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Abstract

A general framework with a series of different methods is proposed to improve the estimate of
convex function (or functional) values when only noisy observations of the true input are available.
Technically, our methods catch the bias introduced by the convexity and remove this bias from a
baseline estimate. Theoretical analysis are conducted to show that the proposed methods can
strictly reduce the expected estimate error under mild conditions. When applied, the methods
require no specific knowledge about the problem except the convexity and the evaluation of the
function. Therefore, they can serve as off-the-shelf tools to obtain good estimate for a wide range
of problems, including optimization problems with random objective functions or constraints,
and functionals of probability distributions such as the entropy and the Wasserstein distance.
Numerical experiments on a wide variety of problems show that our methods can significantly
improve the quality of the estimate compared with the baseline method.

1 Introduction

In this paper, we study the problem of estimating function/functional values when uncertainty exists
on the input value. Specifically, let F be a function or functional, and Ω be its input domain. We
want to estimate F (x∗) for some x∗ ∈ Ω, while only having access to a set of observations sampled
from a probability distribution µ on Ω with Eµx = x∗. Let x1,x2, ...,xn be the observations. By
the law of large numbers, the average of the observations, x̄ := (x1 + · · ·+ xn)/n, is close to x when
n is large. Therefore, a straightforward estimate of F (x∗) is to use F (x̄). However, since F is not
necessarily linear, biases may exist when F (x̄) is used as an estimate. For example, when F is
convex, the Jensen’s inequality

F (x∗) = F (Ex̄) ≤ EF (x̄)

reveals positive bias when F (x̄) is used to estimate F (x∗). Taking into consideration the special
properties of F (such as convexity/concavity), it is possible to find estimate methods that have less
bias and outperform the straightforward estimate using the sample average.

The function/functional value estimate problem appears in many applications, such as the
estimate of functionals of probability distributions (e.g. expectation, entropy, distance etc) or
the estimate of optimal value of optimization problems with noisy constraints. Some of these
problems have been under investigation for a long time, with many methods proposed. For instance,
the James-Stein estimator of the expectation of Gaussian distributions [18, 12], the estimate of
entropy [16, 25, 17, 9, 21, 19, 11], mutual information [17, 14, 8, 15], other functionals of probability
distributions [23, 13, 1, 10], etc. Besides, the estimate of the minimizers of quadratic functions has
also been studied in recent works [7, 6]. These works usually study a specific class of problems
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and propose methods that perform well on these problems. Besides methods, related theoretical
analysis are also rich in the literature [2, 13, 24, 4]. The works mentioned here are not meant to
be comprehensive. For more detailed discussion of the literature, readers can refer to the reviews
in [20, 17, 13]

In this work, instead, we propose a general framework that can improve the estimate for all
convex or concave functions/functionals. Our methods produce improved estimate for F (x∗) by
estimating the bias introduced by convexity/concavity using noisy observations and removing that
bias from the naive estimate F (x̄). Concretely, we either shift F (x̄) by an appropriate amount c
and use F (x̄) + c as a new estimate, or scale F (x̄) by a factor s and use sF (x̄) as a new estimate.
These “debiasing quantities” c and s are derived to minimize the square error of the estimate, i.e.

E
(
F (x̄) + c− F (x∗)

)2
or E

(
sF (x̄)− F (x∗)

)2
.

The so derived debiasing quantities c and s are in population sense, i.e. they inevitably depend on
unknown quantities such as x∗ and EF (x̄). With only the observations x1, · · ·xn in hand, we use
bootstrap to approximate these population debiasing quantities and obtain “empirical” debiasing
quantities ĉ and ŝ (See Section 2 for details). Theoretical analysis are conducted to show that the ĉ
and ŝ obtained using bootstrap appropriately can indeed reduce the square error of the estimate. In
the following is an informal statement of our main theorems 2 and 3.

Theorem 1. (Informal main theorem) Let F be a convex function on Ω and µ be a probability
distribution on Ω with x∗ = Eµx. Let ĉ and ŝ be the shifting and scaling debiasing quantities computed
using samples x1, · · ·xn drawn from µ. Under some assumptions on F , µ, and the bootstrap method,
when n is sufficiently large, we have

E
(
F (x̄) + ĉ− F (x∗)

)2
< E

(
F (x̄)− F (x∗)

)2
,

and
E
(
ŝF (x̄)− F (x∗)

)2
< E

(
F (x̄)− F (x∗)

)2
.

Besides the bootstrap method, other method can be employed to estimate the debiasing quantities
when more information of F is available. One “covariance estimate” method that makes use of F ’s
second-order curvature is also introduced in Section 2.

Finally, extensive numerical experiments are conducted on a series of problems, from simple
convex functions, to optimization problems with stochastic objective function and constrains, and
then to the estimate of entropy and Wasserstein distance of probability distributions. The same
framework is applied to all the problems, with the only difference being the methods used to solve
the problems themselves. In the experiments, our methods can reduce both the expected bias and
the expected square error by a significant amount compared with the naive estimate. This shows
that the proposed framework can serve as a handy and convenient method to improve the estimate
of functions/functionals without requiring specific domain knowledge except convexity/concavity.

2 Problem settings and methods

2.1 Problem settings

Without loss of generality, we introduce our method using convex functions on Euclidean spaces. Let
F : Ω→ R be a convex function with Ω ∈ Rd. Let µ be a probability distribution on Rd that satisfies
Eµx = x∗. Given noisy observations x1,x2, ...,xn sampled i.i.d from µ, our goal is to estimate
F (x∗) using only the observations. As mentioned in the introduction, a naive estimate of F (x∗) is
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to use the function value at the sample average of the observations, F (x̄), where x̄ := 1
n

∑n
i=1 xi.

When the function F is continuous at x∗, this estimate is consistent. However, bias exists due to
convexity. By the Jensen’s inequality we have F (x∗) ≤ EF (x̄), where the expectation is taken over
the sampling of x1, · · · ,xn. This bias may be large if the curvature of F is big or the number of
available observations n is small. To reduce the convexity bias, we design methods to correct the
naive estimate F (x̄). We explore two possible ways of changing F (x̄): the shifting method and
the scaling method. The shifting method takes an additive approach. We estimate a debiasing
quantity c, add it to F (x̄), and use F (x̄) + c as an improved estimate for F (x∗). On the other hand,
the scaling method takes a multiplicative approach. We estimate another debiasing quantity s,
multiply it to F (x̄), and use sF (x̄) as an improved estimate for F (x∗). In the following subsections
we introduce the two methods in detail.

2.2 The shifting method

In the shifting method, we find an additive debiasing quantity c such that F (x̄) + c is a better
estimate for F (x∗) than F (x̄). We measure the quality of the estimate using the squared error

E (F (x̄) + c− F (x∗))2 , (1)

and find c to minimize (1). Treating c as a constant and expanding (1), we obtain a quadratic
function of c,

c2 + 2cE(F (x̄)− F (x∗)) + E(F (x̄)− F (x∗))2,

whose minimum is achieved at
c = F (x∗)− EF (x̄). (2)

Hence, ideally we can use the c defined in (2) as the debiasing quantity.
In practise, however, x∗ and EF (x̄) are unknown, and can only be approximated using noisy

observation x1, · · · ,xn. For general F and µ, we can use bootstrap [5] to estimate the c in (2).
bootstrap uses a uniform distribution on x1, · · · ,xn to approximate µ. Denote X = {x1, ...,xn}
and let µX be the uniform distribution on X . For k = 1, 2, ...,K, define

x̃k =
1

n

n∑
i=1

xk,i, (3)

where {xk,i}ni=1 are i.i.d. sampled from µX . Then, the empirical distribution of {x̃k} is an estimate
of the distribution of x̄. Hence, the shifting debiasing quantity c can be approximated by

c = F (x∗)− EF (x̄) ≈ F

(
1

K

K∑
k=1

x̃k

)
− 1

K

K∑
k=1

F (x̃k).

Since EµX x̃k = x̄, we have F (x̄) ≈ F
(

1
K

K∑
k=1

x̃k
)

when K is large. Therefore, we can use

ĉ := F (x̄)− 1

K

K∑
k=1

F (x̃k), (4)
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as an approximation of c. With this definition of ĉ, the steps of the shifting method with bootstrap
is listed in Algorithm 1.

Algorithm 1: The Shifting Debiasing Method with bootstrap

Input :A convex function F : Rd → R, observations x1, · · · ,xn ∈ Rd, K
Output :Debiased estimate F (x̄) + ĉ

1 x̄← 1
n

n∑
i=1

xi;

2 for k ← 1 to K do
3 Sample x̃k,1, · · · , x̃k,n i.i.d. from the uniform distribution on x1, · · · ,xn;

4 x̃k ← 1
n

n∑
i=1

x̃k,i

5 end

6 ĉ← F (x̄)− 1
K

K∑
k=1

F (x̃k);

The covariance estimate method bootstrap is not the only approach to estimate the debiasing
quantity c, especially when more knowledge about the problem is available. For example, when the
distribution µ is concentrated in a region where F is close to a quadratic function, we can estimate
c by estimating the covariance of x. To see this, assume F is close to its second Taylor polynomial
at x∗, then for F (x̄) we have

F (x̄) ≈ F (x∗) +∇F (x∗)T (x̄− x∗) +
1

2
(x̄− x∗)T∇2F (x∗)(x̄− x∗). (5)

Taking expectation, note that E(x̄− x∗) = 0, we have

E
(
F (x̄)− F (x∗)

)
≈ 1

2
E(x̄− x∗)T∇2F (x∗)(x̄− x∗) =

1

2
Tr(C̄∇2F (x∗)),

where C̄ is the covariance matrix of x̄. Let C be the covariance of x, then we have C̄ = C/n and

E
(
F (x̄)− F (x∗)

)
≈ 1

2n
Tr(C∇2F (x∗)).

Therefore, once we have some knowledge on ∇2F (x∗), e.g. having access to a matrix H ≈ ∇2F (x∗),
we can obtain an estimate of c without using bootstrap:

ĉ = − 1

2n
Tr

(
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)TH

)

= − 1

2n(n− 1)

n∑
i=1

(xi − x̄)TH(xi − x̄). (6)

An algorithm using the covariance estimate method takes similar inputs and outputs as Algorithm 1,
replacing the bootstrap steps in line 2-6 by computing the ĉ in (6). We skip the step-by-step
algorithm here.

2.3 The scaling method

The scaling method can be applied when F is always positive (or negative) for any x. In this case,
we find a multiplicative debiasing quantity s such that sF (x̄) becomes a good estimate for F (x∗).
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Still consider the squared error, which becomes

E (sF (x̄)− F (Ex))2 .

Treating s as a constant and minimizing the squared error as a quadratic function of s gives the
following ideal choice of s:

s =
F (x∗)EF (x̄)

EF 2(x̄)
. (7)

In practice, we can still use bootstrap to obtain an estimate of the s in (7). Recall the choice of
{x̃k}Kk=1 in (3). Using the uniform distribution on {x̃k}Kk=1 as an approximation of µ, and x̄ as an
approximation of x∗, we can take

ŝ :=

F (x̄) 1
K

K∑
k=1

F (x̃k)

1
K

K∑
k=1

F 2(x̃k)

=
F (x̄)

∑K
k=1 F (x̃k)∑K

k=1 F
2(x̃k)

. (8)

as an approximation of s. An algorithm using the scaling method is given in Algorithm 2.

Algorithm 2: The Scaling Debiasing Method with bootstrap

Input :A convex and positive function F : Rd → R, observations x1, · · · ,xn ∈ Rd, K
Output :Debiased estimate ŝF (x̄)

1 x̄← 1
n

n∑
i=1

xi;

2 for k ← 1 to K do
3 Sample x̃k,1, · · · , x̃k,n i.i.d. from the uniform distribution on x1, · · · ,xn;

4 x̃k ← 1
n

n∑
i=1

x̃k,i

5 end

6 ŝ← F (x̄)
∑K

k=1 F (x̃k)∑K
k=1 F

2(x̃k)
;

2.4 Dealing with functionals

The methods above can be easily applied to the cases where F is a convex/concave functional. Taking
a functional of probability distribution, F [p], as an example. Suppose p ∈ P(Ω) is a distribution on
Ω ∈ Rd and F is convex with respect to p. Such functional can be the entropy of p, or the distance
from p to some other probability distributions (e.g. the KL divergence, the Wasserstein distance).
Let x1, ...,xn be points in Ω i.i.d. sampled from p. Then, the Dirac delta distributions δx1 , ..., δxn

can be understood as noisy observations of p. In this case, the naive estimate of F [p] is F [p̄], where
p̄ is the empirical distribution p̄ = 1

n

∑n
i=1 δxi . To estimate the debiasing quantities with bootstrap,

for k = 1, 2, ...,K and i =, 2, ..., n, let xk,i be i.i.d. samples taken uniformly from {x1, ...,xn}, and
let p̃k = 1

n

∑n
i=1 δxk,i

. Then, for the shifting method we can take

ĉ = F [p̄]− 1

K

K∑
k=1

F [p̃k], (9)

and for the scaling method we can take

ŝ =
F [p̄]

∑K
k=1 F [p̃k]∑K

k=1 F
2[p̃k]

. (10)

5



3 Theoretical results

In this section, we provide theoretical results which show that our debiasing methods can reduce
the expected squared error of the estimate. In the statement of the theorems, without loss of
generality, we consider x ∈ Rn and F as a convex function of x. In the theorems and the proofs, we
use Einstein notations to represent tensor contractions involving tensors with rank ≥ 3. For some
examples, if A,B ∈ Rd×d are matrices, AabB

bc represents the matrix product AB; if A ∈ Rd×d×d×d
and B ∈ Rd×d, AabcdBcd gives a d× d matrix by contracting the last two dimensions of A with the
two dimensions of B; if F : Rd → R is a function and x = (x1, · · · , xd),y = (y1, · · · , yd) ∈ Rd are
vectors, ∂3

abcF (x)yaybyc means the sum

d∑
i,j,k=1

∂3F (x)

∂xi∂xj∂xk
yiyjyk.

The shifting method. We first make some assumptions on the input distribution µ and the
function F . In the following, the norm ‖ · ‖ is by default the `2 norm for vectors and matrices.

Assumption 1. The probability distribution µ has up to 8-th finite moments.

Assumption 2. F has finite fourth-order derivatives.

Under the assumptions above, the following main result shows that the shifting method can
strictly reduce the expected squared error, as long as K is at least at the same order of n.

Theorem 2. Suppose Assumption 1 and 2 hold. Consider the shifting debiasing method using the
debiasing quantity ĉ defined in (4). Denote M2 = Eµ(x−x∗)(x−x∗)T ∈ Rd×d, M3 = Eµ(x−x∗)⊗3 ∈
Rd×d×d be the second and third centered moment tensors of µ. Define

σ1 = ∂aF (x∗)∂bF (x∗)(M2)ab = ∇F (x∗)TM2∇F (x∗),

σ2 = ∂2
abF (x∗)(M2)ab = Tr(M2∇2F (x∗)),

σ3 = ∂aF (x∗)∂2
bcF (x∗)(M3)abc,

σ4 = ∂aF (x∗)(M2)ab∂3
bcdF (x∗)(M2)cd.

Then, if n is sufficiently large, K ≥ CKn for some constant CK , and

σ2
2

4
+ σ3 + σ4 −

σ1

CK
> 0, (11)

we have
E(F (x̄) + ĉ− F (x∗))2 < E(F (x̄)− F (x∗))2, (12)

where the expectation is taken on both the sampling of {xi}ni=1 and the bootstrap.

Actually, the assumptions for the theorem above do not require F to be convex or concave. The
debiasing method is effective as long as the quantity σ2

2 is larger than the other three terms in the
condition 11. Roughly speaking, this requires the second derivative of F is large compared with its
first and third derivatives. Though, the condition is easier to hold when F is convex or concave,
otherwise σ2 might be very small.

The condition (11) can be simplified if we problems with certain properties. for example, if µ is
symmetric with respect to x∗, then we have M3 = 0, and hence σ3 = 0. If we further assume that
F is quadratic, we have the following corollary derived from Theorem 2:
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Corollary 1. Let F (x) = 1
2x

TAx+b be a quadratic function with A ∈ Rd×d being a positive definite
matrix and b ∈ R being a scalar. Let µ be a probability distribution on Rd that satisfies Eµx = x∗.
Suppose µ is symmetric with respect to x∗. Then, the shifting debias method can reduce the expected
squared error as long as

Tr(AM2)2

4
>

(x∗)TATM2Ax
∗

CK
.

By this corollary, the shifting method works everywhere for quadratic functions as long as CK is
large enough. This is possible because CK is a hyperparameter that we can choose freely as long as
the computational resource is sufficient. The following corollary states the condition for the shifting
method to work in the limit case in which CK is pushed to infinity:

Corollary 2. Let F satisfy the assumptions in Theorem 2, and µ be a probability distribution on
Rd that satisfies Eµx = x∗ and is symmetric with respect to x∗. Suppose CK is sufficiently large.
Then, the shifting debias method can reduce the expected squared error as long as

σ2
2 > −4σ4, (13)

where σ2 and σ4 are defined the same way as in Theorem 2.

This corollary shows more clearly that the condition on F generally requires the second derivative
to be large compared with the first and third derivatives. Quadratic function under the conditions
in Corollary 2 always satisfy (13) because σ4 vanishes.

A sketch of the proof of Theorem 2 is shown in the next subsection. The full proof is provided
in Section 6.

The scaling method. Next, we study the scaling method, and show a similar results as that for
the shifting method. For the ease of analysis, we make some additional assumptions on µ and F :

Assumption 3. The probability distribution µ has finite moment of all orders.

Assumption 4. There exists a constant B > 0, such that F (x) ≥ B for any x.

Remark 1. Assumption 3 is made for the convenience of analysis. The “finite moment of all
orders” can be relaxed to finite moments up to a certain finite order. The orders we need can be
obtained by tracing the higher-order-terms in the proof of Theorem 3 (given in Section 7).

Under the new assumptions, we have the following theorem whose proof is given in Section 7.

Theorem 3. Suppose Assumption 2, 3 and 4 hold. Consider the scaling debiasing method using
the debiasing quantity ŝ defined in (8). Let M2, M3, σ1, σ2, σ3, σ4 be defined in the same as those
in Theorem 2. Define

σ′3 = ∂aF (x∗)∂bF (x∗)∂bF (x∗)(M3)abc.

Then, if n is sufficiently large, K ≥ CKn for some constant CK , and

σ2
2

4
+ σ3 + σ4 +

2σ′3
F (x∗)

+
4σ1σ2

F (x∗)
− 3σ2

1

F (x∗)2
− σ1

CK
> 0, (14)

we have
E(ŝF (x̄)− F (x∗))2 < E(F (x̄)− F (x∗))2, (15)

where the expectation is taken on both the sampling of {xi} and the bootstrap.
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3.1 Proof sketch of Theorem 2

In this section, we show the idea of the proof for Theorem 2. The proof for Theorem 3 takes a
similar approach, with more involved analysis. As an illustration, some arguments in this section
might not be rigorous. Strict proofs for both Theorem 2 and 3 are given in later sections.

Notations In this proof sketch, we write h = O(g) if there exists a constant C independent
with n such that |h| < C|g| always holds. We use hot(k) to denote higher-order-terms containing
x̄− x∗ or (and) x̃− x̄ with total orders ≥ k. Given observations x1, ...,xn, we use x̃ to denote the
random variable given by the average of n uniformly drawn samples from x1, ...,xn. When taking
expectation, we use E to denote the expectation over both the sampling of {xi} and the choice of x̃
during bootstrap, and use Ex̃ to denote the expectation over {x̃} based on a fixed set of x1, ...,xn.
Let H(x) := ∇2F (x). For any matrix A ∈ Rd×d and vector x ∈ Rd, denote ‖x‖2A = xTAx. We note
that this is not a norm when A is not positive definite.

To prove Theorem 2, first notice that

E(F (x̄) + ĉ− F (x∗))2 = E(F (x̄)− F (x∗))2 + Eĉ2 + 2E(F (x̄)− F (x∗))ĉ.

Hence, we only need to show E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
< 0. Let

c̄ = Ex̃ĉ = F (x̄)− Ex̃F (x̃), and δ = Ex̃F (x̃)− 1

K

K∑
k=1

F (x̃k).

Then, we have ĉ = c̄+ δ and Ex̃δ = 0, and

E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
= E

(
c̄2 + 2c̄δ + δ2 + 2(F (x̄)− F (x∗))c̄+ 2(F (x̄)− F (x∗))δ

)
.

Since c̄ and F (x̄)− F (x∗) do not depend on the sampling of x̃k, by the law of total expectation, we
have

Ec̄δ = E (Ex̃c̄δ) = E (c̄Ex̃δ) = 0,

and similarly E(F (x̄)− F (x∗))δ = 0. Therefore,

E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
= E

(
c̄2 + δ2 + 2(F (x̄)− F (x∗))c̄

)
. (16)

Among the three terms on the right hand side, Ec̄2 and Eδ2 are positive. As an expected debiasing
quantity, c̄ has a negative correlation with F (x̄) − F (x∗), hence 2E(F (x̄) − F (x∗))c̄ is negative.
Next, we will estimate the three terms, and show that under the condition 11 the negative term
E(F (x̄) − F (x∗))c̄ has larger absolute value than the first two terms. Hence, (16) is negative in
total.

Estimate of Ec̄2

Taking a Taylor expansion for F (x̃) at x̄, by Assumption 2, we have

F (x̃)− F (x̄) = ∇F (x̄)T (x̃− x̄) +
1

2
‖x̃− x̄‖2H(x̄) +

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) +O(‖x̃− x̄‖4).

Taking expectation over x̃, noting that Ex̃(x̃− x̄) = 0, we have

− c̄ =
1

2
Ex̃‖x̃− x̄‖2H(x̄) + hot(3) =

1

2n2

n∑
i=1

‖xi − x̄‖2H(x̄) + hot(3). (17)
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The second equality above follows the Lemma 2. Then, a Taylor expansion of H(x̄) at x∗ further
gives

−c̄ =
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) +
1

2n2

n∑
i=1

‖xi − x̄‖2H(x̄)−H(x∗) + hot(3) (18)

=
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) +
hot(1)

n
+ hot(3). (19)

In Lemma 6, we show that generally we have Ehot(k) = O(n−k/2) (strictly speaking, we need to
take the expectation of its square). Also,

∑n
i=1 ‖xi − x̄‖2H(x∗) ∼ O(n). Therefore, from 19 we can

obtain

Ec̄2 =
1

4n4
E

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

+O(
1

n2.5
).

Finally, by showing

1

4n4
E

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

=
Tr(M2H(x∗))2

4n2
+O(

1

n3
) =

σ2
2

4n2
+O(

1

n3
),

we have the following estimate for Ec̄2:

Ec̄2 =
σ2

2

4n2
+O(

1

n2.5
). (20)

Note that the leading term in the estimate has order O( 1
n2 ). This is also the leading term in all

the following estimates. Finally we compare the coefficients of the leading terms and complete the
proof by showing that the total coefficient is negative. The higher-order-terms O( 1

n2.5 ) can be made
sufficiently small when n is sufficiently large.

Estimate of Eδ2

First, we have

Eδ2 = E

(
Ex̃F (x̃)− 1

K

K∑
k=1

F (x̃k)

)2

= EVarx̃

(
1

K

K∑
k=1

F (x̃k)

)
=

1

K
EVarx̃(F (x̃))

=
1

K
EEx̃

(
F (x̃)− Ex̃F (x̃)

)2 ≤ 1

K
EEx̃

(
F (x̃)− F (x̄)

)2
=

1

K
E(F (x̃)− F (x̄))2.

Still using a Taylor expansion of F (x̃) at x̄, substituting K = CKn, we have

Eδ2 ≤ 1

CKn
E
(
∇F (x̄)T (x̃− x̄) + hot(2)

)2
.

Then, expanding ∇F (x̄) at x∗ gives

Eδ2 ≤ 1

CKn
E
(
∇F (x∗)T (x̃− x̄) + hot(2)

)2
=

1

CKn

(
E
(
∇F (x∗)T (x̃− x̄)

)2
+ hot(3)

)
=

1

CKn
E
(
∇F (x∗)T (x̃− x̄)

)2
+O(

1

n2.5
).

9



By Lemma 2, we have

E
(
∇F (x∗)T (x̃− x̄)

)2
=

1

n2
E

n∑
i=1

‖xi − x̄‖2∇F (x∗)∇F (x∗)T =
1

n
E‖x1 − x̄‖2∇F (x∗)∇F (x∗)T

=
1

n
E‖x1 − x∗‖2∇F (x∗)∇F (x∗)T +O(

1

n1.5
).

Therefore,

Eδ2 ≤
E‖x1 − x∗‖2∇F (x∗)∇F (x∗)T

CKn2
+O(

1

n2.5
) =

σ1

CKn2
+O(

1

n2.5
). (21)

Estimate of E(F (x̄)− F (x∗))c̄

A Taylor expansion of F (x̄) at x∗ gives

E(F (x̄)− F (x∗))c̄ = E∇F (x∗)T (x̄− x∗)c̄+ E
1

2
‖x̄− x∗‖2H(x∗)c̄+ Ehot(3)c̄. (22)

For the third term on the right hand side of 22, recall that the estimate for c̄ gives Ec̄2 = O( 1
n2 ),

which implies E hot(3)c̄ ≤ O( 1
n2.5 ) via the Cauchy-Schwarz inequality.

For the second term, note that the leading term of c̄ has a negative sign, this second term can
be shown to be negative. This term represents the goodness of the debiasing quantity, and is used
to offset all other positive terms, including Ec̄2 and Eδ2. Specifically, by (19), we have

E
1

2
‖x̄− x∗‖2H(x∗)c̄ = − 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) +O(
1

n2.5
).

Then, we show that

E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) =
1

n2

 n∑
i,j=1

E‖xi − x∗‖H(x∗)

2

+O(
1√
n

) = σ2
2 +O(

1√
n

),

(details in Section 6). Therefore, we have

E
1

2
‖x̄− x∗‖2H(x∗)c̄ = − σ2

2

4n2
+O(

1

n2.5
). (23)

The leading term of the estimate above has the same magnitude as the estimate for Ec̄2. However,
this negative part will take over Ec̄2 considering the factor 2 before E(F (x̄)− F (x∗))c̄.

Next, we consider the first term on the right hand side of 22. We need a finer representation for
c̄. By Lemma 3, we can improve (17) into

−c̄ =
1

2n2

n∑
i=1

‖xi − x̄‖2H(x̄) +
1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c) + hot(3)

=
1

2n2

n∑
i=1

‖xi − x̄‖2H(x̄) +
hot(0)

n2
+ hot(3). (24)

Taylor expansions of H(x̄) and ∇3F (x̄) at x∗ further give

c̄ = − 1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) −
1

2n2

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c) +

hot(0)

n2
+ hot(3)

10



Therefore,

E(F (x̄)− F (x∗))c̄ = −E∇F (x∗)T (x̄− x∗)
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗)

− E∇F (x∗)T (x̄− x∗)
1

2n2

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c)

+ E∇F (x∗)T (x̄− x∗)

(
hot(0)

n2
+ hot(3)

)
. (25)

The last term in (25) is obviously O( 1
n2.5 ). For the other two terms, we have the following estimate

(see the details in Section 6):

−E∇F (x∗)T (x̄− x∗)
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) = − σ3

2n2
+O(

1

n2.5
),

−E∇F (x∗)T (x̄− x∗)
1

2n2

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c) = − σ4

2n2
+O(

1

n3
).

Altogether, we have

E∇F (x∗)T (x̄− x∗)c̄ ≤ −σ3 + σ4

2n2
+O(

1

n2.5
).

And for E(F (x̄)− F (x∗)c̄) we have

E(F (x̄)− F (x∗)c̄) ≤ − σ2
2

4n2
− σ3 + σ4

2n2
+O(

1

n2.5
). (26)

3.1.1 Putting together

Finally, combining the estimates (20), (21), and (26), we have

E
(
c̄2 + δ2 + 2(F (x̄)− F (x∗)c̄)

)
≤ − σ2

2

4n2
+

σ1

CKn2
− σ3 + σ4

n2
+O(

1

n2.5
). (27)

The coefficient of 1
n2 is negative when condition 11 is satisfied. This completes the proof.

4 Numerical experiments

In this section we show numerical results of the debiasing methods proposed in Section 2. As a
general framework of debiasing convex/concave functions, we test our methods on a wide variety of
problems ranging from simple convex functions, optimization problems, to functionals of probability
distributions. Specifically, we test the following seven problems: (P1) Quadratic functions, (P2)
Fourth-order polynomials, (P3) Rational functions, (P4) Unconstrained optimization problems with
random objective functions, (P5) Constrained optimization problems with random constraints, (P6)
Entropy of discrete probability distribution, (P7) Wasserstein distance between two probability
distributions. For all the problems, we apply both the shifting and scaling methods using bootstrap.
The covariance estimate method is tested on a subset of problems for which it is easy to obtain an
estimate of the Hessian at x∗.
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4.1 P1: Quadratic functions

We consider simple multivariate quadratic functions

F (x) = xTAx, (P1)

with x ∈ Rd and A ∈ Rd×d being a positive definite matrix. Obviously, F is a convex function with
respect to x. As described in previous sections, given A and a probability distribution µ on Rd
which satisfies Eµx = x∗, we estimate F (x∗) using samples from µ. The debiasing methods are
tested for many different A’s and µ’s. For each A and µ, the experiment is repeated by R = 1000
times, and in each experiment we first sample a new set of noisy observations and then run the
debiasing methods.

To measure and compare the performance of our debiasing methods, we compute the root mean
squared error (RMSE) and the average bias of the estimates across 1000 experiments, and compare
the values with that of the naive estimate. Concretely, let F idebias and F inaive be the estimate given
by the debiasing method and the naive method in the i-th experiment, respectively, we compute
and compare the following two relative quantities:

RMSEr =

√∑1000
i=1 (F idebias − F (x∗))2√∑1000
i=1 (F inaive − F (x∗))2

, Biasr =

∑1000
i=1 (F idebias − F (x∗))∑1000
i=1 (F inaive − F (x∗))

. (28)

By the definitions, when the debiasing method is effective, we expect RMSEr ∈ [0, 1) and Biasr ∈
(−1, 1). The closer these quantities are to zero, the more effective the debiasing method. These two
errors will also be studied in the experiments for other problems.

Before the debiasing methods are applied, a generic positive definite matrix A is generated by its
eigenvalue decomposition. Concretely, we generate a diagonal matrix Λ with positive entries, and
an orthogonal matrix Q, and then let A = QΛQT . We take µ as an isotropic Gaussian distribution
centered at x∗, i.e. µ = N(x∗, σ2I). The experiment results for (P1) are shown in Figure 1 and 2.
In the experiments, we study the performance of all the three debiasing methods (shifting, scaling,
covariance estimate) for problems with different dimensions (Figure 1 left), different condition
numbers of A (Figure 1 middle), different noisy strength σ (Figure 1 right), and different norm of
x∗ (Figure 2 left). Throughout these experiments, we take n = 10 noisy observations of x∗, and
do K = 10 rounds of resampling when bootstrap is applied. The figures show that the shifting
debiasing method and the covariance estimate method can usually significantly reduce the estimate
error and bias, while the scaling method does not perform as well when the dimension is large or
the noise is strong. The debiasing methods become less effective when the noise level is low or ‖x∗‖
is large, in which case the noise observations are (effectively) close to x∗ and the naive estimate
is already good. The experiments on the condition number of A show that our methods are not
sensitive to the spectrum of A. Here we remark that the covariance estimate method performs
especially well because the function F is quadratic, hence the Hessian matrix has all information
about the function.

For the bootstrap methods, we also study the number of resampling rounds K required for
different n. Results in Figure 2 show that a constant K is usually sufficient to approach best-
achievable performance for any n. The RMSE almost stops decreasing after K ≈ 50 even when n is
much bigger. This shows that our theories in Section 3 can potentially be improved.
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Figure 1: Experiment results for the quadratic function (P1). For all the experiments shown in this
figure, we take n = K = 10 and ‖x∗‖2 = 2. (left) the relative RMSEs and biases for problems with
different dimension d, while we fix σ = 1 and κ = 2 (κ is the condition number of A). (middle)
results for problems with different κ, while we fix d = 100 and σ = 1. (right) results for problems
with different σ, while we fix d = 100 and κ = 2.

Figure 2: (left) results for P1 with different norms of x∗, while we fix d = 100, κ = 2, and σ = 1.
(middle and right) Bootstrap methods (shifting and scaling) for different n and K. The middle
panel shows the results for the shifting method, and the right panel shows the results for the scaling
method. Results for different n are shown in lines with different colors. During the experiments we
fix d = 100, κ = 2, and σ = 1.

4.2 P2: Fourth-order polynomials

We then consider a higher-order polynomial function given by

F (x) = (xTAx)2, (P2)

where x ∈ Rd and A ∈ Rd×d is a positive definite matrix. Compared with P1, this function has
non-uniform curvature. It is flat when x is small and grows fast when x is large. In P2, we consider
similar experiment settings as those for P1. We test the methods against problems with different
dimensions, noise levels, and norms of x∗. The results are shown in Figures 3. We see that for this
problem only the scaling method performs well in most cases. The covariance estimate method
works when σ and ‖x∗‖ lie in specific ranges. The shifting method sometimes even performs worse
than the naive estimate. Experiments on the condition number of A still show that the methods are
insensitive with κ. We ignore the figure here.
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Figure 3: Experiment results for the fourth-order function (P2). For all the experiments, we take
n = K = 10 and κ = 2. (left) the relative RMSEs and biases for problems with different dimension
d, while we fix σ = 1 and ‖x∗‖2 = 2. (middle) results for problems with different σ, while we fix
d = 100 and ‖x∗‖2 = 2. (right) results for problems with different ‖x∗‖, while we fix d = 100 and
σ = 1.

4.3 P3: Rational functions

Next, we consider a rational function

F (x) =
d∑
i=1

(
bixi +

ci
xi

)
, (P3)

where x = (x1, ..., xd)
T ∈ Rd is the input and bi, ci, i = 1, 2, ..., d are positive numbers. This function

is convex for xi > 0, i = 1, ..., d. Hence, in the experiments, we take a coordinate-wise exponential
distribution as µ. Fixing n = K = 10, we test our methods on problems with different dimensions,
magnitudes of ci, and ‖x∗‖. Note that changing the magnitude of bi is equivalent with changing
ci in the opposite direction. Results in Figure 4 show that the three debiasing methods perform
similarly. They become more effective when the dimension of the problem increases. When c is small
or x∗ is large, the debiasing methods do not provide much improvement compared with the naive
estimate. This is because in these cases the function is almost linear around x∗ and the convexity
bias is small.

Figure 4: Experiment results for the rational function (P3). For all the experiments, we keep
n = K = 10 and ‖b‖ = 1. (left) the relative RMSEs and biases for problems with different
dimension d, while we fix ‖c‖ = 1 and ‖x∗‖ = 2. (middle) results for problems with different ‖c‖,
while we fix d = 100 and ‖x∗‖2 = 2. (right) results for problems with different ‖x∗‖, while we fix
d = 100 and ‖c‖ = 1.
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4.4 P4: Unconstrained optimization problems

When the objective function is parameterized by a parameter vector, the optimal value of some
optimization problems is a convex or concave function of the parameters. For instance, let F (α) be
the optimal value of the following minimization problem given some α ∈ Rd,

min
x
αT f(x) + g(x), (29)

where f : Rp → Rd, g : Rp → R are functions of x. Then, F is a concave function of α because it is
the minimum of a family of affine functions [3]. Therefore, our debiasing methods can be applied
when we are interested in the minimum value of (29) at α∗ but can only get access to its noisy
observations.

In the experiments, we consider specifically the minimization of a quadratic function when the
Hessian of the objective function has some randomness, i.e. the concave function we debias is

F (A) = min
x∈Rd

1

2
xTAx + bTx, (P4)

where A ∈ Rd×d is a positive definite matrix with randomness, and b is a fixed vector. We easily
have F (A) = −1

2b
TA−1b. Given a generic groundtruth Hessian matrix A∗ = UΛUT , where UΛUT

is the eigenvalue decomposition of A∗ and Λ = diag(λ1, ..., λd), we generate noisy observations of
A∗ by sampling

A ∼ U · diag(ξ1λ1, ..., ξdλd) · UT ,

where ξ1, ..., ξd are independent random variables that follows the gamma distribution with shape
k and scale 1/k, whose density function is f(x) = kk

Γ(k)x
k−1e−kx and expectation is 1. This makes

sure that all noisy observations are positive definite.
Fixing n = 10 and K = 100, Figure 5 shows the RMSEs and biases of the shifting and scaling

methods for different dimensions, condition numbers of A∗, and the shape parameter k. Note that
the actual dimension of the problem is d2. The results show that our methods are generally effective.
The methods perform better when the dimension is higher, or the condition number of A is not too
large. When k is small, i.e. the variance of the data distribution is large, the shifting method does
not work well, while the scaling method keeps working well.

Figure 5: Experiment results for the rational function (P4). For all the experiments, we keep n = 10
and K = 100. (left) the relative RMSEs and biases for problems with different dimension d2, while
we fix κ = 2 and k = 1. (middle) results for problems with different κ, while we fix d = 100 and
k = 1. (right) results for problems with different k, while we fix d = 100 and κ = 2.
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4.5 P5: Constrained optimization problem

Convex debiasing methods can also be applied to constrained optimization problems with randomness.
The randomness can appear on the constraints. Consider

min
x

f(x) s.t. Ax = b. (30)

Fixing f and A, let F (b) be the optimal value of (30) given b. Suppose strong duality holds, then

F (b) = min
x

max
µ

f(x) + µT (Ax− b) = max
µ

(
µTb + max

x
(f(x)− µTAx)

)
,

which shows that F (b) is the maximum of affine functions of b. Therefore, F is convex. The
debiasing methods applies when we are interested in the optimal value at some b∗ while only its
noisy observations can be obtained.

In the experiments, we estimate

F (b∗) = arg min
x

xTBx, s.t. Ax = b, (P5)

where x ∈ Rp, B ∈ Rp×p is a positive definite matrix, A ∈ Rd×p, and b ∈ Rd. Given b∗, we take µ as
an isotropic Gaussian distribution centered at b∗, i.e. µ = N(b∗, σ2I). Throughout the experiments,
we fix n = 10 and K = 100, and test the methods for different dimensions, ratio of d/p, and noise
level σ. Figure 6 shows the results. We see that both methods can significantly reduce the bias and
RMSE, while the shifting method usually outperforms the scaling method. Better performance is
achieved when d is large, d is not too close to p, or σ is large.

Figure 6: Experiment results for the constrained optimization problem (P5). For all the experiments,
we keep n = 10, K = 100, and ‖b‖ = 1. (left) the relative RMSEs and biases for problems with
different dimension d, while we take p = 2d. (middle) results for problems with different d fixing
p = 100. The horizontal axis is the ratio of d and p. (right) results for problems with different σ,
while we fix d = 100 and p = 200.

4.6 P6: Entropy

Next, we test the estimate of entropy for discrete probability distributions, i.e.

H(p) = −
n∑
i=1

pi ln pi, (P6)

where p = (p1, ..., pd) satisfies pi ≥ 0 and
∑d

i=1 pi = 1. We generate the groundtruth distribution
p∗ from symmetric Dirichlet distribution with parameter α. Noisy observations of p∗ are the
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empirical distributions of single samples from p∗. In the experiments, we fix K = 100, and study
the performance of the debiasing methods for problems with different dimension d, α, and the ratio
of n and d.

For this problem, the covariance estimate method takes simple form. Let p̄ = (p1, p2, ..., pd)
be the average of noisy observations of p∗. Then, the covariance matrix is diag(p̄)− p̄p̄T , and the
Hessian of the entropy functional (viewed as a function of vector p) is diag(−1/p̄). Hence, we
have Tr(CH) = −(d− 1), and the debiased estimate is H(p̄) + d−1

2n . It is the same as the classical
debiasing scheme in [16].

The results are shown in Figure 7. For well-behaved problems, all three methods perform
similarly. They can all significantly reduce the bias and error. When α is small, i.e. the distribution
is sparse, or when n is small compared with d, the bootstrap methods perform better than the
covariance estimate method. We remark here that the experiments are part of the effort to show
the wide applicability of our methods. Many delicate methods have been developed specifically for
the entropy estimate problem, and we do not expect our methods to outperform all of them on this
specific problem. Hence, we do not compare our methods with state-of-the-art methods here.

Figure 7: Experiment results for the entropy estimate problem (P6). For all the experiments, we
keep K = 100. (left) the relative RMSEs and biases for problems with different dimension d, while
we take n = 5d and α = 1. (middle) results for problems with different α fixing d = 100 and
n = 500. (right) results for problems with different n/d, while we fix d = 100 and α = 1.

4.7 P7: Wasserstein distance

Finally, we estimate the 2-Wasserstein distance between a pair of distributions (p, q) on Rd, defined
by

W2(p, q)2 =

∫
Rd×Rd

‖x− y‖22dγ(x,y), (P7)

where γ is a coupling of p and q whose two marginals are p and q, respectively. In the experiments,
p∗ and q∗ are taken as Gaussian distributions N(µ1, σ

2
1I) and N(µ2, σ

2
2I), where µ1, µ2 ∈ Rd are

two vectors fixed for all trials. Noisy observations of p∗ and q∗ are empirical distributions of i.i.d.
samples of the distributions. The Wasserstein distance between empirical distributions are computed
by a linear programming problem. Specifically, let p̂ be an empirical distribution on x1, ...,xn, q̂ be
an empirical distribution on y1, ...,ym, W (p̂, q̂) is given by the following problem

min
γ∈Rm×n

∑
i,j

γij‖xi − yj‖2, s.t.γ1 =
1

m
1, γT1 =

1

n
1, (31)

where 1 denotes the all-one vector with proper size.
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In the experiments, without loss of generality, we take µ1 = 0. We consider σ1 = σ2 = σ, and
fix σ = 1, K = 50. Figure 8 shows the results for problems with different dimension d, ‖µ2‖, and
n. Results show that our methods can improve the naive estimate. The improvement gets smaller
when the dimension is higher. This might be caused by the essential difficulty of estimating the
Wasserstein distance in high dimensional spaces [22].

Figure 8: Experiment results for the Wasserstein distance problem (P7). For all the experiments,
we keep K = 50. (left) the relative RMSEs and biases for problems with different dimension d,
while we take n = 10 and ‖µ2‖ = 1. (middle) results for problems with different ‖µ2‖ fixing d = 5
and n = 10. (right) results for problems with different n, while we fix d = 5 and ‖µ2‖ = 1.

5 Summary

In this work, we propose a general framework to correct the bias introduced by convexity/concavity
when estimating the value of functions or functionals. Our methods do not require domain knowledge
of the objective functions, and can be applied as long as noisy observations of the groundtruth input
are available. Numerical experiments on a wide range of problems show the effectiveness of our
methods.

While our methods have general applicability, their performance may not be optimal on specific
problems. For example, extensive researches are conducted on the estimate of entropy, and some
proposed methods might have better empirical or theoretical properties than our methods. We
emphasize that the value of our approach lies mostly on its generality—it can serve as an off-the-shelf
tool to debias the estimate of convex functions and obtain improvement upon the naive estimate
using the sample mean.

Nevertheless, the gain is not free—it comes with a price of additional computational cost.
Compared with the naive estimate, our methods with bootstrap requires evaluating the function
for multiple times. For some applications, such as optimization problems, evaluating the function
can be expensive. Though, what to blame is not the methods, but the limited observations and
knowledge on the problem. This is the cost of generality. If we have more domain knowledge, the
covariance estimate method can be applied without high computational cost.

6 Proof of Theorem 2

6.1 Notations.

In the proof, we write h = O(g) if there exists a constant C independent with n such that |h| < C|g|
always holds. When using these O notations, the dimension d is treated as a constant. We use hot(·; ·)
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to denote higher-order-terms appearing in the Taylor expansion. Specifically, for quantities f1, · · · , fk
and integer r, hot(f1, · · · , fk; r) denotes (sum of) terms with form f r11 · · · f

rk
k with r1 + · · ·+ rk ≥ r.

When taking expectation, we use E to denote the expectation over both the sampling of {xi} and
the sampling of {x̃} during bootstrap, and use Ex̃ to denote the expectation over the sampling of
{x̃} based on a fixed set of x1, ...,xn. The norm ‖ · ‖ always means 2-norm. We use H(x) to denote
the Hessian matrix of F at x, i.e. H(x) = ∇2F (x). For any matrix A ∈ Rd×d and vector x ∈ Rd,
denote ‖x‖2A = xTAx.

We use Einstein notations mostly when tensors with dimension ≥ 3 are involved. When only
vectors and matrices are involved, we still use the conventional matrix product notations. For
vectors, we use superscript as the index of entries, and subscript as the index of the vector in a set
of vectors. Entries are denoted by lower case letters. For example, the i-th noisy observation vector
is given by xi = (x1

i , x
2
i , · · · , xdi ) ∈ Rd.

6.2 Main proof

To prove the theorem, first notice that

E(F (x̄) + ĉ− F (x∗))2 = E(F (x̄)− F (x∗))2 + Eĉ2 + 2E(F (x̄)− F (x∗))ĉ.

Hence, we only need to show E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
< 0. Let

c̄ = Ex̃ĉ = F (x̄)− Ex̃F (x̃), and δ = Ex̃F (x̃)− 1

K

K∑
k=1

F (x̃k).

Then, we have ĉ = c̄+ δ and Ex̃δ = 0, and

E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
= E

(
c̄2 + 2c̄δ + δ2 + 2(F (x̄)− F (x∗))c̄+ 2(F (x̄)− F (x∗))δ

)
.

Note that c̄ and F (x̄)−F (x∗) do not depend on the sampling of x̃k, by the law of total expectation,
we have

Ec̄δ = E (Ex̃c̄δ) = E (c̄Ex̃δ) = 0,

and similarly E(F (x̄)− F (x∗))δ = 0. Therefore,

E
(
ĉ2 + 2(F (x̄)− F (x∗))ĉ

)
= E

(
c̄2 + δ2 + 2(F (x̄)− F (x∗))c̄

)
. (32)

Next, we estimate the three terms on the right hand side of (32) separately. In the estimates
below, we take O( 1

n2 ) terms as leading terms, and show that there is no term with lower order.

6.2.1 Estimate of Ec̄2.

In the proof, we will extensively use the Taylor expansion of F and its derivatives. The results are
given in Lemma 1. By the the Taylor expansion (59) in Lemma 1, we have

F (x̃)−F (x̄) = ∇F (x̄)T (x̃− x̄)+
1

2
‖x̃− x̄‖2H(x̄) +

1

6
∂3
abcF (x̄)(x̃a− x̄a)(x̃b− x̄b)(x̃c− x̄c)+O(‖x̃− x̄‖4).

Taking expectation over x̃, note that Ex̃(x̃− x̄) = 0, we have

−c̄ =
1

2
Ex̃‖x̃− x̄‖2H(x̄) +

1

6
Ex̃∂

3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) + Ex̃O(‖x̃− x̄‖4).
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According to Lemma 2 and 3, we have

−c̄ =
1

2n2

n∑
i=1

‖xi − x̄‖2H(x̄) +
1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c) + Ex̃O(‖x̃− x̄‖4).

By the Taylor expansion (61) for H, for any vector y ∈ Rd, we have

‖y‖2H(x̄) = ‖y‖2H(x∗) + ∂3
abcF (x∗)yayb(x̄c − (x∗)c) +O(‖y‖2‖x̄− x∗‖2).

Therefore, for c̄ we have

−c̄ =
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) +
1

2n2

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c)

+O

(
1

2n2

n∑
i=1

‖xi − x̄‖22‖x̄− x∗‖2
)

+
1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c)

+ Ex̃O(‖x̃− x̄‖4).

Let

c1 = − 1

2n2

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c), c2 =

1

2n2

n∑
i=1

‖xi − x̄‖22‖x̄− x∗‖2,

c3 = − 1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c), c4 = Ex̃‖x̃− x̄‖4.

Then, we have

c̄ = − 1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) + c1 +O(c2) + c3 +O(c4), (33)

Taking square and expectation for (33), there exists a constant C > 0 such that

Ec̄2 ≤ E
1

4n4

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

+ C2E(|c1|+ |c2|+ |c3|+ |c4|)2

+ E
C

2n2

∣∣∣∣∣
n∑
i=1

‖xi − x̄‖2H(x∗)

∣∣∣∣∣ (|c1|+ |c2|+ |c3|+ |c4|)

≤ E
1

4n4

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

+ C2E(|c1|+ |c2|+ |c3|+ |c4|)2

+
1

2
√
n
E

(
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗)

)2

+

√
n

2
C2E(|c1|+ |c2|+ |c3|+ |c4|)2. (34)

Next, we give estimates to the terms in (34). We will use results in Lemma 6. First, Letting
λmax be the eigenvalue of H(x∗) with largest absolute value, we have

E

(
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗)

)2

≤ λ2
max

4n4
E

(
n∑
i=1

‖xi − x̄‖2
)2

= O(
1

n2
).
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Therefore,

1

2
√
n
E

(
1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗)

)2

= O(
1

n2.5
). (35)

Next, for Ec2
1, we have

Ec2
1 ≤

1

4n4
E

(
n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c)

)2

≤
d3 max

a,b,c
∂3
abcF (x∗)2

4n4
E

(
n∑
i=1

‖xi − x̄‖2‖x̄− x∗‖

)2

≤
d3 max

a,b,c
∂3
abcF (x∗)2

4n4

n∑
i,j=1

E‖xi − x̄‖2‖xj − x̄‖2‖x̄− x∗‖2

≤
d3 max

a,b,c
∂3
abcF (x∗)2

4n4

n∑
i,j=1

(
E‖xi − x̄‖6

) 1
3
(
E‖xj − x̄‖6

) 1
3
(
E‖x̄− x∗‖6

) 1
3

=

d3 max
i,j,k

∂ijkF (x∗)2

4n4
· n2O(

1

n
)

= O(
1

n3
), (36)

where the fourth to the fifth line is given by Lemma 6. Similarly, we can obtain Ec2
2 = O( 1

n4 ). And
by Lemma 7 and similar derivations, we can obtain Ec2

4 = O( 1
n4 ). For c3, the Taylor expansion 62

gives

|c3| =

∣∣∣∣∣ 1

6n3

n∑
i=1

∂3
abcF (x∗)(xai − x̄a)(xbi − x̄b)(xci − x̄c) +

1

6n3
O(

n∑
i=1

‖x̄− x∗‖‖xi − x̄‖3)

∣∣∣∣∣
≤
d3 max

a,b,c
∂3
abc|F (x∗)|

6n3

n∑
i=1

‖xi − x̄‖3 +
1

6n3
O(

n∑
i=1

‖x̄− x∗‖‖xi − x̄‖3).

Taking square and by Lemma 6 we have Ec2
3 = O( 1

n4 ). Therefore, considering (|c1|+|c2|+|c3|+|c4|)2 ≤
4(c2

1 + c2
2 + c2

3 + c2
4), back to (34) we have

Ec̄2 ≤ 1

4n4
E

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

+O(
1

n2.5
). (37)

Next, by xi − x̄ = (xi − x∗) + (x∗ − x̄) we obtain

‖xi − x̄‖2H(x∗) = ‖xi − x∗‖2H(x∗) + 2(xi − x∗)TH(x∗)(x̄− x∗) + ‖x̄− x∗‖2H(x∗).

Note that the terms with powers of ‖x̄− x∗‖ become small quantities (no bigger than O( 1√
n

)) after

taking expectation, we have

1

4n4
E

(
n∑
i=1

‖xi − x̄‖2H(x∗)

)2

=
1

4n4
E

(
n∑
i=1

‖xi − x∗‖2H(x∗)

)2

+O(
1

n2.5
).
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Thus,

Ec̄2 ≤ 1

4n4
E

(
n∑
i=1

‖xi − x∗‖2H(x∗)

)2

+O(
1

n2.5
).

Further notice that

1

4n4
E

(
n∑
i=1

‖xi − x∗‖2H(x∗)

)2

=
1

4n4

n∑
i,j=1

E‖xi − x∗‖2H(x∗)‖xj − x∗‖2H(x∗)

=
1

4n4

n∑
i,j=1

E‖xi − x∗‖2H(x∗)E‖xj − x∗‖2H(x∗)

+
1

4n4

n∑
i=1

(
E‖xi − x∗‖4H(x∗) −

(
E‖xi − x∗‖2H(x∗)

)2)
=

1

4n2

(
E‖x− x∗‖2H(x∗)

)2
+O(

1

n3
).

Finally, since E‖x− x∗‖2H(x∗) = Tr(M2H(x∗)), we have the following estimate for Ec̄2:

Ec̄2 ≤ Tr(M2H(x∗))2

4n2
+O(

1

n2.5
) =

σ2
2

4n2
+O(

1

n2.5
). (38)

6.2.2 Estimate of Eδ2.

For Eδ2, first notice that

Eδ2 = E

(
Ex̃F (x̃)− 1

K

K∑
k=1

F (x̃k)

)2

= EVarx̃

(
1

K

K∑
k=1

F (x̃k)

)
=

1

K
EVarx̃(F (x̃))

=
1

K
EEx̃

(
F (x̃)− Ex̃F (x̃)

)2 ≤ 1

K
EEx̃

(
F (x̃)− F (x̄)

)2
=

1

K
E(F (x̃)− F (x̄))2.

Hence, taking the Taylor expansion for F (x̃) at x̄, the last term above gives

Eδ2 ≤ 1

CKn
E
(
∇F (x̄)T (x̃− x̄) +

1

2
‖x̃− x̄‖2H(x̄)

+
1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) +O(‖x̃− x̄‖4)

)2

=
1

CKn
E
(
∇F (x∗)T (x̃− x̄) +O(‖x̄− x∗‖‖x̃− x̄‖) +O(‖x̄− x∗‖2‖x̃− x̄‖)

+O(‖x̄− x∗‖3‖x̃− x̄‖) +
1

2
‖x̃− x̄‖2H(x∗) +O(‖x̄− x∗‖‖x̃− x̄‖2)

+O(‖x̄− x∗‖2‖x̃− x̄‖2) +
1

6
∇3F (x∗)[x̃− x̄] +O(‖x̄− x∗‖‖x̃− x̄‖3) +O(‖x̃− x̄‖4)

)2

=
1

CKn

(
E
(
∇F (x∗)T (x̃− x̄)

)2
+ hot(‖x̃− x̄‖, ‖x̄− x∗‖; 3)

)
. (39)

where the second equality follows from the Taylor expansions of ∇F (x̄), H(x̄), and ∇3F (x̄) at x∗.
The highest-order terms in hot(‖x̃− x̄‖, ‖x̄− x∗‖; 3) have order 8. Therefore, by Lemma 6 and 7,
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we have Ehot(‖x̃− x̄‖, ‖x̄− x∗‖; 3) = O( 1
n1.5 ), and thus

Eδ2 ≤ 1

CKn
E
(
∇F (x∗)T (x̃− x̄)

)2
+O(

1

n2.5
) =

1

CKn
E‖x̃− x̄‖2∇F (x∗)∇F (x∗)T +O(

1

n2.5
).

Next, by Lemma 2, we have

E‖x̃− x̄‖2∇F (x∗)∇F (x∗)T =
1

n2
E

n∑
i=1

‖xi − x̄‖2∇F (x∗)∇F (x∗)T

=
1

n
E‖x1 − x̄‖2∇F (x∗)∇F (x∗)T

=
1

n
E‖x1 − x∗‖2∇F (x∗)∇F (x∗)T +O(

1

n1.5
). (40)

Hence, Eδ2 can be bounded by:

Eδ2 ≤ 1

CKn2
E
(
∇F (x∗)T (x− x∗)

)2
+O(

1

n2.5
) =

σ1

CKn2
+O(

1

n2.5
). (41)

6.2.3 Estimate of E(F (x̄)− F (x∗))c̄

Taking Taylor expansion for F , we have

E(F (x̄)− F (x∗))c̄ = E
(
∇F (x∗)T (x̄− x∗) +

1

2
‖x̄− x∗‖2H(x∗)

+
1

6
∂3
abcF (x∗)(x̄a − (x∗)a)(x̄b − (x∗)b)(x̄c − (x∗)c) +O(‖x̄− x∗‖4)

)
c̄

= E∇F (x∗)T (x̄− x∗)c̄+ E
1

2
‖x̄− x∗‖2H(x∗)c̄+ EO(‖x̄− x∗‖3)c̄ (42)

We will estimate the three terms above using the estimate (33) for c̄.
For the first term on the right hand side of (42), there exists a constant C, such that

E∇F (x∗)T (x̄− x∗)c̄ = E∇F (x∗)T (x̄− x∗)

(
− 1

2n2

n∑
i=1

‖xi − x̄‖2H(x∗) + c1 +O(c2) + c3 +O(c4)

)

≤ − 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) + E∇F (x∗)T (x̄− x∗)c1

+ C‖∇F (x∗)‖E‖x̄− x∗‖(|c2|+ |c3|+ |c4|). (43)

We first consider the first term on the right hand side of (43). For convenience, let zi = xi − x∗,
and z̄ = x̄− x∗. Then, we have Ezi = 0, and

E∇F (x∗)T (x̄− x∗)
n∑
i=1

(xi − x̄)TH(x∗)(xi − x̄) = E∇F (x∗)T z̄
n∑
i=1

(zi − z̄)TH(x∗)(zi − z̄).
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For the right hand side, we have

E∇F (x∗)T z̄

n∑
i=1

(zi − z̄)TH(x∗)(zi − z̄)

=E∇F (x∗)T z̄

(
n∑
i=1

zTi H(x∗)zi − nz̄TH(x∗)z̄

)

=E∇F (x∗)T
1

n

n∑
i=1

zi

n∑
i=1

zTi H(x∗)zi − nE∇F (x∗)T z̄ · z̄TH(x∗)z̄

=
1

n

n∑
i,j=1

E∇F (x∗)Tziz
T
j H(x∗)zj − nE∇F (x∗)T z̄ · z̄TH(x∗)z̄. (44)

For the first term above, because of the independence of z1, ...,zn and Ezi = 0, we have

1

n

n∑
i,j=1

E∇F (x∗)Tziz
T
j H(x∗)zj =

1

n

n∑
i=1

E∇F (x∗)Tziz
T
i H(x∗)zi

= E∇F (x∗)Tz1z
T
1 H(x∗)z1

= σ3 (45)

For the second term in (44), by Lemma 6 we have∣∣nE∇F (x∗)T z̄ · z̄TH(x∗)z̄
∣∣ ≤ n‖F (x∗)‖λmaxE‖x̄− x∗‖3 = O(

1√
n

). (46)

Combining (45) and (46) gives

− 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) ≤ −
σ3

2n2
+O(

1

n2.5
). (47)

Next, we consider the second term on the right hand side of (43). Using the same z notations
as above, we have

E∇F (x∗)T (x̄− x∗)c1 = − 1

2n2
E∇F (x∗)T z̄

n∑
i=1

∂3
abcF (x∗)(zai − z̄a)(zbi − z̄b)z̄c.

For the right hand side, we have

− E∇F (x∗)T z̄

n∑
i=1

∂3
abcF (x∗)(zai − z̄a)(zbi − z̄b)z̄c

=− E∇F (x∗)T z̄
n∑
i=1

∂3
abcF (x∗)zai z

b
i z̄
c + nE∇F (x∗)T z̄∂3

abcF (x∗)z̄az̄bz̄c

=− 1

n2

n∑
i,j,k=1

E∇F (x∗)Tzi
(
∂3
abcF (x∗)zaj z

b
jz
c
k

)
+ nEhot(z̄; 4)

=− 1

n2

n∑
i,j,k=1

E∇F (x∗)Tzi
(
∂3
abcF (x∗)zaj z

b
jz
c
k

)
+O(

1

n
). (48)
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By the independence of zi and Ezi = 0, we obtain

1

n2

n∑
i,j,k=1

E∇F (x∗)Tzi
(
∂3
abcF (x∗)zaj z

b
jz
c
k

)
=

1

n2

n∑
i,j=1

E∇F (x∗)Tzi
(
∂3
abcF (x∗)zaj z

b
jz
c
i

)
=

1

n2

n∑
i,j=1

(EzTi ∇F (x∗)zi)
T (E∂3

abcF (x∗)zbjz
c
j)

+
1

n2

n∑
i=1

(
E∇F (x∗)Tzi∂

3
abcF (x∗)zai z

b
i z
c
i − (EzTi ∇F (x∗)zi)

T (E∂3
abcF (x∗)zbi z

c
i

)
=(EzT∇F (x∗)z)T (E∂3

abcF (x∗)zbzc) +O(
1

n
)

=(∇F (x∗)TM2)(∂3
abcF (x∗)(M2)bc) +O(

1

n
)

=σ4 +O(
1

n
). (49)

Therefore, we have

E∇F (x∗)T (x̄− x∗)c1 = − σ4

2n2
+O(

1

n3
). (50)

For the third term in (43), recall that Ec2
2 = O( 1

n4 ), Ec2
3 = O( 1

n4 ), and Ec2
4 = O( 1

n4 ), by Hölder’s
inequality we have

E‖x̄− x∗‖(|c2|+ |c3|+ |c4|) = O(
1

n2.5
). (51)

Combining (47), (50), and (51), we have

E∇F (x∗)T (x̄− x∗)c̄ ≤ −σ3 + σ4

2n2
+O(

1

n2.5
). (52)

For the second term on the right hand side of (42), there exists a constant C, such that

E
1

2
‖x̄− x∗‖2H(x∗)c̄ ≤ −

1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) + E
∣∣∣∣12‖x̄− x∗‖2H(x∗)

∣∣∣∣C 4∑
i=1

|ci|

= − 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2H(x∗) +O(
1

n2.5
), (53)

where the estimate of E‖x̄− x∗‖H(x∗)(|c1|+ |c2|+ |c3|+ |c4|) follows similarly the estimate of

1
2n2E

n∑
i=1
‖xi− x̄‖2H(x∗)(|c1|+ |c2|+ |c3|+ |c4|) when we deal with Ec̄2. For the first term on the right
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hand side of (53), we have

E(x̄− x∗)TH(x∗)(x̄− x∗)
n∑
i=1

(xi − x̄)TH(x∗)(xi − x̄)

=E(x̄− x∗)TH(x∗)(x̄− x∗)
n∑
i=1

(xi − x∗)TH(x∗)(xi − x∗) +O(
1√
n

)

=
1

n2

n∑
i,j,k=1

E(xi − x∗)TH(x∗)(xj − x∗)(xk − x∗)TH(x∗)(xk − x∗) +O(
1√
n

)

=
1

n2

n∑
i,k=1

E(xi − x∗)TH(x∗)(xi − x∗)(xk − x∗)TH(x∗)(xk − x∗) +O(
1√
n

)

=
1

n2

n∑
i,k=1

E(xi − x∗)TH(x∗)(xi − x∗)E(xk − x∗)TH(x∗)(xk − x∗) +O(
1√
n

)

=σ2
2 +O(

1√
n

).

Note that from the fourth to the fifth line we are moving terms with i = k into the O( 1√
n

) term,

and adding 1
n2

(
E(xi − x∗)TH(x∗)(xi − x∗)

)2
terms, which are also no bigger than O( 1√

n
). Hence,

back to (53) we have

E
1

2
‖x̄− x∗‖2H(x∗)c̄ ≤ −

σ2
2

4n2
+O(

1

n2.5
). (54)

For the third term on the right hand side of (42), recall that Ec̄2 = O( 1
n2 ), we have

E‖x̄− x∗‖3c̄ ≤
√
E‖x̄− x∗‖6Ec̄2 = O(

1

n2.5
). (55)

Finally, combining (52), (54) and (55), we have

E(F (x̄)− F (x∗))c̄ ≤ − σ2
2

4n2
− σ3 + σ4

2n2
+O(

1

n2.5
). (56)

6.2.4 Putting together.

Finally, putting the estimates (38), (41), (56) together, we have

E(ĉ2 + 2(F (x̄)− F (x∗))ĉ) ≤ σ2
2

4n2
+

σ1

CKn2
− σ2

2

2n2
− σ3

n2
− σ4

n2
+O(

1

n2.5
)

=
1

n2

(
−σ

2
2

4
+

σ1

CK
− σ3 − σ4

)
+O(

1

n2.5
). (57)

By the condition (11), the coefficient for 1
n2 is negative. Hence, when n is sufficiently large, we have

E(ĉ2 + 2(F (x̄)− F (x∗))ĉ) < 0. (58)

This completes the proof.
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6.3 Lemmas

In this section we provide and prove several lemmas used in the proof above. These lemmas may
also be used in the proof of Theorem 3.

The first lemma gives Taylor expansions for F and its derivatives based on Assumption 2. The
results are standard in calculus, hence we ignore the proof.

Lemma 1. Let F : Rd → R be a function satisfying Assumption 2. Then, for any x,y ∈ Rd, we
have the following Taylor expansions for F and its derivatives:

F (y) = F (x) +∇F (x)T (y − x) +
1

2
(y − x)T∇2F (x)(y − x)

+
1

6
∂3
abcF (x)(ya − xa)(yb − xb)(yc − xc) +O(‖y − x‖4), (59)

∇F (y) = ∇F (x) +∇2F (x)(y − x) +
1

2
∂3
abcF (x)(yb − xb)(yc − xc) +O(‖y − x‖3), (60)

∇2F (y) = ∇2F (x) + ∂3
abcF (x)(yc − xc) +O(‖y − x‖2), (61)

∇3F (y) = ∇3F (x) +O(‖y − x‖). (62)

The next two lemmas deal with the expectation of quadratic forms and third order monomials
over the choice of x̃.

Lemma 2. Let ν be the uniform distribution on n points x1,x2, ...,xn ∈ Rd, and x̄ = 1
n

∑n
i=1 xi =

Eνx. Let x̃ be the empirical mean of m samples i.i.d. sampled from ν, i.e. x̃ = 1
m

∑m
i=1 x̃i, x̃i

iid∼ ν.
Let A ∈ Rd×d be an arbitrary matrix. Then,

Eν(x̃− x̄)TA(x̃− x̄) =
1

nm

n∑
i=1

(xi − x̄)TA(xi − x̄).

Proof. We ignore the subscript ν in the expectation. Obviously, we have Ex̃ = x̄ and Ex̃i = x̄.
Hence,

E(x̃− x̄)TA(x̃− x̄) =
1

m2

m∑
i,j=1

E(x̃i − x̄)TA(x̃j − x̄)

=
1

m2

 m∑
i=1

E(x̃i − x̄)TA(x̃i − x̄) +
∑
i 6=j

E(x̃i − x̄)TA(x̃j − x̄)


=

1

m2

m∑
i=1

E(x̃i − x̄)TA(x̃i − x̄)

=
1

m

1

n

n∑
i=1

(xi − x̄)TA(xi − x̄).

Lemma 3. Let ν be the uniform distribution on n points x1,x2, ...,xn ∈ Rd, and x̄ = 1
n

∑n
i=1 xi =

Eνx. Let x̃ be the empirical mean of m samples i.i.d. sampled by ν, i.e. x̃ = 1
m

∑m
i=1 x̃i, x̃i

iid∼ ν.
Let T ∈ Rd×d×d be an arbitrary d× d× d tensor. Then,

EνTabc(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) =
1

m2n

n∑
i=1

Tabc(x
a
i − x̄a)(xbi − x̄b)(xci − x̄c).
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Proof. The proof is similar to that of Lemma 2. Still ignore the subscript ν in the expectation. We
have

ETabc(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) = ETabc

(
1

m

m∑
i=1

x̃ai − x̄a
)(

1

m

m∑
i=1

x̃bi − x̄b
)(

1

m

m∑
i=1

x̃ci − x̄c
)

=
1

m3

m∑
i,j,k=1

ETabc(x̃ai − x̄a)(x̃bj − x̄b)(x̃ck − x̄c)

=
1

m3

m∑
i=1

ETabc(x̃ai − x̄a)(x̃bi − x̄b)(x̃ci − x̄c)

=
1

m2

1

n

n∑
i=1

Tabc(x
a
i − x̄a)(xbi − x̄b)(xci − x̄c).

The next lemma deals with the residual term Ex̃‖x̃− x̄‖3 of c̄.

Lemma 4. Let ν be the uniform distribution on n points x1,x2, ...,xn ∈ Rd, and x̄ = 1
n

∑n
i=1 xi =

Eνx. Let x̃ be the empirical mean of n samples i.i.d. sampled by ν, i.e. x̃ = 1
n

∑n
i=1 x̃i, x̃i

iid∼ ν.
Then,

Eν‖x̃− x̄‖3 ≤ 1

n3

(
n∑
i=1

‖xi − x̄‖2
n∑
i=1

‖xi − x̄‖4
) 1

2

+

√
3

n3

(
n∑
i=1

‖xi − x̄‖2
) 3

2

.

Proof. We ignore the subscript ν in the expectation. By Cauchy-Schwartz inequality, we have

E‖x̃− x̄‖3 ≤
√
E‖x̃− x̄‖2E‖x̃− x̄‖4. (63)

For Eν‖x̃− x̄‖2, by Lemma 2, we have

E‖x̃− x̄‖2 =
1

n2

n∑
i=1

‖xi − x̄‖2. (64)

For Eν‖x̃ − x̄‖4, noting the independency of {x̃i}, we expand the expression and drop the zero
terms, and obtain

Eν‖x̃− x̄‖4 =
1

n4

n∑
i,j,k,l=1

E(x̃i − x̄)T (x̃j − x̄)(x̃k − x̄)T (x̃l − x̄)

=
1

n4

 n∑
i=1

E‖x̃i − x̄‖4 +
∑
i 6=j

E‖x̃i − x̄‖2‖x̃j − x̄‖2 + 2
∑
i 6=j

E
(
(x̃i − x̄)T (x̃j − x̄)

)2
≤ 1

n3
E‖x̃1 − x̄‖4 +

3

n2

(
E‖x̃1 − x̄‖2

)2
=

1

n4

n∑
i=1

‖xi − x̄‖4 +
3

n4

(
n∑
i=1

‖xi − x̄‖2
)2

. (65)

Substituting (64) and (65) into (63), and use the result
√
a+ b ≤

√
a+
√
b completes the proof.

The next two lemmas estimates the moments of x− x∗, x− x̄ and x̄− x∗. The first one is a
general result for moments of the average of i.i.d random variables.
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Lemma 5. Let X be a random variable taking values on R, and X1, X2, ..., Xn are i.i.d copies of
X. Let X̄ = 1

n(X1 +X2 + · · ·+Xn). Let k be a positive integer. Assume EX = 0, and X has up to
2k-th order finite moments. Then, for any l ≤ 2k, we have E|X̄|l = O( 1

nl/2 ).

Proof. We first show the results for even l. Consider the set

Sl =

{
(r1, r2, ..., rp) : r1 ≥ r2 ≥ ... ≥ rp > 0,

p∑
i=1

ri = l

}
.

Let |Sl| be the number of elements in Sl. Then, |Sl| is a number that depends only on l. When l is
an even number, we have

E|X̄|l =
1

nl
E
(
X1 + ...+Xn

)l
=

1

nl
E

 ∑
(r1,...,rp)∈S

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

Xr1
i1
Xr2
i2
· · ·Xrp

ip

 . (66)

The right hand side of (66) is the multinomial expansion of (X1 + ...+Xn)l, organized according to
the powers of different Xi’s in each term, and C(r1,...,rp) are positive integers related with multinomial
coefficients. C(r1,...,rp) depends on l and r1, ..., rp, but is independent with n. Since EX = 0, the

expectation of Xr1
i1
Xr2
i2
· · ·Xrp

ip
is nonzero only when there is no ri that equals to 1. Hence, (66)

equals to

1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

E
(
Xr1
i1
Xr2
i2
· · ·Xrp

ip

) . (67)

Because Xi1 , ..., Xip are independent, we have E
(
Xr1
i1
Xr2
i2
· · ·Xrp

ip

)
=
∏p
j=1 EX

rj
ij

. By the finite

moment assumption of X, we can find a constant C such that |EXj | ≤ C holds for any 1 ≤ j ≤ 2k.
Then, we have

1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=...6=ip

E
(
Xr1
i1
Xr2
i2
· · ·Xrp

ip

) ≤ 1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=...6=ip

Cp

 .

Moreover, since r1 ≥ r2 ≥ ... ≥ rp ≥ 2, we have p ≤ l/2, and hence

1

nl

∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

C l ≤ 1

nl

∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)n
l
2C l ≤

|Sl|maxC(r1,...,rp)C
l

nl/2
.

This completes the proof for even l.
For odd l, note that 2k ≥ l + 1. The result follows by a Cauchy-Schwartz inequality:

E|X̄|l ≤
√

E|X̄|l+1E|X̄|l−1.

Lemma 6. Let µ be a probability distribution on Rd that satisfies Assumption 1, and x,x1,x2, ...,xn
be i.i.d samples from µ. Let x∗ = Eµx, and x̄ = 1

n

∑n
i=1 xi. Then, for any positive integer k ≤ 8,

we have

E‖x− x∗‖k = O(1), E‖xi − x̄‖k = O(1), E‖x̄− x∗‖k = O(
1

nk/2
).
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Proof. The first result is given by Assumption 1. The third result is a direct corollary of Lemma 5.
The second results follows the triangle inequality:

‖xi − x̄‖k ≤
(
‖x− x∗‖+ ‖x̄− x∗‖

)k ≤ 2k
(
‖x− x∗‖k + ‖x̄− x∗‖K

)
.

Finally, we study E‖x̃− x̄‖ using similar approaches.

Lemma 7. Let µ be a probability distribution on Rd that satisfies Assumption 1, and ν is the
uniform ditribution on [n]. Consider x,x1,x2, ...,xn i.i.d sampled from µ, and k1, ..., kn i.i.d sampled
from ν. Let x̄ = 1

n

∑n
i=1 xi, and x̃ = 1

n

∑n
i=1 xki. Then, for any positive integer k ≤ 8, we have

E‖x̃− x̄‖k = O(
1

nk/2
),

where the expectation is taken on both µ and ν.

Proof. Following the proof of Lemma 5, fixing x1, ...,xn, for even number l ≤ 8 we have

Eν‖x̃− x̄‖l ≤ 1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

Eν‖xki1 − x̄‖r1Eν‖xki2 − x̄‖r2 · · ·Eν‖xkip − x̄‖rp



=
1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

p∏
j=1

( 1

n

n∑
i=1

‖xi − x̄‖rj
) . (68)

When we consider the sampling of x1, ...,xn, we need to take an expectation of (68) over {xi}. For
each term in the sums in (68), we have

Eµ
p∏
j=1

( 1

n

n∑
i=1

‖xi − x̄‖rj
)

=
1

np

n∑
k1,...,kp=1

Eµ
p∏
j=1

‖xkj − x̄‖rj

≤ 1

np

n∑
k1,...,kp=1

p∏
j=1

(
Eµ‖xkj − x̄‖l

) rj
l

=
1

np

n∑
k1,...,kp=1

p∏
j=1

O(1)

= O(1),

where the first to the second line is given by the Hölder’s inequality, and the second to the third line
is given by Lemma 6. Substituting the estimate above to (63), we have that there exists a constant
C independent with n, such that

E‖x̃− x̄‖l ≤ 1

nl

 ∑
(r1,...,rp)∈S

rp≥2

C(r1,...,rp)

n∑
i1,...,ip=1
i1 6=... 6=ip

C

 = O(
1

n
l
2

).

For odd l we can show the result similar to the proof of Lemma 5 using the Cauchy-Schwartz
inequality.
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7 Proof of Theorem 3

7.1 Additional notations

In this section, we will expand our use of the hot notations. We use hotx̄ to denote higher-order-terms
with coefficients depending on F (x̄) or derivatives of F evaluated at x̄. For example,(

∇F (x̄)T (x̃− x̄)
)2

+ F (x̄)‖x̃− x̄‖2H(x̄)

can be represented by hotx̄(x̃ − x̄; 2). By Lemma 1, F (x̄), ∇F (x̄), ∇2F (x̄) and ∇3F (x̄) can
be represented by hot(x̄ − x∗; 0). (Note that in the Taylor expansion the coefficients depends
on x∗, which is treated as a constant.) Hence, any hotx̄(f1, · · · , fk; r) can be represented by
hot(f1, · · · , fk, x̄− x∗; r). Moreover, we use hotEx̃

to denote higher-order-terms that expectations
with respect to x̃ are taken for some parts. For example,

∇F (x∗)T (x̄− x∗)Ex̃‖x̃− x̄‖2H(x∗)

can be represented by hotEx̃
(x̄− x∗, x̃− x̄; 3). Using the Hölder’s inequality and Jensen’s inequality,

it is easy to show that the Ex̃ does not change the order of the expectation of the higher-order-terms.
For any r > 0, we have

EhotEx̃
(x̄− x∗, x̃− x̄; r) = O(

1

nr/2
).

7.2 Main proof

We take a similar path as the proof of Theorem 2. Specifically, in this section we consider another ĉ
defined as ĉ = (ŝ− 1)F (x̄), then we have

E(ŝF (x̄)− F (x∗))2 = E(F (x̄) + ĉ− F (x∗))2,

which gives the same form as the shifting debiasing, but with a different debiasing quantity. To
prove the theorem, we still show Eĉ2 + 2ĉ(F (x̄)− F (x∗)) < 0.

We first decompose ĉ to separate the effect of the sampling of {xi} and the sampling of {x̃k}.
Recall that

ŝ =

F (x̄)
K∑
k=1

F (x̃k)

K∑
k=1

F (x̃k)2

=

F (x̄) 1
K

K∑
k=1

F (x̃k)

1
K

K∑
k=1

F (x̃k)2

.

Define s̄ = F (x̄)Ex̃F (x̃)
Ex̃F (x̃)2 , c̄ = (s̄− 1)F (x̄), and

s1 =
1

K

K∑
k=1

F (x̃k)− Ex̃F (x̃), s2 =
1

K

K∑
k=1

F (x̃k)
2 − Ex̃F (x̃)2. (69)

Then, we have

ĉ = c̄+ (ŝ− s̄)F (x̄) = c̄+
F (x̄)2

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)
(Ex̃F (x̃)2 + s2)Ex̃F (x̃)2

= c̄+
F (x̄)2

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)
(Ex̃F (x̃)2)2

−
F (x̄)2

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)
s2

(Ex̃F (x̃)2 + s2)(Ex̃F (x̃)2)2
.
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Denote

δ1 =
F (x̄)2

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)
(Ex̃F (x̃)2)2

, δ2 = −
F (x̄)2

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)
s2

(Ex̃F (x̃)2 + s2)(Ex̃F (x̃)2)2
.

Then, we can write ĉ = c̄+ δ1 + δ2. Since Ex̃s1 = Ex̃s2 = 0, we know Ex̃δ1 = 0, and hence

Eĉ2 + 2ĉ(F (x̄)− F (x∗)) = E
(
c̄2 + δ2

1 + δ2
2 + 2c̄δ1 + 2c̄δ2 + 2δ1δ2

+ 2c̄(F (x̄)− F (x∗) + 2δ1(F (x̄)− F (x∗) + 2δ2(F (x̄)− F (x∗))

= E
(
c̄2 + δ2

1 + δ2
2 + 2c̄δ2 + 2δ1δ2 + 2c̄(F (x̄)− F (x∗) + 2δ2(F (x̄)− F (x∗)

)
. (70)

Next, we estimate the terms in (70).

7.2.1 Estimate of Eδ2
2

By Assumption 4, F has a positive lower bound B. Hence, we have Ex̃F (x̃)2 ≥ B2 and

Ex̃F (x̃)2 + s2 =
1

K

K∑
k=1

F (x̃k)
2 ≥ B2.

Substituting the lower bounds into δ2, we have

|δ2| ≤
F (x̄)2

B6

∣∣(s1Ex̃F (x̃)2 − s2Ex̃F (x̃)
)
s2

∣∣ ≤ F (x̄)2Ex̃F (x̃)2

B6
|s1s2|+

F (x̄)2Ex̃F (x̃)

B6
|s2

2|.

Therefore, by the Hölder’s inequality and the Jensen’s inequality,

Eδ2
2 ≤

2

B12

(
E[F (x̄)4(Ex̃F (x̃)2)2s2

1s
2
2] + E[F (x̄)4(Ex̃F (x̃))2s4

2]
)

≤ 2

B12

((
EF (x̄)12

) 1
3
(
EF (x̃)12

) 1
3
(
Es12

1 Es12
2

) 1
6 +

(
EF (x̄)10

) 2
5
(
EF (x̃)10

) 1
5
(
Es10

2

) 2
5

)
.

For the s1, s2 terms, by Lemma 10, we have(
Es12

1 Es12
2

) 1
6 = O(

1

K2n2
) = O(

1

n4
), and

(
Es10

2

) 2
5 = O(

1

K2n2
) = O(

1

n4
).

For the EF (x̄)12, EF (x̄)10, EF (x̃)12, and EF (x̃)10 terms, by Lemma 11, they are all O(1). Therefore,
we have the following estimate for Eδ2

2 :

Eδ2
2 = O(

1

n4
). (71)

7.2.2 Estimate of Eδ1δ2

Similar to the estimate of δ2, we have

|δ1| ≤
F (x̄)2Ex̃F (x̃)2

B4
|s1|+

F (x̄)2Ex̃F (x̃)

B4
|s2|.
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Therefore, together with the estimate of δ2, we have

|Eδ1δ2| ≤
1

B10

(
E[F (x̄)4(Ex̃F (x̃)2)2s2

1|s2|] + 2E[F (x̄)4(Ex̃F (x̃)2)(Ex̃F (x̃))|s1|s2
2]

+E[F (x̄)4(Ex̃F (x̃))2|s2|3]
)

≤ 1

B10

(
(EF (x̄)11)

4
11EF (x̃)11)

4
11 (E|s1|11)

2
11 (E|s2|11)

1
11

+ 2(EF (x̄)10)
4
10EF (x̃)10)

3
10 (E|s1|10)

1
10 (E|s2|10)

2
10

+ (EF (x̄)9)
4
9EF (x̃)9)

2
9 (E|s2|9)

3
9

)
= O(

1

n3
) +O(

1

n3
) +O(

1

n3
)

= O(
1

n3
). (72)

In the derivations above, we use Lemma 10 and the fact that EF (x̄)l = O(1), EF (x̃) = O(1) for
l > 0 (Lemma 11).

7.2.3 Estimate of Eδ2(F (x̄)− F (x∗))

By the Hölder’s inequality and the result in Section 7.2.1, we have

|Eδ2(F (x̄)− F (x∗))| ≤
√
Eδ2

2E(F (x̄)− F (x∗))2

≤ O(
1

n2
)
√
E(F (x̄)− F (x∗))2.

For E(F (x̄)− F (x∗))2, by the Taylor expansion and Lemma 8 we have

E(F (x̄)− F (x∗))2 = E
(
∇F (x∗)T (x̄− x∗) +

1

2
‖x̄− x∗‖H(x∗) +

1

6
∇3F (x∗)[x̄− x∗] +O(‖x̄− x∗‖4)

)2

≤ E
(
hot(‖x̄− x∗‖; 2)

)
= O(

1

n
).

Therefore,

Eδ2(F (x̄)− F (x∗)) = O(
1

n2.5
). (73)

7.2.4 Estimate of Eδ2
1

Note that

δ2
1 =

F (x̄)4

(Ex̃F (x̃)2)4

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)2
.

We first simplify the problem by noticing that F (x̄) and F (x̃) are both close to F (x∗). Specifically,
let

α :=
1

F (x∗)4

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)2
, β = δ2

1 − α.

Then,

β =
F (x̄)4F (x∗)4 − (Ex̃F (x̃)2)4

(Ex̃F (x̃)2)4F (x∗)4

(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)2
. (74)
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By the lower bound of F and the Hölder’s inequality, we have

E|β| ≤ 1

B12

√
E (F (x̄)4F (x∗)4 − (Ex̃F (x̃)2)4)2 E (s1Ex̃F (x̃)2 − s2Ex̃F (x̃))4. (75)

For the term in (75) with s1 and s2, note that this term contains fourth-order monomials of s1 and
s2. Similar to the analysis in Section 7.2.1, we know this term has order O( 1

n4 ). For the other term,
by Jensen’s inequality we have

E
(
F (x̄)4F (x∗)4 − (Ex̃F (x̃)2)4

)2 ≤ E
(
F (x̄)4F (x∗)4 − Ex̃F (x̃)8

)2
= E

(
Ex̃

(
F (x̄)4F (x∗)4 − F (x̃)8

))2
≤ E

(
F (x̄)4F (x∗)4 − F (x̃)8

)2
For the term on the last line, a Taylor expansion at x∗ gives

E
(
F (x∗)4

(
F (x∗) + hot(x̄− x∗; 1)

)4 − (F (x∗) + hot(x̃− x∗; 1)
)8)2

=E
(
hot(x̄− x∗; 1) + hot(x̃− x∗; 1)

)2
≤E
(
hot(‖x̄− x∗‖, ‖x̃− x∗‖; 2)

)
=O(

1

n
).

Therefore, we have

E
(
F (x̄)4F (x∗)4 − (Ex̃F (x̃)2)4

)2
= O(

1

n
),

and back to (75) we have E|β| = O( 1
n2.5 ), and hence

Eδ2
1 = Eα+O(

1

n2.5
).

Next, we study Eα. By the definition of s1 and s2, using the theorem of total expectation, we
have

E
(
s1Ex̃F (x̃)2 − s2Ex̃F (x̃)

)2
= EVarx̃

(
1

K

K∑
k=1

(
F (x̃k)Ex̃F (x̃)2 − F (x̃k)

2Ex̃F (x̃)
))

=
1

K
EEx̃

(
F (x̃)Ex̃F (x̃)2 − F (x̃)2Ex̃F (x̃)

)2
=

1

CKn
E
(
F (x̃)Ex̃F (x̃)2 − F (x̃)2Ex̃F (x̃)

)2
. (76)

Taylor expansion of F (x̃) at x̄ gives

F (x̃) = F (x̄) +∇F (x̄)T (x̃− x̄) + hotx̄(x̃− x̄; 2),

F (x̃)2 = F (x̄)2 + 2F (x̄)∇F (x̄)T (x̃− x̄) + hotx̄(x̃− x̄; 2).

Here, the higher-order-terms notation hotx̄ means these terms depends on the derivatives of F
at x̄. We note that a Taylor expansion of these derivatives at x∗ will replace the dependency on
∇F (x̄), H(x̄) and ∇F (x̄) by powers of x̄− x∗. It will not lower the order of the terms, Hence, the
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higher-order-terms can be written as hot(x̃− x̄, x̄−x∗; 2). Plugging the Taylor expansions into (76),
since Ex̃(x̃− x̄) = 0, we obtain

F (x̃)Ex̃F (x̃)2 = F (x̄)3 + F (x̄)2∇F (x̄)T (x̃− x̄) + F (x̄)2hot(x̃− x̄, x̄− x∗; 2)

+
(
F (x̄) +∇F (x̄)T (x̃− x̄) + hotx̄(x̃− x̄, x̄− x∗; 2)

)
Ex̃hotx̄(x̃− x̄, x̄− x∗; 2)

= F (x̄)3 + F (x̄)2∇F (x̄)T (x̃− x̄) + hotEx̃
(x̃− x̄, x̄− x∗; 2), (77)

where hotEx̃
denotes higher-order-terms in which expectations over x̄ are taken for some terms.

Similarly, we have

F (x̃)2Ex̃F (x̃) = F (x̄)3 + 2F (x̄)2∇F (x̄)T (x̃− x̄) + hotEx̃
(x̃− x̄, x̄− x∗; 2). (78)

Combining (77) and (78), (76) becomes

1

CKn
E
(
F (x̄)2∇F (x̄)T (x̃− x̄) + hotEx̃

(x̃− x̄, x̄− x∗; 2)
)2

=
1

CKn
E
(
F (x̄)2∇F (x̄)T (x̃− x̄)

)2
+

1

CKn
EhotEx̃

(x̃− x̄, x̄− x∗; 3)

=
1

CKn
EF (x̄)4(∇F (x̄)T (x̃− x̄))2 +O(

1

n2.5
). (79)

Expanding F (x̄) and ∇F (x̄) at x∗, similar to arguments above Equation (77), we have

EF (x̄)4 (∇F (x̄)(x̃− x̄))2 = EF (x∗)4 (∇F (x∗)(x̃− x̄))2 + E
(
hot(x̃− x̄, x̄− x∗; 3)

)
= EF (x∗)4 (∇F (x∗)(x̃− x̄))2 +O(

1

n1.5
).

Moreover, by the analysis (40) in Section 6.2.2, we have

E (∇F (x∗)(x̃− x̄))2 =
1

n
∇F (x∗)TM2∇F (x∗) +O(

1

n1.5
) =

σ1

n
+O(

1

n1.5
).

Back to (76), we have

1

CKn
E
(
F (x̃)Ex̃F (x̃)2 − F (x̃)2Ex̃F (x̃)

)2
=
F (x∗)4σ1

CKn2
+O(

1

n2.5
).

Hence, for α, we have

Eα =
σ1

CKn2
+O(

1

n2.5
),

and for δ2
1 we have the same estimate

Eδ2
1 =

σ1

CKn2
+O(

1

n2.5
). (80)

7.2.5 Estimate of Ec̄2

To estimate Ec̄2, we first study c̄. Recall that

c̄ = (s̄− 1)F (x̄) =
F (x̄)2EF (x̃)

EF (x̃)2
− F (x̄).
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To simplify notations, we use F , E1, E2 to represent F (x̄), Ex̃F (x̃), and Ex̃F (x̃)2 when no confusion
is caused. Our intuition is that E1 is close to F and E2 is close to F 2. Hence, we will try to expand
F (x̃) and F (x̃)2 at x̄. First, applying the identity 1

1+a = 1− a+ a2

1+a for a = E2
F 2 − 1, we have

c̄ =
E1

E2
F 2

− F

= E1

(
1−

(E2

F 2
− 1
)

+

(
E2
F 2 − 1

)2
E2
F 2

)
− F

= (E1 − F ) +
E1

F 2
(F 2 − E2) +

E1(E2 − F 2)2

F 2E2
. (81)

We will estimate the three terms in (81). We start from the first and the second terms.
For the first term E1 − F , expanding F (x̃) at x̄ gives

E1 − F = Ex̃
1

2
‖x̃− x̄‖2H(x̄) + Ex̃

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) + Ex̃O(‖x̃− x̄‖4). (82)

For the second term in (81), we first expand E1 and F 2 − E2. For E1, similar to (82) we have

E1 = F (x̄) + Ex̃
1

2
‖x̃− x̄‖2H(x̄) + Ex̃

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) + Ex̃O(‖x̃− x̄‖4). (83)

For E2, we have

E2 = Ex̃

(
F (x̄) +∇F (x̄)T (x̃− x̄) +

1

2
‖x̃− x̄‖2H(x̄) +

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

+O(‖x̃− x̄‖4)

)2

= F (x̄)2 + Ex̃‖x̃− x̄‖2(F (x̄)H(x̄)+∇F (x̄)∇F (x̄)T ) + Ex̃
1

3
F (x̄)∂3

abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

+ Ex̃∇F (x̄)T (x̃− x̄)‖x̃− x̄‖2H(x̄) + Ex̃hotx̄(x̃− x̄; 4). (84)

We still replace hotx̄(x̃− x̄; 4) by hot(x̃− x̄, x̄− x∗; 4). Combining (83) and (84), we have

E1(E2 − F 2)

=

(
F (x̄) + Ex̃

1

2
‖x̃− x̄‖2H(x̄) + Ex̃

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) + Ex̃O(‖x̃− x̄‖4)

)
×
(
Ex̃‖x̃− x̄‖2(F (x̄)H(x̄)+∇F (x̄)∇F (x̄)T ) + Ex̃

1

3
F (x̄)∂3

abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

+ Ex̃∇F (x̄)T (x̃− x̄)‖x̃− x̄‖2H(x̄) + Ex̃hot(x̃− x̄, x̄− x∗; 4)

)
=Ex̃F (x̄)‖x̃− x̄‖2(F (x̄)H(x̄)+∇F (x̄)∇F (x̄)T ) + Ex̃

1

3
F (x̄)2∂3

abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

+ Ex̃F (x̄)∇F (x̄)T (x̃− x̄)‖x̃− x̄‖2H(x̄) + hotEx̃
(x̃− x̄, x̄− x∗; 4).

Therefore,

E1

F 2
(F 2 − E2) = −Ex̃‖x̃− x̄‖2(

H(x̄)+
∇F (x̄)∇F (x̄)T

F (x̄)

) − Ex̃
1

3
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

− Ex̃
∇F (x̄)T

F (x̄)
(x̃− x̄)‖x̃− x̄‖2H(x̄) + hotEx̃

(x̃− x̄, x̄− x∗; 4). (85)
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Combining (82) and (85), we have

(E1 − F ) +
E1

F 2
(F 2 − E2) = −1

2
Ex̃‖x̃− x̄‖2(

H(x̄)+
2∇F (x̄)∇F (x̄)T

F (x̄)

)
− Ex̃

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c)

− Ex̃
∇F (x̄)T

F (x̄)
(x̃− x̄)‖x̃− x̄‖2H(x̄) + hotEx̃

(x̃− x̄, x̄− x∗; 4).

Let A(x) = H(x) + 2∇F (x)∇F (x)T

F (x) . By Lemma 2 and 3, we have

(E1 − F ) +
E1

F 2
(F 2 − E2) = − 1

2n2

n∑
i=1

‖xi − x̄‖2A(x̄) −
1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c)

− 1

n3

n∑
i=1

∇F (x̄)T

F (x̄)
(xi − x̄)‖xi − x̄‖2H(x̄) + hotEx̃

(x̃− x̄, x̄− x∗; 4). (86)

Let

c1 = − 1

6n3

n∑
i=1

∂3
abcF (x̄)(xai − x̄a)(xbi − x̄b)(xci − x̄c)−

1

n3

n∑
i=1

∇F (x̄)T

F (x̄)
(xi − x̄)‖xi − x̄‖2H(x̄),

c2 be the higher-order-terms in (86), and c3 = E1(E2−F 2)2

F 2E2
. Then, we have

c̄ = − 1

2n2

n∑
i=1

‖xi − x̄‖2A(x̄) + c1 + c2 + c3.

Also let c4 = 1
2n2

n∑
i=1
‖xi − x̄‖2A(x∗)−A(x̄), then

c̄ = − 1

2n2

n∑
i=1

‖xi − x̄‖2A(x∗) + c1 + c2 + c3 + c4. (87)

Next, we come to estimate Ec̄2 using the decomposition (87). Similar to (34), we have

Ec̄2 ≤ 1

4n4
E

(
n∑
i=1

‖xi − x̄‖2A(x∗)

)2

+ E(|c1|+ |c2|+ |c3|+ |c4|)2

+
1

2
√
n
E

(
1

2n2

n∑
i=1

‖xi − x̄‖2A(x∗)

)2

+

√
n

2
E(|c1|+ |c2|+ |c3|+ |c4|)2. (88)

Since A(x∗) is a fixed matrix, it is easy to show that

1

2
√
n
E

(
1

2n2

n∑
i=1

‖xi − x̄‖2A(x∗)

)2

=
1

2
√
n
O(

1

n2
) = O(

1

n2.5
).

For c1, except the 1
n3 factors, it consists the sum of 2n terms. All terms and their products are

O(1) after taking expectation. (This can be shown rigorously by taking Taylor expansions of F (x̄),
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∇F (x̄), H(x̄) and ∇3F (x̄) at x∗ and applying Lemma 8 and 9.) Therefore, Ec2
1 = 1

n6O(n2) = O( 1
n4 ).

For the higher-order-terms c2, by Lemma 8 and 9, we easily have Ec2
2 = O( 1

n4 ).
For c3, by the lower bound of F , we have

Ec2
3 ≤

1

B8
EE2

1(E2 − F 2)4 ≤ 1

B8

√
EF (x̃)4E(E2 − F 2)8.

By Lemma 11, EF (x̃)4 = O(1). By (84), the leading term of E2−F 2 is a second-order term. Hence,
the leading term of (E2 − F 2)8 has order 16, which gives E(E2 − F 2)8 = O( 1

n8 ). Totally, we have

Ec2
3 = O( 1

n4 ). For c4, by a Taylor expansion of A(x̄) at x∗, we have

A(x̄)−A(x∗) = ∂3
abcF (x∗)(x̄c − (x∗)c) +

2
(
(x̄− x∗)TH(x∗)∇F (x∗)T +∇F (x∗)H(x∗)(x̄− x∗)

)
F (x∗)

− 2∇F (x∗)∇F (x∗)T

F (x∗)2
∇F (x∗)(x̄− x∗) +O(‖x̄− x∗‖2). (89)

Note that the leading term of A(x̄)−A(x∗) is the x̄− x∗ term, which gives

E‖A(x̄)−A(x∗)‖2 = O(
1

n
).

Hence,

Ec2
4 ≤

1

4n4
E

(
n∑
i=1

‖xi − x∗‖2‖A(x̄)−A(x∗)‖

)2

=
1

4n4
· n2O(

1

n
) = O(

1

n3
).

Finally, back to (88), we have

Ec̄2 ≤ 1

4n4
E

(
n∑
i=1

‖xi − x̄‖2A(x∗)

)2

+O(
1

n2.5
) =

1

4n2

(
E‖x− x∗‖2A(x∗)

)2
+O(

1

n2.5
)

=
Tr(A(x∗)M2)2

4n2
+O(

1

n2.5
) =

1

4n2

(
σ2 +

2σ1

F (x∗)

)2

+O(
1

n2.5
). (90)

7.2.6 Estimate of Ec̄δ2

The Hölder’s inequality and the estimates (71) and (90) give

Ec̄δ2 ≤
√
Ec̄2Eδ2

2 = O(
1

n3
). (91)

7.2.7 Estimate of Ec̄(F (x̄)− F (x∗))

We take the same technique as in the proof of Theorem 2. Specifically, a Taylor expansion of F (x̄)
at x∗ gives

Ec̄(F (x̄)− F (x∗)) = E∇F (x∗)T (x̄− x∗)c̄+ E
1

2
‖x̄− x∗‖2H(x∗)c̄+ EO(‖x̄− x∗‖3)c̄

= E∇F (x∗)T (x̄− x∗)c̄+ E
1

2
‖x̄− x∗‖2H(x∗)c̄+O(

1

n2.5
). (92)

Recall that when estimating Ec̄2 we have the decomposition (87) c̄:

c̄ = − 1

2n2

n∑
i=1

‖xi − x̄‖2A(x∗) + c1 + c2 + c3 + c4,
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and Ec2
1 = O( 1

n4 ), Ec2
2 = O( 1

n4 ), Ec2
3 = O( 1

n4 ), Ec2
4 = O( 1

n3 ), we have

E∇F (x∗)T (x̄− x∗)c̄ = − 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) + E∇F (x∗)T (x̄− x∗)c4

+ E∇F (x∗)T (x̄− x∗)(c1 + c2 + c3)

≤ − 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) + E∇F (x∗)T (x̄− x∗)c4

+ ‖∇F (x∗)‖
√
E‖x̄− x∗‖2E(c1 + c2 + c3)2

= − 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) + E∇F (x∗)T (x̄− x∗)c4 +O(
1

n2.5
),

(93)

and

E
1

2
‖x̄− x∗‖2H(x∗)c̄ = − 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) +
1

2
E‖x̄− x∗‖2H(x∗)

4∑
i=1

ci

≤ − 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2A(x∗)

+
1

2
‖H(x∗)‖

√
E‖x̄− x∗‖4E(c1 + c2 + c3 + c4)2

= − 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) +O(
1

n2.5
). (94)

Substituting (93) and (94) into (92), we have

Ec̄(F (x̄)− F (x∗)) = − 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) + E∇F (x∗)T (x̄− x∗)c4

− 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) +O(
1

n2.5
). (95)

For the first and the third terms in (95), note that H(x∗) and A(x∗) are fixed matrices. Following
the proof in Section 6.2.3, we have

− 1

2n2
E∇F (x∗)T (x̄− x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) = − 1

2n2
∂aF (x∗)A(x∗)bc(M3)abc +O(

1

n2.5
)

= − 1

2n2

(
σ3 +

2σ′3
F (x∗)

)
+O(

1

n2.5
), (96)

and

− 1

4n2
E‖x̄− x∗‖2H(x∗)

n∑
i=1

‖xi − x̄‖2A(x∗) = −Tr(M2H(x∗)) Tr(M2A(x∗))

4n2
+O(

1

n2.5
)

=− 1

4n2

(
σ2

2 +
2σ1σ2

F (x∗)

)
+O(

1

n2.5
). (97)
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For the second term in (95), we define a tensor B(x∗) ∈ Rd×d×d as

Babc(x
∗) := ∂3

abcF (x∗) +
4∂aF (x∗)∂2

bcF (x∗)

F (x∗)
− 2∂aF (x∗)∂bF (x∗)∂cF (x∗)

F (x∗)2
.

Then, by the Taylor expansion for A (89), we have

A(x̄)−A(x∗) = Babc(x
∗)(x̄c − (x∗)c) +O(‖x̄− x∗‖2).

Therefore, c4 can be written as

c4 = − 1

2n2

n∑
i=1

Babc(x
∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c) +

1

2n2

n∑
i=1

‖xi − x̄‖2O(‖x̄− x∗‖2),

and we have

E∇F (x∗)T (x̄− x∗)c4 = − 1

2n2
∇F (x∗)(x̄− x∗)

n∑
i=1

Babc(x
∗)(xai − x̄a)(xbi − x̄b)(x̄c − (x∗)c) +O(

1

n2.5
). (98)

Note that B(x∗) is a fixed tensor. Repeating the analysis that gives (50) with B(x∗) replacing
∇3F (x∗), we have

E∇F (x∗)T (x̄− x∗)c4 ≤ −
1

2n2
∂aF (x∗)(M2)abB(x∗)bcd(M2)cd +O(

1

n2.5
)

= − 1

2n2

(
σ4 +

4σ1σ2

F (x∗)
− 2σ2

1

F (x∗)2

)
+O(

1

n2.5
). (99)

Finally, substituting (96), (97), and (99) into (95), we have

Ec̄(F (x̄)− F (x∗)) ≤ 1

4n2

(
−σ2

2 − 2σ3 − 2σ4 −
4σ′3
F (x∗)

− 10σ1σ2

F (x∗)
+

4σ2
1

F (x∗)2

)
+O(

1

n2.5
). (100)

7.2.8 Putting together

Finally, collecting the estimates (71), (72), (73), (80), (90), (91), (100), we have

Eĉ2 +2ĉ(F (x̄)−F (x∗)) =
1

n2

(
−σ

2
2

4
+

σ1

CK
− σ3 − σ4 −

2σ′3
F
− 4σ1σ2

F (x∗)
+

3σ2
1

F (x∗)2

)
+O(

1

n2.5
). (101)

By the condition (14), the coefficients for 1
n2 is negative. Therefore, when n is sufficiently large, we

have
E(ĉ2 + 2(F (x̄)− F (x∗))ĉ) < 0. (102)

This completes the proof.

7.3 Lemmas

In this subsection we provide lemmas used in the proof of Theorem 3. Note that we will also make
use of the lemmas in Section 6.

The first two lemmas are counterparts of Lemma 6 and 7 under the new assumption 3. The
proof is similar to the proof of those Lemmas.
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Lemma 8. Let µ be a probability distribution on Rd that satisfies Assumption 3, and x,x1,x2, ...,xn
are i.i.d sampled from µ. Let x∗ = Eµx, and x̄ = 1

n

∑n
i=1 xi. Then, for any positive integer k, we

have

E‖x− x∗‖k = O(1), E‖xi − x̄‖k = O(1), E‖x̄− x∗‖k = O(
1

nk/2
).

Lemma 9. Let µ be a probability distribution on Rd that satisfies Assumption 3, and ν is the
uniform ditribution on [n]. Consider x,x1,x2, ...,xn i.i.d sampled from µ, and k1, ..., kn i.i.d sampled
from ν. Let x̄ = 1

n

∑n
i=1 xi, and x̃ = 1

n

∑n
i=1 xki. Then, for any positive integer k, we have

E‖x̃− x̄‖k = O(
1

nk/2
),

where the expectation is taken on both µ and ν.

The next two lemmas characterize the moments of s1, s2, and F (x̄), F (x̃). The s1 and s2 are
defined in (69).

Lemma 10. Under the same assumptions in Theorem 3, for any positive integer l, we have

E|s1|l ≤ O(
1

(Kn)
l
2

), and E|s2|l ≤ O(
1

(Kn)
l
2

)

Proof. First, we consider s1. Without loss of generality, assume l is an even number. By the law of
total expectation, we have

E|s1|l = EEx̃

∣∣∣∣∣ 1

K

K∑
k=1

F (x̃k)− Ex̃F (x̃)

∣∣∣∣∣
l

. (103)

For k = 1, 2, ...,K, let Yk = F (x̃k)− Ex̃F (x̃), and Y be an i.i.d. copy of Yk. Then, Ex̃Y = 0. Since
x1, · · · ,xn are finite, we have Ex̃|Y |l <∞. Let Ŷ = Y(

Ex̃|Y |l
)1/l and Ŷk = Yk(

Ex̃|Y |l
)1/l . Then, by the

Hölder’s inequality, for any r ≤ l, we have Ex̃|Ŷ |r ≤ 1. Therefore, applying Lemma 5, we have

Ex̃

∣∣∣∣∣ 1

K

K∑
k=1

Ŷk

∣∣∣∣∣
l

≤ O(
1

K l/2
)Ex̃|Ŷ |l ≤ O(

1

K l/2
),

which implies

Ex̃

∣∣∣∣∣ 1

K

K∑
k=1

Yk

∣∣∣∣∣
l

≤ O(
1

K l/2
)Ex̃|Y |l.

Back to (103), we have

E|s1|l ≤ O(
1

K l/2
)EEx̃ |F (x̃)− Ex̃F (x̃)|l . (104)

By Hölder’s inequality and Jensen’s inequality, we have

|F (x̃)− Ex̃F (x̃)|l ≤ 2l−1
(
|F (x̃)− F (x̄)|l + |Ex̃F (x̃)− F (x̄)|l

)
≤ 2l−1

(
|F (x̃)− F (x̄)|l + Ex̃|F (x̃)− F (x̄)|l

)
.

Hence,
EEx̃ |F (x̃)− Ex̃F (x̃)|l ≤ 2lE|F (x̃)− F (x̄)|l
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For F (x̃)− F (x̄), by Taylor expansion, we have

F (x̃)− F (x̄)

=∇F (x̄)T (x̃− x̄) +
1

2
‖x̃− x̄‖H(x̄) +

1

6
∂3
abcF (x̄)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) +O(‖x̃− x̄‖4)

=∇F (x∗)T (x̃− x̄) + (x̄− x∗)TH(x∗)(x̃− x̄) +
1

2
∂3
abcF (x∗)(x̄a − (x∗)a)(x̄b − (x∗)b)(x̃c − x̄c)

+O(‖x̄− x∗‖3‖x̃− x̄‖) +
1

2
‖x̃− x̄‖H(x∗) +

1

2
∂3
abcF (x∗)(x̄a − (x∗)a)(x̃b − x̄b)(x̃c − x̄c)

+O(‖x̄− x∗‖2‖x̃− x̄‖2) +
1

6
∂3
abcF (x∗)(x̃a − x̄a)(x̃b − x̄b)(x̃c − x̄c) +O(‖x̄− x∗‖‖x̃− x̄‖3)

+O(‖x̃− x̄‖4)

=hot(‖x̄− x∗‖, ‖x̃− x̄‖; 1),

in which the second equality is obtained by Taylor expansions of ∇F (b̄x), H(x̄), and ∇3F (x̄) at x∗.
Therefore, by Lemma 8,

EEx̃ |F (x̃)− Ex̃F (x̃)|l ≤ 2lE
(
hot(‖x̄− x∗‖, ‖x̃− x̄‖; 1)

)l ≤ O(
1

nl/2
). (105)

Substituting (105) back to (104) completes the proof for s1. The proof for s2 is similar.

Lemma 11. Under the assumptions of Theorem 3, for any positive integer l, we have

EF (x̄)l = O(1), and EF (x̃)l = O(1).

Proof. For F (x̄), by the Taylor expansion at x∗, we have

F (x̄) = F (x∗) + hot(‖x̄− x∗‖; 1).

Therefore,
F (x̄)l = (F (x∗) + hot(‖x̄− x∗‖; 1))l = F (x∗)l + hot(‖x̄− x∗‖; 1).

Taking expectation, we have

EF (x̄)l = F (x∗)l + E
(
hot(‖x̄− x∗‖; 1)

)
= F (x∗)l +O(

1√
n

) = O(1).

For F (x̃), still expanding F at x∗, we have

F (x̃)l = F (x∗)l + hot(‖x̃− x∗‖; 1).

By Lemma 8 and 7, we have

E‖x̃− x∗‖l ≤ 2l−1
(
E‖x̃− x̄‖l + E‖x̄− x∗‖l

)
= O(

1

nl/2
).

Hence, we still have

E
(
hot(‖x̃− x∗‖; 1)

)
= O(

1√
n

),

which completes the proof.
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