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ABSTRACT

Generalized Radon transforms, such as the hyperbolic
Radon transform, cannot be implemented as efficiently in
the frequency domain as convolutions, thus limiting their
use in seismic data processing. We have devised a fast
butterfly algorithm for the hyperbolic Radon transform.
The basic idea is to reformulate the transform as an oscil-
latory integral operator and to construct a blockwise low-
rank approximation of the kernel function. The overall
structure follows the Fourier integral operator butterfly algo-
rithm. For 2D data, the algorithm runs in complexity
OðN2 log NÞ, where N depends on the maximum frequency
and offset in the data set and the range of parameters
(intercept time and slowness) in the model space. From a
series of studies, we found that this algorithm can be signifi-
cantly more efficient than the conventional time-domain
integration.

INTRODUCTION

In seismic data processing, the Radon transform (RT) (Radon,
1917), or slant stack, is a set of line integrals that map mixed
and overlapping events in seismic gathers to a new transformed do-
main where they can be separated (Gardner and Lu, 1991). The in-
tegrals can also be taken along curves: parabolas (parabolic RT) or
hyperbolas (hyperbolic RT or velocity stack) are most commonly
used. A major difference between these transforms is that the former
two are time-invariant (i.e., involve a convolution in time) whereas
the latter is time-variant. When the curves are time-invariant, the
transform can be performed efficiently in the frequency domain

using the convolution theorem. However, this approach does not
work for time-variant transforms. As a result, the hyperbolic Radon
transform is usually thought of as requiring a computation in the
time domain, which is computationally expensive due to the large
size of seismic data. Nevertheless, the hyperbolic transform is often
preferred as it better matches the true seismic events in common
midpoint (CMP) gathers (Thorson and Claerbout, 1985).
In this work, we construct a fast butterfly algorithm to effectively

evaluate time-variant transforms such as the hyperbolic Radon
transform. As opposed to the conventional, relatively costly “veloc-
ity scan” (i.e., direct integration plus interpolation in the time do-
main), our method provides an accurate approximation in only
OðN2 log NÞ (all the logs in this paper refer to logarithm to base
2) operations for 2D data. Here, N depends on the maximum fre-
quency and offset in the data set and the range of parameters
(intercept time and slowness) in the model space, and can often
be chosen small compared with the grid size. The adjoint of the
transform can be evaluated similarly without extra difficulty. Note
that the algorithm introduced in this paper only deals with the fast
implementation of a single integral operator (forward Radon trans-
form or its adjoint), not an iteration process for its inversion, which
is the main objective of many previous works on fast Radon trans-
forms (Sacchi, 1996; Liu and Sacchi, 2002; Trad et al., 2002; Wang
and Ng, 2009).
Radon transforms have been widely used to separate and attenu-

ate multiple reflections (Hampson, 1986; Yilmaz, 1989; Foster and
Mosher, 1992; Herrmann et al., 2000; Moore and Kostov, 2002;
Hargreaves et al., 2003; Trad, 2003). As having fast implementa-
tions of forward and adjoint transforms is an essential component of
least-squares minimization, our hope is that the current fast algo-
rithm will help to make the hyperbolic Radon transform an acces-
sible tool for improving the inversion process.
The term “generalized Radon transform” connotes a broader con-

text where integrals are taken along arbitrary parametrized sets of
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smooth curves. The term was introduced by Beylkin (1984, 1985),
who showed that an asymptotically correct inverse follows from an
amplitude correction to the adjoint. Kirchhoff migration and its
(regularized) inverse can be expressed as generalized Radon trans-
forms. The algorithm presented in this paper can, in principle, be
applied in the context of Kirchhoff migration, although we do not
attempt to do so here.
The rest of the paper is organized as follows. We first introduce

the low-rank approximations and the butterfly structure of the hyper-
bolic Radon operator, then use these building elements to construct
our fast algorithm. A brief description of the algorithm is given in the
main text, and a complete derivation can be found in Appendix A.
We present numerical examples using synthetic and field data to
illustrate the accuracy and efficiency of the proposed algorithm.

ALGORITHM

Assume dðt; hÞ is a function in the data space. The hyperbolic
Radon transform R maps d to a function ðRdÞ ðτ; pÞ in the model
space (Thorson and Claerbout, 1985) through

ðRdÞðτ; pÞ ¼
Z

dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2h2

q
; hÞdh; (1)

where t is time, h is offset, τ is intercept time, and p is slowness.
Fixing (τ; p), hyperbola t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2h2

p
describes the traveltime

for the event; hence, integration along these curves can be used
to identify different reflections.
Instead of approximating the integral in equation 1 directly, we

reformulate it as a double integral,

ðRdÞðτ; pÞ ¼
ZZ

d̂ðf; hÞe2πif
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2þp2h2

p
df dh: (2)

Here, f is the frequency and d̂ðf; hÞ is the Fourier transform of
dðt; hÞ in t. A simple discretization of equation 2 yields

ðRdÞðτ; pÞ ¼
X
f;h

e2πif
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2þp2h2

p
d̂ðf; hÞ (3)

(the area element is omitted; the same symbols f, h, τ, and p are
used for continuous and discrete variables). The reason that hyper-
bolic RT is harder to compute than linear RT (t ¼ τ þ ph) or para-
bolic RT (t ¼ τ þ ph2) should be clear from equation 3: Product fτ
in the phase cannot be decoupled from other terms.
To construct the fast algorithm, we first perform a linear trans-

formation to map all discrete points in (f; h) and (τ; p) domains to
points in the unit square ½0; 1� × ½0; 1� (½a; b� × ½c; d� represents a
2D rectangular domain in the xy-plane with x ∈ ½a; b� and
y ∈ ½c; d�), i.e., a point (f; h) ∈ ½fmin; fmax� × ½hmin; hmax� is mapped
to k ¼ ðk1; k2Þ ∈ ½0; 1� × ½0; 1� ¼ K via

f ¼ ðfmax − fminÞk1 þ fmin; h ¼ ðhmax − hminÞk2 þ hmin;

(4)

a point (τ; p) ∈ ½τmin; τmax� × ½pmin; pmax� is mapped to x ¼ ðx1; x2Þ
∈ ½0; 1� × ½0; 1� ¼ X via

τ ¼ ðτmax − τminÞx1 þ τmin; p ¼ ðpmax − pminÞx2 þ pmin:

(5)

If we define input gðkÞ ¼ d̂ðfðk1Þ; hðk2ÞÞ, output uðxÞ ¼
ðRdÞðτðx1Þ; pðx2ÞÞ, and phase function Φðx; kÞ ¼ fðk1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τðx1Þ2 þ pðx2Þ2hðk2Þ2

p
, then equation 3 can be written as

uðxÞ ¼
X
k∈K

e2πiΦðx;kÞgðkÞ; x ∈ X (6)

(throughout the paper, K and X will either be used for sets of dis-
crete points or square domains containing them; the meaning should
be clear from the context). This form is the discrete version of an
oscillatory integral of the type

uðxÞ ¼
Z
K
e2πiΦðx;kÞgðkÞ dk; x ∈ X; (7)

whose fast evaluation has been considered in Candés et al. (2009).
Our method for computing the summation in equation 6 follows the
Fourier integral operator (FIO) butterfly algorithm introduced there.

Low-rank approximations

Clearly the range and possibly other factors such as gradient of
phase Φðx; kÞ determine the degree of oscillations in the kernel
e2πiΦðx;kÞ. Let N be an integer power of two, which is on the order
of the maximum value of jΦðx; kÞj for x ∈ X and k ∈ K (the exact
choice of N depends on the desired efficiency and accuracy of the
algorithm, which will be made specific in numerical examples). The
design of the fast algorithm relies on the key observation that the
kernel e2πiΦðx;kÞ, when properly restricted to subsets of X and K,
admits accurate and low-rank separated approximations. More pre-
cisely, if A and B are two square boxes in X and K, with sidelengths
wðAÞ, wðBÞ obeying wðAÞwðBÞ ≤ 1∕N — in which case the pair
(A; B) is called admissible — then����e2πiΦðx;kÞ −X

rϵ

t¼1

αABt ðxÞβABt ðkÞ
���� ≤ ϵ; for x ∈ A; k ∈ B;

(8)

where rϵ is independent of N for a fixed error ϵ. Here and below, the
subscript t is slightly abused: t should be understood as multiindices
(t1; t2), and accordingly rϵ is the total number of terms in a double
sum. Furthermore, Candés et al. (2009) showed that this low-rank
approximation can be constructed via a tensor-product Chebyshev
interpolation of e2πiΦðx;kÞ in the x variable when wðAÞ ≤ 1∕

ffiffiffiffi
N

p
, and

in the k variable when wðBÞ ≤ 1∕
ffiffiffiffi
N

p
.

Specifically, when wðBÞ ≤ 1∕
ffiffiffiffi
N

p
, αABt and βABt are given by

αABt ðxÞ ¼ e2πiΦðx;kBt Þ; (9)

βABt ðkÞ ¼ e−2πiΦðx0ðAÞ;kBt ÞLB
t ðkÞe2πiΦðx0ðAÞ;kÞ; (10)

and when wðAÞ ≤ 1∕
ffiffiffiffi
N

p
, αABt and βABt are given by

αABt ðxÞ ¼ e2πiΦðx;k0ðBÞÞLA
t ðxÞe−2πiΦðxAt ;k0ðBÞÞ; (11)
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βABt ðkÞ ¼ e2πiΦðxAt ;kÞ: (12)

Boldface letters kBt , xAt , k0ðBÞ, x0ðAÞ denote 2D vectors. Vector kBt
is a point on the 2D, qk1 × qk2 Chebyshev grid in box B centered at
k0ðBÞ, i.e., let kBt ¼ ðkBt1 ; kBt2Þ, k0ðBÞ ¼ ðkB01 ; kB02Þ, then

kBt1 ¼ kB01 þ wðBÞzt1 ; 0 ≤ t1 ≤ qk1 − 1; (13)

kBt2 ¼ kB02 þ wðBÞzt2 ; 0 ≤ t2 ≤ qk2 − 1; (14)

where �
zti ¼

1

2
cos

�
πti

qki − 1

��
0≤ti≤qki−1;i¼1;2

(15)

is the 1D Chebyshev grid of order qki on ½−1∕2; 1∕2� (see Figure 1
for an illustration). LB

t ðkÞ is the 2D Lagrange interpolation defined
on the Chebyshev grid,

LB
t ðkÞ ¼

 Yqk1−1
s1¼0;s1≠t1

k1 − kBs1
kBt1 − kBs1

! Yqk2−1
s2¼0;s2≠t2

k2 − kBs2
kBt2 − kBs2

!
: (16)

Analogously, xAt is a point on the 2D, qx1 × qx2 Chebyshev grid in
box A centered at x0ðAÞ, and LA

t ðxÞ is the 2D Lagrange inter-
polation defined on this grid. Based on the discussion above, the
number rϵ in low-rank approximation 8 is equal to qk1qk2 when
wðBÞ ≤ 1∕

ffiffiffiffi
N

p
, and qx1qx2 when wðAÞ ≤ 1∕

ffiffiffiffi
N

p
.

A simple way of viewing expressions 9–12 is: when wðBÞ ≤
1∕

ffiffiffiffi
N

p
, plugging expression 9 into approximation 8 (leaving

βABt ðkÞ as it is) yields

e2πiΦðx;kÞ ≈
X
t

e2πiΦðx;kBt ÞβABt ðkÞ; for x∈ A; k∈B: (17)

For fixed x, the right-hand side of equation 17 is just a special
interpolation of function e2πiΦðx;kÞ in variable k, where kBt are
the interpolation points, βABt ðkÞ are the basis functions. Likewise,
when wðAÞ ≤ 1∕

ffiffiffiffi
N

p
, plugging expression 12 into approximation 8,

we get

e2πiΦðx;kÞ ≈
X
t

e2πiΦðxAt ;kÞαABt ðxÞ; for x∈ A; k∈B: (18)

For fixed k, the right-hand side of equation 18 is a special interpo-
lation of e2πiΦðx;kÞ in variable x: xAt are the interpolation points,
αABt ðxÞ are the basis functions.
Once the low-rank approximation 8 is known, computing the

partial sum

uBðxÞ∶ ¼
X
k∈B

e2πiΦðx;kÞgðkÞ; for x ∈ A; (19)

generated by points k inside a box B becomes

uBðxÞ ≈
X
k∈B

X
t

αABt ðxÞβABt ðkÞgðkÞ ¼
X
t

αABt ðxÞδABt ;

(20)

where

δABt ∶ ¼
X
k∈B

βABt ðkÞgðkÞ: (21)

The case that box B represents the whole domain, K is of particular
interest because it corresponds to the original problem. Therefore, if
we can find the set of interaction coefficients δABt relative to all
admissible couples of boxes (A;B) with B ¼ K, our problem will
be solved.

Butterfly structure

The coefficients δABt for B ¼ K are, however, not readily avail-
able. The so-called “butterfly algorithm” turns out to be an appro-
priate tool. The butterfly algorithm was introduced by Michielssen
and Boag (1996), and generalized by O’Neil et al. (2010) and Can-
dés et al. (2009). Different applications include sparse Fourier trans-
form (Ying, 2009) and radar imaging (Demanet et al., 2012).
Demanet et al. (2012) also provided a complete error analysis of
the method introduced by Candés et al. (2009).
The idea of the butterfly algorithm is to obtain δABt for B ¼ K at

the last step of a hierarchical construction of all the coefficients δABt
for all pairs of admissible boxes (A; B) belonging to a quad tree
structure. The algorithm starts with very small boxes B, where
δABt are easily computed by direct summation, and gradually in-
creases the sizes of boxes B in a multiscale fashion. In tandem,
the sizes of boxes A where uB is evaluated must decrease to respect
the admissibility of each couple (A;B). The computation then
mostly consists in updating coefficients δABt from one scale to
the next — from finer to coarser B boxes, and from coarser to
finer A boxes.
The main data structure underlying the algorithm is a pair of

quad trees TX and TK . The tree TX has ½0; 1� × ½0; 1� as its root
box (level 0) and is built by recursive, dyadic partitioning until level
L ¼ log N, where the finest boxes are of sidelength 1∕N. The tree
TK is built similarly but in the opposite direction. Figure 2 shows
such a partition for N ¼ 4. A crucial property of this structure is that
at arbitrary level l, the sidelengths of a box A in TX and a box B in
TK always satisfy

wðAÞwðBÞ ¼ 1

2l
1

2L−l
¼ 1

N
; (22)

thus, a low-rank approximation of the kernel e2πiΦðx;kÞ is available at
every level of the tree, for every couple of admissible boxes (A; B).

Figure 1. A 2D, qk1 × qk2 (qk1 ¼ 7, qk2 ¼ 5) Chebyshev grid in
box B. Here, k0ðBÞ is the center of the box, and kBt ¼ðkBt1 ;kBt2Þ,
0 ≤ t1 ≤ qk1 − 1, and 0 ≤ t2 ≤ qk2 − 1 is a point on the grid.
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Fast butterfly algorithm

With the previously introduced low-rank approximations and the
butterfly structure, we are ready to describe the fast algorithm.
Our goal is to approximate δABt , definition 21, so as to get
uBðxÞ, definition 19, by traversing the tree structure (Figure 2) from
top to bottom on the X side, and from bottom to top on the K side.
This can be done in five major steps. To avoid too much technical
detail, we deliberately defer the complete derivation of the algo-
rithm until Appendix A, and only summarize here the final updating
formulas for each step.

1) Initialization

At level l ¼ 0, let A be the root box of TX . For each leaf box
B ∈ TK , construct the coefficients fδABt g by

δABt ¼ e−2πiΦðx0ðAÞ;kBt Þ
X
k∈B

ðLB
t ðkÞe2πiΦðx0ðAÞ;kÞgðkÞÞ: (23)

2) Recursion

At l ¼ 1; 2; : : : ; L∕2, for each pair (A; B), let Ap be A’s parent
and fBc; c ¼ 1; 2; 3; 4g be B’s children from the previous level.
Update fδABt g from fδApBc

t 0 g by

δABt ¼ e−2πiΦðx0ðAÞ;kBt Þ
X
c

X
t 0

ðLB
t ðkBc

t 0 Þe2πiΦðx0ðAÞ;k
Bc
t 0 ÞδApBc

t 0 Þ:

(24)

3) Switch

At middle level l ¼ L∕2, for each (A;B) compute the new set of
coefficients fδABt g from the old set fδABs g by

δABt ¼
X
s

e2πiΦðxAt ;kBs ÞδABs : (25)

4) Recursion

At l ¼ L∕2þ 1; : : : ; L, for each pair (A; B), update fδABt g from
fδApBc

t 0 g of the previous level by

δABt ¼
X
c

e2πiΦðxAt ;k0ðBcÞÞ
X
t 0
ðLAp

t 0 ðxAt Þe−2πiΦðx
Ap

t 0 ;k0ðBcÞÞδApBc

t 0 Þ:

(26)

5) Termination

Finally, at level l ¼ L, B is the entire domain K. For every box A
in X and every x ∈ A, compute uðxÞ by

uðxÞ ¼ e2πiΦðx;k0ðBÞÞ
X
t

ðLA
t ðxÞe−2πiΦðxAt ;k0ðBÞÞδABt Þ: (27)

Numerical complexity and accuracy

To analyze the algorithm’s numerical complexity, let us assume
the numbers of Chebyshev points in every box and every dimension
of K and X are all equal to a small constant q, i.e., qk1 ¼ qk2 ¼
qx1 ¼ qx2 ¼ q and rϵ ≡ q2. The main workload of the fast butterfly
algorithm is in steps 2 and 4. For each level, there are N2 pairs of
boxes (A; B), and the operations between each A and B is Oðr2ϵÞ,
which can be further reduced to Oðr3∕2ϵ Þ by performing Chebyshev
interpolation 1D at a time. Because there are log N levels, the total
cost is Oðr3∕2ϵ N2 log NÞ. It is not difficult to see that step 3 takes
Oðr2ϵN2Þ, and steps 1 and 5 take OðrϵNfNhÞ and OðrϵNτNpÞ op-
erations. Considering the initial Fourier transform of preparing
data in the (f; h) domain, we conclude that the overall complexity
of the algorithm is OðNhNt log Nt þ r3∕2ϵ N2 log N þ r2ϵN2þ
rϵðNfNh þ NτNpÞÞ. The analysis in Candés et al. (2009)
showed that the relation between rϵ and error ϵ is rϵ ¼
Oðlog4ð1∕ϵÞÞ. We would like to mention that this is only the worst
case estimate. Numerical results in the same paper demonstrated
that the dependence of rϵ on logð1∕ϵÞ is rather moderate in practice.
In comparison, the conventional velocity scan requires at least

OðNτNpNhÞ computations, which quickly becomes a burden as
the problem size increases. Yet the efficiency of our algorithm is
mainly controlled by OðN2 log NÞ with a constant polylogarithmic
in ϵ, where N depends neither on data size nor on data content (here
we mean the data after the Fourier transform). Because the Cheby-
shev interpolation is only performed on the kernel, our choice of
parameters (N and number of Chebyshev points) relies on the
preknowledge about the range of f, h, τ, and p. In other words,
we need a general idea about how oscillate the kernel is. Recall that
everything is mapped to a unit square, so the larger the range of
Φðx; kÞ is, the more oscillations occur in the unit square. If the origi-
nal data (data before the Fourier transform) contain high-frequency
information, the accuracy will be affected as the frequency band-
width is now larger. A possible way to get around it is to divide
the Fourier domain into two or three smaller subdomains (so the
range of f in each subdomain is smaller than the original problem),
and apply the fast algorithm to each part separately, finally add the
results back together. This only increases the cost by a small factor,
but presumably offers better accuracy.

NUMERICAL EXAMPLES

In this section, we provide several numerical examples to illus-
trate the empirical properties of the fast butterfly algorithm. To
check the results qualitatively, we compare with the velocity scan
method (the nearest neighbor interpolation is used to minimize the
interpolation cost); to test the results quantitatively, however, it
makes more sense to compare with the direct evaluation of equa-
tion 3, because the fast algorithm is to speed up this summation in
the frequency domain, whereas the velocity scan computes a
slightly different sum in the time domain, which may contain inter-
polation artifacts.

Figure 2. The butterfly quad tree structure for the special case of
N ¼ 4.
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There is no general rule for selecting parameters N, qk1 , qk2 ; : : : .
The larger N is, the fewer Chebyshev points are needed, and
vice versa. In practice, parameters can be tuned to achieve the best
efficiency and accuracy trade-off. For simplicity, in the following
examples, N and qk1 , qk2 , qx1 , and qx2 are chosen such that the rel-
ative error between the fast algorithm and the direct computation of
equation 3 is about Oð10−2Þ. These combinations are not neces-
sarily optimal in terms of efficiency.

Synthetic data — Square sampling

We start with a simple 2D example of square sampling. Figure 3
is a synthetic CMP gather sampled on Nt ¼ Nh ¼ 1000. Figure 4
shows the absolute value of its Fourier transform on time axis.
These band-limited data allow us to shorten the computational
range for f, which can be crucial as N depends on this range. In
model space, the sampling sizes are chosen as Nτ ¼ Np ¼ 1000.
Figure 5 is the output of the fast butterfly algorithm for N ¼ 32,

qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 9 (here the range of Φ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2h2

p
is about 125). Figure 6 is the output of the velocity scan. The
two methods yield nearly the same results. The fast algorithm runs
in only 1.75 s of CPU time, whereas the velocity scan takes about
37 s. In Figure 7, we plot the difference between the results of the
fast algorithm and the direct evaluation of equation 3, where the
relative error is 0.0178. For reference, if we let N ¼ 64 and run
the same test, the error decreases to Oð10−3Þ and the running time
is 3.63 s.

Synthetic data — Rectangular sampling

We now make two synthetic data sets using rectangular sampling
Nt ¼ 4000, Nh ¼ 400. The first one (Figure 8) has the same range
as the previous example (Figure 3), whereas the second one
(Figure 9) doubles the range of time and offset. Results of the fast

Figure 3. Two-dimensional synthetic CMP gather. Here, Nt ¼
Nh ¼ 1000, Δt ¼ 0.004 s, and Δh ¼ 0.005 km.

Figure 4. The Fourier transform (absolute value) on time axis of the
synthetic data in Figure 3.

Figure 5. Output of the fast butterfly algorithm applied to the
synthetic data in Figure 3. Here, Nτ ¼ Np ¼ 1000, N ¼ 32, and
qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 9. CPU time: 1.75 s. Purple curve over-
laid is the true slowness.

Figure 6. Output of the velocity scan applied to the synthetic data in
Figure 3. Here, Nτ ¼ Np ¼ 1000. CPU time: 37.23 s. Purple curve
overlaid is the true slowness.
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algorithm are shown in Figures 10 and 11. The purpose of showing
these two examples is to demonstrate that the choice of N does not
depend on the problem size, but rather on the range of parameters
— for the data in Figure 9, one has to increase N to preserve the
same accuracy (the range ofΦ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2h2

p
is about 125 for the

first data set, and 250 for the second one).

Synthetic data — Irregular sampling

Going back to the five steps of the butterfly algorithm, it is clear
that the input data gðkÞ is only involved at the very first step.
Besides, for every (A; B) the operation connecting gðkÞ and δABt
amounts to a matrix–vector multiplication (see equation 23), which
does not at all require the input data to be uniformly distributed

(the same argument applies to the output data uðxÞ). Therefore,
our algorithm can be easily extended to handle the following
problem:

ðRdÞðτ; pÞ ¼
ZZ

dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2ðh21 þ h22Þ

q
; h1; h2Þ dh1 dh2;

(28)

where dðt; h1; h2Þ is a 3D function. All we need is to introduce a
new variable for the absolute offset h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

p
, and reorder the

values dðt; h1; h2Þ according to h. Figure 12 shows such synthetic
data sampled on Nt ¼ 1000, Nh1 ¼ Nh2 ¼ 128. The output is
obtained on Nτ ¼ 1000, Np ¼ 128. The fast algorithm (Figure 13)

Figure 7. Difference between the results of the fast algorithm and
the direct evaluation of equation 3 plotted at the same scale as in
Figure 5.

Figure 8. Two-dimensional synthetic CMP gather. Here, Nt ¼
4000, Nh ¼ 400, Δt ¼ 0.001 s, and Δh ¼ 0.0125 km.

Figure 9. Two-dimensional synthetic CMP gather. Here, Nt ¼
4000, Nh ¼ 400, Δt ¼ 0.002 s, and Δh ¼ 0.025 km.

Figure 10. Output of the fast butterfly algorithm applied to the syn-
thetic data in Figure 8. Here, Nτ ¼ 4000, Np ¼ 400, N ¼ 32, and
qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 9. CPU time: 2.46 s. Ref: CPU time of
velocity scan: 21.84 s. Purple curve overlaid is the true slowness.
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runs in only 1.67 s forN ¼ 64, qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 5 (here the

range of Φ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2ðh21 þ h22Þ

p
is about 162), while the veloc-

ity scan (Figure 14) takes more than 125 s.

Field data

We now consider a 2D field seismic gather shown in Figure 15.
Its Fourier transform is shown in Figure 16. Due to the compara-
tively wide frequency bandwidth, N cannot be chosen too small
(here the range of Φ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ p2h2

p
is about 306). The input sam-

pling sizes are Nt ¼ 1500, Nh ¼ 240, whereas the output sizes are
chosen asNτ ¼ 1500,Np ¼ 800. Although this small data set is not
very suitable for showcasing the fast algorithm, our method runs in

6.62 s for N ¼ 128, qk1 ¼ qx1 ¼ 7, qk2 ¼ qx2 ¼ 5 (Figure 17),
still outperforming the velocity scan, which takes about 10 s
(Figure 18). Note that the simplest interpolation is used in the veloc-
ity scan, any other higher-order interpolation should take longer
computation time.

Computing the adjoint operator

The last example is concerned with the computation of the
adjoint of the hyperbolic RT. Assuming mðτ; pÞ and dðt; hÞ are
two arbitrary functions (in the discrete sense) in the model domain
and data domain, if we require

Figure 11. Output of the fast butterfly algorithm applied to the syn-
thetic data in Figure 9. Here, Nτ ¼ 4000, Np ¼ 400, N ¼ 64, and
qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 9. CPU time: 4.35 s. Ref: CPU time of
velocity scan: 21.93 s. Purple curve overlaid is the true slowness.

Figure 12. Three-dimensional synthetic CMP gather. Here, Nt ¼
1000, Nh1 ¼ Nh2 ¼ 128, Δt ¼ 0.004 s, and Δh1 ¼ Δh2 ¼
0.08 km.

Figure 13. Output of the fast butterfly algorithm applied to the
synthetic data in Figure 12. Here, Nτ ¼ 1000, Np ¼ 128,
N ¼ 64, and qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 5. CPU time: 1.67 s. Purple
curve overlaid is the true slowness.

Figure 14. Output of the velocity scan applied to the synthetic data
in Figure 12. Here, Nτ ¼ 1000 and Np ¼ 128. CPU time: 125.54 s.
Purple curve overlaid is the true slowness.
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hmðτ; pÞ; ðRdÞðτ; pÞi ¼ hðR�mÞðt; hÞ; dðt; hÞi; (29)

where ðRdÞðτ; pÞ is given by equation 3, the inner product h·; ·i is
defined as

hg1ðx;yÞ;g2ðx;yÞi ¼
X
x;y

g1ðx;yÞg2ðx;yÞ; ∀g1ðx;yÞ; g2ðx;yÞ; (30)

then it is easy to verify that the adjoint operator R� is given by

ðR�mÞðt; hÞ ¼ F−1
f→t

�X
τ;p

e−2πif
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2þp2h2

p
mðτ; pÞ

�
; (31)

where F−1
f→t is the inverse Fourier transform from variable f to t.

The summation in equation 31 again resembles an oscillatory inte-

gral operator, therefore the fast algorithm for computing R applies
with minor modifications. The computational cost remains the
same.
We consider still the first example and apply the (discrete) adjoint

operators of the fast butterfly algorithm and the velocity scan, re-
spectively to the data in Figures 5 and 6. The two methods produce
similar results (see Figures 19 and 20). It is also clear that the adjoint
is far from the inverse, at least for this geometry, hence some kind of
least-squares implementation is needed for inversion process.
To further verify that the numerically computed R� is the adjoint

operator of R, one can compare the values of hRd; Rdi and
hR�Rd; di for arbitrary d. Indeed, the proposed algorithm passed
this dot-product test with a relative error of Oð10−7Þ in single
precision.

Figure 15. Two-dimensional field CMP gather. Here, Nt ¼ 1500,
Nh ¼ 240, Δt ¼ 0.004 s, and Δh ¼ 0.0125 km.

Figure 16. The Fourier transform (absolute value) on time axis of
the field data in Figure 15.

Figure 17. Output of the fast butterfly algorithm applied to the
field data in Figure 15. Here, Nτ ¼ 1500, Np ¼ 800, N ¼ 128,
qk1 ¼ qx1 ¼ 7, and qk2 ¼ qx2 ¼ 5. CPU time: 6.62 s.

Figure 18. Output of the velocity scan applied to the field data in
Figure 15. Here, Nτ ¼ 1500 and Np ¼ 800. CPU time: 9.91 s.
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CONCLUSIONS

We constructed a fast butterfly algorithm for the hyperbolic
Radon transform, a type of generalized Radon transforms. Com-
pared with expensive integration in the time domain, the new
method runs in only OðN2 log NÞ operations, where N depends
on the range of frequency and offset in the data set and the range
of intercept time and slowness in the model space, and can often be
chosen smaller than the grid size. In practice, this may lead
to speedup of several orders of magnitude. Our ongoing work is
studying the performance of this fast solver on the sparse
iterative inversion of the hyperbolic RT applied to multiple
attenuation.
Due to the generality of the butterfly algorithm, its application is

not limited to the hyperbolic transform considered here. Using a
different phase function, one can easily extend the algorithm to

higher-order transforms. If the slowness or velocity range is not
constant but a corridor around a central function, then a sparse but-
terfly algorithm can be designed to save the cost by building the
quad tree adaptively. Furthermore, many of the Radon-like integral
operators, such as Kirchhoff migration, the apex-shifted Radon
transform, the anisotropic multiparameter velocity scan, etc., can
be reformulated in a similar fashion as we did in this paper. To
address these extensions, a 3D version of the butterfly algorithm
might be more appropriate.
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APPENDIX A

THE MATHEMATICAL DERIVATION OF THE
FAST BUTTERFLY ALGORITHM

This appendix gives a complete derivation and description of
the butterfly algorithm, which combines the low-rank approxima-
tions and the butterfly structure introduced in the main text. For
more mathematical exposition, the reader is referred to Candés et al.
(2009).
To facilitate the presentation, we add a new figure (Figure A-1) to

illustrate the notations.

Figure 20. Output of the adjoint velocity scan applied to the data in
Figure 6.

Figure 19. Output of the adjoint fast butterfly algorithm applied to
the data in Figure 5. Here, N ¼ 32 and qk1 ¼ qk2 ¼ qx1 ¼ qx2 ¼ 9.

Figure A-1. The butterfly structure for the special case of N ¼ 4.
The top right panel represents the input domainK with sources gðkÞ
located at k (blue dots). The bottom left panel represents the output
domain X with targets uðxÞ located at x (red dots). For the pair of
boxes (A;B) at level l ¼ 1, box Ap is called A’s parent at the
previous level; four small boxes Bc are called B’s children at the
previous level.
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1) Initialization

At level l ¼ 0, let A be the root box of TX . For each leaf box
B ∈ TK , expressions 9 and 10 are valid as wðBÞ ≤ 1∕

ffiffiffiffi
N

p
. Substi-

tuting βABt (in equation 10) into the definition of δABt , equation 21,
we get

δABt ¼ e−2πiΦðx0ðAÞ;kBt Þ
X
k∈B

ðLB
t ðkÞe2πiΦðx0ðAÞ;kÞgðkÞÞ; (A-1)

i.e., equation 23 in the main text. In addition, for x ∈ A, the partial
sum uBðxÞ in equation 20 is given by (with αABt [in equation 9]
plugged in)

uBðxÞ ≈
X
t

e2πiΦðx;kBt ÞδABt : (A-2)

Comparing the right-hand sides of equations 19 and A-2, if we call
gðkÞ the sources at k, then coefficients δABt are just like the equiv-
alent sources at kBt . This initial step is to redistribute the original
sources gðkÞ located at k (denoted by blue dots in Figure A-1) to
equivalent sources δABt located at Chebyshev grid kBt (not shown in
the figure). We next aim at updating δABt until the end level L.

2) Recursion

At l ¼ 1; 2; : : : L∕2, for each pair (A;B), let Ap be A’s parent
and fBc; c ¼ 1; 2; 3; 4g be B’s children from the previous level
(see Figure A-1). For each child Bc, we have available from the
previous level an approximation of the form

uBcðxÞ ≈
X
t 0
e2πiΦðx;k

Bc
t 0 ÞδApBc

t 0 ; for x ∈ Ap: (A-3)

Summing over all children gives

uBðxÞ ≈
X
c

X
t 0

e2πiΦðx;k
Bc
t 0 ÞδApBc

t 0 ; for x ∈ Ap: (A-4)

Because A ⊂ Ap, this is of course true for any x ∈ A. Also we know
that equation 17 holds for kBc

t 0 ∈ B, i.e.,

e2πΦðx;k
Bc
t 0 Þ ≈

X
t

e2πiΦðx;kBt ÞβABt ðkBc
t 0 Þ; for x ∈ A: (A-5)

Inserting it into expression A-4 yields

uBðxÞ≍X
c

X
t 0

X
t

e2πiΦðx;kBt ÞβABt ðkBc
t 0 Þδ

ApBc

t 0 ; for x ∈ A:

(A-6)

On the other hand, uBðxÞ admits a low-rank approximation of
equivalent sources at the current level,

uBðxÞ ≈
X
t

e2πiΦðx;kBt ÞδABt ; for x ∈ A: (A-7)

Equating expressions A-6 and A-7 suggest that we can take

δABt ¼
X
c

X
t 0

βABt ðkBc
t 0 Þδ

ApBc

t 0 : (A-8)

Substituting βABt (in equation 10), we get

δABt ¼ e−2πiΦðx0ðAÞ;kBt Þ
X
c

X
t 0

ðLB
t ðkBc

t 0 Þe2πiΦðx0ðAÞ;k
Bc
t 0 ÞδApBc

t 0 Þ;

(A-9)

i.e., equation 24 in the main text.

3) Switch

A switch of the representation to expressions 11 and 12 is needed
at the middle level l ¼ L∕2 because expressions 9 and 10 are no
longer valid as soon as l > L∕2 (boxes B are getting bigger and
bigger so that wðBÞ ≤ 1∕

ffiffiffiffi
N

p
is no longer satisfied). Plugging

βABt (in equation 12) into the definition of δABt , equation 21, one has

δABt ¼
X
k∈B

e2πΦðxAt ;kÞgðkÞ ¼ uBðxAt Þ; (A-10)

from expression A-7,

uBðxAt Þ ≈
X
s

e2πiΦðxAt ;kBs ÞδABs ; (A-11)

where we use fδABt g to denote the new set of coefficients and fδABs g
the old set. Equating expressions A-10 and A-11, we can set δABt as

δABt ¼
X
s

e2πiΦðxAt ;kBs ÞδABs ; (A-12)

i.e., equation 25 in the main text. This middle step is to switch from
equivalent sources δABs located at Chebyshev grid kBs on the K side
to equivalent sources δABt located at Chebyshev grid xAt on the
X side.

4) Recursion

The rest of the recursion is analogous to step 2. For
l ¼ L∕2þ 1; : : : ; L, we have

uBðxÞ ≈
X
c

X
t 0

α
ApBc

t 0 ðxÞδApBc

t 0 ; for x ∈ Ap; (A-13)

thus,

uBðxAt Þ ≈
X
c

X
t 0

α
ApBc

t 0 ðxAt ÞδApBc

t 0 ; (A-14)

recalling expression A-10, one can set

δABt ¼
X
c

X
t 0

α
ApBc

t 0 ðxAt ÞδApBc

t 0 : (A-15)

Inserting αABt (in equation 11) gives the update
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δABt ¼
X
c

e2πiΦðxAt ;k0ðBcÞÞ
X
t 0
ðLAp

t 0 ðxAt Þe−2πiΦðxAp
t 0 ;k0ðBcÞÞδApBc

t 0 Þ;

(A-16)

i.e., equation 26 in the main text.

5) Termination

We finally reach the level l ¼ L, and B is the entire domain K.
For every box A in X and every x ∈ A,

uðxÞ ¼ uBðxÞ ≈
X
t

αABt ðxÞδABt : (A-17)

Plugging in αABt (in equation 11), we get

uðxÞ ¼ e2πiΦðx;k0ðBÞÞ
X
t

ðLA
t ðxÞe−2πiΦðxAt ;k0ðBÞÞδABt Þ; (A-18)

i.e., equation 27 in the main text. This final step is to transform the
equivalent sources δABt located at Chebyshev grid xAt back to the
targets uðxÞ located at x (denoted by red dots in Figure A-1).
In the above algorithm, L ¼ log N is assumed to be an even

number. If L is odd, one can either switch at level ðL − 1Þ∕2 or
ðLþ 1Þ∕2. Everything else remains unchanged.
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