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1. Introduction

The biharmonic equations are an important class of equations in both physics and engineering. In fluid dynamics, the
so-called stream function satisfies the biharmonic equation. Many problems in elasticity can also be formulated in terms
of the biharmonic equation where the fundamental physical quantities such as displacement, stress, and strain all satisfy
the biharmonic equation (see, for example, [30]). There have been extensive research activities on the biharmonic equation
both theoretically and computationally (see, for example, [1,9,31,32,35]). Solving the biharmonic equation numerically is a
nontrivial task. Since the biharmonic equation is a fourth order differential equation, standard finite difference approxima-
tion results in a linear system with condition number proportional to O(N4), where N is the number of the discretization
point in each dimension. Thus even a relatively small N causes a catastrophic loss of precision, rendering the numerical com-
putation meaningless. For three dimensional problems, the computational cost is prohibitive for finite difference schemes
since one has to discretize the whole domain and the stencil for the 4th order differential operator requires more than
twenty points to achieve a good accuracy (see, for example, [2]).

In this paper, we consider the first kind Dirichlet problem of the biharmonic equation as follows. Given continuous func-
tions f1, f2 on a sufficiently smooth surface S in R3, find a function u 2 C4ðDÞ \ CðDÞ such that
D2u ¼ 0 on D;

u ¼ f1 on S;
@u
@n ¼ f2 on S;

8><
>: ð1Þ
where D is the domain enclosed by S. We construct a Fredholm second kind integral equation formulation for this problem.
The advantages of the SKIE formulation are obvious. First, it reduces the dimension of the problem by one since we now only
. All rights reserved.
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need to solve integral equations with unknowns on the boundary. Second, being a boundary integral equation formulation, it
can easily handle problems involving complex geometry. Third, for second kind integral equations the condition number of
the resulting linear system remains bounded when the number of unknowns increases. Finally, there are fast numerical algo-
rithms for this kind of boundary integral equations such as tree codes and fast multipole algorithms (see [6,17,18]) where the
computational cost is O(N) or O(N logN) for problems with N the total number of discretization points on the boundary. We
would like to remark here that the currently existing fast multipole algorithms (see for example, [6,13,14,17,18,27,36–38])
either are not directly applicable to the kernels in our SKIE formulation or involve a large prefactor. Hence, we have devel-
oped a fast matrix–vector multiplication scheme based on randomized factorization for low rank matrices. The scheme is
easy to implement and applicable to a broad of kernels.

There has been a great amount of work in developing numerical methods for biharmonic equations in two dimensions. In
[15], the two dimensional problem is solved by a decomposition into two Poisson problems with an iteration for the trace of
the right hand side. Since one needs to solve second order elliptic PDEs in the whole domain, the approach is not as efficient
as the boundary integral equation method complexity-wise. The two dimensional problem has been reduced to second kind
integral equations by many researchers (see for example [1,7,8,22–24,26,28,29,34]). There are also several attempts to re-
duce the three dimensional problem to integral equations. For example in [35], the 3D problem is reduced to an integral
operator that is a sum of an invertible operator and a compact one. However, it assumes the knowledge of the Laplace
Green’s function of a general compact domain, thus making it less convenient for the purpose of numerical computation.

The paper is organized as follows. First, we summarize our main result in Section 2. We then present the detailed deri-
vation of the SKIE formulation in Section 3. A numerical algorithm based on the SKIE formulation is followed in Section 4. In
Section 5, we illustrate the performance (accuracy, efficiency, and robustness) of the numerical algorithm via several numer-
ical examples. Finally, we conclude our paper with a short discussion on the extension and applications of our method.

2. The main result

We use D to denote a bounded domain in R3. Its boundary, denoted by S, is assumed to be a sufficiently smooth regular
surface. We use x and y to denote points in R3. The outward unit normal vector at a point x on S is denoted by nx. However,
when the point is y, we will simply denote it by n. We use r to denote the vector x � y and r to denote its length jx � yj. We
use r � n to denote the dot product between r and n (note that n is boldfaced in the dot product). Finally, with a slight abuse of
notation, we always use the same symbol to denote both the kernel of an integral operator and the operator itself.

We now summarize our main result in the following theorem.

Theorem 1. Let u be defined by the formula
uðxÞ ¼
Z

S
½K1ðx; yÞr1ðyÞ þ K2ðx; yÞr2ðyÞ�dsy; ð2Þ
where K1 and K2 are defined by the formulas
K1ðx; yÞ ¼ �2Gnnnðx; yÞ þ 3ðDGÞnðx; yÞ ¼ �
3 r � nð Þ3

4pr5 ; ð3Þ

K2ðx; yÞ ¼ �DGðx; yÞ ¼ 1
4pr

ð4Þ
with Gðx; yÞ ¼ � 1
8p r the fundamental solution of the biharmonic equation in R3. Then u is a solution of the first (interior) Dirichlet

problem of the biharmonic Eq. (1) if the density r satisfies the following system of second kind integral equations:
DðxÞrðxÞ þ
Z

S
Kðx; yÞrðyÞdsy ¼ f ðxÞ; ð5Þ
where
DðxÞ ¼
1
2 0
�HðxÞ 1

2

 !
; rðxÞ ¼

r1ðxÞ
r2ðxÞ

� �
; f ðxÞ ¼

f1ðxÞ
f2ðxÞ

� �
; ð6Þ

Kðx; yÞ ¼
K11ðx; yÞ K12ðx; yÞ
K21ðx; yÞ K22ðx; yÞ

� �
¼

� 3ðr�nÞ3
4pr5

1
4pr

� 9ðr�nÞ2ðn�nxÞ
4pr5 þ 15ðr�nÞ3ðr�nxÞ

4pr7 � r�nx
4pr3

0
@

1
A ð7Þ
and H(x) is the sum of principal curvatures of S at x.
Remark 2. For exterior problems, the diagonal part D will change sign.
Remark 3. The discretized matrix D is block diagonal but non-symmetric. For certain problems, it may be advantageous that

we precondition the whole system by D�1 ¼ 2I 0
4H 2I

� �
.
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3. Construction of the SKIE formulation

3.1. A heuristic reasoning

To reduce the first Dirichlet problem (1) to SKIEs, our strategy follows the line along Peter Farkas’ thesis [12] (we would
like to remark here that [12] deals only with the two dimensional case). We try to represent the solution via a sum of two
multiple layer potentials
uðxÞ ¼
Z

S
½K1ðx; yÞr1ðyÞ þ K2ðx; yÞr2ðyÞ�dsy; ð8Þ
where Ki and ri(i = 1,2) are integral kernels (to be determined) and unknown densities, respectively. Since u has to satisfy the
biharmonic equation for x 2 D, the kernels Ki (i = 1,2) have to be a linear combination of G and its partial derivatives. u also
needs to satisfy two boundary conditions. It is well known that layer potentials may experience certain jumps across the
boundary. Thus, we denote
K11ðx; yÞ ¼ K1ðx; yÞ;
K12ðx; yÞ ¼ K2ðx; yÞ;
K21ðx; yÞ ¼ @K1ðx;yÞ

@nx
;

K22ðx; yÞ ¼ @K2ðx;yÞ
@nx

ð9Þ
and assume that the jump relation for each associated layer potential is as follows:
lim
e!0þ

Z
S

Kijðx� enx; yÞrjðyÞdsy ¼ DijrjðxÞ þ
Z

S
Kijðx; yÞrjðyÞdsy; x 2 S; i; j ¼ 1;2; ð10Þ
where Dij are to be determined. With this assumption, the boundary conditions lead to the following system of integral equa-
tions in ri(i = 1,2)
D11 D12

D21 D22

� � r1ðxÞ
r2ðxÞ

� �
þ
R

S

K11ðx; yÞ K12ðx; yÞ
K21ðx; yÞ K22ðx; yÞ

� � r1ðyÞ
r2ðyÞ

� �
dsy ¼

f1ðxÞ
f2ðxÞ

� �
: ð11Þ
To make the above system second kind, we must require that the diagonal matrix D ¼ D11 D12

D21 D22

� �
has nonzero determinant

and the integral operators Kij are all compact.

3.2. Choices of K1 and K2

To simplify the discussion and fix the notation, we require further that D12 = 0. Note that this can always be achieved
without really changing the system by exchanging K1 and K2 and/or forming proper linear combinations of them. Now it
is easy to choose K2 such that D12 = 0, D22 – 0 and K12, K22 are both compact. Indeed, we may simply choose
K2ðx; yÞ ¼ �DGðx; yÞ ¼ 1
4pr

: ð12Þ
That is, K2 is the single layer potential operator for the Laplace equation. It is well known (see, for example, [21]) that the
single layer potential of the Laplace equation is continuous across the boundary (i.e., D12 = 0); its normal derivative has
the following jump relation:
lim
e!0þ

Z
S

@

@nx

1
4pjx� enx � yjrðyÞdsy ¼

Z
S

@

@nx

1
4pjx� yjrðyÞdsy �

1
2
rðxÞ; x 2 S; ð13Þ
i.e., D22 ¼ 1
2 ; 1

r is only weakly singular; and @
@nx

1
r is in fact continuous for sufficiently smooth boundary. Thus both K12, K22 are

compact.

Remark 4. DG is not the only choice for K2. In fact, Gnn is another perfectly reasonable choice which satisfies all the
requirements on K2. A straightforward calculation shows that Gnn satisfies exactly the same jump relations as DG (one may
also obtain this result via the standard decomposition of the Laplacian D ¼ DS þ H @

@nþ @2

@n2 with DS the surface Laplacian).
Indeed, one may set K2 = � aDG � (1 � a)Gnn for any real number a without changing the diagonal matrix D or the singular
properties of K12 and K22.

Let us now try to choose K1. Since D12 = 0 and detD – 0, we must have D11 – 0. We also require that K11 and K21 be both
compact. This is a nontrivial task. In fact, it can never be done for the Laplace equation where its double layer potential has a
jump (i.e., D11 – 0) and the double layer potential operator itself is compact (i.e., K11 is compact), but the normal derivative of
the double layer potential is hypersingular (i.e., K21 is NOT compact). The situation becomes worse if one tries to use higher
order layer potentials for the Laplace equation.
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Fortunately, this is not the case for the biharmonic equation. We claim that the following choice
K1ðx; yÞ ¼ �2Gnnnðx; yÞ þ 3ðDGÞnðx; yÞ ð14Þ
would meet all requirements. The key is that K21 is also compact due to a cancellation of the hypersingular parts. Before we
continue, let us write down the exact expressions for these kernels. We first note that by normal derivatives we really mean
that @f

@n ¼ rf � n. Straightforward calculation then shows that
@r2

@n ¼ �2r � n; @r2

@nx
¼ 2r � nx;

@r�n
@n ¼ �1; @r�n

@nx
¼ n � nx:

ð15Þ
We readily have
Gnðx; yÞ ¼
r � n
8pr

; Gnnðx; yÞ ¼ �
1

8pr
þ ðr � nÞ

2

8pr3 ;

Gnnnðx; yÞ ¼ �
3 r � nð Þ

8pr3 þ
3ðr � nÞ3

8pr5 ;

Gnnnnx ðx; yÞ ¼ �
9 r � nð Þ r � nxð Þ

8pr5 � 3 n � nxð Þ
8pr3

þ 9 r � nð Þ2 n � nxð Þ
8pr5 � 15 r � nð Þ3 r � nxð Þ

8pr7

ð16Þ
and
DGðx; yÞ ¼ � 1
4pr

; ðDGÞnðx; yÞ ¼ �
r � n
4pr3 ;

ðDGÞnnx
ðx; yÞ ¼ �3 r � nð Þ r � nxð Þ

4pr5 � n � nxð Þ
4pr3 :

ð17Þ
Thus
K1ðx; yÞ ¼ �
3 r � nð Þ3

4pr5 ;

K11ðx; yÞ ¼ K1ðx; yÞ ¼ �
3 r � nð Þ3

4pr5 ;

K21ðx; yÞ ¼
@K1ðx; yÞ
@nx

¼ �9 r � nð Þ2 n � nxð Þ
4pr5 þ 15 r � nð Þ3 r � nxð Þ

4pr7

ð18Þ
and
K2ðx; yÞ ¼
1

4pr
;

K12ðx; yÞ ¼ K2ðx; yÞ ¼
1

4pr
;

K22ðx; yÞ ¼
@K2ðx; yÞ
@nx

¼ � r � nx

4pr3 :

ð19Þ
We have the following lemma.

Lemma 5. All functions Kij(i, j = 1,2) are at most weakly singular. Hence all four associated integral operators are of order �1 and
thus compact as maps from Hs(S) to itself for any real number s.
Proof. This simply follows from the well-known fact in potential theory (see, for example, [21]) that
jr � nj 6 Mr2; jr � nxj 6 Mr2; x; y 2 S ð20Þ
and thus
jKijðx; yÞj 6
M
r
; i; j ¼ 1;2 x; y 2 S: � ð21Þ
3.3. Derivation of the jump relations and diagonal terms

We now derive the jump relations of layer potentials associated with K11 and K21. We assume that the density is at least
twice continuously differentiable. The conventional method for deriving such jump relations relies on the global integral for-
mulas like Gauss’ formula (see, for example, [21]). Here we will apply a local analysis to obtain the jump relations. The basic
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idea is that we will study the asymptotic expansion of the given kernel as one point, say x, approaches the boundary. The
asymptotic expansion will single out the hypersingular terms, singular terms, terms that are approximation to the identity,
and weakly singular terms. Terms that are approximation to the identity, or more intuitively approximation to the delta
function, will induce jumps across the boundary. We think this local analysis approach is more natural since the jump rela-
tion is actually a local property. We remark here that similar techniques have already been used in [20].

For a fixed point x 2 S, by translation and rotation of the coordinate system, we can assume that x = (0,0,0) and
nx = (0,0,�1). It is well known that locally S is the graph of a smooth function defined on the tangent space TxS. Moreover,
at a small neighborhood of x, the points on S have the following parameterization:
y ¼ ðu;/ðuÞÞ ¼ u1;u2;
1
2

Xn

i¼1

kiu2
i þ O uj j3

� � !
; ð22Þ
where k1, k2 are the principle curvatures of S at x = 0. We now consider the asymptotic expansions of K11(x + enx,y) and

K21(x + enx,y) as e ? 0 and y is close to x = 0. We denote ~r ¼ xþ enx � y; ~r ¼ j~rj, and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ e2

q
. We have
~r2 ¼ jxþ enx � yj2 ¼ juj2 þ ð/þ eÞ2

¼ d2 1þ e
P2

i¼1kiu2
i

d2 þ O d2
� �" #

;

1
~rj
¼ 1

dj
1� j

2

e
P2
i¼1

kiu2
i

d2 þ O d2
� �

2
6664

3
7775;

n ¼ ny ¼
r/;�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r/j j2

q ¼ ðk1u1; k2u2;�1Þð1þ Oðd2ÞÞ;

ð~r � nÞj ¼ ej � j
2
ej�1

X2

i¼1

kiu2
i þ Oðdjþ2Þ;

~r � nx ¼ eþ 1
2

X2

i¼1

kiu2
i þ Oðd3Þ;

n � nx ¼ 1þ Oðd2Þ:

ð23Þ
Using these formulas, we obtain
K11ðxþ enx; yÞ ¼
3e3

4pd5 þ O
1
d

� �
; ð24Þ
and
K21ðxþ enx; yÞ ¼ �
9e2

4pd5 þ
15e4

4pd7 þ
9e
P2

i¼1kiu2
i

4pd5 þ 15e3P2
i¼1kiu2

i

8pd7 � 105e5P2
i¼1kiu2

i

8pd9 þ O
1
d

� �
: ð25Þ
A simple calculation using polar coordinates shows that
R
R2

1

u2
1
þu2

2
þ1ð Þ5=2 du1du2 ¼ 2p

3 ;R
R2

1

u2
1
þu2

2
þ1ð Þ7=2 du1du2 ¼ 2p

5 ;R
R2

u2
i

u2
1þu2

2þ1ð Þ5=2 du1du2 ¼ 2p
3 ; i ¼ 1;2;

R
R2

u2
i

u2
1þu2

2þ1ð Þ7=2 du1du2 ¼ 2p
15 ; i ¼ 1;2;

R
R2

u2
i

u2
1þu2

2þ1ð Þ9=2 du1du2 ¼ 2p
35 ; i ¼ 1;2:

ð26Þ
We observe now that the kernels 3e3

2pd5 ;
3eu2

i

2pd5 ;
15e3u2

i

2pd7 , and
35e5u2

i

2pd9 on the right sides of (24) and (25) are all functions of the form
1
e2 w u

e

� �
with w a positive integrable function which integrates to 1 in the parameter plane. By Theorem 1.25 on page 13 of

[33], the corresponding integral operators are all approximations to the identity operator (see p.13 in [33]). Thus, we have
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lim
e!0þ

R
S\BdðxÞ

3e3

4pd5 rðyÞdsy ¼ 1
2 rðxÞ;

lim
e!0þ

R
S\BdðxÞ

9eu2
i

4pd5 rðyÞdsy ¼ 3
2 rðxÞ;

lim
e!0þ

R
S\BdðxÞ

15e3u2
i

8pd7 rðyÞdsy ¼ 1
4 rðxÞ;

lim
e!0þ

R
S\BdðxÞ �

105e5u2
i

8pd9 rðyÞdsy ¼ � 3
4 rðxÞ;

ð27Þ
where Bd(x) is a ball centered around x of sufficiently small radius d.
Second, the first two terms on the right side of (25) are hypersingular. Using (26) again we see that
lim
e!0

Z
S\BdðxÞ

� 9e2

4pd5 þ
15e4

4pd7

� �
r0 du ¼ 0; ð28Þ
that is, the two terms cancel out for a constant density when taking the limit of e ? 0. Now for a twice continuously differ-
entiable density, we may use Taylor’s theorem to expand the density (multiplying with the Jacobian) as the sum of a constant
term, a linear term, and a second order term. The constant term vanishes in the limit process due to cancellation. The linear
term vanishes due to symmetry. And the second order term vanishes in the limit process by the dominated convergence the-
orem since the whole integrand is only weakly singular and thus integrable. Hence, the first two hypersingular terms exactly
cancel out in the limit process, and we have
lim
e!0

Z
S\BdðxÞ

� 9e2

4pd5 þ
15e4

4pd7

� �
rðyÞdsy ¼ 0: ð29Þ
Finally, combining (24)–(29), we obtain the following jump relations:
lim
e!0þ

R
S K11ðx� enx; yÞrðyÞdsy ¼

R
S K11ðx; yÞrðyÞdsy � 1

2 rðxÞ;

lim
e!0þ

R
S K21ðx� enx; yÞrðyÞdsy ¼

R
S K21ðx; yÞrðyÞdsy � HðxÞrðxÞ;

ð30Þ
where H = k1 + k2 is the mean curvature at x 2 S.

4. Numerical algorithm

4.1. Discretization

For a given mesh size h, we assume that the surface S is discretized with a curvilinear triangle mesh with patches {Pj} with
diameters of order O(h), i.e. S =

S
j2JPj where J serves as the index set of the patches. Each patch Pj is parameterized by a C2

function mj : T ? Pj from the standard flat triangle T. Let us define the three vertices of T by t0, t1 and t2. We denote the ver-
tices of the mesh by {xi}i2I where I is the index set of vertices and write xi 2 Pj when xi is a vertex of the patch Pj. The value of h
controls the resolution of this mesh of S.

The approximation space for r1(y) and r2(y) is the span of the basis functions {/i(x)}i2I that are local, continuous, and
piecewise linear. More precisely, the function /iðxÞ : S! R satisfies the following conditions: (1) /i(x) is continuous on S,
(2) the support of /i(x) is contained in

S
j:xi2Pj

Pj, i.e., the union of the patches that contain xi, (3) /iðxi0 Þ ¼ dii0 , and (4) for
any j such that xi 2 Pj; /iðmjðtÞÞ : T ! R is linear in T. It is clear from these requirements that the support of each /i(x) on
S has a diameter of order O(h).

A standard collocation method looks for approximations
r1ðxÞ ¼
X
i2I

r1;i/iðxÞ r2ðxÞ ¼
X
i2I

r2;i/iðxÞ; ð31Þ
so that when we plug them into (5) the integral equation is satisfied exactly at the vertices {xi}i2I:
1
2 0
�HðxiÞ 1

2

 !
r1;i

r2;i

� �
þ
Z

S

K11ðxi; yÞ K12ðxi; yÞ
K21ðxi; yÞ K22ðxi; yÞ

� � P
j
r1;j/jðyÞP

j
r2;j/jðyÞ

0
B@

1
CAdsy ¼

f1;i

f2;i

� �
ð32Þ
with f1,i = f1(xi) and f2,i = f2(xi). Since the mesh size is O(h) and piecewise linear basis functions are used in the collocation
scheme, we expect formally a quadratic convergence rate O(h2). The integrals in the collocation Eq. (32) cannot be evaluated
explicitly in general and numerical quadrature is required for their calculation. As the kernels K11(x,y), K12(x,y), K21(x,y), and
K22(x,y) have similar behavior at the singularity, we treat them in the same way by considering a general form
Z

S
Kðx; yÞrðyÞdsy ð33Þ
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with K(x,y) = K11(x,y), K12(x,y), K21(x,y), or K22(x,y), and rðyÞ ¼
P

jr1;j/jðyÞ or
P

jr2;j/jðyÞ. The definition of the surface mesh
gives
 Z

S
Kðxi; yÞrðyÞdsy ¼

X
j2J

Z
Pj

Kðxi; yÞrðyÞdsy ¼
X
j2J

Z
T

Kðxi;mjðtÞÞJjðtÞrðtÞdt; ð34Þ
where Jj(t) is the Jacobian factor of the map mj : T ? Pj at t. The last integral can decomposed into two parts:
X
j:xiRPj

Z
T

Kðxi;mjðtÞÞJjðtÞrðtÞdt þ
X

j:xi2Pj

Z
T

Kðxi;mjðtÞÞJjðtÞrðtÞdt: ð35Þ
In the first sum of (35), since xi R Pj, the kernel K(xi,mj(t)) is never singular. These integrals over T are discretized using the
standard symmetric Gaussian quadrature weights over the triangle T. Denote {ta} and {wa} to be the quadrature points and
weights, respectively. The first non-singular integral then becomes
X

j:xiRPj

X
a

Kðxi;mjðtaÞÞJjðtaÞrðtaÞwa: ð36Þ
Next, let us consider next the second sum in (35) and fix a j with xi 2 Pj. Since xi 2 Pj, there exists cij with value 0, 1, or 2 such
that xi ¼ mjðtcij Þ. As a result, the integral

R
T Kðmjðtcij Þ; mjðtÞÞJjðtÞrðtÞdt can have a 1/r type singularity at tcij . The Duffy quad-

rature [10] is used to integrate this singularity accurately. Suppose that ftc
bg and fwc

bg are the Duffy quadrature points and
weights, respectively, for the vertex tc. Then the numerical quadrature form of the second sum in (35) is
X

j:xi2Pj

X
b

K mjðtcijÞ;mjðt
cij
b Þ

� �
Jj t

cij
b

� �
r t

cij
b

� �
w

cij
b : ð37Þ
Once the numerical quadrature is ready, we can solve the integral Eq. (32). The standard method is the GMRES algorithm, which
requires evaluating the integral at each iteration. Therefore, from a computational viewpoint, the main task is to evaluate the
two sums (36) and (37) efficiently. Let N be the number of vertices {xi}i2I. For the sum (37), since xi 2 Pj for a small number of
patches Pj and the number of quadrature points ftc

bg in the Duffy quadrature is constant, the cost of computing the second sum
is proportional to O(N). On the other hand, for the sum (36), one needs to iterate over all Pj such that xi R Pj for each xi. Since there
are O(N) such Pj, the direct evaluation takes O(N2) steps. In order to speed up this calculation, we write it (36) as
X

j

X
a

Kðxi;mjðtaÞÞJjðtaÞrðtaÞwa �
X

j:xi2Pj

X
a

Kðxi;mjðtaÞÞJjðtaÞrðtaÞwa: ð38Þ
The first sum in (38) is in fact an N-body problem with sources {Jj(ta)r(ta)wa}j,a at {mj(ta)}j,a, targets at {xi}i2I, and kernel
K(x,y). An algorithm for evaluating this N-body problem rapidly will be given in Section 4.2. As to the second sum in (38),
since it is over j : xi 2 Pj for each xi, the overall cost is again proportional to O(N). Therefore, the algorithm for evaluating
the integral

R
S Kðxi; yÞrðyÞdy takes the following form:

Algorithm 1. Numerical quadrature for ui ¼
R

Kðxi; yÞrðyÞdsy.

1: Apply Algorithms 3 and 4 in Section 4.2 to compute
u1
i ¼

X
j

X
a

Kðxi;mjðtaÞÞJjðtaÞrðtaÞwa:
2: For each xi, compute
u2
i ¼

X
j:xi2Pj

X
a

Kðxi;mjðtaÞÞJjðtaÞrðtaÞwa:
3: For each xi, compute
u3
i ¼

X
j:xi2Pj

X
b

Kðmjðtcij Þ;mj t
cij
b

� �
ÞJj t

cij
b

� �
r t

cij
b

� �
w

cij
b :
4: Finally, for each xi,
ui ¼ u1
i � u2

i þ u3
i :
This algorithm should be repeated for four different cases for our integral equation
Z
S

K11ðxi; yÞ
X

j

r1;j/jðyÞ
 !

dsy;

Z
S

K12ðxi; yÞ
X

j

r2;j/jðyÞ
 !

dsy; ð39Þ

Z
S

K21ðxi; yÞ
X

j

r1;j/jðyÞ
 !

dsy;

Z
S

K22ðxi; yÞ
X

j

r2;j/jðyÞ
 !

dsy: ð40Þ
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Our discretization is not optimal in terms of convergence rate. A spectrally accurate scheme for discretizing surface integrals
can be found in [4]. However, the reason for adopting the current collocation scheme is its simplicity and flexibility to work
with surfaces with singularities with edges and corners.

4.2. Fast matrix–vector multiplication

In this section, we describe the algorithm of evaluating the first integral in the previous algorithm. In a slightly more gen-
eral form, given the points {pi}, the normal directions {ni} at {pi}, and the weights {fi}, the goal is to compute for each i
ui ¼
X

j

Kðpi;ni; pj;njÞfj: ð41Þ
The normal directions ni are assume to depend smoothly on the points pi, i.e., pi � pj implies ni � nj. Here we use K to denote
the four kernels K11, K12, K21, and K22, and make their dependence on the normal direction explicit. Also, there is no distinc-
tion between the source points and target points. In order to compute the summations in (39) and (40), we take the point
sets to be the union of the sources {mj(ta)}j,a and the targets {xi}i2I, set the fj associated to the targets to be zero, and extract
the potentials ui only at targets.

We define the �-rank r� of a matrix A of size m � n to be the number of the singular values that are greater than �. The
matrix A is called numerically low-rank if the �-rank r� is much smaller compared to the dimensions of the matrix A and
grows extremely slowly when � decreases. The essential idea of the algorithm for evaluating (41) rapidly is that, given
two sets B1 and B2 well-separated (the precise definition of well-separatedness will be given later), the matrix that repre-
sents the interaction restricted to B1 and B2,
ðKðpi;ni; pj;njÞÞpi2B1 ;pj2B2
ð42Þ
is numerically low-rank. The following randomized algorithm, first introduced in [11], constructs a low rank approximation
of such a matrix in a cost that is essentially linear to the dimension of the matrix.

Algorithm 2. Randomized factorization of a numerical low-rank matrix A.

1: Select randomly a set X1 of c � r� rows from the matrix A. Perform the pivoted QR factorization to A(X1, :). Define P1 to
be the index set that contains the first r� pivoted columns of A(X1, :). The columns of the submatrix A(: ,P1) then serve
as a stable approximate basis for the column space of A.

2: Select randomly a set X2 of c � r� columns from the matrix A. Perform the pivoted QR factorization to A(:,X2)T. Define
P2 to be the index set that contains the first r� pivoted columns of A(:,X2)T. The rows of the submatrix A(P2, :) then
serve as a stable approximate basis for the row space of A.

3: Define the matrix M = (A(P2,P1))+ where (�)+ stands for the pseudo-inverse. Then
Að:;P1Þ �M � AðP2; :Þ ð43Þ
is a rank-r� approximation of the matrix A.
This method works quite well in practice. Typically the constant c is chosen to be 3 or 4. Since r� is typically a small con-

stant, it is not difficult to see that the overall cost of this algorithm is of order Oðr2
� � ðmþ nÞÞ ¼ Oðmþ nÞ. Once this factor-

ization is constructed, the product of A with any vector f can be computed with
Að:;P1ÞðMðAðP2; :Þf ÞÞ ð44Þ
in O(m + n) steps.
The algorithm for evaluating (41) consists of two stages: setup and evaluation. In the setup step, Algorithm 2 is invoked to

generate the low rank factorization for each submatrix of form (42).

Algorithm 3: Setup stage for ui ¼
P

jKðpi;ni; pj;njÞfj.

1: Construct the octree structure. Starting from a square box that contains all points {pi}, we subdivided the boxes
recursively into eight children boxes until the number of points in each leaf box is bounded by a prescribed constant.

2: Let B be the top level box of the octree. Insert the pair (B,B) into a queue Q.
3: Let L be an empty list.
4: while Q is not empty do
5: Pop the top entry from Q, say (B1,B2).
6: if both B1 and B2 contain points then
7: if none of B1 and B2 are leaf boxes then
8: if B1 and B2 are well-separated then

(continued on next page)
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Algorithm 3 (continued)

9: Compress the matrix Kðpi;ni; pj;njÞ
� �

pi2B1 ;pj2B2

using the randomized procedure. Insert the triple

(B1,B2,‘‘compressed’’) into the list L.
10: else
11: Let B1,a be the children of B1 and B2,b be the children of B2. Insert all pairs (B1,a,B2,b) into Q.
12: end if
13: else
14: Insert the triple (B1,B2,‘‘dense’’) into the list L.
15: end if
16: end if
17: end while

A missing piece of the above algorithm is the definition of well-separated. In our implementation, B1 and B2 are well-sep-
arated if the intersection of B1 and B2 is either empty or a single vertex. This criteria works quite well in practice.

Once the setup stage is done, the evaluation stage speeds up to the matrix vector multiplication by using the constructed
factorizations whenever possible.

Algorithm 4: Evaluation stage for ui ¼
P

jKðpi;ni; pj;njÞfj

1: for each triple of the list L do
2: if the triple is of form (B1,B2, ‘‘compressed’’) then
3: Evaluate the interaction between boxes B1 and B2 using the compressed form
4: else
5: Evaluate the interaction between boxes B1 and B2 densely.
6: end if
7: end for

Obviously, the kernels K12 and K22 can be directly handled with the adaptive new version FMM in [6]. It is also possible
that with some modifications the FMM for the biharmonic equations [19] can be used for kernels K11 and K21. Furthermore,
there have been many kernel-independent FMMs developed recently (see, for example, [13,14,27,36–38]). The algorithm
outlined above is essentially a tree algorithm (see, for example, [3]) with multipole expansion replaced by randomized skel-
etonization (see, for example, [5]). We have chosen to implement our algorithm because the algorithm is easier to imple-
ment as compared with the FMMs, and the algorithm is directly applicable to a broader class of kernels.

5. Numerical examples

A C++ code has been written implementing the algorithm described in the preceding section. In this section, we demon-
strate the performance of the scheme with several numerical examples. We test the accuracy of our procedure by construct-
ing a function which is biharmonic in D and setting the boundary data equal to the function value and its normal derivative
on S. Since Green’s function and its partial derivatives satisfy the biharmonic equation in D when the source is outside D,
such function can be constructed, say, by forming a linear combination of Green’s functions (and its partial derivatives) with
the sources randomly distributed outside the computational domain D. The accuracy and speed of our algorithm depend on
several parameters. In the tables below, we set the precision of the fast matrix–vector algorithm to 10�6, the error tolerance
of GMRES to 10�6. We choose the degree of Gaussian quadrature for smooth integrals to be 5 and the degree of the Duffy
quadrature for the weakly singular integral to be 5, so that the quadrature error from the triangular Gaussian quadrature
and the Duffy quadrature is always smaller than the discretization error of the collocation method (32) in the following tests.

In each of those tables, the first column contains the total number of unknowns N of the whole linear system, which is
twice the total number of vertices in the triangulation of the boundary surface. The second column contains the setup time of
the randomized matrix compression. The third column contains the total time for solving the linear system. The fourth col-
umn contains the number of iterations of GMRES. The last column contains the relative L2 error of the numerical solution as
compared with the analytic solution of the original BVP where the checking points lie on a smaller surface inside the bound-
ary S.

The purpose of the numerical tests is three-fold. Firstly, the numerical discretization scheme presented in Section 4.1 is
formally second order since piecewise linear basis functions are used. Therefore, if the size of the triangles is halved (or
equivalently the number of unknowns N roughly quadruples), the accuracy should decrease by a factor of four. Secondly,
the fast algorithm described in Section 4.2 has essentially a linear complexity. Hence, each time N quadruples, the solution
time should roughly grows by the same factor. Finally, since our second kind integral equation is well-conditioned, the num-



S. Jiang et al. / Journal of Computational Physics 230 (2011) 7488–7501 7497
ber of iterations of the iterative solver should essentially be independent of the number of unknowns. In each numerical test,
we start from a fairly coarse discretization to a fairly dense one. We would like to point out that, for the coarsest discreti-
zation, standard dense solvers are often faster than the iterative solvers used here. However, since the goal is to demonstrate
the two scaling behaviors mentioned above, all linear systems are solved using the iterative method.

Example 1. In this example, the boundary is a unit sphere centered at the origin:
x2
1 þ x2

2 þ x2
3 ¼ 1: ð45Þ
The atlas consists of six charts with each one corresponding to one six principal axes: ±x1, ± x2, and ±x3.The parameter do-
main of each chart is discretized with a Cartesian grid where each rectangle is further split into two triangles. The triangu-
lated surface is shown in Fig. 1. The numerical results are summarized in Table 1.
Example 2. In this example, the boundary is an ellipsoid centered at the origin:
x2
1

a2 þ
x2

2

b2 þ
x2

3

c2 ¼ 1; ð46Þ
where a = 2, b = 1, c = 1. The parameterization and triangulation are essentially the same as those in Example 1 with proper
scalings. The triangulated surface is shown in Fig. 2. The numerical results are summarized in Table 2.
Example 3. In this example, the boundary is a ‘‘twisted’’ ellipsoid given by the formula
x2
1

a2 þ
x2 � d

c � cosðpx3Þ
� �2

b2 þ x2
3

c2 ¼ 1; ð47Þ
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Fig. 1. Triangulated boundary surface for Example 1.

Table 1
Numerical results for Example 1.

N Tsetup Tsolve Niter E(L2)

196 2.80e�01 1.44e+00 16 3.27e�02
772 5.98e+00 1.10e+01 18 1.05e�02

3076 8.54e+01 4.81e+01 18 2.87e�03
12292 7.97e+02 2.20e+02 16 7.38e�04
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Fig. 2. Triangulated boundary surface for Example 2.

Table 2
Numerical results for Example 2.

N Tsetup Tsolve Niter E(L2)

196 1.35e+00 3.56e+00 17 6.17e�02
772 1.92e+01 2.40e+01 21 1.99e�02

3076 2.07e+02 1.12e+02 20 5.42e�03
12292 1.84e+03 4.81e+02 20 1.40e�03

Table 3
Numerical results for Example 3.

N Tsetup Tsolve Niter E(L2)

196 3.60e�01 2.05e+00 20 1.44e�01
772 1.07e+01 1.42e+01 22 2.22e�02

3076 1.03e+02 1.13e+02 24 8.03e�03
12292 1.11e+03 4.36e+02 24 2.16e�03
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where a = 1, b = 1, c = 2, and d = 0.2. The parameterization and triangulation are essentially the same as those in Example 2
with the term cos(px3) treated as a small perturbation. The triangulated surface is shown in Fig. 3. The numerical results are
summarized in Table 3.
Example 4. In this example, the boundary is a torus given by the formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
� R

� �2

þ x2
3 ¼ r2; ð48Þ
where R = 3, r = 1. The atlas consists of a single chart with a parameterization given by the formulas
x1 ¼ ðRþ r � cosðhÞÞ cosðwÞ; x2 ¼ ðRþ r � cosðhÞÞ sinðwÞ; x3 ¼ r � sinðhÞ; ð49Þ
with (h,w) 2 [�p,p)2. We then use a rectangular grid to discretize (h,w) and each small rectangle is further split into two
triangles. The triangulated surface is shown in Fig. 4. The numerical results are summarized in Table 4.
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Fig. 3. Triangulated boundary surface for Example 3.

Table 4
Numerical results for Example 4.

N Tsetup Tsolve Niter E(L2)

216 3.70e�01 1.59e+00 18 2.67e�01
864 1.11e+01 1.61e+01 26 6.40e�02

3456 1.40e+02 8.78e+01 26 2.20e�02
13824 1.41e+03 3.96e+02 26 6.06e�03

S. Jiang et al. / Journal of Computational Physics 230 (2011) 7488–7501 7499
In the above examples, we observe that the convergence rate is roughly equal to 2 on average, which is consistent
with the convergence order of our discretization scheme. The solution time Tsolve grows by a factor of 4 to 7 each
time N quadruples. This is roughly consistent with the NlogN theoretical estimate. The fluctuations in the growth factor
of Tsolve are due to various factors, such as the sudden change in the depth of the octree and the changes in the
number of iterations of the GMRES algorithm. Most importantly, we observe that the number of iterations is very
low and roughly independent of total number of unknowns, which indicates that our SKIE formulation is well-
conditioned.

In our numerical examples, we triangulate the surfaces in a straightforward manner and compute the mean curvature at
each vertex analytically. Obviously, the quality of triangulation affects the accuracy greatly and in general the triangulation
and the computation of the mean curvature should be handled via more general and robust algorithms available in the com-
munity of finite (or boundary) elements.
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Fig. 4. Triangulated boundary surface for Example 4.
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6. Conclusions and further discussions

We have constructed a second kind integral equation formulation for the first Dirichlet problem for the biharmonic equa-
tion in three dimensions. A fast algorithm and a second order discretization scheme have also been developed for solving the
boundary integral equations. One may try to use this approach to construct SKIEs for other boundary value problems for the
biharmonic equation. For example, the problem of finding u which satisfies
D2u ¼ 0 on D
@u
@n
¼ f1 on S

@2u
@n2 ¼ f2 on S
for given f1 and f2, can be solved by looking for u as
uðxÞ ¼
Z

S
ð�2Gnn þ 3DGÞðx; yÞr1ðyÞ þ Gnðx; yÞr2ðyÞ½ �dsy
for which the matrix of diagonal terms is
1
2 0
3
2 HðxÞ 1

2

 !
:

Our construction can also be easily extended to the first Dirichlet problem for the biharmonic equation in higher dimensions
(P4) and may be applicable for solving certain boundary value problems for polyharmonic equations.

The biharmonic equation has many applications in mathematical physics. Some direct applications of the first Dirichlet
problem include solving the Cahn-Hillard equations for phase-transition in material science, and the phase-field models in
two-phase flows (see, for example, [25]). These problems involve time-dependent nonlinear PDEs whose principal part is a
biharmonic operator. The first Dirichlet conditions arise naturally in such problems since they are the natural conditions
from variational principles. We would also like to remark that our method can be adapted to construct the SKIEs for the mod-
ified biharmonic equation, which is the governing equation of the stream function for unsteady Stokes flow. And an efficient
numerical algorithm based on the SKIE formulation for the modified biharmonic equation will eventually lead to a numerical
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scheme for solving the Navier-Stokes equation (see, for example, [16]). These problems are currently under investigation and
the results will be reported in a later date.
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