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Abstract. In spite of an extensive literature on fast algorithms for synthetic aperture radar (SAR) imaging, it
is not currently known if it is possible to accurately form an image from N data points in provable
near-linear time complexity. This paper seeks to close this gap by proposing an algorithm which
runs in complexity O(N logN log(1/ε)) without making the far-field approximation or imposing the
beam pattern approximation required by time-domain backprojection, with ε the desired pixelwise
accuracy. It is based on the butterfly scheme, which unlike the FFT works for vastly more general
oscillatory integrals than the discrete Fourier transform. A complete error analysis is provided: the
rigorous complexity bound has additional powers of logN and log(1/ε) that are not observed in
practice.
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1. Introduction.

1.1. Setup. Synthetic aperture radar (SAR) is an imaging modality that produces images
of a scene from measurements of scattered electromagnetic waves. Pulses of microwaves are
sent from an antenna aboard an airplane or a satellite, scattered by objects on the surface of
the Earth, and recorded by the same (or a different) antenna. The imaging problem consists
in recovering a reflectivity profile that explains the recorded pulse-echo data.

• Image space is indexed by x = (x, y) ∈ R2, the horizontal coordinates. The scatterers
are assumed to be at a known elevation z = h(x, y), so we have the embedding xT =
((x, y), h(x, y)) ∈ R3. The reflectivity profile is a function m(x) whose magnitude
indicates the strength of the reflection by the object at xT , as an impedance contrast
for instance.

• Data space is indexed by ω, the frequency of the recorded signal, and s, a parameter
that defines the position of the antenna through a function γ(s) ∈ R3. Data are given
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by a function d(ω, s), whose value is the result of a measurement of the strength of
the recorded signal at angular frequency ω = 2πf , when the antenna is at γ(s).

Under very general and widely accepted assumptions,1 this imaging map is an oscillatory
integral. We make three additional but unessential assumptions that can easily be removed:
(1) monostatic SAR in which the transmitter antenna is also the receiver, (2) no consideration
of the orientation of the plane, and (3) the phase-center approximation, in which the antenna
is far enough from the targets that it is considered as a point. Imaging is then done by some
“generalized” filtered backprojection:

(1) m(x) =

∫
Ω
e−2iω|γ(s)−xT |/cB(ω, s,x)d(ω, s) dsdω,

where B(ω, s,x) is an amplitude function and xT = (x1, x2, h(x1, x2)) is the target point. We
will comment later on the backprojection interpretation. See [14] for the justification of this
formula. Figure 1 illustrates some of the notation.

Figure 1. The SAR imaging setup

Here Ω is the acquisition manifold, normally a rectangle [ωmin, ωmax] × [s1, s2]. The am-
plitude factor B(ω, s, x) is chosen so that the formula above is a good approximate inverse to
the forward/modeling/reprojection operator

(2) d(ω, s) =

∫
e2iω|γ(s)−xT |/cA(ω, s, x)m(x) dx1dx2.

In this integral, the amplitude factor A(ω, s, x) is

A(ω, s, x) = −ω2P (ω)
J(ω, ̂xT − γ(s))W (ω, ̂xT − γ(s))

(4π|xT − γ(s)|2) ,

where P (ω) is the transfer function of the pulse, and J and W are the respective antenna
beam patterns at transmission and reception. The hat over a vector denotes unit length

1The assumptions include single scattering in the Born approximation, scalar wavefields, no dispersion, no
attempt at addressing three-dimensional effects such as shadowing and layover, start-stop setup, no attempt
at estimating target motion. This is the setup in [14].
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normalization. The corresponding amplitude B for imaging is cumbersome to write precisely
without introducing the so-called Stolt change of variables; suffice it to say that

B =
χ

AdB
,

where A is the amplitude above, dB is the so-called Beylkin determinant, and χ is an ad hoc
cutoff that prevents division by zero. The details are in [14], but they do not matter at this
level of exposition.

It is difficult to form a large image by the integral (1) in real time with a single instruction
thread, hence the need for fast algorithms. That is the price to pay for opening up the
beam and leveraging the synthetic aperture in order to get a good resolution. Contrast this
situation with phased-array transducer systems with narrow beams used in low-resolution
medical ultrasound imaging, where imaging at 20 frames per second is commonplace, but
where no such mathematical transform as (1) is needed.

The contribution of this paper is to propose a fast and accurate way of evaluating oscil-
latory integrals such as (1). We start by reviewing the existing algorithms and their range of
applicability.

1.2. Existing algorithms. Denote by Δω = ωmax − ωmin the bandwidth of the measure-
ments. For simplicity, we will assume that the bandwidth is on the same order of magnitude
as the representative “carrier” frequency ω0 � (ωmin + ωmax)/2, so we have broadband mea-
surements.

The Nyquist–Shannon sampling rate should be respected both in image space and in data
space.

• In image space, we expect variations on the order of the wavelength c/ω0 in both
directions,2 and the scene to be imaged has sidelength L, so the total number of pixels
is proportional to L2ω2

0/c
2.

• In data space, a frequency grid spacing of O(c/L) is called for to access distances on
the order of L, so we need O(ω0L/c) samples. The distance between pulses should be
on the order of the wavelength O(c/ω0) to attain the same wavelength resolution on
the ground, so we need O(ω0L/c) samples in slow time as well. Thus the total number
of data points is proportional to L2ω2

0/c
2.

The complexity of specifying a dataset, called N , is therefore proportional to the complexity
of specifying an image and increases quadratically in the frequency ω0:

N = O(L2ω2
0/c

2).

It is the scaling of the complexity of the imaging algorithm as a function of this parameter
N which is of interest. The “naive algorithm” consists in performing the direct summation
from a quadrature of (1). It has complexity O(N2).

Traditionally, it is only in contexts where the problem formulation is simplified that de-
signing faster algorithms is possible. Two levels of simplification are popular in the literature:

2This can be refined by considering range direction and cross-range direction, in the case of narrowband
measurements.
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1. The separability assumption B(ω, s, x) = P (ω)Q(s, x). This assumption makes sense
only if the antenna beam patterns are independent of frequency. In this setting, we may
evaluate (1) by the following sequence of steps: for each s, multiply the data by 1/P (ω),
perform a Fourier transform in ω evaluated at 2|γ(s)−xT |/c, and multiply by Q(s, x).
Iterate and sum over s. This procedure results in an algorithm of complexity O(N3/2).
It is called filtered backprojection (proper), because it can be seen as integration along
curves of equal range when expressed as acting on data d̂(t, s) of time t. One would also
speak of a generalized Radon transform [3]. The computation of the remaining sum
over s can be further simplified by an ingenious trick of multiscale (computational)
beamforming in certain settings. The resulting class of algorithms has come to be
known as “fast backprojection” (FBP). It includes work by Nilsson and Andersson
[27] and Yegulalp [38] on computation of circular averages (monostatic SAR), and
by Ding and Munson on computation of elliptical averages (bistatic SAR) [18]. A
subsequent contribution by Ulander, Hellsten, and Stenström [35] covered an imaging
setting that was more general but still within the limitation of an omnidirectional
antenna, flat topography, and perturbative deviations from a linear track. Most of
these papers operate in the O(N logN) complexity regime yet still seem to suffer from
accuracy concerns. It is unclear at this point whether a pointwise or mean-square
error estimate would hold for any variant of fast backprojection.

2. The far-field assumption ‖γ(s)− xT ‖ � ‖γ(s)‖ − x̂T · γ(s). This further simplification
makes sense if the target is so far from the antenna that the circles of equal distance
can be treated as straight lines, as in spotlight SAR. In this setting (1) becomes a
two-dimensional (2D) Fourier transform, albeit not on a uniform grid [26]. In the
time domain, we would speak of a Radon transform instead of a generalized Radon
transform. The unequally spaced fast Fourier transform (USFFT) method of Dutt
and Rokhlin [19] and its variants [4, 10] apply to this problem and yield algorithms
of complexity O(N logN). The polar format algorithm (PFA) [36], which interpolates
the data from polar raster onto a rectilinear grid, is also a reasonable approach. A
comparison between PFA, USFFT, and nonuniform fast Fourier transform (NUFFT)
techniques for SAR is given in Andersson, Moses, and Natterer [1]. Fast backprojection
algorithms were originally developed for the Radon transform in the tomographic
setting by Basu and Bresler [2] and Boag, Bresler, and Michielssen [5], and then
adapted to monostatic SAR in the far-field regime by Xiao et al. [37]. (As discussed
earlier, this line of work on FBP continued without the far-field approximation at least
in [18, 35].)

It should be noted that ultrasound tomography (a.k.a. diffraction tomography) is algo-
rithmically similar to SAR in the far-field regime. Tomographic data can be interpreted as
unequally spaced samples in the Fourier domain via the projection-slide theorem, both in
diffraction tomography and in far-field SAR [26]. Fast algorithms for ultrasound tomography
fall into the same two categories as above, namely FFT-based reconstruction [9] and FBP
[17].

In contrast, this paper presents a fast “butterfly” algorithm good for much more general
radar setups. None of the assumptions above are made; only minimal smoothness properties
of the functions γ(s) and B(ω, s, x) are required. In fact, the butterfly scheme is intrinsically
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robust, and we anticipate that it would easily accommodate refinements such as multistatic
SAR (several sources and antennas) or taking into account the orientation of the antenna via
the pitch, roll, and yaw angles as measured by an inertial navigation system (INS).

The main idea behind the butterfly scheme is that of low-rank interaction. This idea
conveys a very important and general principle of quantification of the “information content”
in high-frequency scattering.

1.3. Low-rank interactions. The phase center of an antenna is the point γ(s) introduced
earlier, about which the antenna beam patterns are constructed as functions of angular fre-
quency ω and direction x̂− γ. It draws its name from the fact that a more accurate repre-
sentation of the radiation field from an antenna Γ is (we drop the s dependence of γ for the
time being)

u(x, ω) =

∫
Γ

eik|x−y|

4π|x− y|j(y, ω) dSy ,

� eik|x−γ|

4π|x− γ|
∫
Γ
e−ik(x̂−γ)·yj(y, ω) dSy ,

=:
eik|x−γ|

4π|x− γ|J(ω, x̂− γ) (ω = kc);

hence γ should be chosen as a good “center” for the approximately circular phase lines of
u(x, ω). Here j(y, ω) is a scalar counterpart of the current density on the antenna.3 To pass
to the second line the well-known far-field approximation |x − γ| � |y − γ| was used. While
the full surface integral over the antenna is impractical for radar imaging, this phase center
reduction has the advantage of presenting the antenna beam patterns as functions on the
sphere of outgoing directions. (A similar argument can be made for the receiving antenna.)

Another way of reducing the complexity of the integral, without making the far-field
approximation, consists in finding several equivalent sources γi, with weights Ji, as well as
several regions A such that

u(x, ω) =
∑
i

eik|x−γi|

4π|x− γi|Ji +O(ε), x ∈ A.

Here, the error is under control and denoted ε. In other words, if we are willing to restrict
ourselves to a certain region A of space, how many “phase centers” γi indexed by i are
really needed to synthesize the radiation field to prescribed accuracy? A simple numerical
experiment shown in Figure 2 recovers the radiation field created by a Y-shaped antenna,
observed in the box in the lower-right corner, for any possible current distribution, using only
nine equivalent points on the antenna. They are the red dots, and their choice guarantees an
accuracy of 1%.

This numerical experiment is a simple exercise in linear algebra, solved by QR with piv-
oting, or more generally with an interpolative interpolation [23]. Ultimately, the numerical

3We apologize in passing to the engineers who are used to j =
√−1.
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Figure 2. Radiation field from an antenna. The interaction between the antenna and the box surrounded by
a dashed line is of low rank. Caveat: for clarity of the display the radiation field is based on the kernel eik|x−y|

instead of the fundamental solution eik|x−y|/(4π|x− y|).

experiment is successful because of the low-rank factorization property of the Green’s func-
tion when y is restricted to the antenna and x is restricted to the box A. The underlying
fundamental property of Green’s functions is that factorization is guaranteed to work, with a
low rank independent of ω, if the following adimensional number is low:

F =
diam(Γ)× diam(A)

λ× d(Γ,A)
.

We may call F an “algorithmic Fresnel number” in analogy with the discussion of Fraunhofer
versus Fresnel diffraction in physics textbooks. Its value should be comparable to 1 or lower for
the low-rank property to hold. Here diam(Γ) is the antenna diameter, diam(A) is the largest
diagonal of the box A, λ = 2π/ω is the wavelength, and d(Γ,A) is the distance between the
antenna and the box. Similar ideas appear in the work of Michielssen and Boag [25], Engquist
and Ying [20], Candès, Demanet, and Ying [12], Rokhlin [29], Brandt [8], and likely many
others.

Note that if an expansion is valid in a box A, it is also valid in a large truncated cone in
the shadow of this box, as seen from Γ. Martinsson and Rokhlin studied the weak dependence
of the length of this truncated cone on the desired accuracy [24].

1.4. The butterfly algorithm. The butterfly algorithm is a systematic way of leveraging
low-rank interactions in the scope of a fast algorithm for oscillatory integrals. The pulse-echo
data now replace the antenna as a virtual “source” of radiation, so the physical problem is
different from that presented in the previous section, but the ideas remain the same.
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The butterfly algorithm originates from the work of Michielssen and Boag [25], and has
recently been popularized in a string of papers by O’Neil and Rokhlin [28], Ying [39], Candès,
Demanet, and Ying [12], and Tygert [34]. Note that the algorithmic variant presented in our
earlier work [12] is particularly well suited for the application to SAR imaging: unlike [28] it
does not have a precomputation step. The butterfly is a natural descendant, or variant, of
the fast multipole method [22, 29] for high-frequency scattering, in the sense that low-rank
interactions are adequate “summaries” that serve as a substitute for multipole expansions [40].

If we let y = (ω′, s), with ω′ = ω/ω0 a rescaled frequency variable, then we may succinctly
write any quadrature for (1) as

(3) m(x) =
∑
y

K(x, y)d(y),

with K(x, y) the oscillatory kernel and d(y) the data samples multiplied by the quadrature
weights. We refer to the direct summation in (3) as the “naive algorithm.” Low-rank inter-
actions come into play through the problem of finding a good approximation

(4) m(x) =
r∑

j=1

K(x, yj)δj +O(ε),

where (yj , δj) are equivalent sources. In order for the number r of terms to be independent
of the carrier frequency ω0 (or N ∼ ω2

0), it suffices to take x ∈ A and to restrict the sum to
y ∈ B, in such a way that the algorithmic Fresnel number is small, i.e.,

(5) diam(A)× diam(B) ≤ H

ω0

for some constant H that has the dimension of a length, with value comparable to the altitude
of the antenna. This property of r was established in earlier work of two of the authors, in
the more general setting of Fourier integral operators [12]. It holds for SAR imaging if the
trajectory γ(s) is smooth, i.e., a C∞ function of s.

If B would cover the whole data space, we would have the full sum. In that case the
range of validity of a formula like (4) would be restricted to very small boxes A—of diameter
O(1/ω0)—and to each such small box A would correspond a given set of equivalent sources
(yj, δj). If the information of the (yj , δj) were available for each small box A, then we would
be in the presence of a very fast algorithm: a superposition of r = O(1) terms for each of the
O(ω2

0) = O(N) boxes in A would suffice for imaging. This is unfortunately not the case.

The butterfly scheme is a way of computing these equivalent sources by playing on the
sizes of A and B in a multiscale manner. It is possible to tile model and data space with boxes
that satisfy the scaling (5). Low-rank interactions between any pair of such boxes can then
be considered. It is advantageous to generate such tilings by means of quadtree partitions of
model and data space. See Figure 3, where data space (y) is on the right, and model space
(x) is on the left.

For instance, we have the following:
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Figure 3. The two quadtrees of the butterfly scheme.

• The fine boxes at the leaves (bottom) of the tree on the right can be paired with a
large box at the root (top) of the tree on the left. The pairing corresponds to the
dashed line labeled “1.” If the boxes B are small enough (1/ω0 by 1/ω0), then the
scaling (5) is respected. This choice of tiling corresponds to sums (4) restricted to only
a few terms: it is straightforward to compute directly, without the δj . But it is not
very useful since we want the whole sum.

• On the other hand, the large box B at the root of the tree can be paired with small
boxes A at the leaves. This pairing goes by the number “4.” It corresponds to a low-
rank view of the whole sum (3), valid only in certain very small sets A on the x-side.
It is exactly what we are interested in, but the δj in the expansion are unknown to us.

The core of the butterfly algorithm is the ability to update low-rank interactions in a
multiscale fashion, down the left tree and up the right tree, by respectively grouping and
subdividing boxes. In Figure 3 this allows us to iteratively obtain the δj at all scales, from
the pairing “1” to the pairing “4.”

The details of the butterfly scheme concern the choice of yj in (4), how to realize the
low-rank expansion as an interpolation problem, and how to update the δj weights from one
scale to the next. These details are presented in section 2 for completeness and follow from
our previous work in [12]. Let us mention that it is the “Chebyshev interpolation” version of
the butterfly algorithm which is used in this paper; it is unclear whether the other variants
would be equally well suited for SAR imaging.

We now switch to the rigorous performance guarantee enjoyed by the butterfly algorithm,
which was missing in our previous work [12].

1.5. Accuracy and complexity bounds. In this paper, as in [11, 12], we choose the radius
of convergence of Taylor expansions as a measure of smoothness of real-analytic functions. In
one spatial dimension, a function f(x) is (Q,R)-analytic if it is infinitely differentiable and its
derivatives obey

|f (n)(x)| ≤ Qn!R−n.

The number R is simply a lower bound on the radius of convergence of Taylor expansions of
f , uniform over all points where f is considered. We say that a function f(x) of x ∈ R2 is
(Q,R)-analytic if its directional derivative along any line obeys the same estimate: for any
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unit-length d,
|(d · ∇)nf(x)| ≤ Qn!R−n.

Our main assumption on the kernel K(x, y) is that it can be written in Fourier integral form as
a(x, y)eiMφ(x,y), with the amplitude a and the phase φ both analytic in x and y separately. For
convenience we use the same values of the constants Q and R in the following two equations:

|(d1 · ∇x)
n1(d2 · ∇y)

n2a(x, y)| ≤ Qn1!n2!R
−n1R−n2 ,

|(d1 · ∇x)
n1(d2 · ∇y)

n2φ(x, y)| ≤ Qn1!n2!R
−n1R−n2 .

Manifestly, the SAR kernel of (1) is of the form aeiMφ with M = ω0 = O(
√
N).

The following complexity result depends on N and ε. The dependence on Q and R will
not be tracked.

Theorem 1. Assume that the flight path γ(s) and the amplitude B(ω, x, s) are both real-
analytic functions of their arguments. Write y = (ω/ω0, s); then

K(x, y) = a(x, y)eiMΦ(x,y).

Then the variant of the butterfly method presented in this paper, which uses Chebyshev
interpolation, provides an approximation m̃(x) =

∑
y K̃(x, y)d(y) to m(x) =

∑
y K(x, y)d(y)

obeying

‖m̃−m‖∞ ≤ ε
∑
y

|d(y)|

in exact arithmetic, and in (sequential) algorithmic complexity

C(Q,R)×max

{
log4

(
1

ε

)
, (log4 N) log4(C logN)

}
×N logN.

The proof is in section 4. Recall that d(y) are data samples normalized with the proper
quadrature weights, such that sums over y approximate integrals. Hence

∑
y |d(y)| is a quan-

tity upper-bounded uniformly over N . It is also independent of ε since the choice of dis-
cretization of the integral has nothing to do with the truncation inherent to fast summation.
Let us also note that the above theorem contains no statement about the discretization error;
only the 
∞ discrepancy between the result of naive summation (3) and the result of the fast
algorithm is controlled.

2. The butterfly algorithm for oscillatory integrals. Let us denote by X the set of all
x (positions) indexing model space, and by Y the set of of all y (normalized frequencies and
slow times) indexing data space. From the discussion above, it is clear that both |X| and
|Y | are on the order of N = O(M2). By rescaling the geometry if necessary, we can assume
that X and Y are both supported in the unit square [0, 1]2. In this section, unlike in the
numerical code, we do not worry about the values of numerical constants: for brevity only
the asymptotic behavior in terms of M is accounted for. The computational problem is then
to approximate m(x) defined by

m(x) =
∑
y∈Y

a(x, y)eiMΦ(x,y)d(y).
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We now give a brief discussion of the butterfly algorithm for computing this oscillatory sum-
mation. The presentation closely follows that of [12], and the new contribution is an easy
way to address the amplitude function a(x, y). It is useful to keep an eye on Figure 3 while
following the description of the algorithm.

Suppose that A and B are two square boxes in [0, 1]2, while A is considered to be a box in
the X domain and B a box in the Y domain. We denote their centers, respectively, by x0(A)
and y0(B), and the length of their diagonals, respectively, by diam(A) and diam(B). The most
important component of the butterfly algorithm is the existence of a low-rank approximation
for the kernel

(6)

∣∣∣∣∣a(x, y)eiMΦ(x,y) −
rε∑
t=1

αAB
t (x)βAB

t (y)

∣∣∣∣∣ ≤ ε

for x ∈ A and y ∈ B when diam(A)diam(B) � 1/M . The quantities αAB
t (x) and βAB

t (y) will
be defined below in (9), (11). Define mB(x) to be the partial sum restricted to, or “potential
generated by,” y ∈ B. The benefit of the low-rank approximation is that it gives rise to a
compact representation for mB(x) when restricted to x ∈ A:

mB(x) �
rε∑
t=1

αAB
t (x)

⎛⎝∑
y∈B

βAB
t (y)d(y)

⎞⎠ ∀x ∈ A.

Therefore, any coefficients {δAB
t }t obeying

(7) δAB
t �

∑
y∈B

βAB
t (y)d(y)

offer a good approximation to mB(x) for x ∈ A.
In order to find a low-rank approximation, we introduce the residual phase associated with

the pair (A,B),

(8) RAB(x, y) := Φ(x, y)− Φ(x0(A), y) − Φ(x, y0(B)) + Φ(x0(A), y0(B)).

Under the condition that Φ(x, y) is real-analytic both in x and in y, and diam(A)diam(B) �
1/M , it is easy to show that RAB(x, y) = O(1/M) for x ∈ A and y ∈ B. As a result, it
was shown in [12], in the case a(x, y) = 1, that rε in (6) can be bounded by a constant times
log4(1/ε). This bound can be further refined to a constant times log2(1/ε), and made valid for
arbitrary analytic a(x, y), using the proof methods presented in section 4. The point is that
those bounds on rε are independent of M and depend only weakly on the desired accuracy.

One way to realize such low values of rε, as explained in [12], is to use polynomial inter-
polation in x when diam(A) � 1/

√
M and in y when diam(B) � 1/

√
M . The interpolation

points are placed on tensor Chebyshev grids for efficiency. For some small positive integer q,
the Chebyshev grid of order q on the centered unit interval [−1/2, 1/2] is defined by{

zj =
1

2
cos

(
jπ

q − 1

)}
0≤j≤q−1

.
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The Lagrange basis polynomials Li(z) of this grid are given by

Lj(z) :=
∏

0≤k≤q−1,k 	=j

z − zk
zj − zk

.

By taking tensor products, we can define the 2D Chebyshev grid {(zt1 , zt2)} for the centered
unit square and its Chebyshev basis functions

Lt(z1, z2) := Lt1(z1) · Lt2(z2) for t = (t1, t2).

For a general square box B in the Y domain, its Chebyshev grid can be defined similarly by
appropriate scaling and shifting. We denote this grid by {yBt } and its Lagrange basis functions
for its Chebyshev grid by {LB

t }. When diam(B) � 1/
√
M , Lagrange interpolation on the grid

adapted to B provides the approximation

a(x, y)eiMRAB(x,y) �
∑
t

a(x, yBt )e
iMRAB(x,yBt ) LB

t (y).

Similarly, for a box A in the X domain, its Chebyshev grid and Lagrange basis functions are
denoted by {xAt } and {LA

t }, respectively. When diam(A) � 1/
√
M , Lagrange interpolation

on the grid adapted to A provides the approximation

a(x, y)eiMRAB(x,y) �
∑
t

LA
t (x)a(x

A
t , y)e

iMRAB(xA
t ,y).

It will be shown in section 4 that the number q of Chebyshev points grows logarithmically
in the error level ε, resulting in rε = q2 = O(log2 1/ε) as announced earlier. Alternatively,
one could generalize Theorem 3.3 in [12] to the case of a nonconstant amplitude a(x, y). In
practice, it is advantageous to take q with values ranging from 5 to 10 in order to obtain
“a few” to “several” digits of accuracy. The section on numerical experiments contains more
details on the choice of q versus accuracy.

To pass from low-rank approximations of a(x, y)eiMRAB(x,y) to those for the true kernel
a(x, y)eiMΦ(x,y), we restore the other factors in (8). When diam(B) � 1/

√
M , this gives

a(x, y)eiMΦ(x,y) �
∑
t

(
a(x, yBt )e

iMΦ(x,yBt )
)(

e−iMΦ(x0(A),yBt )LB
t (y)e

iMΦ(x0(A),y)
)
.

In terms of the earlier notation,

(9) αAB
t (x) = a(x, yBt )e

iMΦ(x,yBt ), βAB
t (y) = e−iMΦ(x0(A),yBt )LB

t (y)e
iMΦ(x0(A),y),

and the expansion coefficients {δAB
t }t for the potential should obey the condition

(10) δAB
t �

∑
y∈B

βAB
t (y)f(y) = e−iMΦ(x0(A),yBt )

∑
y∈B

(
LB
t (y)e

iMΦ(x0(A),y)d(y)
)
.

Similarly when diam(A) � 1/
√
M , we have

a(x, y)eiMΦ(x,y) �
∑
t

(
eiMΦ(x,y0(B))LA

t (x)e
−iMΦ(xA

t ,y0(B))
)(

a(xAt , y)e
iMΦ(xA

t ,y)
)
.
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In terms of the earlier notation,

(11) αAB
t (x) = eiMΦ(x,y0(B))LA

t (x)e
−iMΦ(xA

t ,y0(B)), βAB
t (y) = a(xAt , y)e

iMΦ(xA
t ,y),

and the expansion coefficients {δAB
t } should obey

(12) δAB
t �

∑
y∈B

βAB
t (y)d(y) =

∑
y∈B

a(xAt , y)e
iMΦ(xA

t ,y)d(y) = mB(xAt ).

Combining these expansions with the general structure of the butterfly scheme, we arrive
at the following algorithm. It is a slight modification of the one proposed in [12].

1. Preliminaries. Construct two quadtrees TX and TY for X and Y . Each leaf node of
TX and TY is of size (a constant times) 1/M × 1/M . We denote the number of levels
of TX and TY by L.

2. Initialization. Set A to be the root of TX . For each leaf box B ∈ TY , construct the
expansion coefficients {δAB

t , 1 ≤ t ≤ rε} from (10) by setting

(13) δAB
t = e−iMΦ(x0(A),yBt )

∑
y∈B

(
LB
t (y)e

iMΦ(x0(A),y)d(y)
)
.

3. Recursion. For each 
 = 1, 2, . . . , L/2, construct the coefficients {δAB
t , 1 ≤ t ≤ rε} for

each pair (A,B) with A at level 
 and B at the complementary level L− 
 as follows:
let Ap be A’s parent and let {Bc, c = 1, 2, 3, 4} be B’s children. For each child, we
have available from the previous level an approximation of the form

mBc(x) �
∑
t′

eiMΦ(x,yBc
t′ )δ

ApBc

t′ ∀x ∈ Ap.

Summing over all children gives

mB(x) �
∑
c

∑
t′

eiMΦ(x,yBc
t′ )δ

ApBc

t′ ∀x ∈ Ap.

Since A ⊂ Ap, this is also true for any x ∈ A. This means that we can treat {δApBc

t′ }
as equivalent sources in B. As explained below, we then set the coefficients {δAB

t }t as

(14) δAB
t = e−iMΦ(x0(A),yBt )

∑
c

∑
t′

LB
t (y

Bc
t′ )eiMΦ(x0(A),yBc

t′ ) δ
ApBc

t′ .

4. Switch. The interpolant in p may be used as the low-rank approximation as long as

 ≤ L/2, whereas the interpolant in x is a valid low-rank approximation as soon as

 ≥ L/2. Therefore, at 
 = L/2, we need to switch representation. Recall that for

 ≤ L/2 the expansion coefficients {δAB

t , 1 ≤ t ≤ rε} may be regarded as equivalent
sources, while for 
 ≥ L/2, they approximate the values of the potential mB(x) on the
Chebyshev grid {xAt , 1 ≤ t ≤ rε}. Hence, for any pair (A,B) with A at level L/2 (and
likewise for B), we have δAB

t � mB(xAt ) from (12) so that we may set

(15) δAB
t =

∑
s

a(xAt , y
B
s )e

iMΦ(xA
t ,yBs ) δAB

s
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(we abuse notation here since {δAB
t } denotes the new set of coefficients and {δAB

s } the
older set).

5. Recursion (end). The rest of the recursion is analogous. For 
 = L/2 + 1, . . . , L,
construct the coefficients {δAB

t , 1 ≤ t ≤ rε} as follows. With {αAB
t } and {βAB

t } given
by (11), we have

mB(x) =
∑
c

mBc(x) �
∑
t′,c

α
ApBc

t′ (x)
∑
p∈Bc

β
ApBc

t′ (y)d(y) �
∑
t′,c

α
ApBc

t′ (x)δ
ApBc

t′ .

Hence, since δAB
t should approximate mB(xAt ) by (12), we simply set

δAB
t =

∑
t′,c

α
ApBc

t′ (xAt )δ
ApBc

t′ .

Substituting αAB
t with its value gives the update

(16) δAB
t =

∑
c

eiMΦ(xA
t ,y0(Bc))

∑
t′

(
L
Ap

t′ (xAt )e
−iMΦ(x

Ap

t′ ,y0(Bc))δ
ApBc

t′

)
.

6. Termination. Finally, we reach 
 = L and set B to be the root box of TP . For each
leaf box A of TX , we have

mB(x) �
∑
t

αAB
t (x)δAB

t , x ∈ A,

where {αAB
t } is given by (11). Hence, for each x ∈ A, we set

(17) m(x) = eiMΦ(x,y0(B))
∑
t

(
LA
t (x)e

−iMΦ(xA
t ,y0(B))δAB

t

)
.

Most of the computation is in (14) and (16). Because of the tensor product structures,
the computations in (14) and (16) can be accelerated by performing Chebyshev interpolation
one dimension at a time, reducing the number of operations from O(q4) to O(q3), where q is
the size of the Chebyshev grid in each dimension. As there are at most O(M2 logM) pairs
of boxes (A,B), the recursion steps take at most O(q3M2 logM) operations. The cost of
(15) is of order O(q4M2) operations since for each pair (A,B) on the middle level a q2 × q2

linear transformation is required. Hence, the overall complexity estimate of this algorithm is
O(q3M2 logM + q4M2), which equals O(q3N logN + q4N). For brevity we bound this further
as O(q4N logN). The value of q will be determined in section 4. For the purpose of the
rigorous error estimate, it depends on M and 1/ε logarithmically.

3. Numerical results. We present numerical experiments for two standard setups of syn-
thetic aperture radar imaging: stripmap SAR, where the plane goes along a straight line, and
spotlight SAR, where the plane goes around in a circle.
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3.1. Stripmap SAR, synthetic data. Assume that the electromagnetic pulse is P (ω) = 1,
i.e., that no deconvolution is necessary. Let the acquisition manifold be

Ω = [−ω2,−ω1] ∪ [ω1, ω2] × [s1, s2], with s1 = 0, s2 = 1.

For the trajectory we let

γ(s) = (s, 0,H) ⇒ γ̇(s) = (1, 0, 0).

With this choice, the range is R = ‖γ(s)− xT ‖ =
√

(s− x1)2 + x22 +H2. For the reference of
the interested specialist, in the notations of [14] the Stolt variables are

ξ =
2k

R

(
s− x1
−x2

)
,

and it is easily calculated that the Beylkin determinant is∣∣∣∣ ∂ξ

∂(ω, s)

∣∣∣∣ = 4k|x2|
R2

.

After properly taking into account all these contributions in the amplitude, the oscillatory
integral becomes

m̃(x) = 64π2|x2|
∫
Ω
e−2iω

c

√
(s−x1)2+x2

2+H2
d(ω, s) dωds.

This is a straight backprojection formula, without any filtering. The only slight subtlety is
the domain of integration, a rectangle in (ω, s) space. Imaging artifacts will be reduced if an
additional smooth indicator χ(ω, s) equal to zero outside of Ω multiplies the integrand – as
was done in the numerical experiment.

The results show that the complexity is consistently that of about a thousand 2D FFT (for
an operation more complicated than a Fourier transform, of course), and the relative 
2 error
is consistently on the order of 2e-3. Table 1 was obtained using q = 5 Chebyshev points per
dimension, in each square in which interpolation is performed. Figure 4 presents a numerical
example.

3.2. Spotlight SAR, the Gotcha dataset. In this section we demonstrate the technique
on the Air Force Research Laboratory’s publicly released “Volumetric SAR Data Set, Version
1.0” [13]. The pulsed circular SAR (CSAR) collection system used a 9.6 GHz center-frequency
(X-band) linearly frequency modulated (LFM) waveform with 640 MHz bandwidth, corre-
sponding to a range resolution of 0.234m. The received data underwent the standard I/Q
demodulation, digitization, and match-filtering processes described in [36]. A wideband horn
antenna was used; thus the 3-dB antenna beam pattern approximately satisfied the frequency-
independence assumption discussed in section 1.2. The antenna beam pattern covered more
than a 1-kilometer radius of Wright-Patterson Air Force Base, but the phase history data
were spatially lowpass filtered and downsampled [31] to include only a 100m × 100m region
containing calibration targets and carefully placed civilian vehicles. Given the small size of
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Table 1
Comparisons are made against direct summation. Note that

√
N = M . Other error levels can be reached:

runtimes are directly proportional to the desired number of correct digits.

√
N Time (s) Speedup Error

64 .5 5 2e-3
128 2.7 17 2e-3
256 14 61 2e-3
512 68 220 2e-3
1024 320 760 2e-3
2048 1500 2500 2e-3

Figure 4. Left: synthetic 2D reflectivity model. Right: result of imaging from data limited by bandwidth
and aperture. The linear flight track runs alongside the bottom side of the model, at an altitude equal to the
maximal horizontal range of the reflectivity model.

the scene relative to the half-peak-power beam pattern, spatial variation of the antenna beam
pattern within the scene can be neglected for these data.

The imaging operator we applied is as follows:

(18) I(i1, i2) =
∑

(j1,j2)∈J
eiΦ(i1,i2,j1,j2)A(i1, i2, j1, j2)D(j1, j2), (i1, i2) ∈ I,

where
• I, J are two subsets of [0, 1]2,
• D is the phase history data, D(j1, j2) = d(ω(j1), γ(j2)),
• the phase Φ(i1, i2, j1, j2) =

2
cω(j1) (||γ(j2)− x(i1, i2)|| − r0(j2)),

• the amplitude A(i1, i2, j1, j2) = ||γ(j2)− x(i1, i2)||2w1(j1)w2(j2),
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• γ is the flight path in R3,
• ω spans the angular frequency range of the LFM chirp (in radians per second),
• r0 is the range to scene center from the antenna location (its presence is due only to

some preprocessing that needs to be undone), and
• w1, w2 are numerical weights allowing for irregularly sampled data.

The butterfly algorithm needs to evaluate A,D, and Φ at arbitrary points (j1, j2) in
between sample points, so we interpolate the data d, γ, r0, ω; in these experiments we made
use of the cubic spline interpolants of the GNU Scientific Library. The scene is defined by
{x(i1, i2) : (i1, i2) ∈ [0, 1]2} and may be a general surface in R3 parameterized by i1, i2; here we
chose x(i1, i2) = ((b1 − a1)i1 + a1, (b2 − a2)i2 + a2, 0), with a1, b1, a2, b2 defining the boundary
of the scene.

The total number of available frequency samples is Mω = 426. In the spotlight configura-
tion, the position γ(s) of the aircraft is indexed by the “azimuthal range” s. The latter is an
angle: it is first partitioned into 360 1-degree angular sectors, and within each sector by 118
angular samples. All the images above are obtained by using only 4 contiguous sectors.4 We
let Mγ be the total number of angular samples; in the example above, Mγ = 472. Note also
that the Gotcha dataset contains data at 8 different altitudes and 4 different polarizations
(HH, HV, VH, VV). Only one altitude and one polarization (HH) have been used for the tests
in this paper, but it is clear that the technique can be extended to process the full dataset.

In accordance with the previous sections, the letter M is reserved for the fixed (large)
quantity ω0. In units where the observed time span has length 1, M is (proportional to)
a lower bound on the number of samples required for sampling the signal accurately. This
suggests that Mω and Mγ must be at least of the same order of magnitude as M .

The current version of the butterfly algorithm handles square domains and boxes. A
rectangular data space Y or image space X can easily be accommodated by stretching and
resampling the dataset in the direction of the least number of samples. This results in a total
number of samples given by

N = (max{Mω,Mγ})2 .
The two tuning parameters are q, the number of Chebyshev points per dimension per square,
and L, the depth of the tree. The slight oversampling mentioned above—when Mω, Mγ are
larger than M—alleviates the need for considering values of q greater than 10 or 15 in practice.
L should be chosen in such a way that each leaf box in the data domain Y contains fewer
than q2 points, and such that the size of the leaf boxes in image space X matches the desired
level of resolution. In our tests, we chose L = 1

2 log2(N)− 6.

Figure 5 compares direct summation with the butterfly algorithm for the Gotcha dataset.
Zooms on features of interest are presented in Figure 6. Figure 7 contains plots of error and
speedup for various image sizes and choices of the Chebyshev parameter q.

Fast algorithms based on the FFT would require making the far-field approximation.
While we did not compare the butterfly directly to the unequally spaced FFT in terms of
speed, in Figure 8 we compute the error which would accompany the far-field approximation.
This error is predicted to grow with the angular aperture. While the far-field image looks

4The quality of the image increases with more angular sectors. The speedup and relative root mean-squared
(RMS) figures for the algorithm are essentially independent of the azimuthal range.
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Figure 5. SAR images formed from the Gotcha dataset, using the butterfly algorithm with
√
N = 210 and

4 degrees of azimuthal range, starting at 0 degrees, rendered on a logarithmic scale. The left images are of an
exact summation, the center images are from the butterfly algorithm with q = 4 on top and q = 12 on the
bottom, and the right images are the differences between the two. All images are divided by the maximum norm
of the exact image to set the scale.

acceptable, the pointwise relative error is orders of magnitude larger than that of butterfly
truncation, even when only 4 degrees of azimuthal range are used. Further numerical errors
could come from the delicate spectral interpolation step in FFT-based processing.

4. Proof of the error bound. In this section we prove Theorem 1. Although this may not
be stated explicitly, the letter C refers to constants that may depend on unessential parameters
(clear from context) and which may change from line to line.

4.1. Preliminaries on analyticity and interpolation. The analyticity assumption on the
amplitude and phase functions translates into fast converging Chebyshev interpolation. The
following result will not surprise specialists, but we were unable to find it in the literature; its
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Figure 6. Zoom on features in the scene; here the azimuthal range is from 280 to 284 degrees, and
√
N = 28.

The left images are the exact summation, the center images are from the butterfly algorithm, with q = 7, and the
right images are the differences computed as before. Clearly, visual interpretation is not hampered by choosing
q = 7 in these examples.

proof is in the appendix. Throughout this paper we use the notation

‖f‖2 =
∫ 1

−1
|f(x)|2 dx√

1− x2
.

Theorem 2. Let f be (Q,R)-analytic on [−1, 1] :

|f (n)(x)| ≤ Qn!R−n.

Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Assume N ≥ 1/(2R). Then

(19) ‖f − p‖ ≤ C Q N

[
1 +

1

R2

]1/4 [
R+

√
R2 + 1

]−N
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Figure 7. Left: plot of the relative max-norm error as a function of q, the number of Chebyshev interpolation
points per dimension in each butterfly box, at various values of N . Right: plot of the speedup as a function of
the relative max-norm error, speedup relative to exact sum. Each circle/diamond/square/triangle corresponds
to a choice of q and N as earlier. The error bars arise from the fact that several images were computed,
corresponding to different intervals in azimuthal angles, in the range (0, 4, 8, . . . , 356) for (N = 128, 256, 512),
and (0, 30, 60, . . . , 330) for N = 1024. The error bars were obtained from the minimum and maximum values
in each case. It should be noted that these experiments were conducted on shared computational resources; thus
we expect some variability in actual runtime, and hence, speedup, depending on the variability of system load
during the experiment.

for some numerical constant C > 0.

A fortiori, the result is also true for the weaker L2 norm ‖f‖2 = (
∫ |f(x)|2dx)1/2. The

proof involves analytic continuation of f in the complex plane, and contour deformation to
bound (i) the coefficients of the Chebyshev expansion of f , and (ii) the difference between
those coefficients and the approximate ones obtained from the function samples. The following
corollary treats the case of the uniform norm.

Corollary 3. In the setting of Theorem 2,

(20) ‖f − p‖∞ ≤ C Q N2

[
1 +

1

R2

]1/4 [
R+

√
R2 + 1

]−N
,

where the constant C is possibly different from that of Theorem 2.

Proof. Use the fundamental theorem of calculus and the Cauchy–Schwarz inequality to
write the elementary relation

|f(x)− f(x∗)|2 ≤
[∫ 1

−1

dx√
1− x2

] ∫ 1

−1
|f ′(x)|2

√
1− x2 dx,

valid for all x, x∗ ∈ [−1, 1]. The factor in brackets has value π.
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Figure 8. Left: image obtained by exact full summation, in log scale. Middle: full sum with the far-field
approximation, i.e., that ‖γ(j2) − x(i1, i2)‖ ≈ ‖γ(j2)‖ − x(i1, i2) · γ(j2)/‖γ(j2)‖ (relative to the scene center,
which is 0), again in log scale. Right: absolute value of the difference of the moduli of the two images, in
log scale, normalized with respect to the maximum of the exact image. The relative error in maximum norm
between the left and middle images is 26.92%. The modulus was taken before subtracting the images because
the phase errors would be even larger than the modulus errors from taking the far-field approximation. Note
that the error drops to zero in the center, where the ratio ‖x‖/‖γ‖ goes to zero. See Figure 9 for a quantitative
analysis.

Denote by ε2(N ;Q,R) the right-hand side of (19). It is easily established (for instance,
by contradiction) that there exists x∗ ∈ [−1, 1] for which |f(x∗)− p(x∗)| ≤ ε2(N ;Q,R), where
p is the N -term Chebyshev interpolant of f . For any other x ∈ [−1, 1], we have

|f(x)− p(x)| ≤ |f(x∗)− p(x∗)|+ π

∫ 1

−1
|f ′(x)− p′(x)|2

√
1− x2 dx.

A reasoning entirely parallel to that of the proof of Theorem 2 can be made to show that the
integral term is no bigger than CNε2(N ;Q,R), which proves the claim. Indeed,∫ 1

−1
|f ′(x)− p′(x)|2

√
1− x2 dx =

∫ π

0

∣∣∣∣ ddθ (f(cos θ)− p(cos θ))

∣∣∣∣2 dθ,
and differentiation in the θ domain amounts to multiplication by in of the nth Fourier series
coefficient. This extra factor plays a role in (38) for the aliasing error, where the sum over n
now takes the form ∑′′

|n|≤N

n2ρ2n,

which leads to an extra N2 in the bound. As for the truncation error, it now reads

∑
|n|>N

n2ρ−2n =
ρ

4

d

dρ
ρ
d

dρ

ρ−2N

1− ρ−2
,
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Figure 9. Histograms of pixel values in the two difference images—butterfly algorithm on the left, and
far-field approximation on the right. By “difference,” we mean difference of the moduli as in Figure 8. We
can see that the relative max-norm of the far-field difference image is very high, 0.2692 (admittedly an outlier).
We also compute the median errors as 6.31e-4 for the far-field approximation, and 6.31e-5 for the butterfly
algorithm, with q = 4.

where the two differentiations also lead to an extra factor N2. A square root is later taken to
turn these N2 factors into N .

The following simple lemmas record the behavior of analytic functions under exponentia-
tion, multiplication, and subtraction, respectively.

Lemma 1. Let f(x) be (Q,R)-analytic on some domain Ω. Then, on Ω, g(x) = eiMf(x)

obeys

|g(n)(x)| ≤

⎧⎪⎨⎪⎩
3
√
nMn

(
eQ
R

)n
if 1 ≤ n < MQ√

2
,

e
√
2NQ n!

(√
2

R

)n
if n ≥ NQ√

2
.

Proof. Since f is (Q,R)-analytic, it extends holomorphically into the strip Ω× (−R,R) ⊂
C. We seek to bound the holomorphic extension of g in the same strip. To this end, notice
that

|g(z)| = exp (−MImf(z)),

so it suffices to consider the imaginary part of f(z). For any z = x + iy we have the Taylor
series

f(z) =
∑
n≥0

f (n)(x)

n!
(iy)n,

so that

Imf(z) =
∑
n≥0

f (2n+1)(x)

(2n+ 1)!
(−1)ny2n+1.
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We may use (Q,R)-analyticity of f to bound

|Imf(z)| ≤ Q
∑
n≥0

(−1)n
( y

R

)2n+1
=

Qy

R

1

1− y2

R2

.

It results that, for z = x+ iy ∈ Ω× (−R,R),

|g(z)| ≤ exp

(
MQy

R

1

1− y2

R2

)
.

We now apply Cauchy’s criterion in the region Ω×(−y, y), with y as yet unspecified, to obtain

|g(n)(x)| ≤ max
|Imz|≤y

|g(z)|n! y−n.

As long as y < R/
√
2, a good choice is y = nR

MQ . In terms of n this choice is valid, provided

that n < MQ/
√
2. Then the bound simplifies to

|g(n)(x)| ≤ e2n n!

(
nR

MQ

)−n

.

In view of the Stirling bound n! ≤ 3
√
nnne−n for n ≥ 1, we get

|g(n)(x)| ≤ 3
√
nMn

(
eQ

R

)n

.

If on the other hand n ≥ MQ/
√
2, we use y = R/

√
2 and check that the required bound

holds.
Lemma 2. Let f(x) be (Q,R)-analytic on some domain, and let g be essentially bandlimited

in the sense that
|g(n)(x)| ≤ ABn nm.

Then fg is (Q′, R)-analytic, with

Q′ = AQ (RB)m eRB .

Proof. It suffices to apply the high-order Leibniz rule,

(fg)(n) =

n∑
k=0

(
n
k

)
f (n−k)g(k),

to get

|(fg)(n)| ≤
n∑

k=0

(
n
k

)
Q (n− k)!R−(n−k)ABk km

= QAn!R−n
n∑

k=0

(RB)k

k!
km

≤ QA(RB)meRB n!R−n.
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This latter bound is rather coarse, particularly if R is large. However, Q′ is as good a
constant as Q for expressing large-n asymptotics.

Lemma 3. Assume φ(x, y) is (Q,R1)-analytic in x and (Q,R2)-analytic in y: for all unit-
length d1, d2,

|(d1 · ∇x)
n1(d2 · ∇y)

n2φ(x, y)| ≤ Qn1!n2!R
−n1
1 R−n2

2 .

Then φ(x0, y)− φ(x1, y) is (Q′, R2)-analytic in the y variable, with

(21) Q′ = Q
|x0 − x1|/R1

1− |x0 − x1|/R1
.

Proof. Perform a Taylor expansion along the line joining x0 and x1. Let d1 = x̂0 − x1.
Then,

|(d2 · ∇y)
n2(φ(x0, y)− φ(x1, y))| =

∣∣∣∣∣∣
∑
n1≥1

(d1 · (x0 − x1))
m

m!
(d1 · ∇x)

n1(d2 · ∇y)
n2φ(x1, y)

∣∣∣∣∣∣
≤
∑
n1≥1

|x0 − x1|n1 Qn2!R
−n1
1 R−n2

2

≤ Qn2!R
−n2
2

|x0 − x1|/R1

1− |x0 − x1|/R1
.

4.2. Recursive dyadic interpolation. In this section we show how the butterfly algorithm
in effect performs repeated interpolation of the kernel K(x, y) at different scales.

In the version of the butterfly algorithm presented here, a “switch” occurs midway through
the tree traversals. A subscript m will be used to denote any of the boxes Am or Bm at this
midlevel. A couple of boxes (A,B) is said to be located before the switch if there exist midlevel
boxes Am, Bm such that A ⊃ Am and B ⊂ Bm. Conversely, (A,B) is said to be located after
the switch if there exist midlevel boxes Am, Bm such that A ⊂ Am and B ⊃ Bm. Exactly
at the switch, a couple (Am, Bm) is said to occur either before or after the switch depending
on whether or not the δAB

t have already been subjected to the switch transformation. When
referring to the “midlevel box B that contains the point y,” we will write Bm(y) and use an
analogous definition for Am(x).

Boxes at the leaves of the A or B trees will be denoted A�, B�, respectively. When referring
to the “leaf level box B that contains the point y,” we will write B�(y) with an analogous
definition for A�(x). Similarly, the index r denotes root boxes. And as previously, we also use
the indices c to denote a child box, and p to denote a parent box.

Fix a couple of boxes (A,B). It was explained earlier that the box B carries an interpo-
lation structure over points yBt with basis functions βAB

t , which we denote by

KB(x, y) =
∑
t

K(x, yBt )β
AB
t (y), x ∈ A, y ∈ B.

Similarly, interpolation can be performed in the x variable and leads to

KA(x, y) =
∑
t

αAB
t (x)K(xAt , y), x ∈ A, y ∈ B.
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Figure 10. In red (hollow arrows), direction of traversal of the quadtrees. In blue (solid arrows), direction
in which recursive interpolation is implicitly performed by the butterfly algorithm. The blue squares indicate the
middle level (level 2), where the switch from interpolation in the y variable to interpolation in the x variable is
performed.

If interpolation is performed in both the x and y variables, we use the notation KA
B (x, y).

The recursive dyadic interpolant of K from some box B down to some descendant box b
results from repeatedly interpolating K in the boxes B,Bc, Bcc, . . . , b along the tree from B
down to b. It is denoted by

(KB↘b) (x, y) =
∑
tn

. . .

[∑
t2

[∑
t1

K(x, yBt1)β
AB
t1 (yBc

t2 )

]
β
ApBc

t2 (yBcc
t3 )

]
. . . βab

tn (y), x ∈ A,

where a is the (unique) parent of A at a level compatible with b. Analogously,

(
KA↘a

)
(x, y) =

∑
tn

. . .

[∑
t2

[∑
t1

K(xAt1 , y)α
AB
t1 (xAc

t2 )

]
α
AcBp

t2 (xAcc
t3 )

]
. . . αab

tn(x), x ∈ A,

where b is the (unique) parent of B at a level compatible with a. If recursive interpolation is
done in both x and y from (A,B) down to (a, b), we use the notation(

KA↘a
B↘b

)
(x, y).

(Note that a and b are not necessarily compatible in this last equation.) If B = b, we simply

have KB↘B = KB, and similarly, KA↘A = KA and KA↘A
B↘B = KA

B . If on the other hand b � B
or a � A, by convention no interpolation takes place. The procedure for generating recursive
dyadic interpolants is illustrated in Figure 10.

The following lemma quantifies how the low-rank partial sum ũB(x) obtained from the
butterfly algorithm deviates from the true partial sum mB(x) =

∑
yj∈B K(x, yj)dj .

Lemma 4. Consider a couple of boxes (A,B) and the corresponding butterfly data δAB
t .

If (A,B) is located before the switch, define

m̃B(x) =
∑
t

K(x, yBt )δ
AB
t , x ∈ A.
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It holds that

(22) m̃B(x) =
∑
yj∈B

(
KB↘B�(yj)

)
(x, yj)dj , x ∈ A.

If (A,B) is located after the switch, define instead

m̃B(x) =
∑
t

αAB
t (x)δAB

t , x ∈ A.

It holds that

(23) m̃B(x) =
∑
yj∈B

(
K

Am(x)↘A
Bm(yj)↘B�(yj)

)
(x, yj)dj , x ∈ A.

Proof. The proof is split into three cases: before, at, and after the switch.
• Fix a couple (A,B) located before the switch. Consider B as the root of its subtree,

consisting of all its descendants b. Index these descendants by level k = 
(b) from
k = 0 (the level of B) to k = n (the leaf level). We wish to prove by induction on k
increasing from 0 to n the claim that

(24) m̃B(x) =
∑

b:�(b)=k

∑
t

KB↘bp(x, y
b
t )δ

ab
t ,

for x ∈ A, and a is the (unique) parent of A at a level compatible with b such that

(b) = k. For k = 0 no interpolation takes place, and the claim is obviously true by
definition of ũB(x). Assume now that the claim is true at level k. For each b with

(b) = k we have

δabt =
∑
c

∑
t′

βab
t (ybct′ )δ

apbc
t′ .

So, for all x ∈ A,

m̃B(x) =
∑

b:�(b)=k

∑
t

KB↘bp(x, y
b
t )

[∑
c

∑
t′

βab
t (ybct′ )δ

apbc
t′

]

=
∑

b:�(b)=k

∑
c

∑
t′

[∑
t

KB↘bp(x, y
b
t )β

ab
t (ybct′ )

]
δ
apbc
t′ .

We are in the presence of the interpolant of KB↘bp in the box b, which by definition
is called KB↘b. Hence

m̃B(x) =
∑

b:�(b)=k

∑
c

∑
t′

KB↘b(x, y
bc
t′ )δ

apbc
t′ .

Relabeling b → bp, bc → b, and noticing that
∑

b:�(b)=k

∑
c → ∑

b:�(b)=k+1, we obtain
the claim (24).
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As k = n, the interaction coefficients are

δArB�
t =

∑
yj∈B�

βArB�(yj)dj ,

so (24) becomes

m̃B(x) =
∑
B�

∑
t

KB↘B�,p
(x, yB�

t )

⎡⎣ ∑
yj∈B�

βArB�(yj)dj

⎤⎦ ,

=
∑
B�

∑
yj∈B�

KB↘B�
(x, yj)dj .

The latter equation is exactly (22).
• The notation changes at this point: the preswitch δ coefficients are now denoted δ̃AB

t ,
and the postswitch coefficients simply δAB

t . They are related by

δAB
t =

∑
t′

K(xAt , y
B
t′ )δ̃

AB
t′ .

This allows us to write

ũB(x) =
∑
t

αAB
t (x)

[∑
t′

K(xAt , y
B
t′ )δ̃

AB
t′

]
=
∑
t′

KA(x, yBt′ )δ̃
AB
t′ .

Except for interpolation in the x variable, we are in the presence of the preswitch
formula for ũB . Invoking (22), we get

m̃B(x) =
∑
yj∈B

(
KA

B↘B�(yj)

)
(x, yj)dj , x ∈ A.

• It now remains to check that (23) holds by induction down the rest of the A tree. We
have just shown that it holds immediately after the switch. The formula for the δ
updates after the switch is

δAB
t =

∑
c

∑
t′

α
ApBc

t′ (xAt )δ
ApBc

t′ .

The induction assumption can be used directly in this formula: we use (23) for the
pair (Ap, Bc) and evaluate at x = xAt :

δAB
t =

∑
c

∑
yj∈Bc

(
K

Am(x)↘Ap

Bm(yj)↘B�(yj)

)
(xAt , yj)dj .
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Of course
∑

c

∑
yj∈Bc

is just
∑

yj∈B , so

m̃B(x) =
∑
t

αAB
t (x)

⎡⎣∑
yj∈B

(
K

Am(x)↘Ap

Bm(yj)↘B�(yj)

)
(xAt , yj)dj

⎤⎦
=
∑
yj∈B

[∑
t

αAB
t (x)

(
K

Am(x)↘Ap

Bm(yj)↘B�(yj)

)
(xAt , yj)

]
dj.

In the last line, the quantity in square brackets is the interpolant of K
Am(x)↘Ap

Bm(yj)↘B�(yj)
on

the grid xAt of the box A. By definition this is just K
Am(x)↘A
Bm(yj)↘B�(yj)

. We deduce (23),

as desired.
Notice that all the interpolations are done from the top down, on both the A and B sides,

even though the traversals are top-down and bottom-up, respectively. This fact is significant
because only top-down recursive interpolation is numerically stable.

If a straight polynomial interpolant were used in the butterfly scheme, recursive interpo-
lation would be error-free since the degree-n polynomial interpolant of a degree-n polynomial
is itself. Because oscillations are factored into the interpolant, this is, however, not the case
and a full error propagation analysis must be carried out.

4.3. Error propagation analysis. In this section we finish the proof of Theorem 1. The
analysis of the previous section is very general in the sense that it holds for arbitrary inter-
polation kernels αAB

t and βAB
t . Here we specialize K(x, y) = a(x, y)eiMΦ(x,y) and choose the

interpolation kernels as in section 2:

βAB
t (y) = e−iMΦ(x0(A),yBt )LB

t (y)e
iMΦ(x0(A),y), preswitch,

αAB
t (y) = eiMΦ(x,y0(B))LA

t (x)e
−iMΦ(xA

t ,y0(B)), postswitch.

Here LA
t and LB

t are the respective elementary Lagrange interpolation polynomials in the
boxes A and B. In each box A or B, the polynomial interpolation takes place over q2 tensor-
Chebyshev points.

Corollary 3 will be applied later; for now let us denote the right-hand side of (20) as

(25) ε∞(N ;Q,R) = C Q N2

[
1 +

1

R2

]1/4 [
R+

√
R2 + 1

]−N
,

where C > 0 is adequately large (and N here is any positive integer).
Consider a box B below the switch and one of its descendants b located k levels lower

than B. Let us prove by induction on k from k = 0 (b = B) to k = n (b = B�), that there
exists some C > 0 such that

(26) ‖KB↘b(x, ·)−K(x, ·)‖∞ ≤ 2 ε∞(q;Q′′, R) · (C log q)k, x ∈ A, y ∈ B,

where A is compatible with B, where ε∞ was defined in (25), and where Q′′ is some function
of Q and R.
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• As b = B, we get

KB(x, y) = eiMΦ(x0(A),y)
∑
t

LB
t (y)e

−iMΦ(x0(A),yBt )K(x, yBt )

= eiMΦ(x0(A),y)
∑
t

LB
t (y)a(x, y

B
t )e

iM(Φ(x,yBt )−Φ(x0(A),yBt )).

The difference |KB−K| is therefore controlled by the error in interpolating the function
a(x, y)eiM(Φ(x,y)−Φ(x0(A),y)) over y ∈ B, while keeping x ∈ A. All the tools are in place:
– First, remember that both a(x, y) and Φ(x, y) are (Q,R)-analytic in the y variable.

The interpolation takes place in a square of sidelength diam(B)/
√
2 in y, so we

may rescale the problem to [−1, 1]2 by assuming that R is replaced by R′ =
2
√
2R/diamB.

– Second, remember that Φ(x, y) is also (Q,R)-analytic in the x variable. Assume
for a moment that diam(A) ≤ R: this implies that the denominator in (21) is
greater than 1/2, so we can invoke Lemma 3. We obtain that the difference
Φ(x, y) − Φ(x0(A), y) is (Q′, R′)-analytic in the y variable, with the same R′ as
Φ(x, y) but a potentially smaller Q′ ≤ 2Q diam(A)/R. If on the other hand
diam(A) > R, we may use the trivial bound Q′ ≤ 2Q, hence a fortiori Q′ ≤
2Q diam(A)/R as well.

– Third, Lemma 1 asserts that taking the exponential of an analytic function results
in an essentially bandlimited function. Putting together the expressions of Q′ and
R′ obtained so far, we find the bound

|(d · ∇y)
neiM(Φ(x,y)−Φ(x0(A),y))| ≤ 3

√
nMn [cQ,R diam(A) diam(B)]n ,

where cQ,R is some function of Q and R—constant with respect to M , diam(A),
and diam(B)—and n is not extremely large, n < MQ/

√
2. For n ≥ MQ/

√
2

the bound reverts to a factorial: we leave to the reader the easy but tedious
task of checking that this detail does not change the conclusions of the argument.
The important point is that the essential band limit is a constant times M ×
diam(A)× diam(B). The crux of the proof is that this latter quantity is precisely
the algorithmic Fresnel number, assumed to be less than 1.

– Fourth, we can now invoke Lemma 2 to handle the multiplication of the oscillatory
factor with the amplitude. We may disregard the fact that R has been rescaled
to R′ and simply assume that a(x, ·) is (Q,R)-analytic. In a rescaled variable
y ∈ [−1, 1]2, we obtain the final estimate

(27) |∂n
y a(x, y)e

iM(Φ(x,y)−Φ(x0(A),y))| ≤ Q′′n!R−n,

with Q′′ = 3Q(RcQ,R) e
RcQ,R .

Equation (27) provides the smoothness estimate necessary to invoke Corollary 3. It is
applied first in the y1 variable, then in the y2 variable. Passing from one dimension
to two dimensions doubles the error bound but squares the number of coefficients.
With q2 bivariate Chebyshev polynomials, therefore, Corollary 3 guarantees that the
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function a(x, y)eiM(Φ(x,y)−Φ(x0(A),y)) is interpolated in y with an error

2 ε∞(q;Q′′, R)

in the uniform norm, where ε∞(q;Q′′, R) comes from (25). This settles the base case
k = 0.

• For the general case of the induction, let a be compatible with b. We have

(28) KB↘b(x, y) = eiMΦ(x0(a),y)
∑
t

Lb
t(y)e

−iMΦ(x0(a),ybt )KB↘bp(x, y
b
t ).

In the right-hand side, splitKB↘bp(x, y) = K(x, y)−(K(x, y)−KB↘bp(x, y)). Subtract
K(x, y) from the whole equation, and consider two contributions.
– First, if K takes the place of KB↘bp in (28), then the latter reduces to

Kb(x, y) = eiMΦ(x0(a),y)
∑
t

Lb
t(y)e

−iMΦ(x0(a),ybt )K(x, ybt ).

Upon subtracting K(x, y) we are left to consider Kb(x, y) − K(x, y), which we
have already encountered earlier. Independently of b in the range considered,

‖Kb(x, ·) −K(x, ·)‖∞ ≤ 2 ε∞(q;Q′′, R).

– Second, we are led to consider

eiMΦ(x0(a),y)
∑
t

Lb
t(y)e

−iMΦ(x0(a),ybt )
[
K(x, ybt )−KB↘bp(x, y

b
t )
]
.

By assumption the term in square brackets is bounded by 2 ε∞(q;Q′′, R)(C log q)k−1.

The oscillatory factor e−iMΦ(x0(a),ybt ) does not change the modulus of this quan-
tity. The interpolation operation may increase the 
∞ norm by a factor C log q,
as is well known for Chebyshev interpolation [6, 12, 32]. Finally, the oscillatory
factor eiMΦ(x0(a),y) does not change the modulus of the result. We are left with

‖K(x, ·) −KB↘b(x, ·)‖∞ ≤ C log q · ‖K(x, ·) −KB↘bp(x, ·)‖∞
≤ 2 ε∞(q;Q′′, R)(C log q)k.

This concludes the induction argument for interpolation in the y variable, and proves
(26).

The interpolation problem is completely symmetrical in the x variable: the argument can
be repeated and yields an error of the same order of magnitude. Since there are n = C log2N
levels between the midlevel nodes and the leaf nodes, for some (very small) constant C, we
get an overall error of∥∥∥(KAm↘A�

Bm↘B�

)
−K

∥∥∥
∞

≤ 4 ε∞(q;Q′′, R)(C log q)C logN ,
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where A� is any descendant of Am, and B� is any descendant of Bm. If we let ρ = R+
√
R2 + 1

and use (25), the right-hand side takes the form

C(Q,R) q2 (C log q)C logNρ−q.

Let us now fix ε > 0 and find conditions on q such that the quantity above is less than ε.
We require C(Q,R)q2 < ρq/3, which gives rise to a first condition that q is greater than some
other (overloaded) constant C(Q,R). We also require (C log q)C logN < ρq/3, which implies

q ≥ C (logN) log(C logN)

(where again C is overloaded). Finally, we need ρ−q/3 ≤ ε, which implies

q ≥ 3 logρ

(
1

ε

)
.

In conclusion, we can make the uniform norm of recursive interpolation less than ε, provided
that q2 points are used on each tensor Chebyshev grid, with

q ≥ C(Q,R)max

{
log

(
1

ε

)
, (logN) log(C logN)

}
.

As was discussed earlier, the overall complexity of the butterfly scheme is O(q4N logN). This
finishes the proof of Theorem 1.

4.4. Refinement. The radius of analyticity R of the amplitude is assumed here to be
identical to that of the phase Φ, but the proof shows that we may relax this condition and
let R be as small as a multiple 1/

√
M . This corresponds to spatial variations that occur on a

length scale proportional to the diameter of boxes at the midlevel in the X and Y domains.

5. Conclusion. We have presented a butterfly scheme for frequency-domain FBP imaging
from SAR data. The performance bounds in this paper provide direct user control of the
reconstruction error, which may be useful for subsequent image-processing tasks. Unlike fast
time-domain methods, our approach is amenable to real-time SAR systems which use “stretch”
processing to accomplish I/Q demodulation and matched filtering [36]. Stretch processing has
frequency-domain outputs which can easily be distributed among processors, making our
algorithm especially attractive for extremely large scale imaging problems. Specifically, the
pulsewise range-frequency FFTs required to arrive at the time-domain SAR backprojection
algorithm can be prohibitively expensive due to data-throughput requirements. Thus in some
SAR settings a frequency-domain approach such as the one presented here may be mandatory.

The ideas of the butterfly scheme are reminiscent but distinct from the fast multipole
method (FMM) [22, 29]. The authors believe that the butterfly algorithm is the proper way
to generalize FMM in an all-purpose way to settings where high-frequency oscillatory integrals
are present. “All-purpose” means robustness and applicability to many problems, such as SAR
in the presence of curved flight paths, topography, and complicated antenna beam patterns.
But it also means that other numerical methods may be faster for certain problems with
structure, such as computerized (X-ray) tomography or ultrasound tomography in medical



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A BUTTERFLY ALGORITHM FOR SAR IMAGING 233

imaging. Adjoint-state seismic migration in heterogeneous media, on the other hand, may be
too complicated to be accurately represented by an oscillatory (Kirchhoff) integral, so it is as
yet unclear whether the butterfly algorithm may be helpful there.

The FFT and the USFFT [19] are examples of algorithms which are faster than the butter-
fly, but which work only for bilinear phases. The table below summarizes ballpark complexity
figures and ranges of applicability for the FFT (i.e., slant-plane range-Doppler imaging), the
PFA, the USFFT of Dutt and Rokhlin, and the Chebyshev butterfly (B-Cheb) algorithm pre-
sented here. The figures are for the one-dimensional transforms, so the complexity multiplier
should be squared for the two-dimensional transforms.

Kernel Algorithm Complexity vs. FFT

eixk FFT 1

eixk1(m)k2(n) PFA 2

eixjkn USFFT 6

a(x, k)eiφ(x,k), B-Cheb 30
φ(x, αk) = αφ(x, k)

The variable k is supposed to take on large values, on the order of N , in all cases. By xjkn,
we mean xk sampled unevenly, whereas xk1(m)k2(n) refers to data samples on a polar raster
with k1(m) indexing frequency and k2(n) indexing pulse number. The relation φ(x, αk) =
αφ(x, k) (for α > 0) is a homogeneity condition that the butterfly requires, or very nearly
so, for operating at the N logN complexity level. It is ubiquitous in applications to wave
propagation.

Appendix A. On Chebyshev interpolation of analytic functions. The goals of this ap-
pendix go beyond the application to radar imaging, so the notation may depart slightly from
that in the main text. For instance, here N stands for the number of Chebyshev points—what
we called q earlier.

The Chebyshev interpolant of a function f on [−1, 1] is a superposition of Chebyshev
polynomials Tn(x),

p(x) =
N∑

n=0

cnTn(x),

which interpolates f in the sense that p(xj) = f(xj) on the Chebyshev grid xj = cos(jπ/N)
for j = 0, . . . , N .

The rationale for this choice of grid is that under the change of variables x = cos θ,
the Chebyshev points become the equispaced samples θj = jπ/N . Unlike f , the function
g(θ) = f(cos θ) is now 2π-periodic. Note that g(θ) inherits the smoothness of f(x). The
samples g(θj) can be made to cover the whole interval [0, 2π] if we extend the range of j to
be 0 ≤ j ≤ 2N − 1 (this corresponds to a mirror extension of the original samples). The
rationale for choosing Chebyshev polynomials is that Tn(cos θ) = cos(nθ), so that Chebyshev
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interpolation of f from f(xj), with 0 ≤ j ≤ N−1, is nothing but interpolation by trigonometric
polynomials of g from g(θj), with 0 ≤ j ≤ 2N − 1.

This interpolant is built as follows. Start by submitting the 2N samples g(θj) to the
discrete Fourier transform and back; this gives

g(θj) =

N−1∑
n=−N

einθj g̃n.

The spectral interpolant q(θ) is built from these DFT coefficients as

(29) q(θ) =

N∑′′

n=−N

einθg̃n,

where the double prime next to the sum indicates that the first and last terms are halved. This
precaution is important to ensure that the interpolant of a real-valued function is real-valued.

The sum (29) reduces to the inverse discrete Fourier transform when θ = θj, so that
q(θj) = g(θj). Notice that g is even, so only the cosines are needed in this expansion:

q(θ) = 2

N∑′′

n=0

cos (nθ)g̃n.

The Chebyshev interpolant of f(x) is then simply p(x) = q(arccosx). The coefficients are
given explicitly as cn = 2g̃n for 1 ≤ n ≤ N − 1, or cn = g̃n for n = 0, N .

Spectral and Chebyshev interpolation methods are attractive not only because the FFT
can be used to speed up computations, but because they have remarkable accuracy properties.

A.1. Spectral accuracy of Chebyshev interpolation. The first result concerns the alge-
braic decay of the interpolation error when f can be differentiated a finite number of times,
or superalgebraic decay when f is infinitely differentiable.

We consider the native inner product for Chebyshev polynomials,

〈f, g〉 =
∫ 1

−1
f(x)g(x)

dx√
1− x2

,

with respect to which they are orthogonal. The associated weighted L2
w norm

‖f‖ =

(∫ 1

−1
|f(x)|2 dx√

1− x2

)1/2

is used throughout this paper to measure the error. (The corresponding measure in θ =
arccos x is Lebesgue.) The related Sobolev spaces are

W s
w =

{
f ∈ L2

w : ‖f‖2s =
s∑

k=0

‖f (k)‖2 < ∞
}
.
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The following result is elementary. The ideas can be traced back at least to [21]. A proof of
the result as stated is in [32].

Theorem 4. Let f ∈ W s
w. Denote by p the N -point Chebyshev interpolant of f on [−1, 1].

Then
‖f − p‖ ≤ Cs ‖f‖s N−s.

In [32], Tadmor pushed the analysis further to obtain exponential decay in the case when
f is real-analytic. A convenient setting is to assume that f extends analytically in the complex
plane, in the “Bernstein” ellipse Eρ with foci ±1, center z = 0, and semiaxes

aρ =
ρ+ ρ−1

2
, bρ =

ρ− ρ−1

2

for some parameter ρ > 1 called the elliptical radius. Note that aρ + bρ = ρ. This ellipse has
Cartesian equation

Eρ =

{
z :

(Re z)2

a2ρ
+

(Im z)2

b2ρ
= 1

}
and parametric equation

Eρ =

{
z =

ρeiθ + ρ−1e−iθ

2
: θ ∈ [0, 2π)

}
.

Theorem 5 (Tadmor [32]). Let f have an analytic extension in the open Bernstein ellipse
Eρ0 with elliptical radius ρ0 > 1. For each 1 < ρ < ρ0, let

M(ρ) = max
z∈Eρ

|f(z)|.

Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Then for all 0 < ρ < ρ0,

‖f − p‖ ≤ C
M(ρ)

ρ− ρ−1
ρ−N .

The next result, which is possibly original, is Theorem 2 presented in section 4. For
this result it is assumed instead that f is (Q,R) analytic, i.e., is real-analytic and obeys the
smoothness condition

(30) |f (n)(x)| ≤ Q n! R−n.

As noted in [30, p. 378], f obeys (30) for x ∈ R if and only if it can be analytically extended
in the strip |Im z| ≤ R. This property holds because R is a lower bound on the convergence
radius of the Taylor expansion of f at any point x. As a result it is a very natural class
of analytic functions; Rudin denotes it by C{n!}. We assume only that f obeys (30) for
x ∈ [−1, 1], which results in a stadium-shaped analyticity region, as in Figure 11. Note that
(Q,R) analyticity has already been used by two of the authors in [12, 11].

A fortiori, the bound (19) in Theorem 2 also holds for the weaker L2 norm. The proof

gives the value 5
2

√
45e
2 for the numerical constant C; no attempt is made in this paper to find

its sharp value. Note that [R +
√
R2 + 1]−N corresponds to Tadmor’s ρ−N .

The error bound (19) obeys the following asymptotic behaviors:
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Figure 11. The stadium (dashed line) is the region of analyticity of f . The ellipse (blue, solid line) is the
largest inscribed “Bernstein” ellipse with foci at ±1.

• As R → 0, and if N is less than or on the order of 1/R, then the error bound is large.
• As R → 0, and if N � 1/R, then the error bound is roughly proportional to

NR−1/2e−RN .
• As R → ∞, then the error bound is roughly proportional to N(2R)−N .

A.2. Proof of Theorem 2. As mentioned earlier, f and p are obtained from g and q,
respectively, through the change of variables x = cos θ. The factor 1/(

√
1− x2) is precisely

the Jacobian of this change of variables. Hence it suffices to prove that ‖g − q‖2 obeys the
bound (19).

We start by listing the consequences of the smoothness condition (30). As is well known,
f has a unique analytic continuation as the Taylor series

f(z) =

∞∑
n=0

f (n)(x)

n!
(z − x)n,

which by (30) is manifestly convergent as soon as |z − x| ≤ R. Since x ∈ [−1, 1], the domain
of analyticity is the “stadium” illustrated in Figure 11, without its boundary. This shape is a
subset of the strip |Im z| < R.

Furthermore, for all x ∈ [−1, 1] we have the bound

|f(z)| ≤ Q
∞∑
n=0

( |z − x|
R

)n

≤ Q

1− |z − x|R−1
,

which results in

(31) |f(z)| ≤

⎧⎪⎪⎨⎪⎪⎩
Q

1−|z+1|R−1 if Re z < −1,
Q

1−|Imz|R−1 if −1 ≤ Re z ≤ 1,
Q

1−|z−1|R−1 if Re z > 1.
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The periodic function g(θ) = f(cos θ) also admits an analytic extension, best expressed
through the function h(z) such that h(eiθ) = g(θ). The result is the following lemma.

Lemma 5. Let h(eiθ) = f(cos θ), and assume that f is (Q,R)-analytic. Then h has a
unique analytic continuation in the open annulus |z| < R +

√
R2 + 1 < |z|−1 and obeys the

bound

(32) |h(z)| ≤ Q

1− ||z|−|z|−1|
2 R−1

.

Proof of Lemma 5. The analytic extension h(z) of h(eiθ) is related to f(z) by the trans-
formation

(33) h(z) = f

(
z + z−1

2

)
.

Indeed, h(eiθ) = f(cos θ), so the two expressions match when |z| = 1. There exists a neigh-
borhood of |z| = 1 in which the right-hand side is obviously analytic, and hence equal to
h(z) by uniqueness. The rationale for this formula is the fact that cos θ = cos(i log eiθ), and
(z + z−1)/2 is just another expression for cos(i log z).

More can be said about the range of analyticity of h(z). The map z �→ ζ = (z + z−1)/2 is
a change from polar to elliptical coordinates [6]. It maps each circle Cρ = {ρeiθ : θ ∈ [0, 2π)}
onto the ellipse Eρ of parametric equation {(ρeiθ+ρ−1e−iθ)/2 : θ ∈ [0, 2π)} introduced earlier.
Notice that |z| = ρ0 and |z| = ρ−1

0 are mapped onto the same ellipse.

Figure 11 shows the open stadium of height 2R in which f is analytic, as well as the largest
ellipse Eρ inscribed in that stadium. Its parameter ρ obeys

|ρ− ρ−1|/2 = R,

corresponding to the case θ = ±π/2. Solving for ρ, we get

ρ = R+
√

R2 + 1 or ρ =
1

R+
√
R2 + 1

.

As a result, any z obeying |z| < R+
√
R2 + 1 < |z|−1 corresponds to a point of analyticity of

f(z+z−1

2 ), and hence of h(z).

To see why the bound (32) holds, substitute ζ = (z + z−1)/2 for z in the right-hand side
of (31). The vertical lines Re ζ = ±1 in the ζ-plane become cubic curves with equations
(ρ+ ρ−1) cos θ = ±2 in the z-plane, where z = ρeiθ. Two regimes must be contrasted:

• In the region |Re ζ| ≤ 1, we write

|Im(z + z−1)| = |ρ sin θ − ρ−1 sin θ| ≤ |ρ− ρ−1|,

which leads to the bound (32) for h.
• Treating the region Re ζ > 1 is only slightly more involved. It corresponds to the

region (ρ+ ρ−1) cos θ > 2 in the z plane; we use this expression in the algebra below.
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We get

|z + z−1 − 2| =
[(
(ρ+ ρ−1) cos θ − 2

)2
+ (ρ− ρ−1)2sin2θ

]1/2
≤
[(
(ρ+ ρ−1) cos θ − 2 cos θ

)2
+ (ρ− ρ−1)2sin2θ

]1/2
.

In order to conclude that (32) holds, this quantity should be less than or equal to
|ρ− ρ−1|. To this end, it suffices to show that

(ρ+ ρ−1 − 2)2 ≤ (ρ− ρ−1)2 ∀ρ > 0.

Expanding the squares shows that the expression above reduces to ρ+ ρ−1 ≥ 2, which
is obviously true.

• The region Re ζ < −1 is treated in a very analogous manner, and therefore also
yields (32).

The accuracy of trigonometric interpolation is now a standard consequence of the decay
of the Fourier series coefficient of g. The result below uses the particular smoothness estimate
obtained in Lemma 5. The proof technique is essentially borrowed from [32].

Lemma 6. Let g be a real-analytic, 2π-periodic function of θ ∈ R. Define the function h
of z ∈ {z : |z| = 1} by h(eiθ) = g(θ), and assume that it extends analytically in the complex
plane in the manner described by Lemma 5. Consider the trigonometric interpolant q(θ) of
g(θ) from samples at θj = jπ/N , with j = 0, . . . , 2N − 1. Assume N ≥ 1/(2R). Then

(34) ‖g − q‖2 ≤ C Q N

[
1 +

1

R2

]1/4 [
R+

√
R2 + 1

]−N

for some number C > 0.
Proof of Lemma 6. Write the Fourier series expansion of g(θ) as

(35) g(θ) =
∑
n∈Z

einθĝn.

A comparison of formulas (35) and (29) shows that two sources of error must be dealt with:
• the truncation error, because the sum over n is finite in (29); and
• the aliasing error, because g̃n �= ĝn.

It is well known that g̃n is a periodization of ĝn, in the sense that

g̃n =
∑
m∈Z

ĝn+2mN .

This equation is (a variant of) the Poisson summation formula. As a result,

(36) ‖g − q‖22 =
∑′′

|n|≤N

|
∑
m	=0

ĝn+2mN |2 +
∑′′

|n|≥N

|ĝn|2.

The decay of ĝn is quantified by considering that the Fourier series expansion of g(θ) is the
restriction to z = eiθ of the Laurent series

h(z) =
∑
n∈Z

ĝnz
n,
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whereby the coefficients ĝn are also given by the complex contour integrals

(37) ĝn =
1

2πi

∮
|z|=ρ

h(z)

zn+1
dz.

This formulation offers the freedom of choosing the radius ρ of the circle over which the
integral is carried out, as long as this circle is in the region of analyticity of h(z).

Let us first consider the aliasing error—the first term in the right-hand side of (36). We
follow [32] in writing ∑

m>0

ĝn+2mN =
∑
m>0

1

2πi

∮
|z|=ρ

h(z)

zn+1+2mN
dz

=
1

2πi

∮
|z|=ρ

h(z)

zn+1(z2N − 1)
dz.

For the last step, it suffices to take ρ > 1 to ensure convergence of the Neumann series. As a
result, ∣∣∣∣∣∑

m>0

ĝn+2mN

∣∣∣∣∣ ≤ ρ−n 1

ρ2N − 1
max
|z|=ρ

|h(z)|, ρ > 1.

The exact same bound holds for the sum over m < 0 if we integrate over |z| = ρ−1 < 1
instead. Notice that the bound (32) on h(z) is identical for ρ and ρ−1.

Upon using (32) and summing over n, we obtain

(38)
∑′′

|n|≤N

|
∑
m	=0

ĝn+2mN |2 ≤
⎛⎝∑′′

|n|≤N

ρ2n

⎞⎠ 4

(ρ2N − 1)2

[
Q

1− ρ−ρ−1

2 R−1

]2
.

It is easy to show that the sum over n is majorized by ρ2N ρ+ρ−1

ρ−ρ−1 .

According to Lemma 5, the bound holds as long as 1 < ρ < R +
√
R2 + 1. The right-

hand side in (38) will be minimized for a choice of ρ very close to the upper bound; a good
approximation to the argument of the minimum is

ρ = R̃+

√
R̃

2
+ 1, R̃ =

2N

2N + 1
R,

for which
1

1− ρ−ρ−1

2 R−1
= 2N + 1.

The right-hand side in (38) is therefore bounded by

4Q2(2N + 1)
1

(ρN − ρ−N )2
ρ+ ρ−1

ρ− ρ−1
.

This expression can be further simplified by noticing that

ρN − ρ−N ≥ 1

2
ρN
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holds when N is sufficiently large, namely N ≥ 1/(2 log2 ρ). Observe that

log2 ρ =
ln(R̃+

√
R̃

2
+ 1)

ln 2

=
1

ln 2
arcsinh(R̃) =

1

ln 2
arcsinh

(
2N

2N + 1
R

)
,

so the large-N condition can be rephrased as

R ≥ 2N + 1

2N
sinh

(
ln 2

2N

)
.

It is easy to check (for instance, numerically) that the right hand-side in this expression is
always less than 1/(2N) as long as N ≥ 2. Hence it is a stronger requirement on N and R to
impose R ≥ 1/(2N), i.e., N ≥ 1/(2R), as in the wording of the lemma.

The resulting factor 4ρ−2N can be further bounded in terms of R as follows:

ρ = R̃+

√
R̃

2
+ 1 ≥

(
2N + 1

2N

)[
R+

√
R2 + 1

]
,

so

ρ−N ≤
(
2N + 1

2N

)−N [
R+

√
R2 + 1

]−N

≤
(
exp

1

2N

)−N [
R+

√
R2 + 1

]−N

=
√
e
[
R+

√
R2 + 1

]−N
.

We also bound the factor ρ+ρ−1

ρ−ρ−1—the eccentricity of the ellipse—in terms of R by following
a similar sequence of steps:

ρ+ ρ−1

ρ− ρ−1
=

2

√
R̃

2
+ 1

2R̃

≤ 2N + 1

2N

√
1 +

1

R2

≤ 5

4

√
1 +

1

R2
.

After gathering the different factors, the bound (38) becomes

(39)
∑′′

|n|≤N

∣∣∣∣∣ ∑
m	=0

ĝn+2mN

∣∣∣∣∣
2

≤ 20 e Q2 (2N + 1)2
√

1 +
1

R2

[
R+

√
R2 + 1

]−2N
.
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We now switch to the analysis of the truncation error, i.e., the second term in (36). By
the same type of argument as previously, individual coefficients are bounded as

|ĝn| ≤
[
max(ρ, ρ−1)

]−n Q

1− ρ−ρ−1

2 R−1
.

The sum over n is decomposed into two contributions, for n ≥ N and n ≤ −N . Both give
rise to the same value, ∑

n≥N

ρ−2n =
ρ−2N

1− ρ−2
.

We let ρ take on the same value as previously. Consequently, Q

1− ρ−ρ−1

2
R−1

= 2N + 1, and, as

previously,

ρ−2N ≤ e
[
R+

√
R2 + 1

]−2N
.

We also obtain
1

1− ρ−2
≤ ρ+ ρ−1

ρ− ρ−1
≤ 5

4

√
1 +

1

R2
.

As a result, the overall bound is

(40)
∑

|n|≥N

|ĝn|2 ≤ 5

2
e Q2 (2N + 1)2

√
1 +

1

R2

[
R+

√
R2 + 1

]−2N
.

We obtain (34) upon summing (39) and (40) and using 2N + 1 ≤ 5N/2.
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