kernel independent FMM [33, 52, 53].
The convenient extraction of an approximate column basis matrix is similar to some
methods used for data analysis such as the Nystr\"om method and the pseudo-input
approximation [8, 13, 26, 40, 46]. (More discussions on this will be given in section 5.)

Notice that | Z| is generally much smaller than | Y | so that K(X,Z) has a much
smaller column size than K(X,Y ). It is then practical to apply reliable rank-revealing
factorizations to K(X,Z) to extract a compact approximate column basis matrix for
K(X,Y ). This is a hybrid (analytical/algebraic) compression scheme, and the proxy
point method helps to significantly reduce the compression cost.

The significance of the proxy point method can also be seen from another
viewpoint: the selection of representative points. When an SRRQR factorization
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LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1061

Algorithm 1.1. Basic proxy point method for low-rank approximation.

Input: \kappa (x, y), X, Y
Output: Low-rank approximation K(X,Y ) \approx AB  \triangleleft Details in sections 2 and 3

1: Pick a proxy surface \Gamma and a set of proxy points Z \subset \Gamma 
2: A\leftarrow K(X,Z)

3: B \leftarrow \Phi (Z,Y ) for a matrix \Phi (Z,Y ) such that K(X,Y ) \approx K(X,Z)\Phi (Z,Y )

or interpolative decomposition is applied to K(X,Y ), an approximate row basis matrix
can be constructed from selected rows of K(X,Y ). Suppose those rows correspond to
the points \^X \subset X. Then \^X can be considered as a subset of representative points.
The analytical selection of \^X is not a trivial task. However, with the use of the proxy
points Z, we can essentially quickly find \^X based on K(X,Z). (See section 4 for more
details.) That is, the set of proxy points Z can serve as a set of auxiliary points
based on which the representative points can be quickly identified. In other words,
when considering the interaction K(X,Y ) between X and Y , we can use the interaction
K(X,Z) between X and the proxy points Z to extract the contribution \^X from X.

Thus, the proxy point method is a very convenient and useful tool for researchers
working on kernel matrices. However, this elegant method is much less known in the
numerical linear algebra community. Indeed, even the compression of some special
Cauchy matrices (corresponding to a simple kernel) takes quite a bit of effort in matrix
computations [34, 39, 49]. In a recent literature survey [24] that lists many low-rank
approximation methods (including a method for kernel matrices), the proxy point
method is not mentioned at all. One reason that the proxy point method is not
widely known by researchers in matrix computation is the lack of intuitive algebraic
understanding of the background.

Moreover, in contrast with the success of the proxy point method in various
practical applications, its theoretical justifications are still lacking in the literature.
Potential theory [25, Chapter 6] can be used to explain the choice of proxy surface
\Gamma in step 1 of Algorithm 1.1 when dealing with some PDE kernels (when \kappa (x, y) is
the fundamental solution of a PDE). However, there is no clear justification of the
accuracy of the resulting low-rank approximation, specifically, a clear explanation of
such a simple procedure in terms of both the approximation error and the proxy point
selection desired, especially from the linear algebra point of view.

Thus, we intend to seek a convenient way to understand the proxy point method
and its accuracy based on some kernels. The following types of errors will be consid-
ered (the notation will be made more precise later):

\bullet The error \varepsilon for the approximation of kernel functions \kappa (x, y) with the aid of
proxy points.

\bullet The error \scrE for the low-rank approximation of kernel matrices K(X,Y ) via the
proxy point method.

\bullet The error \scrR for practical hybrid low-rank approximations of K(X,Y ) based
on the proxy point method.

Our main objectives are as follows:
1. Provide an intuitive explanation of the proxy point method using contour

integration so as to make this elegant method more accessible to the numerical
linear algebra community.

2. Give systematic analysis of the approximation errors of the proxy point
method as well as the hybrid compression. We show how the kernel function
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1062 XIN YE, JIANLIN XIA, AND LEXING YING

approximation error \varepsilon and the low-rank compression error \scrE decay exponen-
tially with respect to the number of proxy points. We also show how our
bounds for the error \scrE are nearly independent of the geometries and sizes of
X and Y and why a bound for the error \scrR may be independent of one set
(say, Y ).

3. Use the error analysis to choose a nearly optimal set of proxy points in the
low-rank kernel matrix compression. Our error bounds give a clear guideline
to control the errors and to choose the locations of the proxy points so as
to find nearly minimum errors. We also give a practical method to quickly
estimate the optimal locations.

We conduct such studies based on kernels of the form

\kappa (x, y) =
1

(x - y)d
, x, y \in \BbbC , x \not = y,(1.3)

where d is a positive integer. Such kernels and their variants are very useful in
PDE and integral equation solutions, structured ODE solutions [4], Cauchy matrix
computations [39], Toeplitz matrix direct solutions [6, 34, 49], structured divide-and-
conquer Hermitian eigenvalue solutions [17, 45], etc. Our derivations and analysis
may also be useful for studying other kernels and higher dimensions. This will be
considered in future work. (Note that the issue of what kernels the proxy point
method can apply to is not the focus here.)

We would like to point out that several of our results like the error analyses in
sections 3 and 4 can be easily extended to more general kernels and/or with other ap-
proximation methods, as long as a relative approximation error for the kernel function
approximation is available. Thus, our studies are useful for more general situations.

Our theoretical studies are also accompanied by various intuitive numerical tests
which show that the error bounds nicely capture the error behaviors and also predict
the location of the minimum errors.

In the remaining discussions, section 2 is devoted to an intuitive derivation of the
proxy point method via contour integration and the analysis of the accuracy (\varepsilon ) for the
approximation of the kernel functions. The analytical low-rank compression accuracy
(\scrE ) and the nearly optimal proxy point selection are given in section 3. The study is
further extended to the analysis of the hybrid low-rank approximation accuracy (\scrR )
with representative point selection in section 4. In section 5, the connection between
the proxy point method and the Nystr\"om method is discussed. Some notation we use
frequently in the paper is listed below.

\bullet The sets under consideration areX = \{ xj\} mj=1 and Y = \{ yj\} nj=1. Z = \{ zj\} Nj=1

is the set of proxy points.
\bullet \scrC (a; \gamma ), \scrD (a; \gamma ), and \=\scrD (a; \gamma ) denote respectively the circle, open disk, and
closed disk with center a \in \BbbC and radius \gamma > 0.

\bullet \scrA (a; \gamma 1, \gamma 2) = \{ z : \gamma 1 < | z  - a| < \gamma 2\} with 0 < \gamma 1 < \gamma 2 is an open annulus
region.

\bullet K(X,Y ) is the m\times n kernel matrix (\kappa (xi, yj)xi\in X,yj\in Y ) with \kappa (x, y) in (1.3).

Notation such as K(X,Z) and K( \^X,Z) will also be used and can be understood
similarly.

2. The proxy point method for kernel function approximation and its
accuracy. In this section, we show one intuitive derivation of the proxy point method
for the analytical approximation of the kernel functions, followed by detailed approx-
imation error analysis.
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LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1063

Note that the kernel function (1.3) is translation invariant, i.e., \kappa (x - z, y  - z) =
\kappa (x, y) for any x \not = y and z \in \BbbC . Thus, the points X can be moved to be clustered
around the origin. Without loss of generality, we always assumeX \subset \scrD (0; \gamma 1) and Y \subset 
\scrA (0; \gamma 2, \gamma 3), where the radii satisfy 0 < \gamma 1 < \gamma 2 < \gamma 3. See Figure 1. This condition
is used to characterize the separation of the sets X and Y so as to theoretically
guarantee the numerical low-rankness, as often used in applications of the FMM
and rank-structured matrix methods. In these methods, the points are hierarchically
partitioned into subsets, and the interaction between one subset and those points that
are a certain distance away is considered to be numerically low rank. See [15] for some
illustrative figures. More discussions on this will be given in section 5.

2.1. Derivation of the proxy point method via contour integration.
Consider any two points x \in X and y \in Y . Draw a Jordan curve (a simple closed
curve) \Gamma that encloses x while excluding y, and let \rho > 0 be large enough so that the
circle \scrC (0; \rho ) encloses both \Gamma and y. See Figure 2(a).

Define the domain \Omega \rho to be the open region inside \scrC (0; \rho ) and outside \Gamma . Its
boundary is \partial \Omega \rho := \scrC (0; \rho ) \cup ( - \Gamma ), where  - \Gamma denotes the curve \Gamma in its negative
direction. Now consider the function f(z) := \kappa (x, z) on the closed domain \=\Omega \rho :=
\Omega \rho \cup \partial \Omega \rho . The only singularity of f(z) is at z = x /\in \=\Omega \rho . Thus, f(z) is analytic (or
holomorphic) on \=\Omega \rho . By the Cauchy integral formula [41],

Y

X

Fig. 1. Illustration of \gamma , \gamma 1, \gamma 2, \gamma 3, X, and Y .

y
x

(a) \Gamma and \scrC (0; \rho ) used in contour integration

y
x

zj

(b) Approximation of \kappa (x, y)

Fig. 2. Approximating the interaction \kappa (x, y) by \~\kappa (x, y) in (2.3) using proxy points.
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1064 XIN YE, JIANLIN XIA, AND LEXING YING

\kappa (x, y) = f(y) =
1

2\pi i

\int 
\partial \Omega \rho 

f(z)

z  - y
dz =

1

2\pi i

\int 
\scrC (0;\rho )

\kappa (x, z)

z  - y
dz  - 1

2\pi i

\int 
\Gamma 

\kappa (x, z)

z  - y
dz,

(2.1)

where i =
\surd 
 - 1. Note that\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\scrC (0;\rho )

\kappa (x, z)

z  - y
dz

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\pi \rho \cdot max
z\in \scrC (0;\rho )

\bigm| \bigm| \bigm| \bigm| 1

(x - z)d(z  - y)

\bigm| \bigm| \bigm| \bigm| \leq 2\pi \rho 

(\rho  - | x| )d(\rho  - | y| )
,

where the right-hand side goes to zero when \rho \rightarrow \infty . Thus,

lim
\rho \rightarrow \infty 

\int 
\scrC (0;\rho )

\kappa (x, z)

z  - y
dz = 0.

Take the limit on (2.1) for \rho \rightarrow \infty , and the first term on the right-hand side vanishes.
We get

\kappa (x, y) =
1

2\pi i

\int 
\Gamma 

\kappa (x, z)

y  - z
dz.(2.2)

Note that this result is different from the Cauchy integral formula in that the point y
under consideration is outside the contour \Gamma in the integral.

To numerically approximate the contour integral (2.2), pick an N -point quad-
rature rule with quadrature points \{ zj\} Nj=1 \subset \Gamma and the corresponding quadrature

weights \{ \omega j\} Nj=1. Denote by \~\kappa (x, y) the approximation induced by such a quadrature
integration:

\~\kappa (x, y) =
1

2\pi i

N\sum 
j=1

\omega j
\kappa (x, zj)

y  - zj
\equiv 

N\sum 
j=1

\kappa (x, zj)\phi j(zj , y) with \phi j(z, y) =
\omega j

2\pi i(y  - z)
.

(2.3)

Clearly, \~\kappa (x, y) in (2.3) is a degenerate approximation to \kappa (x, y) like (1.1). More-
over, it has one additional property of structure preservation: the function \varphi j(x) in
this case is \kappa (x, zj), which is exactly the original kernel \kappa (x, y) with zj in the role of
y. This gives a simple and intuitive explanation of the use of proxy points: the inter-
action between x and y can essentially be approximated by the interaction between x
and some proxy points Z (and later we will further see that Z can be independent of
the number of x and y points). These two interactions are made equivalent (in terms
of computing potential) through the use of the function \phi j . In other words, equiva-
lent charges can be placed on the proxy surface. A pictorial illustration is shown in
Figure 2(b).

2.2. Approximation error analysis. Although the approximation (2.3) holds
for any proxy surface \Gamma satisfying the given conditions and for any quadrature rule,
we still need to make specific choices in order to obtain a more practical error bound.
First, we assume the proxy surface to be a circle, \Gamma = \scrC (0; \gamma ), which is one of the most
popular choices in related work and is also consistent with our assumptions at the
beginning of section 2. For now, the proxy surface \Gamma is only assumed to be between
X and Y , i.e., \gamma 1 < \gamma < \gamma 2 as in Figure 1, and we will come back to discuss more on
this later. Second, the quadrature rule is chosen to be the composite trapezoidal rule
with
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LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1065

zj = \gamma exp

\biggl( 
2j\pi i

N

\biggr) 
, \omega j =

2\pi i

N
zj , j = 1, 2, . . . , N.(2.4)

This choice can be justified by noting that the trapezoidal rule converges exponen-
tially fast if applied to a periodic integrand [43]. Our results later also align with
this. Moreover, if no specific direction is more important that others, the trapezoidal
rule performs uniformly well on all directions of the complex plane \BbbC . Some related
discussions of this issue can be found in [23, 51].

As a result of the above assumptions, the function \phi j(z, y) in (2.3) becomes the
following form:

\phi (z, y) =
1

N

z

y  - z
, y \not = z,

where we dropped the subscript j since j does not explicitly appear on the right-hand
side. Also, we define

g(z) =
1

z  - 1
, z \not = 1.

The following lemma will be used in the analysis of the approximation error for
\kappa (x, y).

Lemma 2.1. Let \{ zj\} Nj=1 be the points defined in (2.4). Then the following result

holds for all z \in \BbbC \setminus \{ zj\} Nj=1:

N\sum 
j=1

zj
z  - zj

= Ng

\biggl( \Bigl( z
\gamma 

\Bigr) N\biggr) 
.(2.5)

Proof. For any integer p, we have

N\sum 
j=1

zpj =

\Biggl\{ 
N\gamma p if p is a multiple of N,

0 otherwise.
(2.6)

If | z| < \gamma , then | z/zj | < 1 for j = 1, 2, . . . , N and

N\sum 
j=1

zj
z  - zj

=  - 
N\sum 
j=1

1

1 - z/zj
=  - 

N\sum 
j=1

\infty \sum 
k=0

\biggl( 
z

zj

\biggr) k

=  - 
\infty \sum 
k=0

\left(  zk N\sum 
j=1

z - k
j

\right)  
=  - 

\infty \sum 
l=0

zlNN\gamma  - lN (with (2.6), only k = lN terms left)

=  - N

1 - zN/\gamma N
= Ng

\Biggl( \biggl( 
z

\gamma 

\biggr) N
\Biggr) 
.

If | z| > \gamma , then | zj/z| < 1 for j = 1, 2, . . . , N and

N\sum 
j=1

zj
z  - zj

=

N\sum 
j=1

\biggl( 
z

z  - zj
 - 1

\biggr) 
=  - N +

N\sum 
j=1

z

z  - zj
=  - N +

N\sum 
j=1

1

1 - zj/z

=  - N +

N\sum 
j=1

\infty \sum 
k=0

\Bigl( zj
z

\Bigr) k
=  - N +

\infty \sum 
k=0

\left(  z - k
N\sum 
j=1

zkj

\right)  D
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1066 XIN YE, JIANLIN XIA, AND LEXING YING

=  - N +

\infty \sum 
l=0

z - lNN\gamma lN (with (2.6), only k = lN terms left)

=  - N +
N

1 - \gamma N/zN
=

N

zN/\gamma N  - 1
= Ng

\Biggl( \biggl( 
z

\gamma 

\biggr) N
\Biggr) 
.

Finally, since both sides of (2.5) are analytic functions on \BbbC \setminus \{ zj\} Nj=1 and they
agree on z with | z| \not = \gamma , by continuity, they must also agree on z when | z| = \gamma , z /\in 
\{ zj\} Nj=1. This completes the proof.

In the following theorem, we derive an analytical expression for the accuracy of
approximating \kappa (x, y) by \~\kappa (x, y). Without loss of generality, assume x \not = 0.

Theorem 2.2. Suppose \kappa (x, y) in (1.3) is approximated by \~\kappa (x, y) in (2.3) which
is obtained from the composite trapezoidal rule with (2.4). Assume x \not = 0. Then

\~\kappa (x, y) = \kappa (x, y) (1 + \varepsilon (x, y)) ,(2.7)

where \varepsilon (x, y) is the relative approximation error

\varepsilon (x, y) :=
\~\kappa (x, y) - \kappa (x, y)

\kappa (x, y)
= g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

d - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
.(2.8)

Proof. We prove this theorem by induction on d. For d = 1, substituting (2.4)
into (2.3) yields

\~\kappa (x, y) =
1

N

N\sum 
j=1

zj
(x - zj)(y  - zj)

=
1

N(x - y)

N\sum 
j=1

(x - zj) - (y  - zj)
(x - zj)(y  - zj)

zj

=
1

N(x - y)

\left(  N\sum 
j=1

zj
y  - zj

 - 
N\sum 
j=1

zj
x - zj

\right)  
=

1

N(x - y)

\Biggl( 
Ng

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 
 - Ng

\Biggl( \biggl( 
x

\gamma 

\biggr) N
\Biggr) \Biggr) 

(Lemma 2.1)

=
1

x - y

\Biggl[ 
1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+ g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \Biggr] 
.

Thus, (2.7) holds for d = 1.
Now suppose (2.7) holds for d = k with k a positive integer. Equating (2.3) and

(2.7) (with d = k) and plugging in \kappa (x, y) we get

N\sum 
j=1

\phi j(zj , y)

(x - zj)k
=

1

(x - y)k

\left[  1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

k - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  .
The derivatives of the left- and right-hand sides with respect to x are, respectively,

 - k
\sum N

j=1
\phi j(zj ,y)

(x - zj)k+1 and
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 - k
(x - y)k+1

\left[  1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

k - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  
+

1

(x - y)k

\left[  k - 1\sum 
j=0

(y  - x)j

j!

dj+1

dxj+1
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
 - 

k - 1\sum 
j=1

(y  - x)j - 1

(j  - 1)!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  
=

 - k
(x - y)k+1

\left[  1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

k - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  
+

1

(x - y)k
(y  - x)k - 1

(k  - 1)!

dk

dxk
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
(all terms cancel except for j = k  - 1)

=
 - k

(x - y)k+1

\left[  1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

k\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  .
Thus,

N\sum 
j=1

\phi (zj , y)

(x - zj)k+1
=

1

(x - y)k+1

\left[  1 + g

\Biggl( \biggl( 
y

\gamma 

\biggr) N
\Biggr) 

+

k\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \right]  .
That is, (2.7) holds for d = k + 1. By induction, (2.7)--(2.8) are true for any positive
integer d.

With the analytical expression (2.8) we can give a rigorous upper bound for the
approximation error.

Theorem 2.3. Suppose 0 < | x| < \gamma 1 < \gamma < | y| . With all the assumptions
in Theorem 2.2, there exists a positive integer N1 such that for any N > N1, the
approximation error (2.8) is bounded by

| \varepsilon (x, y)| \leq g
\biggl( \bigm| \bigm| \bigm| y
\gamma 

\bigm| \bigm| \bigm| N\biggr) + c g

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) ,(2.9)

where c = 1 if d = 1, and otherwise

c = 2 + 2

d - 1\sum 
j=1

[(| y/x| + 1)N ]j(2d)j - 1

j!
.(2.10)

Proof. For any positive integer N ,\bigm| \bigm| \bigm| \bigm| \bigm| g
\Biggl( \biggl( 

y

\gamma 

\biggr) N
\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| = 1

| (y/\gamma )N  - 1| 
\leq 1

| y/\gamma | N  - 1
= g

\biggl( \bigm| \bigm| \bigm| y
\gamma 

\bigm| \bigm| \bigm| N\biggr) .
Thus, we only need to prove the following bound:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

d - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c g
\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) .(2.11)

When d = 1, it's easy to verify that the above inequality holds for c = 1 and any
positive integer N . We now consider the case when d \geq 2.
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It can be verified that, for any positive integer i,

d

dx
gi
\biggl( \Bigl( \gamma 

x

\Bigr) N\biggr) 
=
iN

x

\biggl[ 
gi
\biggl( \Bigl( \gamma 

x

\Bigr) N\biggr) 
+ gi+1

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \biggr] 
,(2.12)

where gi denotes function g raised to power i. Hence, the derivatives appearing in
(2.11) all have the following form:

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
=

1

xj

j+1\sum 
i=1

\alpha 
(j)
i gi

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
,(2.13)

where \alpha 
(j)
i (1 \leq i \leq j + 1, 0 \leq j \leq d - 1) are constants.

We claim that, when N > d and for any 0 \leq j \leq d - 1, there exist constants \beta (j)

dependent on d so that

| \alpha (j)
i | \leq \beta 

(j)N j , 1 \leq i \leq j + 1.

This claim can be proved by induction on j. It is obviously true when j = 0, and

\beta (0) = 1 in this case. When j = 1, (2.12) means that the claim is true with \alpha 
(1)
1 =

\alpha 
(1)
2 = N and \beta (1) = 1. Suppose the claim holds for j = k with 1 \leq k \leq d - 2 (where

we also assume d > 2, since otherwise the claim is already proved). Then

dk+1

dxk+1
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
=

d

dx

\Biggl( 
1

xk

k+1\sum 
i=1

\alpha 
(k)
i gi

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \Biggr) 

=  - k

xk+1

k+1\sum 
i=1

\alpha 
(k)
i gi

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
+

1

xk

k+1\sum 
i=1

\alpha 
(k)
i

iN

x

\biggl[ 
gi
\biggl( \Bigl( \gamma 

x

\Bigr) N\biggr) 
+ gi+1

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \biggr] 
(by (2.12))

=
1

xk+1

\Biggl[ 
(N  - k)\alpha (k)

1 g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
+

k+1\sum 
i=2

\Bigl( 
(iN  - k)\alpha (k)

i +N(i - 1)\alpha 
(k)
j - 1

\Bigr) 
gi
\biggl( \Bigl( \gamma 

x

\Bigr) N\biggr) 

+N(k + 1)\alpha 
(k)
k+1g

k+2

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \Biggr] 
.

Thus, the coefficients satisfy the following recurrence relation:

\alpha 
(k+1)
i =

\left\{     
(N  - k)\alpha (k)

1 , i = 1,

(iN  - k)\alpha (k)
i +N(i - 1)\alpha 

(k)
i - 1, 2 \leq i \leq k + 1,

N(k + 1)\alpha 
(k)
k+1, i = k + 2.

Therefore, when N > d, we can pick (conservatively)

\beta (k+1) = 2d\beta (k),(2.14)

so that | \alpha (k+1)
i | \leq \beta (k+1)Nk+1. That is, the claim holds for j = k+1 and this finishes

the induction.
Now, we go back to prove (2.11). By (2.13),
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\bigm| \bigm| \bigm| \bigm| \bigm| 
d - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N
\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
d - 1\sum 
j=0

\Biggl[ 
(y  - x)j

j!

1

xj

j+1\sum 
i=1

\alpha 
(j)
i gi

\biggl( \Bigl( \gamma 
x

\Bigr) N
\biggr) \Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 

(2.15)

\leq 
d - 1\sum 
j=0

\Biggl[ 
(| y/x| + 1)j

j!

j+1\sum 
i=1

| \alpha (j)
i | gi

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) \Biggr] 
\leq 

d - 1\sum 
j=0

\Biggl[ 
(| y/x| + 1)j

j!
\beta (j)N j

j+1\sum 
i=1

gi
\biggl( \bigm| \bigm| \bigm| \gamma 

x

\bigm| \bigm| \bigm| N\biggr) \Biggr] 
.

Set

N1 = max\{ d, \lceil log 3/ log | \gamma 1/x| \rceil \} .(2.16)

Then for N > N1, | \gamma /x| N > | \gamma 1/x| N > 3 and g
\bigl( 
| \gamma /x| N

\bigr) 
< 1/2. Thus, for 1 \leq j \leq 

d - 1,

j+1\sum 
i=1

gi
\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) \leq 2g

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) .
Continuing on (2.15), for N > N1, we get

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
d - 1\sum 
j=0

(y  - x)j

j!

dj

dxj
g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cg
\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) , with c = 2

d - 1\sum 
j=0

(| y/x| + 1)j

j!
\beta (j)N j .

(2.17)

Note that with the way \beta (j) is picked as in (2.14), \beta (j) satisfies

\beta (j) = (2d)j - 1\beta (1) = (2d)j - 1, j = 1, 2, . . . , d - 1.

Then c in (2.17) becomes (2.10). Thus, (2.11) holds with c in (2.10).

The upper bound (2.9) in Theorem 2.3 has two implications.
\bullet Since g(| y/\gamma | N ) and g(| \gamma /x| N ) decay almost exponentially with N and c is
just a polynomial in N , d, and | y/x| with degrees up to d - 1, the bound in
(2.9) decays roughly exponentially as N increases.

\bullet The bound can help us identify a nearly optimal radius \gamma of the proxy surface
\Gamma so as to minimize the error. This is given in the following theorem.

Theorem 2.4. Suppose 0 < | x| < \gamma 1 < | y| and \kappa (x, y) in (1.3) is approximated
by \~\kappa (x, y) in (2.3) with (2.4). If the upper bound in (2.9) is viewed as a real function
in \gamma on the interval (| x| , | y| ), then there exists a positive integer N2 independent of \gamma ,
such that for N > N2,

1. this upper bound has a unique minimizer \gamma \ast \in (| x| , | y| );
2. the minimum of this upper bound decays asymptotically as \scrO 

\bigl( 
| y/x|  - N/2

\bigr) 
.

Proof. To find the minimizer, we just need to consider the real function

h(t) =
1

b/t - 1
+

c

t/a - 1
, t \in (a, b),

where a = | x| N , b = | y| N , and c is either equal to 1 (for d = 1) or defined in (2.10)
(for d \geq 2). The derivative of the function is

h\prime (t) =
p(t)

(t - a)2(t - b)2
with p(t) = (b - ac)t2 + 2ab(c - 1)t+ ab(a - bc).

Consider p(t), which is a quadratic polynomial in t with the following properties:
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\bullet The coefficient of the second order term is

b - ac = | x| N
\bigl( 
| y/x| N  - c

\bigr) 
.

Since c is either equal to 1 (for d = 1) or a polynomial in N , d, and | y/x| with
degrees up to d - 1 (for d \geq 2), there exists N2 larger than N1 in Theorem 2.3
such that | y/x| N > c for any N > N2. Thus, b - ac > 0 for N > N2.

\bullet The discriminant is 4abc(a - b)2 > 0.
\bullet When evaluated at t = a and t = b, the function p(t) gives respectively

p(a) =  - ac(a - b)2 < 0, p(b) = b(a - b)2 > 0.

All the properties above combined indicate that p(t) has one root t0 \in (a, b) and
h\prime (t) < 0 on (a, t0) and h

\prime (t) > 0 on (t0, b). Thus, t0 is the only zero of p(t) in [a, b]
and \gamma \ast =

N\surd 
t0 is the unique minimizer of the upper bound in (2.9). The requirements

for picking N2 are N2 > N1 and | y/x| N2 > c. Hence, N2 is independent of \gamma .
To prove the second part of the theorem, we explicitly compute the root t0 of

p(t) = 0 in (a, b) and substitute it into h(t) to get

h(t0) =
2
\sqrt{} 
cb/a+ (c+ 1)

b/a - 1
=

2
\surd 
c| y/x| N/2 + (c+ 1)

| y/x| N  - 1
\sim \scrO 

\biggl( \bigm| \bigm| \bigm| y
x

\bigm| \bigm| \bigm|  - N/2
\biggr) 
.

The details involve tedious algebra and are omitted here.

In the proof, we can actually find the minimizer but are not explicitly writing it
out. The reason is that the minimizer depends on x and y and it makes more sense
to write a minimizer later when we consider the low-rank approximation of the kernel
matrix. See the next section.

3. Low-rank approximation accuracy and proxy point selection in the
proxy point method for kernel matrices. With the kernel \kappa (x, y) in (1.3) ap-
proximated by \~\kappa (x, y) in (2.3), a low-rank approximation to K(X,Y ) in (1.2) as follows
is obtained:

K(X,Y ) \approx \~K(X,Y ) := (\~\kappa (x, y)x\in X,y\in Y ) = K(X,Z)\Phi (Z,Y ),(3.1)

where \Phi (Z,Y ) = (\phi (z, y)z\in Z,y\in Y ). The analysis in subsection 2.2 provides entrywise
approximation errors for (3.1) (with implicit dependence on x). Now, we consider
normwise approximation errors for K(X,Y ) and obtain relative error bounds indepen-
dent of the specific x and y points. The error analysis will be further used to estimate
the optimal choice of the radius \gamma for the proxy surface in the low-rank approximation.
We look at the cases d = 1 and d \geq 2 separately.

3.1. The case \bfitd = 1. In this case, the proof of Theorem 2.2 for d = 1 gives an
explicit expression for the entrywise approximation error

\varepsilon (x, y) = g

\biggl( \Bigl( \gamma 
x

\Bigr) N\biggr) 
+ g

\biggl( \Bigl( y
\gamma 

\Bigr) N\biggr) 
.(3.2)

We then have the following result on the low-rank approximation error in Frobenius
norm.

Proposition 3.1. Suppose d = 1 and \kappa (x, y) in (1.3) is approximated by \~\kappa (x, y)
in (2.3) with (2.4). If 0 < | x| < \gamma 1 < \gamma < \gamma 2 < | y| for all x \in X, y \in Y , then for any
N > 0,
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\| \~K(X,Y )  - K(X,Y )\| F
\| K(X,Y )\| F

\leq g
\biggl( \Bigl( \gamma 

\gamma 1

\Bigr) N\biggr) 
+ g

\biggl( \Bigl( \gamma 2
\gamma 

\Bigr) N\biggr) 
.(3.3)

Moreover, if the upper bound on the right-hand side is viewed as a function in \gamma , it has
a unique minimizer \gamma \ast =

\surd 
\gamma 1\gamma 2 and the minimum is 2g

\bigl( 
(\gamma 2/\gamma 1)

N/2
\bigr) 
which decays

asymptotically as \scrO 
\bigl( 
| \gamma 2/\gamma 1|  - N/2

\bigr) 
.

Proof. The approximation error bound (3.3) is a direct application of the entry-
wise error in (3.2) together with the fact that g(t) monotonically decreases for t > 1.

To find the minimizer of the right-hand side of (3.3), we can either follow the
proof in Theorem 2.4 or simply use the following explicit expression:

g
\bigl( 
(\gamma /\gamma 1)

N
\bigr) 
+ g

\bigl( 
(\gamma 2/\gamma )

N
\bigr) 
=

1

(\gamma /\gamma 1)N  - 1
+

1

(\gamma 2/\gamma )N  - 1

=  - 1 + (\gamma 2/\gamma 1)
N  - 1

(\gamma 2/\gamma 1)N + 1 - ((\gamma /\gamma 1)N + (\gamma 2/\gamma )N )
.

We just need to minimize (\gamma /\gamma 1)
N + (\gamma 2/\gamma )

N , which reaches its minimum at \gamma \ast =\surd 
\gamma 1\gamma 2.

Remark 3.2. Although it is not easy to choose \gamma to minimize the approximation
error directly, the minimizer \gamma \ast for the bound in (3.3) can serve as a reasonable
estimate of the minimizer for the error. These can be seen from an intuitive numerical
example below. In addition, the minimum 2g

\bigl( 
(\gamma 2/\gamma 1)

N/2
\bigr) 
of the bound in (3.3)

decays nearly exponentially as N increases. Thus, to reach a relative approximation
accuracy \tau , we can conveniently decide the number of proxy points:

N = \scrO 
\biggl( 

log(1/\tau )

log(\gamma 2/\gamma 1)

\biggr) 
.

Clearly, N does not depend on the number of points or the geometries of X,Y . It
only depends on \tau and \gamma 2/\gamma 1, which indicates the separation of X and Y . This is
consistent with the conclusions in the FMM context [42].

Example 1. We use an example to illustrate the results in Proposition 3.1 for
d = 1. The points in X and Y are uniformly chosen from their corresponding regions
and are plotted in Figure 3(a), where m = | X| = 200, n = | Y | = 300, \gamma 1 = 0.5,
\gamma 2 = 2, and \gamma 3 = 5.

First, we fix the number of proxy points N = 20 and let \gamma vary. We plot the
actual error \scrE N (\gamma ) := \| \~K(X,Y )  - K(X,Y )\| F /\| K(X,Y )\| F and the error bound in (3.3).
See Figure 3(b). We can see that both plots are V-shaped lines and the error bound
is a close estimate of the actual error. Moreover, the bound nicely captures the error
behavior, and the actual error reaches its minimum almost at the same location where
the error bound is minimized: \gamma \ast =

\surd 
\gamma 1\gamma 2 = 1. Thus, \gamma \ast is a nice choice to minimize

the error. The proxy points Z with radius \gamma \ast are plotted in Figure 3(a).
Then in Figure 3(c), we fix \gamma = \gamma \ast and let N vary. Again, the error bound

provides a nice estimate for the error. Furthermore, both the error and the bound
decay exponentially like \scrO 

\bigl( 
| \gamma 2/\gamma 1|  - N/2

\bigr) 
= \scrO (2 - N ).

3.2. The case \bfitd > 2. In this case, there is no simple explicit formula for \varepsilon (x, y)
like in (3.2). The results in Theorems 2.3 and 2.4 cannot be trivially extended to
study the normwise error either since no lower bound is imposed on | x| in | y/x| .
Nevertheless, we can derive a bound as follows.
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-5 0 5
-5

0

5

(a) Sets X and Y with \gamma 1 = 0.5, \gamma 2 = 2, \gamma 3 = 5 and
proxy points Z selected with radius \gamma \ast = 1

0.5 1 1.5 2
10 -8

10 -6

10 -4

10 -2

10 0

exact rel err
rel err bound

(b) Varying proxy surface radius \gamma 

5 10 15 20 25 30
N

10 -10

10 -5

10 0

exact rel err
rel err bound

(c) Varying number of proxy points N

Fig. 3. Example 1: For d = 1, the selection of the proxy points and the actual relative error
\scrE N (\gamma ) compared with its upper bound in Proposition 3.1 for different \gamma and N .

Proposition 3.3. Suppose d \geq 2 and \kappa (x, y) in (1.3) is approximated by \~\kappa (x, y)
in (2.3) with (2.4). If 0 < | x| < \gamma 1 < \gamma < \gamma 2 < | y| < \gamma 3 for all x \in X, y \in Y , then
there exists a positive integer N3 independent of \gamma such that for N > N3,

\| \~K(X,Y )  - K(X,Y )\| F
\| K(X,Y )\| F

\leq g
\biggl( \Bigl( \gamma 2

\gamma 

\Bigr) N\biggr) 
+ \^c g

\biggl( \Bigl( \gamma 
\gamma 1

\Bigr) N\biggr) 
,(3.4)

where

\^c = 2 + 2

d - 1\sum 
j=1

[(| \gamma 3/\gamma 1| + 1)N ]j(2d)j - 1

j!
.(3.5)

Moreover, if the upper bound in (3.4) is viewed as a real function in \gamma on the interval
(\gamma 1, \gamma 2), then

1. this upper bound has a unique minimizer

\gamma \ast =

\Biggl( 
(\gamma N2  - \gamma N1 )

\sqrt{} 
(\gamma 1\gamma 2)N\^c - (\gamma 1\gamma 2)

N (\^c - 1)

\gamma N2  - \gamma N1 \^c

\Biggr) 1/N

\in (\gamma 1, \gamma 2);(3.6)

2. the minimum of this upper bound decays asymptotically as \scrO 
\bigl( 
| \gamma 2/\gamma 1|  - N/2

\bigr) 
.

D
ow

nl
oa

de
d 

07
/2

1/
22

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1073

Proof. Following the proof of Theorem 2.4, we can set N3 to be the maximum of
N2 in Theorem 2.4 for all x \in X. Based on the entrywise error bound in (2.9), we
can just show the following inequalities for N > N3 and any x \in X, y \in Y :

g

\biggl( \bigm| \bigm| \bigm| y
\gamma 

\bigm| \bigm| \bigm| N\biggr) < g

\biggl( \Bigl( \gamma 2
\gamma 

\Bigr) N\biggr) 
, cg

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) < \^c g

\biggl( \Bigl( \gamma 
\gamma 1

\Bigr) N\biggr) 
.

The first inequality is obvious. We then focus on the second one. Just for the purpose
of this proof, we write c in (2.10) as c(| x| , | y| ) to indicate its dependency on | x| and
| y| . c(| x| , | y| ) can be viewed as a degree-(d  - 1) polynomial in 1/| x| and | y| with all
positive coefficients.

Write

c(| x| , | y| ) g
\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) =
\bigl[ 
c(| x| , | y| )| x| d - 1

\bigr] \biggl[ 
g

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) | x| 1 - d

\biggr] 
.

The first term c(| x| , | y| )| x| d - 1 is a polynomial in | x| with all positive coefficients and
increases with | x| . The second term is

g

\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) | x| 1 - d =
| x| N - d+1

\gamma N  - | x| N
.

With N > N3, it can be shown that this term is also strictly increasing in | x| for
0 < | x| < \gamma 1 < \gamma .

Thus for any x \in X, y \in Y ,

c(| x| , | y| ) g
\biggl( \bigm| \bigm| \bigm| \gamma 
x

\bigm| \bigm| \bigm| N\biggr) < c(\gamma 1, | y| ) g
\biggl( \bigm| \bigm| \bigm| \gamma 
\gamma 1

\bigm| \bigm| \bigm| N\biggr) < c(\gamma 1, \gamma 3) g

\biggl( \bigm| \bigm| \bigm| \gamma 
\gamma 1

\bigm| \bigm| \bigm| N\biggr) = \^c g

\biggl( \bigm| \bigm| \bigm| \gamma 
\gamma 1

\bigm| \bigm| \bigm| N\biggr) ,
where the constant \^c is defined in (3.5) which is c in (2.10) with | y/x| replaced by
\gamma 3/\gamma 1.

The minimizer \gamma \ast in (3.6) for the upper bound is the root of a quadratic polyno-
mial in (\gamma 1, \gamma 2) and can be obtained following the proof of Theorem 2.4.

Based on this corollary, we can draw conclusions similar to those in Remark 3.2.
In addition, although \gamma 3 is needed so that Y is on a bounded domain in order to
derive the error bound (3.4), we believe such a limitation is not needed in practice.
In fact, the analytical compression tends to be more accurate when the points y are
farther away from the set X. Also, if \gamma 3 is too large, then we may slightly shift the x
points to make sure | x| is larger than a positive number \gamma 0 so as to similarly derive
an error bound using \gamma 0 instead of \gamma 3.

3.3. A practical method to estimate the optimal radius \bfitgamma . In Proposi-
tions 3.1 and 3.3, the upper bounds are used to estimate the optimal choice of \gamma for
the radius of the proxy surface. In practice, it is possible that the upper bound may
be conservative, especially when d > 1. Thus, we also propose the following method
to quickly obtain a numerical estimate of the optimal choice.

In Propositions 3.1 and 3.3, the optimal \gamma \ast is independent of the number of points
in X and Y and their distribution. This feature motivates the idea to pick subsets
X0 \subset \scrD (0; \gamma 1) and Y0 \subset \scrA (0; \gamma 2, \gamma 3) and use them to estimate the actual error. That
is, we would expect the following two quantities to have similar behaviors when \gamma 
varies in (\gamma 1, \gamma 2):
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1074 XIN YE, JIANLIN XIA, AND LEXING YING

\scrE 0N (\gamma ) :=
\| K(X0,Y0)  - \~K(X0,Y0)\| F

\| K(X0,Y0)\| F
, \scrE N (\gamma ) :=

\| K(X,Y )  - \~K(X,Y )\| F
\| K(X,Y )\| F

.(3.7)

\scrE 0N (\gamma ) can be used as an estimator of the actual approximation error \scrE N (\gamma ). Note
that K(X0,Y0) and \~K(X0,Y0) are computable through (1.3) and (2.3), respectively, so
\scrE 0N (\gamma ) can be computed explicitly, and the cost is extremely small if | X0| \ll | X| and
| Y0| \ll | Y | .

Note that in rank-structured matrix computations, often an admissible condition
or separation parameter is prespecified for the compression of multiple off-diagonal
blocks. In the case of kernel matrices, it means that the process of estimating the
optimal \gamma needs to be run only once and can then be used in multiple compression
steps.

Example 2. We use an example to demonstrate the numerical selection of the
optimal \gamma . Consider d = 2, 3 and the two sets X and Y in Example 1 with the same
values \gamma 1, \gamma 2, \gamma 3 (see Figure 3(a)). Fix N = 30.

For the sets X0 and Y0 we choose, we set l = | X0| = | Y0| to be 1, 2, or 3. We
make sure x = \gamma 1 and y = \gamma 2 as points of \BbbC are always in X0 and Y0, respectively.
Thus, \scrE 0N (\gamma ) is more likely to capture the behavior of \scrE N (\gamma ). Any additional points
in X0 are uniformly distributed in the circle \scrC (0; \gamma 1) and any additional points in Y0
are uniformly distributed in \scrC (0; \gamma 2).

With l = 1, both \scrE N (\gamma ) and \scrE 0N (\gamma ) are plotted. See Figures 4(a) and 4(b) for
d = 2 and 3, respectively. We can see that \scrE 0N (\gamma ) already gives a good estimate of
the behavior of \scrE N (\gamma ) for both cases. Then in Figures 4(c) and 4(d) we plot \scrE 0N (\gamma )
for l = 1, 2, 3 and zoom in at around the minimum since they almost coincide with
each other away from the minimum. The minimums of the three cases are very close
to each other.

4. Low-rank approximation accuracy in hybrid compression and rep-
resentative point selection. The analytical compression in section 3 can serve as
a preliminary low-rank approximation, which is typically followed by an algebraic
compression step to get a more compact low-rank approximation. In this section,
we analyze the approximation error of such hybrid (analytical/algebraic) compression
method applied to K(X,Y ).

Suppose m = | X| and n = | Y | are sufficiently large and N = | Z| is fixed. With
the preliminary low-rank approximation in (3.1), since K(X,Z) has a much smaller
column size than K(X,Y ), it becomes practical to apply an SRRQR factorization to
K(X,Z) to obtain the following approximation:

K(X,Z) \approx UK( \^X,Z) with U = P

\biggl( 
I
E

\biggr) 
,(4.1)

where P is a permutation matrix so that K( \^X,Z) a submatrix of K(X,Z) corresponding
to a subset \^X \subset X. \^X can be referred to as a set of representative points of X. (4.1)
is an interpolative decomposition of K(X,Z). It is also called structure-preserving

rank-revealing (SPRR) factorization in [49] since K( \^X,Z) is a submatrix of K(X,Z).
Although U generally does not have orthonormal columns, the SRRQR factor-

ization keeps its norm under control in the sense that entries of E have magnitudes
bounded by a constant e (e.g., e = 2 or

\surd 
N). See [18] for details.
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0.5 1 1.5 2

10 -8

10 -6

10 -4

10 -2

10 0

(a) d = 2

0.5 1 1.5 2

10 -5

10 0

(b) d = 3

1.04 1.06 1.08 1.1 1.12

10 -8

10 -7

(c) d = 2, zoomed in around the critical point

1.1 1.12 1.14 1.16 1.18 1.2

10 -7

10 -6

(d) d = 3, zoomed in around the critical point

Fig. 4. Example 2: For d = 2 and 3, how the estimator \scrE 0
N (\gamma ) with l = 1, 2, 3 compares with

the actual error \scrE N (\gamma ).

We then have

K(X,Y ) \approx \~K(X,Y ) = K(X,Z)\Phi (Z,Y ) (by (2.3) and (3.1))(4.2a)

\approx UK( \^X,Z)\Phi (Z,Y ) (by (4.1))(4.2b)

= U \~K( \^X,Y ) (by (2.3) and similar to (3.1))(4.2c)

\approx UK( \^X,Y ), (by \~\kappa (x, y) \approx \kappa (x, y)),(4.2d)

which is an SPRR factorization of K(X,Y ).
Similarly, an SRRQR factorization can further be applied to K( \^X,Y ) to produce

K( \^X,Y ) \approx K( \^X, \^Y )V T with V = Q

\biggl( 
I
F

\biggr) 
,(4.3)

where Q is a permutation matrix and \^Y \subset Y . The approximation (4.2) together with
(4.3) essentially enables us to quickly select representative points from both X and
Y . In other words, we have a skeleton factorization of K(X,Y ) as

K(X,Y ) \approx UK( \^X, \^Y )V T .(4.4)

Note that computing an SPRR or skeleton factorization for K(X,Y ) directly (or to

find a submatrix K( \^X, \^Y ) with the largest ``volume"" [14, 44]) is typically prohibitively
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1076 XIN YE, JIANLIN XIA, AND LEXING YING

expensive for large m and n. Here, the proxy point method substantially reduces the
cost. In fact, (4.2a) and (4.2c) are done analytically with no computation cost. Only

the SRRQR factorizations of skinny matrices (K(X,Z) and/or K( \^X,Y )) are needed.
The total compression cost is \scrO (mNr) for (4.2) or \scrO (mNr + nr2) for (4.4) instead
of \scrO (mnr) in the case of direct compression, where r = | \^X| \geq | \^Y | . As we have
discussed before, N is only a constant independent of m and n. Thus, this procedure
is significantly more efficient than applying SRRQR factorizations directly to the
original kernel matrix.

The next theorem concerns the approximation error of the hybrid compression
via either (4.2) or (4.4).

Theorem 4.1. Suppose 0 < | x| < \gamma 1 < \gamma < \gamma 2 < | y| < \gamma 3 for any x \in X, y \in Y
and the N proxy points in Z are located on the proxy surface with radius \gamma \ast . Let r =
| \^X| and let the relative tolerance in the kernel approximation be \tau 1 (i.e., | \varepsilon (x, y)| < \tau 1
for \varepsilon (x, y) in (2.7)) and the relative approximation tolerance (in Frobenius norm) in
the SRRQR factorizations (4.1) and (4.3) be \tau 2. Assume the entries of E in (4.1)
and F in (4.3) have magnitudes bounded by e. Then the approximation of K(X,Y ) by
(4.2) satisfies

\| K(X,Y )  - UK( \^X,Y )\| F
\| K(X,Y )\| F

< s1\tau 1 + s2\tau 2,(4.5)

where

s1 = 1 +
\sqrt{} 
r + (m - r)re2

\sqrt{} 
1 - (m - r)(\gamma 2  - \gamma 1)2d

m(\gamma 1 + \gamma 3)2d
, s2 =

\gamma \ast (\gamma 1 + \gamma 3)
d

(\gamma 2  - \gamma \ast )(\gamma \ast  - \gamma 1)d
.

The approximation of K(X,Y ) by (4.4) satisfies

\| K(X,Y )  - UK( \^X, \^Y )V T \| F
\| K(X,Y )\| F

< s1\tau 1 + \~s2\tau 2,(4.6)

where \~s2 = s2 + s1  - 1.

Proof. The following inequalities for x \in X, y \in Y, z \in Z will be useful in the
proof:

| \phi (z, y)| < \gamma \ast 

N(\gamma 2  - \gamma \ast )
,(4.7)

| \kappa (x, z)| < 1

(\gamma \ast  - \gamma 1)d
,(4.8)

1

(\gamma 1 + \gamma 3)d
< | \kappa (x, y)| < 1

(\gamma 2  - \gamma 1)d
.(4.9)

Note that

\| K(X,Y )  - UK( \^X,Y )\| F

(4.10)

\leq \| K(X,Y )  - \~K(X,Y )\| F + \| \~K(X,Y )  - UK( \^X,Y )\| F
\leq \| K(X,Y )  - \~K(X,Y )\| F + \| \~K(X,Y )  - U \~K( \^X,Y )\| F + \| U \~K( \^X,Y )  - UK( \^X,Y )\| F
= \| K(X,Y )  - \~K(X,Y )\| F + \| K(X,Z)\Phi (Z,Y )  - UK( \^X,Z)\Phi (Z,Y )\| F
+ \| U \~K( \^X,Y )  - UK( \^X,Y )\| F (by (4.2a)--(4.2c))
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LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1077

\leq \| K(X,Y )  - \~K(X,Y )\| F + \| K(X,Z)  - UK( \^X,Z)\| F \| \Phi (Z,Y )\| F
+ \| U\| F \| K( \^X,Y )  - \~K( \^X,Y )\| F .

Now, we derive upper bounds separately for the three terms in the last step above.
(i) The first term is the approximation error for the original kernel matrix from

the proxy point method. Then

\| K(X,Y )  - \~K(X,Y )\| F \leq \tau 1\| K(X,Y )\| F .(4.11)

(ii) Next, from the SPRR factorization of K(X,Z),

\| K(X,Z)  - UK( \^X,Z)\| F \| \Phi (Z,Y )\| F \leq \tau 2\| K(X,Z)\| F \| \Phi (Z,Y )\| F .

Since \Phi (Z,Y ) is N \times n, (4.7) means

\| \Phi (Z,Y )\| F <
\surd 
Nn

\gamma \ast 

N(\gamma 2  - \gamma \ast )
=

\sqrt{} 
n

N

\gamma \ast 

\gamma 2  - \gamma \ast 
.

Similarly, (4.8) and (4.9) mean

\| K(X,Z)\| 2F
\| K(X,Y )\| 2F

<
mN/(\gamma \ast  - \gamma 1)2d

mn/(\gamma 1 + \gamma 3)2d
=
N

n

(\gamma 1 + \gamma 3)
2d

(\gamma \ast  - \gamma 1)2d
.

Then

\| K(X,Z)  - UK( \^X,Z)\| F \| \Phi (Z,Y )\| F < \tau 2

\sqrt{} 
n

N

\gamma \ast 

\gamma 2  - \gamma \ast 
\| K(X,Z)\| F

(4.12)

< \tau 2
\gamma \ast (\gamma 1 + \gamma 3)

d

(\gamma 2  - \gamma \ast )(\gamma \ast  - \gamma 1)d
\| K(X,Y )\| F .

(iii) Third,

\| U\| F =

\bigm\| \bigm\| \bigm\| \bigm\| P \biggl( IE
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

F

=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( IE
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

F

\leq 
\sqrt{} 
r + (m - r)re2,

\| K( \^X,Y )  - \~K( \^X,Y )\| F \leq \tau 1\| K( \^X,Y )\| F .

According to (4.9),

\| K( \^X,Y )\| 2F
\| K(X,Y )\| 2F

= 1 - \| K
(X\setminus \^X,Y )\| 2F
\| K(X,Y )\| 2F

\leq 1 - (m - r)n/(\gamma 1+\gamma 3)2d

mn/(\gamma 2  - \gamma 1)2d
= 1 - (m - r)(\gamma 2 - \gamma 1)2d

m(\gamma 1 + \gamma 3)2d
.

Then

\| U\| F \| K( \^X,Y )  - \~K( \^X,Y )\| F(4.13)

\leq \tau 1
\sqrt{} 
r + (m - r)re2

\sqrt{} 
1 - (m - r)(\gamma 2  - \gamma 1)2d

m(\gamma 1 + \gamma 3)2d
\| K(X,Y )\| F .
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Combining the results (4.11)--(4.13) from the three steps above yields (4.5). To
show (4.6), we use the following inequality:

\| K(X,Y )  - UK( \^X, \^Y )V T \| F
\leq \| K(X,Y )  - \~K(X,Y )\| F + \| K(X,Z)\Phi (Z,Y )  - UK( \^X,Z)\Phi (Z,Y )\| F
+ \| U \~K( \^X,Y )  - UK( \^X,Y )\| F + \| UK( \^X,Y )  - UK( \^X, \^Y )V T \| F .

Then the proof can proceed similarly.

If e in SRRQR factorizations is a constant, with fixed N , the two constants in
(4.5) scale roughly as s1 = \scrO (

\surd 
m) and s2 = \scrO (1). Moreover, once the annulus region

\scrA (0; \gamma 2, \gamma 3) is fixed, the set Y is completely irrelevant to the algorithm for obtaining
the approximation (4.2) and the error bound (4.5). The column basis matrix U and
the set \^X of representative points can be obtained with only the set X, and the error
analysis in (4.5) applies to any set Y in \scrA (0; \gamma 2, \gamma 3).

Remark 4.2. Note that our error analyses in the previous section and this section
are not necessarily restricted to the particular kernel like in (1.3) or the proxy point
selection method. In fact, the error bounds can be easily modified for more general
kernels and/or with other approximation methods as long as a relative error bound
for the kernel function approximation is available. This bound is \tau 1 in Theorem 4.1.

We then use a comprehensive example to show the accuracies of the analytical
compression and the hybrid compression, as well as the selections of the proxy points
and the representative points.

Example 3. We generate a triangular finite element mesh on a rectangle domain
[0, 2]\times [0, 1] based on the package MESHPART [11]. The two sets of points X and Y
are the mesh points as shown in Figure 5, where | X| = 821, | Y | = 4125, \gamma 1 = 0.3, and
\gamma 2 = 0.45. We compute the low-rank approximation in (4.2) and report the relative
errors in the analytical compression step and the hybrid low-rank approximation,
respectively:

\scrE N (\gamma ) =
\| K(X,Y )  - \~K(X,Y )\| F

\| K(X,Y )\| F
, \scrR N (\gamma ) =

\| K(X,Y )  - UK( \^X,Y )\| F
\| K(X,Y )\| F

.

In the first set of tests, the number of proxy points N is chosen to reach a rela-
tive tolerance \tau 1 = 10\varepsilon mach in the proxy point method, where \varepsilon mach is the machine
precision. (Note that \tau 1 is the tolerance for approximating \kappa (x, y), and the actual

Fig. 5. Example 3: Sets X and Y in the mesh, where the image is based on the package
MESHPART [11].

D
ow

nl
oa

de
d 

07
/2

1/
22

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK COMPRESSION VIA PROXY POINT SELECTION 1079

0.3 0.35 0.4 0.45

10 -15

10 -10

10 -5

R
el

at
iv

e 
er

ro
r

Analytical compression
Hybrid compression

(a) d = 1

0.3 0.35 0.4 0.45

10 -15

10 -10

10 -5

R
el

at
iv

e 
er

ro
r

Analytical compression
Hybrid compression

(b) d = 2

0.3 0.35 0.4 0.45

10 -15

10 -10

10 -5

R
el

at
iv

e 
er

ro
r

Analytical compression
Hybrid compression

(c) d = 3

0.3 0.35 0.4 0.45

10 -15

10 -10

10 -5

R
el

at
iv

e 
er

ro
r

Analytical compression
Hybrid compression

(d) d = 4

Fig. 6. Example 3: \scrE N (\gamma ) in the analytical compression step and \scrR N (\gamma ) in the hybrid low-rank
approximation with varying radius \gamma .

computed Frobenius-norm matrix approximation error \scrE N (\gamma ) may be slightly larger
due to floating point errors.)

We vary the radius \gamma for the proxy surface between \gamma 1 and \gamma 2. For d = 1, 2, 3, 4,
\scrE N (\gamma ) and \scrR N (\gamma ) are shown in Figure 6. In practice, we can use the method in
subsection 3.3 to obtain an approximate optimal radius \~\gamma \ast . To show that \~\gamma \ast is very
close to the actual optimal radius, we can look at Figure 6(a) for d = 1. Here, N = 169
and \~\gamma \ast = 0.3675, which is very close to the actual optimal radius 0.3678. In addition,
the error bound in Proposition 3.1 can be used to provide another estimate

\surd 
\gamma 1\gamma 2 =

0.3674. Both estimates are very close to the actual minimizer, which indicates the
effectiveness of the error analysis and the minimizer estimations. When \gamma = \~\gamma \ast , we
have \scrE N (\gamma ) = 3.2106E  - 16 and \scrR N (\gamma ) = 1.1008E  - 15, and the numerical rank
resulting from the hybrid compression is 78. The numerical rank produced by SVD
under a similar relative error is 68.

Similar results are obtained for d = 2, 3, 4. See Figure 6 and Table 1. We notice
that \scrE N (\gamma ) is sometimes larger than \scrR N (\gamma ), especially when \gamma is closer to X or Y .
This is likely due to the different amount of evaluations of the kernel function in
the error computations. The kernel function evaluations may have higher numerical
errors when \gamma gets closer to \gamma 1 or \gamma 2. When \gamma is not too close to \gamma 1 or \gamma 2, \scrR N (\gamma )
is smaller than \scrE N (\gamma ), which is consistent with the theoretical estimates. Here, no
stabilization is integrated into the proxy point method (which may be fixed based on
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Table 1
Example 3: Hybrid compression results, where \~\gamma \ast is the approximate optimal radius.

d N Optimal \gamma \~\gamma \ast Numerical rank \scrE N (\~\gamma \ast ) \scrR N (\~\gamma \ast )
1 169 0.3678 0.3675 78 3.2106E  - 16 1.1008E  - 15
2 179 0.3733 0.3713 88 1.0431E  - 15 2.1817E  - 15
3 187 0.3774 0.3759 93 2.3565E  - 15 2.0537E  - 14
4 193 0.3816 0.3792 99 8.9381E  - 15 7.5528E  - 14

(a) d = 1 (b) d = 2

Fig. 7. Example 3: Representative points (+ shapes) and proxy points (\times shapes).

a technique in [3]), while SRRQR factorizations have full stability measurements and
produce column basis matrices with controlled norms. On the other hand, this also
reflects that hybrid compression is a practical method.

Also in Figure 7 for d = 1, 2, we plot the proxy points as well as the representative
points \^X produced by the hybrid approximation with \gamma = \~\gamma \ast .

In our next set of tests, we vary the number of proxy points N for the analytical
compression step and check its effect on the hybrid low-rank approximation error. For
each N , the radius of the proxy surface \gamma is set to be \~\gamma \ast . The results are shown in
Figure 8. The approximation error for the analytical compression decays exponentially
as predicted by Propositions 3.1 and 3.3 (until N reaches the values indicated in
Table 1; after that point, it stops decaying due to floating point errors).

5. Discussions. The proxy point method has some attractive features similar
to some methods used for data analysis such as the Nystr\"om method and the pseudo-
input approximation [8, 13, 26, 40, 46]. For kernel matrices, both the proxy point
method and the Nystr\"om method construct low-rank basis matrices directly based on
selections of reference points and evaluations of the original kernel function.

However, there are some key differences between the two methods.
1. The Nystr\"om method is typically used to seek low-rank approximations for

square kernel matrices of the form K(X,X), which corresponds to interactions
within the same set X. K(X,X) is often heuristically considered to be of
low numerical rank (with modest accuracies) in data science and machine
learning applications. On the other hand, the proxy point method deals
with rectangular kernel matrices K(X,Y ) for two different and well-separated
sets X and Y . If K(X,X) is considered, then FMM or \scrH /\scrH 2/HSS matrix
strategies are first applied to generate well-separated subsets. That is, X is
first hierarchically partitioned into subsets Xi. Then the proxy point method
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Fig. 8. Example 3: Accuracies with \gamma = \~\gamma \ast and varying N .

can be applied to K(Xi,Xj) for well-separated Xi and Xj . That is, in the
matrix form, the proxy point method compresses appropriate off-diagonal
blocks of K(X,X). Such an off-diagonal compression idea leads to so-called
rank-structured matrices that have been extensively studied in the field of
fast solvers for some linear systems, PDEs, and integral equations. (The
Nystr\"om method may also be applied to well-separated sets, but it is hard to
guarantee high accuracies. See the last point below.)

2. Due to the different natures of the applications that the two methods are
applied to, their accuracy requirements are typically quite different. For ker-
nel methods such as the support vector machine or Gaussian process regres-
sion, the Nystr\"om method produces modest accuracies (such as \scrO (10 - 3) \sim 
\scrO (10 - 1)) which are good enough for making reasonable predictions in the
model. The proxy point method considers interactions between well-separated
sets instead of the entire set. For some applications, the separation of sets
can be used to analytically justify the low-rankness with any specified ac-
curacy. The proxy point method helps to conveniently compress the off-
diagonal blocks of K(X,X) so as to quickly obtain accurate rank-structured
matrix approximations to K(X,X) that are suitable for fast and reliable direct
factorizations, inversions, eigenvalue solutions, etc.

3. Since the Nystr\"om method often selects points based on techniques such as
sampling and clustering, the accuracy analysis is typically probabilistic [8,
55, 56]. The proxy point method here uses a deterministic way to select
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proxy points. The proxy point selection and basis matrix computation are
supported by analytical justifications with guaranteed controllable accuracies.
The analysis enables us to rigorously quantify the error behaviors and to
optimize parameters. Of course, this also means that such rigorous analysis
is typically nontrivial and is feasible for specific kernels on a case-by-case basis
(although the method has been successfully applied to many different types of
kernels in practice). Studies for many other kernels still need to be performed,
and this paper serves as a starting point for such studies. In addition, as
mentioned in Remark 4.2, the hybrid error analysis in Theorem 4.1 is not
restricted to specific kernels or proxy point selection methods.

4. The Nystr\"om method may be applied to data points in high dimensions, while
the proxy point method focuses on data points in low-dimensional spaces that
are often encountered in the solutions of some linear systems, eigenvalue prob-
lems, PDEs, and integral equations. For example, the proxy point method
are useful for direct solutions of Cauchy/Cauchy-like/Toeplitz/Vandermonde
linear systems [34, 39, 49] and FMM accelerations of Hermitian eigenvalue
problems [17, 45], where the data points under consideration are on some lines
or curves. For some FMM techniques and PDE/integral equation solutions,
the points are in one-, two-, or three-dimensional spaces [12, 32, 33, 35, 52, 53].

5. The Nystr\"om method may be extended to well-separated sets X and Y . How-
ever, there is no guarantee that a specified high accuracy can be reached. For

example, we may obtain an initial approximate column basis matrix K(X, \^Y )

by selecting a subset \^Y from Y . K(X, \^Y ) can be used like K(X,Z) in section 4
to obtain an approximation just like (4.2d). (We use this scheme so that its
cost is nearly the same as our method. We may also select points from both
X and Y in the Nystr\"om method, but the accuracy in the following test is
even lower.)

To compare the Nystr\"om scheme in the last item above with the proxy point
method for well-separated sets, we apply them to the data sets used in Example 3 by
selecting the same number of points N to obtain hybrid compression. In the Nystr\"om
method, we try both random sampling with replacement and k-means clustering for
selecting reference points like in [56] based on some routines from [54]. The relative
approximation errors for the cases d = 1 and 2 are plotted in Figure 9. The approxi-

0 50 100 150

N

10-15

10-10

10-5

100

Nystrom (random)
Nystrom (k-means)
Proxy point method

(a) d = 1

0 50 100 150

N

10-15

10-10

10-5

100

Nystrom (random)
Nystrom (k-means)
Proxy point method

(b) d = 2

Fig. 9. Relative approximation errors (in Frobenius norm) of the Nystr\"om method and the
proxy point method, where the Nystr\"om method uses random sampling or k-means clustering for
selecting reference points.
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mation accuracy from the Nystr\"om method initially improves with increasing N , but
the accuracy improvement gets very slow and almost stagnates. In comparison, the
errors from the proxy point method decrease all the way to near machine precision.

6. Conclusions. The proxy point method is a very simple and convenient strat-
egy for computing low-rank approximations for kernel matrices evaluated at well-
separated sets. In this paper, we present an intuitive way of explaining the method.
Moreover, we provide rigorous approximation error analysis for the kernel function
approximation and low-rank kernel matrix approximation in terms of a class of impor-
tant kernels. Based on the analysis, we show how to choose nearly optimal locations
of the proxy points. The work can serve as a starting point to study the proxy point
method for more general kernels. Some possible strategies in future work will be
based on other kernel expansions or Cauchy FMM ideas [28]. Various results here
are already applicable to more general kernels and other approximation methods. We
also hope this work can draw more attention from researchers in the field of matrix
computations to study and utilize such an elegant method.

Acknowledgments. The authors would like to thank Steven Bell at Purdue
University for some helpful discussions and thank the referees for valuable comments.
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