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In this paper, we introduce a new reduced basis methodology for accelerating the 
computation of large parameterized systems of high-fidelity integral equations. Core to 
our methodology is the use of coarse-proxy models (i.e., lower resolution variants of the 
underlying high-fidelity equations) to identify important samples in the parameter space 
from which a high quality reduced basis is then constructed. Unlike the more traditional 
POD or greedy methods for reduced basis construction, our methodology has the benefit of 
being both easy to implement and embarrassingly parallel. We apply our methodology to 
the under-served area of integral equations, where the density of the underlying integral 
operators has traditionally made reduced basis methods difficult to apply. To handle 
this difficulty, we introduce an operator interpolation technique, based on random sub-
sampling, that is aimed specifically at integral operators. To demonstrate the effectiveness 
of our techniques, we present two numerical case studies, based on the radiative transport 
equation and a boundary integral formation of the Laplace equation respectively, where 
our methodology provides a significant improvement in performance over the underlying 
high-fidelity models for a wide range of error tolerances. Moreover, we demonstrate that 
for these problems, as the coarse-proxy selection threshold is made more aggressive, the 
approximation error of our method decreases at an approximately linear rate. Finally, we 
provide a public repository of our source code with easy instructions for reproducing all 
results in this paper.

© 2022 Published by Elsevier Inc.

1. Introduction

Across virtually all areas of science and engineering, physics-based numerical simulation has become an absolutely indis-
pensable tool for the advancement of knowledge and the design of industrial products. However, as with any tool, there are 
always practical caveats. In particular, high-fidelity simulations often require tremendous computational resources and time 
to execute. This computational cost often precludes high-fidelity simulations from being used in many important problems, 
such as uncertainty quantification or Bayesian inference, that require not just one, but many queries to the underlying com-
putational model. Making these many-query problems tractable often requires fast approximation techniques to mitigate the 
sheer computational cost of multiple queries to the underlying (full-order) model.
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One such class of approximation techniques is reduced order models (ROMs). Reduced order models typically operate in 
two stages. First, there is a computationally expensive offline stage (i.e., training stage), wherein the ROM is trained on a 
collection of solutions to the full-order model (FOM). In many cases, this entails finding a basis for a low-dimensional linear 
subspace which captures solutions to the full-order model (i.e., a reduced basis). Once this offline stage is complete, the 
reduced-order model can be deployed in an online stage (i.e., test stage), where these methods can compute fast approxima-
tions to new problem instances by exploiting the problem structure learned during the offline phase. For example, one can 
project the new problem instance onto a set of reduced basis and solve a low-dimensional reduced problem instead of the 
high-dimensional full-order problem. We refer the reader to [19,6] and references therein for a more thorough overview of 
this topic.

In this paper, we deal specifically with the class of ROM techniques falling under the reduced basis method (RBM) [37,30]. 
The groundwork for the reduced basis method was set in the late 1970s with work on the approximation for nonlinear 
structure analysis [1,27,29], particularly for beams and arches. This groundwork later evolved into a more general frame-
work for parameterized differential equations [17,32], with a corresponding collection of mathematical analyses of the 
approximation error of the method [36,5,13,34]. These nascent methods typically involved finding a low dimensional ap-
proximation space around a parameter of interest — thereby making them local approximation methods. Later, this line 
of inquiry evolved into finding a global approximation space constructed from a sparse set of sampled solutions to the 
full-order model [4,21]. More recently, the first theoretical a priori convergence guarantee was proved and numerically 
confirmed in [26]. This demonstrated the potential of reduced basis methods as a robust approximation for parameterized 
partial differential equations.

However, while these techniques are well-established for ordinary and partial differential equations, there has been 
relatively little work done in the regime of model order reduction for integral equations. The current most notable con-
tributions in this under-served area are tailored specifically to boundary element formulations of the electric field equa-
tions [12,20,33,14]. The chief factor that contributes to this research gap is likely the difficulties that come from the 
operators that arise from discretizing integral equations, which are typically dense. This operator density precludes one 
from assembling the operators outright, which limits the applicability of many existing model order reduction techniques, 
in part because even sampling a single entry of the problem residual takes time on the order of the problem size. Regard-
less, this gap in the literature is unfortunate, as integral equations have many desirable properties over their differential 
counterparts. Integral equations are often better conditioned than differential equations (see chapter 6 of [22] or chapters 1, 
3, and 4 of [3]). Moreover, many physical models (e.g., electromagnetism, acoustics, radiative transport, etc.) are amenable 
to special integral formulations with desirable properties. For example, boundary integral formulations are quintessential 
tools in studying electromagnetic or acoustic wave propagation in free-space. These formulations convert a 3-dimensional 
differential equation over a domain into a 2-dimensional integral equation over the boundary of that domain. While this 
reduction in dimension comes with a tradeoff — namely exhibiting dense operators instead of sparse ones — there are many 
mature hierarchical techniques that make solving dense integral equations with iterative methods highly efficient (i.e., Fast 
Multipole Method [16]).

In this paper, we develop a model reduction strategy tailored to integral equations that combines ideas from multi-
fidelity modeling and random matrix sampling. In the multi-fidelity modeling literature, a common problem is combining an 
expensive high-fidelity (fine) model and an inexpensive low-fidelity (coarse) model to obtain high-fidelity accurate with 
the computational cost similar to that of the low-fidelity model. This has applications in domain areas such as stochastic 
collocation, where a low-fidelity model and high-fidelity model can be combined to compute high-quality collocation nodes 
for the parameter set of a system of parameterized differential equations [28,40]. This approach to approximating solutions 
to systems of parameterized differential equations is notably different from a reduced basis approach because it explicitly 
models the relationship between system parameter and solution via a low rank stochastic basis (e.g., polynomial chaos), 
whereas model reduction problems usually just constrain the system to a limited subspace. Other work on multi-fidelity 
techniques includes the problem of allocating limited computational resources to a set of high-fidelity models in a situation
where a less accurate low-fidelity model is available [31]. Finally, we note that substantial effort has been devoted to the 
construction of error estimators for bi-fidelity models of the sort discussed above — these error estimators may be used to 
produce better pairings of high and low fidelity models [18].

In this paper, we approach model reduction assuming that we have access to a high-fidelity (fine) and low-fidelity 
(coarse-proxy) model pair. We use the coarse-proxy model to determine a set of candidates (skeleton set) of parameters 
whose corresponding high-fidelity solutions can be used to form a high-quality basis for building a reduced model. After-
wards, we use random operator sampling to reconstruct integral operators in the reduced space spanned by this basis. As we 
will demonstrate, this combination leads to a novel model reduction algorithm that performs quite well on parameterized 
integral equation problems.

2. Problem statement

The goal of this paper is to solve parameterized integral equations of the form

L(ω)u(ω) = f(ω), ω ∈ �∞, (2.1)
2
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Fig. 2.1. An example of three different domains D1, D2, D3 for the Laplace equation. In our example, each constitutes a different parameter ω in the set 
�∞ .

Fig. 2.2. An example of solutions to the radiative transport equation where photons are emitted from the center of a scattering medium. In our example, 
the scattering coefficient μs (top row) depends on a parameter ω that determines the location of an area with high scattering (red). These scattering 
coefficients produce the corresponding steady-states u(ω) in the bottom row. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

where L(ω) ∈Rn×n denotes a (dense) linear elliptic integral operator, f(ω) ∈ Rn denotes a source term, and ω are parame-
ters taken from some sample space �∞ . Here, we use n to refer to the number of degrees of freedom in the problem after 
an appropriate spatial discretization is applied.

This formulation is quite abstract, so, to connect it to an actual physical problem we will quickly reference two settings 
that we will use as numerical examples at the end of this paper. First, consider the problem of solving the Laplace equation 
over a prescribed region D with boundary conditions given on ∂D. This is a simplification of a problem one might encounter 
in electromagnetic or acoustic scattering, where it is common to solve a Kirchoff integral equation with boundary conditions 
prescribed over ∂D [24]. One is usually interested in several different shapes of the domain D (see for example, Fig. 2.1). 
In this example, the domain D corresponds to our parameter ω, the set �∞ is the set of all domains of interest, L(ω)

represents a discretized scattering operator, u(ω) represents the resulting field, and f(ω) represents boundary conditions.
Second, consider the problem of light propagation through an isotropic scattering medium, where the wavelength of 

the light is small compared the obstacles within the scattering medium (i.e., the geometric optics limit). In this situation, 
as one releases photons into the medium, the photons have a small chance of scattering as they travel. At any point 
x along their path, the probability of this event is proportional to the scattering coefficient μs(x) of the medium. For 
this problem, the steady-state distribution of photons across the medium is governed by the radiative transport equation 
(Fig. 2.2). Fast solution of these types of equations are prevalent in inverse problems like tomography, where fast solution 
of the forward problem (i.e., radiative transport) is very helpful for efficiently evaluating the inverse — that is, recovering 
μs from observations. In our framework of our setting, we can think of the scattering coefficient function μs(x) is the 
parameter ω ∈ �∞ . Different choices of scattering coefficient μs(x) will produce different steady-state distributions of light 
u(ω). Then, in the context of (2.1), the operator L(ω) is the forward scattering operator, and f(ω) represents sources and 
boundary conditions.

It is worth remarking that beyond the problems we discuss herein, there are many additional problems of this form 
across the scientific literature. Particularly noteworthy classes of problems include aforementioned uncertainty quantification 
problems and Bayesian inference problems, where one samples ω from a probability distribution with the goal to quantify 
statistics of the result u(ω).

We note that the underlying sample space �∞ is typically continuous with respect to ω, so in this paper we limit 
ourselves with a discrete subset � of �∞ , such as an ε-net where every point in �∞ is close to a representative in �. 
3
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Approximate solutions to equations whose parameters come from outside of � can then be formed via interpolation. As a 
concrete example, �∞ may be all possible deformations of the boundary of a domain, and � may be a finite subset set 
of representative deformations. Note we purposefully keep the elements of the set �∞ vague as its elements may not be 
easily vectorizable.

Throughout this paper, we will represent � as

� ≡ {
ω1,ω2, . . . ,ωp

}
, (2.2)

whose elements ωi denote the representative samples for which we would like to solve the integral equation (2.1).
If the parameter ω wildly changes the underlying problem, then it is difficult to perform this task more efficiently then 

simply solving all of the equations (2.1). However, in many real-world contexts, the dependence on the parameter ω is 
such that the solutions u(ω) form a space that is approximately low dimensional. In this case, the solutions u(ω) can be 
well represented by a few appropriately chosen degrees of freedom. The goal of reduced basis methods is to extract these 
relevant degrees of freedom and use them to accelerate the computation of the solutions u(ω).

Therefore, we ultimately want to find a small orthogonal basis matrix Q ∈ Rn×nrb , where nrb is the dimension of our 
reduced basis, with nrb � n. Ideally, we want the columns of Q to approximately capture the desired set of solutions

S ≡ [
u(ω1) u(ω2) . . . u(ωp)

]
. (2.3)

When the basis matrix Q is fixed, one wants to find a good approximation to u(ω) in the subspace spanned by Q. Naturally, 
the closest approximation to u(ω) is given by the orthogonal projection QQTu(ω). However, this is difficult to compute 
without also computing u(ω). In practice, one often opts to compute a As is common in the model reduction literature, we 
will approximate QTu(ω) by a reduced solution v(ω) ∈Rnrb and solve for v(ω) by using a Galerkin projection,

[QTL(ω)Q]v(ω) = [QTf(ω)], v(ω) ≈ QTu(ω) (2.4)

Since the dimension nrb is much less than the dimension n of the original system (2.1), the projected system (2.4) provides 
us with an inexpensive way of computing approximations to the solutions u(ω). First, one solves for the quantity v(ω) in 
the nrb × nrb projected system (2.4). Afterwards, applying the matrix Q to the result v(ω) gives an approximation of the 
true solution u(ω).

2.1. Main difficulties

In the procedure of solving (2.4), there are two practical difficulties which arise:

1. Assembling the reduced basis Q efficiently. (Offline). There are a number of existing methods for constructing the basis Q. 
Unfortunately, they are typically either computationally expensive or difficult to implement. One can perform a proper 
orthogonal decomposition (POD) of solutions to the full-order model to obtain such a basis Q [19]. However, obtaining 
a high quality Q typically requires solving a large number of full-order systems — which may be intractable. There are 
also greedy methods [8,26,25,37,38,7], which sequentially build up a reduced basis by repeatedly selecting the solution 
u(ωi) which would yield the greatest reduction in an approximate error estimator. Unfortunately, the implementation 
and construction of error estimators are very involved. Moreover, the inherently sequential nature of greedy selection 
algorithms means that they tend to be difficult to parallelize. Though it may be possible to compute candidates in 
parallel ahead of time, this may use considerably more CPU time than a straightforward serial implementation.

2. Assembling the projected operator QTL(ω)Q efficiently. (Online). Since L(ω) is an operator, it is usually too computationally 
expensive to assemble the whole operator L(ω) explicitly. This necessitates that we design an inexpensive way of 
assembling the reduced operators QTL(ω)Q without ever explicitly assembling or applying their full-order counterparts 
L(ω).

2.2. Contribution

In this paper, we present a novel reduced basis approach to integral equations that has the benefit of being both general-
purpose and easy to implement. Our contributions are twofold: we first present a novel method for efficient selection of 
training samples. We use this selection scheme to address the first issue of assembling the reduced basis Q efficiently. Next, 
we present a simple interpolation technique for assembling reduced operators. We use this technique to address the second 
difficultly of assembling the projected operator QTL(ω)Q efficiently.

The combination of these two techniques forms the core of our coarse-proxy reduced basis method, diagrammed in full 
in Fig. 2.3. Our method provides a model order reduction framework for general linear integral equation problems that 
addresses both of the above issues without the aforementioned pitfalls of existing methods. In our numerical experiments, 
we apply our method to two examples, the radiative transport equation and the boundary integral formulation of the Laplace 
equation—and demonstrate that on both of these problems, our methods allow for significant improvements in performance 
over a naive solve of all elements of the parameter space.
4
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Fig. 2.3. Diagram of our proposed model reduction method for integral equations.

For the aforementioned efficient selection of training samples, we propose a novel method of constructing the reduced basis 
Q by leveraging a coarse-proxy model to identify a set of important parameters ω̂1, ..., ̂ωs in the sample space �, where 
s � p. As an example, one can use an inexpensive low-resolution model to identify which parameters ω would be important 
in the construction of a reduced basis, and we only solve the full-order equations (2.1) for these important parameters. The 
method has the desirable property of being embarrassingly parallelizable.

For the aforementioned interpolation technique for assembling reduced operators, we propose assembling the operators 
QTL(ω)Q by levering random sampling. We draw random samples from the dense operators L(ω) and then use these 
samples to construct a linear combination of a small subset of precomputed basis operators QTL(ω̂1)Q, ..., QTL(ω̂s)Q to 
approximately reconstruct QTL(ω)Q. While similar matrix interpolation techniques exist in the literature (e.g., [9]), they are 
only tractable for sparse matrices where it is possible to explicitly assemble an entire matrix. For integral operators, this is 
not possible — hence, we design our interpolation technique so that the full operator never needs to be assembled explicitly.

The details of the proposed select and interpolation methods are discussed in Section 3, and numerical tests are pre-
sented in Section 4.

3. Framework details

Our framework for solving problems of the form in (2.1) is based on the idea of using an inexpensive coarse-proxy model 
to extract the important solutions from the solution set S. This model can be, for example, the original fine problem, but at 
a much lower resolution. Or, since integral equations are quite amenable to wavelets [39,15,2], one may use a sparse basis 
of wavelets and only solve for lower-order coefficients. Indeed, it is usually the case that very different solutions in S are 
quite distinguishable even at lower fidelity in the appropriate basis. It therefore makes sense to use only a coarse resolution 
solve to isolate a representative set of solutions and operators in S.

After selecting a coarse model, we write this coarse-proxy model as

LC (ω)uC (ω) = fC (ω), (3.1)

where LC (ω) ∈RnC ×nC is the coarse analogue of the operator L(ω), and uC (ω) ∈RnC and fC (ω) ∈RnC are the coarse-proxy 
solution and coarse-proxy source term respectively. One should choose this coarse-proxy model so that it is inexpensive to 
evaluate (i.e., n2

C � n2). Fortunately, as long as the solutions uC (ω) of the coarse-proxy model can approximately capture 
the important features of their fine counterparts u(ω), the particular choice of coarse-proxy model is not especially rele-
vant. However, one must still exercise the appropriate caution. For example, if the solutions u(ω) contain important high 
frequency content, one should not expect that solving the problem on a coarse grid will provide a good coarse-proxy model.
5
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Notation. We use MATLAB notation to denote submatrices, i.e., if M ∈ Rn×m , then for A ⊆ {1, ..., n} and B ⊆ {1, ..., m}, 
M(A, B) ∈R|A|×|B| denotes the submatrix of M formed with rows A and columns B . In the case where either A = {1, ..., n}
or B = {1, ..., m}, we use the shorthand M(:, B) ∈Rn×|B| or M(A, :) ∈R|A|×m , respectively. The same notation also applies to 
vectors.

3.1. Skeleton extraction

To produce a reduced basis matrix Q, we select fine solution candidates u(ω) that are important columns of the so-
lution matrix S and construct Q via an SVD of those important columns. If the number of fine solution candidates in S
is substantially smaller than the number of solutions in S, then this SVD operation is significantly less expensive than a 
traditional POD. However, retrieving a column of S still requires an expensive full-order solve. To determine the important 
columns of S without incurring this cost, we note that the coarse-proxy solutions uC (ω) can serve as a good proxy for their 
fine counterparts. That is, we can identify important columns of S by search for important solutions among their coarse 
proxies uC (ω). Thus, our initial step is to compute the entire set of coarse-proxy solutions (or alternatively, an appropriately 
subsampled version thereof), which we write in matrix form as

SC ≡ [
uC (ω1) uC (ω2) . . . uC (ωp)

]
. (3.2)

Note that this step is embarrassingly parallelizable. Once these solutions are ready, we identify the important elements of 
the sample space � via a column pivoted QR decomposition of SC . This procedure returns a permutation π of the columns 
of SC . Let the skeleton indices S be the set of columns indices in π whose corresponding diagonal Rii is less than a certain 
threshold ε of R11. Let the parameters ω̂i corresponding to these indices be denoted as the set of skeleton parameters �̂ ⊂ �. 
These will be our approximation as to the important columns of S.

3.2. Skeleton extraction implementation

We give a concrete implementation of the skeleton extraction algorithm described above in Algorithm 1. This method 
takes in a sample space � and extracts the important skeleton parameters ω̂ j . It returns the set of indices S = {i1, i2, ..., is}
corresponding to the indices of these skeletons, i.e. ω̂ j = ωi j . It is possible that the implementation can be better tailored 
to the problem, but we provide this algorithm as a general-purpose default.

Algorithm 1: GetSkeletons: Skeleton Extraction with a Coarse-Proxy Model (Offline).
Input: A sample space �.
Output: The indices S of the important skeleton parameters.
/* Construct coarse-proxy solutions SC. */
for ωi in � do

LC (ωi) ← CoarseOperator(ωi);
fC (ωi) ← CoarseSourceTerm(ωi);
SC (:, i) ← LC (ωi)

−1fC (ωi)

end
/* Perform column pivoted QR factorization on SC and denote the column permutation of the CPQR 

factorization by ρ. */
(QC , RC , ρ) ← CPQR(SC );
/* Select all important column indices ρi based on RC,ii. */
S ← ρ({i | RC,ii ≥ εRC,11});
return S;

3.3. Reduced basis construction

Once we have selected the skeletons �̂, we calculate the corresponding solutions for the full-order model. We denote 
these corresponding fine solutions denoted as the fine skeleton set,

Ŝ ≡ S(:, �̂) = [
u(ω̂1) u(ω̂2) . . . u(ω̂s))

]
. (3.3)

Note that this step is once again embarrassingly parallelizable.
To compute the reduced basis, we apply an SVD decomposition to the fine skeleton set Ŝ to obtain UΣVT = Ŝ. To build a 

reduced basis, we crop U by discarding all columns with singular values σi less than εσ1,

Q ≡ U(:,1 : nrb), with nrb such that σnrb ≥ εσ1 > σnrb+1 , (3.4)

where ε is the same ε used in Algorithm 1.
6
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We take a moment to note that the coarse-proxy model is only used to select the skeleton parameters and not for the 
actual construction of the reduced basis. Hence, it is sufficient for the coarse-proxy model to be good enough to capture 
the main features of the full-order model and for the important columns of the coarse-proxy solution matrix SC to roughly 
correspond to the important columns of the fine solution matrix S.

3.4. Reduced operator construction

Once we have constructed the reduced basis Q, it remains to solve the projected problem

[QTL(ω)Q] v(ω) = [QTf(ω)] , u(ω) ≈ Q v(ω) (3.5)

for arbitrary ω. As such, we require a fast method of assembling the projected operator QTL(ω)Q. Assembling the full 
operator L(ω) and then projecting it is prohibitively expensive. However, in solving for the fine solutions Ŝ in (3.3), we 
have already assembled a subset of the operators L(ω). As we will see, the operators assembled during (3.3) can be used to 
construct arbitrary QL(ω)QT via interpolation.

If the matrix of the vectorized fine operators L(ω) is denoted by

L ≡ [
vec(L(ω1)) vec(L(ω2)) . . . vec(L(ωp))

]
, (3.6)

then, in the process of computing the fine skeleton set Ŝ, we have already assembled a subset of the columns of L, given 
by

L̂ ≡ L(:, �̂) = [
vec(L(ω̂1)) vec(L(ω̂2)) . . . vec(L(ω̂s))

]
. (3.7)

Since the dependence of L(ω) on the parameter ω is assumed to be low dimensional, it stands to reason that it should be 
possible to use the operators we’ve already constructed to somehow assemble arbitrary columns of the full set of projected 
operators,

Lrb ≡ [
vec(QTL(ω1)Q) vec(QTL(ω2)Q) . . . vec(QTL(ωp)Q)

]
. (3.8)

We propose a linear interpolation method based on random samples of the fine operators L(ω).
To motivate our method, we first make an affine assumption. That is, we assume it is possible to assemble the L(ω) by 

interpolating between the skeleton operators L(ω̂) in L̂ as such,

L(ωi) ≈
s∑

j=1

L(ω̂ j)m ji . (3.9)

It follows by linearity, that

QTL(ωi)Q ≈
s∑

j=1

QTL(ω̂ j)Qm ji . (3.10)

Note that both (3.9) and (3.10) can be written in matrix form,

L ≈ L̂M, (3.11)

Lrb ≈ L̂rbM, (3.12)

where L̂rb ≡ Lrb(:, S) are the fine skeleton operators projected into the reduced basis space and the M = (m ji) ∈ Rs×p

is the mixing matrix of interpolation coefficients. However, we must now consider how to actually compute such a mixing 
matrix M.

Our answer is based on the observation that if one makes the affine assumption, then to recover the coefficients m ji , it 
suffices to randomly subsample important parts of the operators (i.e., rows of L) and use the resulting samples to perform 
least squares regression to obtain M. Let these important samples / row indices be denoted by O. The choice O can be 
heavily dependent on the application. For example, if our operators are diagonally dominant, then it would make sense 
to include the diagonal of the fine operators in O. We can also select O to be slices of the operator, which are cheap to 
construct, like a randomly chosen set of columns in the fine operators. Ideally, we should have |O| � n2

rb .
Taking the rows corresponding to O in the above (3.11) gives

L(O, :) ≈ L̂(O, :)M. (3.13)

After computing L(O, :) for all fine operators, we then construct the mixing matrix M via least-squares regression on (3.13), 
i.e.,
7
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M = argmin
X

‖L(O, :) − L̂(O, :)X‖2
F . (3.14)

Once M is constructed, we can assemble any projected operator QL(ω)QT by performing the linear interpolation given by 
(3.10).

3.5. Reduced basis and mixing matrix construction implementation

Here, we provide an example implementation of both the construction of the reduced basis, as described in Section 3.3, 
as well as the construction of the mixing matrix described in Section 3.4. The pseudo-code for this example implementation 
is given in Algorithm 2. To use the algorithm, we require that the user implement the following primitives:

• FineSolve(ωi): This method takes in the parameter ωi and outputs the corresponding fine solution u(ωi) as well as 
the corresponding vectorized fine operator vec(L(ωi)). Nota bene that, in practice, it may be the case that vec(L(ωi))

may be too large to store in memory. This is not an obstacle, as we only use vec(L(ωi)) for notational convenience. To 
implement the following algorithms, one only needs to be able to apply the operator L(ωi) and to be able to sample a 
sparse subset of the entries of vec(L(ωi)).

• GetOperatorSamples(): This method chooses the set of operator entries O (i.e., rows of the matrix L) to sample and 
outputs the operator samples L(O, :), as described in Section 3.4.

Note that there is a part of the implementation which involves adding additional skeletons to the skeleton set. This segment 
of the algorithm will be addressed in Section 3.8.

Algorithm 2: Reduced Basis and Mixing Matrix Computation. (Offline).
Input: A sample space �
Output: A reduced basis matrix Q, a mixing matrix M, projections L̂rb of fine skeleton operators into the reduced basis space.
/* Compute the important skeletons in the sample space */
S ← GetSkeletons(�);
�̂ ← �(:, S);
/* Compute the corresponding fine skeleton solutions */

for ω̂ j in ̂� do
(̂S(:, j), ̂L(:, j)) ← FineSolve(ω̂ j);

/* (Optional) Use additional skeleton extraction as described in Section 3.8 */
if Using additional skeleton extraction then

(̂S(:, j), ̂L(:, j)) ← AdditionalSkeletons(�, ̂S, ̂L, S, Lsamp);

/* Construct reduced basis matrix Q from fine skeletons Ŝ by taking the first few left singular vectors 
of Ŝ. */

(U, Σ, V) ← SVD(̂S);
Q ← U(:, Σ > εσ1);
/* Compute the samples L(O, :) from each fine operators */
Lsamp ← GetOperatorSamples();
/* Perform least squares regression using the samples Lsamp to compute the mixing matrix M. */
M ← LeastSquares(Lsamp , Lsamp(:, S));
/* Project the skeleton operators L̂ into the reduced basis space given by Q. Note L(ω̂ j) has been reshaped 

into a matrix. */

for vec(L(ω̂ j)) in L̂ do
L̂rb(:, j) ← vec(QTL(ω̂ j)Q);

return (Q, M, ̂Lrb);

3.6. Online reduced basis solve implementation

In this subsection, we provide pseudo-code in Algorithm 3 for using the offline computations performed in Algorithms 1
and 2 to compute fast online approximations to u(ω) for arbitrary ω ∈ �. We suppose that we are provided with the 
following primitive:

• AssembleRightHandSide(Q, ωi): This method takes in the reduced basis Q and a parameter ωi and returns QTf(ωi) or 
an approximation thereof. Depending on the problem being solved, there might be some intricacies to this. However, if 
f(ωi) is inexpensive to assemble, then the oracle can simply compute f(ωi) and apply QT. In other situations, one can 
use mathematical manipulations to obtain an expression for f(ωi) in terms of already computed expressions. See the 
radiative transport equation Section 4.2 for a nontrivial case. In the worst case, if the entries of f(ωi) are not overly 
expensive to sample, one can sub-sample the f(ωi) and use the samples to linearly interpolate between QTf(ω̂i) by 
constructing a mixing matrix using the technique in Section 3.4. A more involved sub-sampling alternative could be 
8
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Algorithm 3: Reduced Basis Solve for u(ω) (Online).

Input: A sample ω ∈ � for which to compute a reduced basis approximation, the mixing matrix M, the projected skeleton operators L̂rb , and the 
reduced basis matrix Q.

Output: An approximation urb of u(ω).
/* Assemble our approximation for the projected operator Lrb ≡ QTL(ω)Q using the projected skeleton 

operators L̂rb and the mixing matrix M. */

vec(Lrb) ← L̂rb M(:, i);
/* Have the oracle assemble the right hand side of the equation, i.e., frb(ω) ≡ QTf(ω), for us and project it 

into the reduced basis space. */
frb ← AssembleRightHandSide(Q, ω);
/* Solve the system and return the result. */

v ← L−1
rb frb ;

/* Lift result from reduced basis space to Rn. */
urb ← Q v;
return urb ;

to use a discrete empirical interpolation method such as Q-DEIM [10] to compute sub-sampling entries in f(ω) and 
interpolation weights for QTf(ω).

3.7. A note on gappy matrix POD

We remark that the above method of constructing reduced operators is close to Gappy Matrix POD in [9]. However, 
one key distinction is that we do not orthogonalize the skeleton operators QTL(ω̂i)Q. Gappy Matrix POD would involve 
vectorizing the skeleton operators L(ω̂i), taking SVD to find a set of orthogonalized operators L⊥

1 , ..., L⊥
r , projecting them 

into the reduced basis space, and then using QTL⊥
1 Q, ...QTL⊥

r Q to interpolate the general projected operators QTL(ωi)Q. 
We do not do this. This is intentional. While performing this orthogonalization may sometimes result in increased stability 
of interpolation, for integral operators, it is not desirable to represent the underlying operators as full dense matrices. 
Moreover, by virtue of how we select the skeleton operators, we ensure to some extent that the interpolation problem is 
already relatively well-conditioned.

3.8. Additional skeleton extraction

Sometimes, the fine operators L̂ we assemble during our fine solves may not be sufficiently rich to reconstruct all of the 
operators in Lrb via interpolation. If this is the case, then we must add additional columns to our set of skeleton operators 
L̂. Note that we can use the fine operator samples L(O, :) in the previous section to get a rough idea the important 
operators in L. To find the operators we have failed to represent well with our choice of skeletons L, we can consider the 
operator samples L(O, :) with our skeletons L(O, S) projected out,

Lres ≡ L(O, :) − PL(O, :), (3.15)

where P is a projector onto the column space of L(O, S). We call these the residual operator samples. This projection can 
be done via modified Gram-Schmidt, for example.

Then, before we compute the mixing matrix, we can perform a column pivoted QR decomposition of Lres to find oper-
ators we’re unable to approximate well. Similar to what was done in Section 3.3, we select the columns with a diagonal 
R-factor which is smaller than ηε multiplied by the largest column norm in the unprojected L(O, :), where η is an arbi-
trary constant set by the user. Whatever columns A are selected by this process, we append them to our set of fine operator 
skeletons L̂ as such,

L̂ ← [
L̂ L(:,A)

]
. (3.16)

In addition, depending on the problem at hand, one can also add the corresponding fine solutions of A to the fine solution 
skeleton set Ŝ, as these may add important fine scale information which our coarse-proxy model may have missed,

Ŝ ← [
Ŝ S(:,A)

]
. (3.17)

Afterwards, one can continue with everything detailed in Section 3.4 without any changes, using (3.16) instead of (3.7) for 
the skeleton operators L.

3.9. Implementation of additional skeleton extraction

We now provide a pseudo-code implementation in Algorithm 4 of the additional skeleton extraction algorithm presented 
above in Section 3.8.
9
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Algorithm 4: AdditionalSkeletons: Optional Additional Skeleton Extraction (Offline).

Input: A sample space �, a set of fine skeletons ̂S, their corresponding operator skeletons L̂ and indices S, and a matrix of operator samples 
Lsamp .

Output: A possibly enlarged set of operator skeletons L̂ and fine solution skeletons ̂S.
/* Compute the maximum energy in the operator samples before we project out the fine skeletons. */
a ← maxi ‖Lsamp(:, i)‖2;
/* Project out the fine skeletons Lsamp(:, S) we’ve computed in algorithm 1 from the samples Lsamp. */
Lres ← ProjectOut(Lsamp , Lsamp(:, S));
/* Extract important operators we’ve missed during reduced basis extraction via QR decomposition of 

residual samples Lres. */
(Q, R, ρ) ← CPQR(Lres);
/* Select only column indices for which rii ≥ ηεa. In practice, this should be done by stopping the above 

QR factorization when this first happens. */
A ← ρ(rii ≥ ηεa);
/* Compute new set of additional fine operators L̂A and additional fine solutions ŜA for the selected 

columns A. */
for ω′

j in �(:, A) do
(̂SA(:, j), ̂LA(:, j)) ← FineSolve(ω′

j);

end
/* Add additional skeleton solutions ŜA to our existing skeleton solutions Ŝ. */

Ŝ ← [
Ŝ ŜA

]
;

/* Append new skeletons L̂A to our existing skeletons L̂ */

L̂ ← [
L̂ L̂A

]
;

return (̂S, ̂L);

3.10. Interpolating operators with an offset

There are many problems in which the operators L(ω) take on a natural form,

L(ω) = A + B(ω), (3.18)

where A does not depend explicitly on ω, and is shared among all of the operators L(ω). We will see such examples of this 
later. In such situations, it may be more advisable to interpolate the operator B(ω) instead of the full operator L(ω) when 
constructing reduced operators. All techniques from Section 3.4 carry over with minimal modification. One assumes that 
there exist interpolation coefficients for the operators L(ω),

B(ωi) ≈
∑

j

αi jB(ω̂ j). (3.19)

Then one can find a mixing matrix M with

Brb ≈ B̂rbM, (3.20)

by simply performing a least squares solve of the equation

B(O, :) ≈ B̂(O, :)M, (3.21)

where B, B̂, Brb , B̂rb are defined analogously to L, L̂, Lrb , and L̂rb in Section 3.4.
Once the mixing matrix M has been computed, note that the corresponding coefficients m ji can then be used to inter-

polate the reduced operators QTL(ωi)Q,

QTL(ωi)Q ≈ QTAQ +
s∑

j=1

QTB(ω̂ j)Qm ji . (3.22)

The quantity QTAQ can be computed alongside the skeleton operators QTB(ω̂ j)Q when projecting operators into the reduced 
basis space.

4. Numerical results

To demonstrate that our framework is both a practical and efficient approach to model order reduction for integral 
equations, we perform simulations on the two following examples.
10
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4.1. Boundary integral formulation of the Laplace equation

We consider the Laplace equation

�ϕ = 0, in D,

ϕ = f , on ∂D,
(4.1)

where D ⊂R2 is a bounded Lipschitz domain. Introduce the single layer potential u, which is given by the solution to the 
integral equation

f (x) = 1

2
u(x) −

∫
∂D

∂G(x, y)

∂n(y)
u(y)ds(y), (4.2)

where G denotes the Green’s function of the Laplace equation in 2D,

G(x, y) = 1

2π
ln

1

|x − y| . (4.3)

Then once u has been computed by solving the integral equation (4.2), the solution φ to Laplace equation can be recovered 
by

ϕ(x) = −
∫

∂D

∂G(x, y)

∂n(y)
u(y)ds(y). (4.4)

Hence, the key of this problem is to solve the boundary integral equation (4.2).
To bring this problem in the many-query setting of our framework, we suppose that the shape of the domain D(ω) is 

parameterized by ω taken from a sample space �∞ . Thus, the integral equations we would like to solve are given by

f (x) = 1

2
u(x;ω) −

∫
∂D(ω)

∂G(x, y)

∂n(y)
u(y;ω)ds(y), (4.5)

where f (x) is a function prescribed on R2, which we hold constant across all problem instances in �∞ . One can discretize 
this equation by taking a discrete number of samples of u on ∂D, and using the trapezoidal rule to evaluate the integral 
above. An example oracle for this problem is one that uses a significantly reduced number of quadrature points on ∂D as its 
coarse-proxy model. Note that using a coarse-proxy model with low resolution becomes difficult when the source function 
f exhibits singular behavior near the boundary ∂D, as the high frequency content in u is difficult to resolve. Nonetheless, 
even if such a coarse-proxy model is used for skeleton extraction, our results suggest that using the additional skeleton 
extraction techniques discussed in Section 3.8 will compensate for the information which the coarse-proxy model cannot 
resolve, since this high-frequency information will present itself in the operator samples.

Regardless of the exact implementation of the oracle’s scheme for extracting skeletons, the discretized equation (4.5)
reads

L(ω)u(ω) = f(ω), (4.6)

where u(ω) is the discretized version of the double layer potential u, f(ω) is the source term f sampled on ∂D(ω). And 
L(ω) is a matrix that has the form

L(ω) = 1

2
I − G(ω), (4.7)

where I is the identity, and G(ω) is the discretized integral kernel in (4.5).
After skeleton extraction and construction of the reduced basis Q, the projected equations in the reduced basis are given 

by (
1

2
I − QTG(ω)Q

)
v(ω) = QTf(ω) u(ω) ≈ Q v(ω) (4.8)

One can construct the reduced operators QTG(ω)Q via the techniques discussed in Section 3.4. For our operator samples, 
we sample a few columns of all operators G(ω) as well as the diagonals. In general, f(ω) is inexpensive to assemble, so 
one can simply construct the source term f(ω) and project it into the reduced basis space by applying QT during an online 
reduced basis solve.
11
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Fig. 4.1. Left: the normalized diagonal values of R in the skeleton selection for the described Laplace equation problem. Right: the normalized singular 
values in the basis construction for the described Laplace equation problem.

4.1.1. Results
We parameterize the boundary ∂D(ω) by a polar curve γ (θ; ω) :R × � −→R2, where θ ∈ [0, 2π) and

γ (θ;ω) ≡ r(θ;ω) [cos(θ), sin(θ)]T , (4.9)

where r(θ; ω) : R × � −→ R is the radial distance of this curve from the origin at angle θ . To specify the radial function, 
we chose a set of interpolation points θ = 2πk/N for k ∈ {0, ..., N − 1} and require that

r(2πk/N;ω) = bk(ω) (4.10)

where bk(ω) are interpolation value for the radial function r(θ; ω) at the interpolation points θ = 2πk/N . We then deter-
mine remainder of the curve γ by Fourier interpolation. Viewing the continuous parameter set �∞ as a probability space, 
we take the radial interpolation points bk(ω) to be i.i.d. uniformly random in the interval,

bk(ω) ∼ U([1 − κ,1 + κ]). (4.11)

The reader may see examples of such curves as defined here in either Fig. 4.3 or Fig. 2.1. Finally, to make the problem 
challenging, we take the source function f (x) to have a singularity which can potentially be situated near the curve γ . In 
particular, we take

f (x) ≡ 1

‖x − x0‖2
. (4.12)

To ensure there are problem instances where the curve γ comes close to the singularity located at y we take our parameters 
to be

κ = 0.4, x0 = (0.6,0), N = 8. (4.13)

Finally, to extract a discrete parameter space � ⊂ �∞ , we draw |�| = 32768 random samples from �∞ .
For our full-order model, we use a total of n f = 2048 quadrature samples. Whereas, for our coarse-proxy model, we use 

a total of nc = 128 quadrature samples. For selecting additional skeletons, we use a selection threshold multiplier of η = 1.5. 
We sample a total of 10 columns randomly plus the diagonal.

Plot (a) in Fig. 4.1 presents the diagonal values of R in Algorithm 1 for this numerical experiment. As indicated in 
Algorithm 1, we compute these diagonal values from the coarse-proxy model solutions and use them to select skeleton 
parameters. Plot (b) in Fig. 4.1 shows the values of the singular values σk in Algorithm 2, which are used to construct the 
reduced basis. One sees that, if the threshold ε satisfies ε < 1 × 10−4, then log10(Rii/R11) and log10(σk/σ1) decay almost 
linearly. We also provide a visualization of the first 36 reduced basis (with respect to σk) in Fig. 4.2. Note that, as the 
singular values σk decay, the corresponding basis vectors contain increasingly more high frequency information. For further 
evaluation, we provide Fig. 4.3, a side-by-side comparison of our reduced basis method for ε = 1 ×10−6 with the underlying 
full-order model on three different parameter instances. We note that our method provides an accurate approximation of 
the solution to the Laplace problem.

To quantitatively demonstrate the performance gains of our reduced-order model over the full-order model, as well as 
the reduced-order model’s validity for different thresholds, we evaluated both the full-order and reduced-order solutions for 
each element of �. The resulting relative L2 error ‖u(ω) − urb(ω)‖2/‖u(ω)‖2 and the runtime are all recorded in Table 4.1. 
When evaluating all solutions in bulk, our reduced basis method provides between a ten-fold and twenty-fold performance 
increase over the full-order model for a wide range of accuracy targets between .1% and 10% relative L2 error, as recorded in
(4.6). Note, crucially, that this figure includes the expensive offline phase of our reduced basis method. Moreover, if one halves the 
threshold ε , the average relative L2 shrinks by an approximate factor of two. Therefore, this method approximately exhibits 
linear convergence with respect to the threshold. This fact is further illustrated in Fig. 4.4.
12
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Fig. 4.2. Profiles of the reduced basis generated for the described boundary integral form of the Laplace equation problem for different singular values σk .

We also note that the offline stage for ε = 5 × 10−6 in Table 4.1 takes less time than the offline stage for ε = 1 × 10−5, 
which is because proportionally fewer skeletons are selected during the additional skeleton extraction phase.

4.2. Radiative transport equation with isotropic scattering

We consider the steady state radiative transport equation with the form

v · ∇x�(x, v) + μt(x)�(x, v) = μs(x)

2π

∫
S1

�(x, v ′)dv ′ + g(x), in D × S1,

�(x, v) = 0, on �−,

(4.14)

where �(x, v) denotes the photon flux at spatial position x ∈R2 in direction v ∈ S1, and g(x) is the light source. D ⊂R2

is the problem domain, S1 is the unit sphere in R2. �− is the inward facing problem boundary, given by

�− ≡ {(x, v) ∈ ∂D × S1 | n(x) · v < 0}, (4.15)

where n(x) is the normal of domain D at position x. The boundary condition in (4.2) enforces that no light is entering 
the domain of interest. The transport coefficient μt(x) measures the total absorption at x, which results from both physical 
absorption as well as from scattering, the latter of which is quantified by the scattering coefficient μs(x).

In this scenario, our quantity of interest is the local mean density m(x) defined as

m(x) ≡ 1

2π

∫
1

�(x, v ′)dv ′. (4.16)
S
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Fig. 4.3. Three examples of the solutions evaluated by the reduced basis method (RBM) for the single layer potential u(θ; ω) for the parameter set �
described for the boundary integral form of the Laplace equation and their corresponding reference solution (ref) with threshold ε = 1 × 10−6. The upper 
figures are the domain D and the red point is the location of the singularity in (4.13).

Fig. 4.4. Left: A log-log convergence plot of our method on the Laplace equation example, showing the average error 〈E〉 over the parameter set � against 
the inverse of the selection threshold ε . Right: The same, except with basis dimension on the x-axis.

As studied in [35,11], one can reformulate the differential equation (4.14) into an integral equation using the method of 
characteristics. This transformation yields the integral equation

[
1

μs(x)
−K

]
u(x) = Kg(x) with Kφ(x) ≡

∫
K (x, y)φ(y)d y, (4.17)
D
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Table 4.1
Test results for our reduced basis method on the described Laplace equation problem. Here 
ε denotes the selection threshold used for reduced basis construction, s denotes the num-
ber of skeletons selected by our method (i.e., the number of fine solves used to construct 
the reduced basis), nrb denotes the dimension of the reduced basis constructed, T (of f line)

rb

denotes the amount of time in seconds used in reduced basis construction, T (online)
rb de-

notes the amount of time in seconds used to solve all problem instances from � using 
our method once the reduced basis has been constructed, Trb = T (of f line)

rb + T (online)
rb de-

notes the total amount of time in seconds used by our method to compute approximations 
to all problem instances in �, and T f ine/Trb denotes the ratio between the time taken 
by our method to compute approximate solutions to all problem instances in � and the 
time T f ine taken to naively compute all exact fine solutions in �, i.e., the computational 
speed-up our algorithm provides. Finally, L2 error denotes the average relative L2 error, 
i.e., ‖u(ω) − urb(ω)‖2/‖u(ω)‖2 averaged over the parameter set �.

ε s nrb T (of f line)
rb T (online)

rb T f ine T f ine/Trb L2 error

2 × 10−4 52 6 157 s 4.00 s 4380 s 27.2× 0.4997

1 × 10−4 67 11 186 s 6.09 s 4380 s 22.8× 0.1764

5 × 10−5 77 15 206 s 6.48 s 4380 s 20.6× 0.0648

2 × 10−5 98 20 252 s 7.51 s 4380 s 16.9× 0.0292

1 × 10−5 115 26 283 s 8.92 s 4380 s 15.0× 0.0136

5 × 10−6 132 30 229 s 10.03 s 4380 s 18.3× 0.0060

2 × 10−6 150 38 254 s 12.59 s 4380 s 16.4× 0.0038

1 × 10−6 179 43 295 s 15.77 s 4380 s 14.1× 0.0023

5 × 10−7 194 48 315 s 18.11 s 4380 s 13.2× 0.0018

where u(x) = μs(x)m(x) the integral kernel K (x, y) of the operator K is given by

K (x, y) ≡ 1

|S1|
1

|x − y| exp

⎛
⎝−|x − y|

1∫
0

μt(x − τ (x − y))dτ

⎞
⎠ . (4.18)

To bring this problem into the many-query setting of our reduced basis framework, we now suppose that the scattering 
and transmission coefficients μs and μt have an explicit dependence on a parameter ω taken from some sample space �∞ . 
Henceforth, we will therefore write them as μs(x; ω) and μt(x; ω). Here, ω can encode small fluctuations or uncertainties 
about the underlying medium that the light propagates through. Making the dependence on the parameter ω explicit in 
(4.17) gives us the set of integral equations to solve,

[I − μs(x;ω)K(ω)] u(x;ω) = μs(x;ω)K(ω)g(x) , (4.19)

where I is the identity operator.
To discretize the above equation, we use a collocation method combined with Gauss-Legendre quadrature, as outlined in 

[11]. This discretization gives us the linear system

L(ω)u(ω) = f(ω) , (4.20)

where L(ω) and f(ω) have the forms

L(ω) = I + B(ω), f(ω) ≡ −B(ω)g , (4.21)

and I, B(ω), and g are the discretized versions of I , −μs(x; ω)K(ω), and g(x) respectively.
The application of our framework to this problem is now straightforward. To solve the full-order model, we use hierar-

chical interpolative factorization [23]. For our coarse-proxy model, we simply use significantly fewer collocation points in D. 
We then use the method described in Sections 3.1 and 3.3 to compute a suitable reduced basis matrix Q for this problem 
in the offline stage.

In the remainder of the offline stage, we use the method described in Sections 3.4 and 3.10 to sample B(ω) and construct 
a mixing matrix M such that

Brb ≈ B̂rbM, (4.22)

where once again we define Brb to be the matrix vectorized reduced operators,
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Brb ≡ [
vec(QTB(ω1)Q) vec(QTB(ω2)Q) . . . vec(QTB(ωn)Q)

]
, (4.23)

and B̂rb ≡ Brb(:, S) are our reduced operator skeletons. For the samples O in the computation of M, we use ten randomly 
selected columns as well as the diagonal.

With the offline stage complete, we now switch focus to the online stage. To solve the desired equation

(I + QTB(ω)Q)v(ω) = −QTB(ω)g, u(ω) ≈ Q v(ω), (4.24)

we can assemble the reduced operator I + QTB(ω)Q from the reduced operator skeletons Brb by using (4.22). Consider the 
matrix

Frb ≡ [−QTB(ω1)g −QTB(ω2)g . . . −QTB(ωn)g
]
, (4.25)

and note that the interpolation weights computed for the reduced operators QTB(ω)Q carry over to this matrix. That is,

Frb ≈ F̂rbM, (4.26)

where F̂rb ≡ F(:, S). Since we must assemble the quantities −B(ω̂i)g during the computation of fine solutions for our 
reduced basis regardless, computing the matrix F̂rb is fairly inexpensive, and only involves applying the matrix QT to the 
vectors −B(ω̂i)g. This means, if we compute F̂rb during the offline stage, we then have an inexpensive method of assembling 
the right hand side, regardless of the fact that the expression involves the operator B(ω).

4.2.1. Results
As a test case for the above example, we consider the domain D ≡ [0, 1]2. We let μs(x; ω) and μt(x; ω) be Gaussians 

with varying centers and widths,

μt(x;ω) ≡ μs(x;ω) ≡ 1 + Aω exp(−((x1 − c1ω)2 − (x2 − c2ω)2)/θ2
ω), (4.27)

where the parameters ω ∈ � have the form

ω ≡ [
Aω c1ω c2ω θω

]
. (4.28)

We take the source term g(x) to be

g(x) ≡ exp(−256((x1 − 0.5)2 + (x2 − 0.5)2)). (4.29)

To build the parameter space � we vary both the width and the location of the Gaussian ensemble above. Let �A,θ,N be 
defined as

�A,θ,N ≡ {[
A i/N j/N θ

] | i, j = 0, ..., N
}
, (4.30)

that is, parameters for Gaussians with width θ and amplitude A centered at grid points (i/N, j/N). Take our parameter 
space � to consist of these Gaussians with three different widths/amplitudes,

� ≡
⋃
A∈A

⋃
θ∈�

�A,θ,N , (4.31)

where

A ≡ {2,4,6,8,10}, � ≡ {0.2,0.3,0.4,0.5,0.6}, N = 20.

This gives a total parameter space size of |�| = 11025. Our full-order model is the model described in Section 4.2, with a 
grid size of n f × n f where n f = 128. We use the algorithm described in this paper to build a reduced basis for this model 
and approximate true solutions. For our coarse-proxy model with the same model described in Section 4.2 but with a grid 
size of nc × nc instead, where nc = 32. We use the procedure described in Section 3.8 to add additional skeletons to our 
skeleton set when operator samples cannot be well-represented using a linear combination the operator samples of the 
selected skeletons. For selecting additional skeletons, we use a selection threshold multiplier of η = 1.5.

Plot (a) in Fig. 4.5 presents the diagonal values of R in Algorithm 1 for this numerical experiment. As indicated in 
Algorithm 1, we compute these diagonal values from the coarse-proxy model solutions and use them to select skeleton 
parameters. Plot (b) in Fig. 4.5 shows the values of the singular values σk in Algorithm 2, which are used to construct 
the reduced basis for ε = 5 × 10−6. We also provide a visualization of the first 25 reduced basis (with respect to σk) in 
Fig. 4.6. Note that, as the singular values σk decay, the corresponding basis vectors contain increasingly more high frequency 
information.

Once again for the visualization proposes, we present the reduced basis for ε = 1 × 10−4 in Fig. 4.6 — together with 
side-by-side comparisons, on three different parameter instances, of our reduced basis approximation for ε = 1 × 10−4 to 
the underlying full-order solution, in Fig. 4.7. We note the reduced basis method gives a good approximation of the solution.
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Fig. 4.5. Left: the normalized diagonal values of R in the skeleton selection for the described radiative transport problem. Right: the normalized singular 
values in the basis construction for the described radiative transport problem.

Fig. 4.6. Reduced basis vectors generated for the described radiative transport problem and their corresponding normalized singular values σ̃k .

To further test the validity and efficiency of our reduced-order model, we run a parallel battery of tests to those we ran 
for the previous numerical example. For each element of �, we compute both the true solution u(ω) and the reduced basis 
approximation urb(ω), and afterwards evaluate the relative L2 error ‖u(ω) − urb(ω)‖2/‖u(ω)‖2 (Fig. 4.8). We present the 
results of this computation in Table 4.2. When evaluating all solutions in bulk, our reduced basis method provides between 
a seventeen-fold and thirty-five-fold performance increase over the full-order model for a wide range of accuracy targets 
between .8% and 5% relative L2 error. Note, once again, that this figure includes the expensive offline phase of our reduced basis 
method. While this numerical example does not quite match the linear convergence of the previous numerical example, we 
17
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Fig. 4.7. Three examples for the solutions evaluated by the reduced basis method for the radiative transport equation for the parameter set � with threshold 
ε = 1 × 10−4 and their corresponding reference solutions and error.

Fig. 4.8. Left: A log-log convergence plot of the reduced method on the radiative transport problem, showing the average relative L2 error over the parameter 
set � against the inverse of the selection threshold ε . Right: Same as left, except on the x-axis is reduced basis dimension.

still note that the error always decreases as the parameter ε decreases. Therefore, our method exhibits convergence, as seen 
in Table 4.2 and Fig. 4.6.

4.3. The effect of fine operator sample count on accuracy

We have found in our testing that the performance of our method is not particularly sensitive to the number of fine 
operator samples chosen. We can see the effect of changing the fine operator sample count in Fig. 4.9. Note that too few 
samples causes underfitting, while too many samples causes overfitting. These effects are particularly evident in the radiative 
transport example. For the problems above, we sample 10 columns of the fine operator (plus the operator diagonal).

5. Conclusion and future work

We have developed a simple and general-purpose reduced basis approximation technique for linear elliptic integral op-
erators. As shown by the empirical results, this method results in significant performance increases on the simple problems 
we have applied it to. Due to the complexity scaling exhibited by numerical simulations, this method might produce even 
more significant performance increases at scale. Moreover, we hope that the techniques put forth in this paper will provide 
a useful starting point for future work in model order reduction for integral equations.

Possible avenues for such future work include the application of these techniques to larger scale problems, or perhaps, 
the application of these techniques to electromagnetic scattering to give a real comparison to currently existing work in 
[12,20]. One possible limitation of the technique we present here, and another possible areas for future work is the method 
18
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Table 4.2
Test results for the reduced basis method on the described radiative transport problem. Here 
ε denotes the selection threshold used for reduced basis construction, s denotes the num-
ber of skeletons selected by our method (i.e., the number of fine solves used to construct 
the reduced basis), nrb denotes the dimension of the reduced basis constructed, T (of f line)

rb de-

notes the amount of time in seconds used in reduced basis construction, T (online)
rb denotes the 

amount of time in seconds used to solve all problem instances from � using our method 
once the reduced basis has been constructed, Trb = T (of f line)

rb + T (online)
rb denotes the total 

amount of time in seconds used by our method to compute approximations to all prob-
lem instances in �, and T f ine/Trb denotes the ratio between the time taken by our method 
to compute approximate solutions to all problem instances in � and the time T f ine taken to 
naively compute all exact fine solutions in �, i.e., the computational speed-up our algorithm 
provides. Finally, L2 error denotes the average relative L2 error, i.e., ‖u(ω) −urb(ω)‖2/‖u(ω)‖2

averaged over the parameter set �.

ε s nrb T (of f line)
rb T (online)

rb T f ine T f ine/Trb L2 error

1 × 10−3 97 63 1274 s 12.25 s 46676 s 36.3× 0.0552

5 × 10−4 118 75 1478 s 21.97 s 46676 s 31.1× 0.0491

2 × 10−4 148 95 1489 s 83.64 s 46676 s 29.7× 0.0406

1 × 10−4 169 111 1565 s 110.2 s 46676 s 27.9× 0.0307

5 × 10−5 192 127 1786 s 144.7 s 46676 s 24.2× 0.0249

2 × 10−5 225 153 1995 s 187.5 s 46676 s 21.4× 0.0135

1 × 10−5 250 170 2095 s 239.1 s 46676 s 20.0× 0.0096

5 × 10−6 277 193 2388 s 303.8 s 46676 s 17.3× 0.0081

Fig. 4.9. Average relative error plotted against number of columns sampled from the fine operator. Note that the error is relatively consistent across different 
sampling levels. Note that the larger the number of samples, the more expensive the computation of the mixing matrix. In our experiments, we use ten 
sampled columns as a good default.

by which the reduced operators QTL(ω)Q are assembled. One could imagine finding a better operator sampling mask 
than the randomly selected ones in this paper. It may also be possible that at scale, the method we use to compute 
interpolation coefficients may be subject to overfitting. However, in our experience working on the radiative transport and 
Laplace equation examples, the interpolation error for the reduced operators is not a dominant source of error except at very 
small values of the threshold ε where the total average error is already very small. Another limitation of this method is that 
it is specifically tailored for integral equations due to the way it reconstructs operators. While there is no reason one could 
not use this technique on problems with sparse operators (i.e., differential equations), there are already a large number of 
competitors in that space (e.g., matrix POD, empirical interpolation), and it is not clear that the method we present here 
would necessarily outperform those. However, the aforementioned techniques for sparse matrices do not extend to dense 
matrices and hence integral equations is where the contribution of our method is most pronounced. Finally, for problems at 
scale, there is a trade-off that must be made between the quality and computation time for the coarse-proxy model. It may 
be useful in this situation to use a series of coarse-proxy models (rather than a single one), each subsequent one finer than 
the last, to progressively filter down the parameter set � to the skeleton set �̂.

6. Source code and reproduction

All source code for this paper as well as instructions for reproducing the results in this paper are publicly available at 
https://github .com /UniqueUpToPermutation /coarse -proxy-benchmark.
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