
Li and Ying Res Math Sci (2017) 4:12
DOI 10.1186/s40687-017-0100-6

RESEARCH Open Access

Distributed-memory hierarchical
interpolative factorization
Yingzhou Li1 and Lexing Ying1,2*

*Correspondence:
lexing@stanford.edu
2Department of Mathematics,
Stanford University, Stanford, CA,
USA
Full list of author information is
available at the end of the article

Abstract

The hierarchical interpolative factorization (HIF) offers an efficient way for solving or
preconditioning elliptic partial differential equations. By exploiting locality and low-rank
properties of the operators, the HIF achieves quasi-linear complexity for factorizing the
discrete positive definite elliptic operator and linear complexity for solving the
associated linear system. In this paper, the distributed-memory HIF (DHIF) is introduced
as a parallel and distributed-memory implementation of the HIF. The DHIF organizes the
processes in a hierarchical structure and keeps the communication as local as possible.
The computation complexity is O(N logN

P) and O(NP) for constructing and applying the
DHIF, respectively, where N is the size of the problem and P is the number of processes.
The communication complexity is O(

√
P log3 P)α + O(N

2/3√
P
)β where α is the latency

and β is the inverse bandwidth. Extensive numerical examples are performed on the
NERSC Edison system with up to 8192 processes. The numerical results agree with the
complexity analysis and demonstrate the efficiency and scalability of the DHIF.

Keywords: Sparse matrix, Multifrontal, Elliptic problem, Matrix factorization, Structured
matrix

Mathematics Subject Classification: 44A55, 65R10, 65T50

1 Background
This paper proposes an efficient distributed-memory algorithm for solving elliptic partial
differential equations (PDEs) of the form,

− ∇ · (a(x)∇u(x)) + b(x)u(x) = f (x), x ∈ Ω ⊂ R
3, (1)

with a certain boundary condition, where a(x) > 0, b(x) and f (x) are given functions and
u(x) is an unknown function. Since this elliptic equation is of fundamental importance to
problems in physical sciences, solving (1) effectively has a significant impact in practice.
Discretizing this with local schemes such as the finite difference or finite elementmethods
leads to a sparse linear system,

Au = f, (2)

where A ∈ R
N×N is a sparse symmetric matrix with O(N) nonzero entries with N being

the number of the discretization points, and u and f are the discrete approximations
of the functions u(x) and f (x), respectively. For many practical applications, one often
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-017-0100-6&domain=pdf
http://orcid.org/0000-0003-1852-3750
http://orcid.org/0000-0003-1547-1457
http://creativecommons.org/licenses/by/4.0/

Li and Ying Res Math Sci (2017) 4:12 Page 2 of 23

needs to solve (1) on a sufficient fine mesh for which N can be very large, especially for
three-dimensional (3D) problems. Hence, there is a practical need for developing fast and
parallel algorithms for the efficient solution of (1).

1.1 Previous work

A great deal of effort in the field of scientific computing has been devoted to the efficient
solution of (2). Beyond the O(N 3) complexity naïve matrix inversion approach, one can
classify the existing fast algorithms into the following groups.
Thefirst one consists of the sparsedirect algorithms,which take advantageof the sparsity

of the discrete problem.Themost noticeable example in this group is the nested dissection
multifrontal method (MF) method [14,16,26]. By carefully exploring the sparsity and the
locality of the problem, themultifrontalmethod factorizes thematrixA (and thusA−1) as a
product of sparse lower and upper triangular matrices. For 3D problems, the factorization
step costs O(N 2) operations, while the application step takes O(N 4/3) operations. Many
parallel implementations [3,4,30] of the multifrontal method were proposed and they
typically work quite well for problem of moderate size. However, as the problem size goes
beyond a couple of millions, most implementations, including the distributed-memory
ones, hit severe bottlenecks in memory consumption.
The second group consists of iterative solvers [9,15,33,34], including famous algorithms

such as the conjugate gradient (CG) method and the multigrid method. Each iteration of
these algorithms typically takes O(N) steps and hence the overall cost for solving (2) is
proportional to the number of iterations required for convergence. For problems with
smooth coefficient functions a(x) and b(x), the number of iterations typically remains
rather small and the optimal linear complexity is achieved. However, if the coefficient
functions lack regularity or have high contrast, the iteration number typically grows quite
rapidly as the problem size increases.
The third group contains the methods based on structured matrices [6–8,11]. These

methods, for example, the H-matrix [18,20], the H2-matrix [19], and the hierarchically
semi-separable matrix (HSS) [10,42], are shown to have efficient approximations of linear
or quasi-linear complexity for thematricesA andA−1. As a result, the algebraic operations
of these matrices are of linear or quasi-linear complexities as well. More specifically, the
recursive inversion and the rocket-style inversion [1] are two popular methods for the
inverse operation. For distributed-memory implementations, however, the former lacks
parallel scalability [24,25], while the latter demonstrates scalability only for 1D and 2D
problems [1]. For 3D problems, these methods typically suffer from large prefactors that
make them less efficient for practical large-scale problems.
A recent group of methods explores the idea of integrating the MF method with the

hierarchical matrix [17,21,28,32,38–41] or block low-rank matrix [2,35,36] approach in
order to leverage the efficiency of both methods. Instead of directly applying the hierar-
chical matrix structure to the 3D problems, these methods apply it to the representation
of the frontalmatrices (i.e., the interactions between the lower-dimensional fronts). These
methods are of linear or quasi-linear complexities in theory with much small prefactors.
However, due to the combined complexity, the implementation is highly non-trivial and
quite difficult for parallelization [27,43].

Li and Ying Res Math Sci (2017) 4:12 Page 3 of 23

More recently, the hierarchical interpolative factorization (HIF) [22,23] is proposed as a
new way for solving elliptic PDEs and integral equations. As compared to the multifrontal
method, the HIF includes an extra step of skeletonizing the fronts in order to reduce
the size of the dense frontal matrices. Based on the key observation that the number
of skeleton points on each front scales linearly as the one-dimensional fronts, the HIF
factorizes the matrix A (and thus A−1) as a product of sparse matrices that contains only
O(N) nonzero entries in total. In addition, the factorization and application of the HIF
are of complexities O(N logN) and O(N), respectively, for N being the total number of
degrees of freedom (DOFs) in (2). In practice, the HIF shows significant saving in terms
of computational resources required for 3D problems.

1.2 Contribution

This paper proposes the first distributed-memory hierarchical interpolative factorization
(DHIF) for solving very large-scale problems. In a nutshell, the DHIF organizes the pro-
cesses in an octree structure in the same way that the HIF partitions the computation
domain. In the simplest setting, each leaf node of the computation domain is assigned a
single process. Thanks to the locality of the operator in (1), this process only communi-
cates with its neighbors and all algebraic computations are local within the leaf node. At
higher levels, each node of the computation domain is associated with a process group
that contains all processes in the subtree starting from this node. The computations are all
local within this process group via parallel dense linear algebra, and the communications
are carried out between neighboring process groups. By following this octree structure, we
make sure that both the communication andcomputations in thedistributed-memoryHIF
are evenly distributed. As a result, the distributed-memory HIF implementation achieves
O(N logN

P) and O(NP) parallel complexity for constructing and applying the factorization,
respectively, where N is the number of DOFs and P is the number of processes.
We have performed extensive numerical tests. The numerical results support the com-

plexity analysis of the distributed-memory HIF and suggest that the DHIF is a scalable
method up to thousands of processes and can be applied to solve large-scale elliptic PDEs.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we review the basic tools needed
for both HIF and DHIF, and review the sequential HIF. Section 3 presents the DHIF as a
parallel extension of the sequential HIF for 3Dproblems. Complexity analyses formemory
usage, computation time, and communication volume are given at the end of this section.
The numerical results detailed in Sect. 4 show that the DHIF is applicable to large-scale
problems and achieves parallel scalability up to thousands of processes. Finally, Sect. 5
concludes with some extra discussions on future work.

2 Preliminaries
This section reviews the basic tools and the sequential HIF. First, we start by listing the
notations that are widely used throughout this paper.

2.1 Notations

In this paper, we adopt MATLAB notations for simple representation of submatrices. For
example, given a matrix A and two index sets, s1 and s2, A(s1, s2) represents the submatrix
ofAwith the row indices in s1 and column indices in s2. The next two examples explore the

Li and Ying Res Math Sci (2017) 4:12 Page 4 of 23

usage ofMATLABnotation “:.”With the same settings,A(s1, :) represents the submatrix of
Awith row indices in s1 and all columns. Another usage of notation “:” is to create regularly
spaced vectors for integer values i and j, for instance, i : j is the same as [i, i+1, i+2, . . . , j]
for i ≤ j.
In order to simplify the presentation, we consider the problem (1) with periodic bound-

ary condition and assume that the domain Ω = [0, 1)3 and is discretized with a grid of
size n × n × n for n = 2Lm, where L = O(log n) and m = O(1) are both integers. In the
rest of this paper, L + 1 is known as the number of levels in the hierarchical structure
and L is the level number of the root level. We use N = n3 to denote the total number of
DOFs, which is the dimension of the sparse matrix A in (2). Furthermore, each grid point
xj is defined as

xj = hj = h(j1, j2, j3), (3)

where h = 1/n, j = (j1, j2, j3) and 0 ≤ j1, j2, j3 < n.
In order to fully explore the hierarchical structure of the problem, we recursively bipar-

tite each dimension of the grid into L + 1 levels. Let the leaf level be level 0 and the
root level be level L. At level �, a cell indexed with j is of size m2� × m2� × m2� and
each point in the cell is in the range,

[
m2�j1 + (0 : m2� − 1)

]× [m2�j2 + (0 : m2� − 1)
]×

[
m2�j3 + (0 : m2� − 1)

]
, for j = (j1, j2, j3) and 0 ≤ j1, j2, j3 < 2L−�. C�

j denotes the grid
point set of the cell at level � indexed with j.
A cell C�

j owns three faces: top, front, and left. Each of these three faces contains the
grid points on the first frame in the corresponding direction. For example, the front face
contains the grid points in

[
m2�j1 + (0 : m2� − 1)

]× [m2�j2
]× [m2�j3 + (0 : m2� − 1)

]
.

Besides these three in-cell faces (top, front, and left) that are owned by a cell, each
cell is also adjacent to three out-of-cell faces (bottom, back, right) owned by its
neighbors. Each of these three faces contains the grid points on the next to the last
frame in the corresponding dimension. As a result, these faces contain DOFs that
belong to adjacent cells. For example, the bottom face of C�

j contains the grid points
in
[
m2�(j1 + 1)

] × [m2�j2 + (0 : m2� − 1)
] × [m2�j3 + (0 : m2� − 1)

]
. These six faces

are the surrounding faces of C�
j . One also defines the interior of C�

j to be I�j =
[
m2�j1 + (1 : m2� − 1)

]×[m2�j2 + (1 : m2� − 1)
]×[m2�j3 + (1 : m2� − 1)

]
for the same

j = (j1, j2, j3) and 0 ≤ j1, j2, j3 < 2L−�. Figure 1 shows an illustration of a cell, its faces,
and its interior. These definitions and notations are summarized in Table 1. Also included
here are some notations used for the processes, which will be introduced later.

2.2 Sparse elimination

Suppose that A is a symmetric matrix. The row/column indices of A are partitioned into
three sets I

⋃
F
⋃

R where I refers to the interior point set, F refers to the surrounding
face point set, and R refers to the rest point set. We further assume that there is no
interaction between the indices in I and the ones in R. As a result, one can write A in the
following form

A =
⎡

⎢
⎣
AII AT

FI
AFI AFF AT

RF
ARF ARR

⎤

⎥
⎦ . (4)

Let the LDLT decomposition of AII be AII = LIDILTI , where LI is lower triangular
matrix with unit diagonal. According to the block Gaussian elimination of A given by (4),

Li and Ying Res Math Sci (2017) 4:12 Page 5 of 23

Fig. 1 Cell structure: top, front, left, and interior points are indicated by arrows; bottom, back, and right points
are not plotted in the figure; the black dots denote the edge points; the dash line indicates that the front
frame is pulled away in order to show the interior points

Table 1 Commonly used notations

Notation Description

n Number of points in each dimension of the grid

N Number of points in the grid

h Grid gap size

� Level number in the hierarchical structure

L Level number of the root level in the hierarchical structure

e1, e2, e3 Unit vector along each dimension

0 Zero vector

j Triplet index j = (j1 , j2 , j3)

xj Point on the grid indexed with j

Ω The set of all points on the grid

C�
j Cell at level � with index j

C� C� = {C�
j }j is the set of all cells at level �

F�
j Set of all surrounding faces of cell C�

j

F� Set of all faces at level �

I�j Interior of C�
j

I� I� = {I�j }j is the set of all interiors at level �
�� The set of active DOFs at level �

��
j The set of active DOFs at level � with process group index j

p�
j , p

� The process group at level � with/without index j

one defines the sparse elimination to be

STI ASI =
⎡

⎢
⎣
DI

BFF AT
RF

ARF ARR

⎤

⎥
⎦ , (5)

where BFF = AFF − AFIA−1
II AT

FI is the associated Schur complement and the explicit
expressions for SI is

SI =
⎡

⎢
⎣
L−T
I −A−1

II AT
FI

I
I

⎤

⎥
⎦ . (6)

The sparse elimination removes the interaction between the interior points I and the
corresponding surrounding face points F and leaves ARF and ARR untouched. We call
the entire point set, I

⋃
F
⋃

R, the active point set. Then, after the sparse elimination,

Li and Ying Res Math Sci (2017) 4:12 Page 6 of 23

the interior points are decoupled from other points, which is conceptually equivalent to
eliminate the interior points from the active point set. After this, the new active point set
can be regarded as F

⋃
R.

Figure 2 illustrates the impact of the sparse elimination. The dots in the figure repre-
sent the active points. Before the sparse elimination (left), edge points, face points, and
interior points are active, while after the sparse elimination (right) the interior points are
eliminated from the active point set.

2.3 Skeletonization

Skeletonization is a tool for eliminating redundant point set from a symmetric matrix that
has low-rank off-diagonal blocks. The key step in skeletonization uses the interpolative
decomposition [12,29] of low-rank matrices.
Let A be a symmetric matrix of the form,

A =
[
AFF AT

RF
ARF ARR

]

, (7)

where ARF is a numerically low-rank matrix. The interpolative decomposition of ARF is
(up to a permutation)

ARF =
[
AR��F ARF̂

]
≈
[
ARF̂TF ARF̂

]
, (8)

where TF is the interpolation matrix, F̂ is the skeleton point set,��F is the redundant point
set, and F = F̂

⋃��F . Applying this approximation to A results

A ≈

⎡

⎢⎢
⎣

A��F ��F AT
F̂��F TT

F AT
RF̂

AF̂��F AF̂F̂ AT
RF̂

ARF̂TF ARF̂ ARR

⎤

⎥⎥
⎦ , (9)

and be symmetrically factorized as

ST��F Q
T
F AQFS��F ≈ ST��F

⎡

⎢⎢
⎣

B��F ��F BT
F̂��F

BF̂��F AF̂F̂ AT
RF̂

ARF̂ ARR

⎤

⎥⎥
⎦ S��F =

⎡

⎢⎢
⎣

D��F
BF̂F̂ AT

RF̂

ARF̂ ARR

⎤

⎥⎥
⎦ , (10)

Fig. 2 Sparse elimination: the interior points are eliminated after the sparse elimination; the rest points are
not all plotted in the figure

Li and Ying Res Math Sci (2017) 4:12 Page 7 of 23

where

B��F ��F = A��F ��F − TT
F AF̂��F − AT

F̂��FTF + TT
F AF̂F̂TF , (11)

BF̂��F = AF̂��F − AF̂F̂TF , (12)

BF̂F̂ = AF̂F̂ − BF̂��FB
−1
��F ��FB

T
F̂��F . (13)

The factor QF is generated by the block Gaussian elimination, which is defined to be

QF =

⎡

⎢⎢
⎣

I
−TF I

I

⎤

⎥⎥
⎦ . (14)

Meanwhile, the factor S��F is introduced in the sparse elimination:

S��F =

⎡

⎢⎢
⎣

L−T
��F −B−1

��F ��FB
T
F̂��F

I

I

⎤

⎥⎥
⎦ (15)

where L��F and D��F come from the LDLT factorization of B��F ��F , i.e., B��F ��F = L��FD��FL
T��F . Similar

to what happens in Sect. 2.2, the skeletonization eliminates the redundant point set ��F
from the active point set.
The point elimination idea of the skeletonization is illustrated in Fig. 3. Before the skele-

tonization (left), the edge points, interior points, skeleton face points (red), and redundant
face points (pink) are all active, while after the skeletonization (right) the redundant face
points are eliminated from the active point set.

2.4 Sequential HIF

This section reviews the sequential hierarchical interpolative factorization (HIF) for 3D
elliptic problems (1) with the periodic boundary condition. Without loss of generality, we
discretize (1) with the seven-point stencil on a uniform grid, which is defined in Sect. 2.1.
The discrete system is

1
h2
(
aj− 1

2 e1 + aj+ 1
2 e1 + aj− 1

2 e2 + aj+ 1
2 e2 + aj− 1

2 e3 + aj+ 1
2 e3

)
uj

− 1
h2
(
aj− 1

2 e1uj−e1 + aj+ 1
2 e1uj+e1 + aj− 1

2 e2uj−e2

+ aj+ 1
2 e2uj+e2 + aj− 1

2 e3uj−e3 + aj+ 1
2 e3uj+e3

)
+ bjuj = fj (16)

Fig. 3 Skeletonization: the working face is colored by red and pink; red points are the skeleton points on the
face, whereas pink points are the redundant points on the face; skeletonization eliminates the redundant
points from the active point set

Li and Ying Res Math Sci (2017) 4:12 Page 8 of 23

at each grid point xj for j = (j1, j2, j3) and 0 ≤ j1, j2, j3 < n, where aj = a(xj), bj = b(xj),
fj = f (xj), and uj approximates the unknown function u(x) at xj. The corresponding linear
system is

Au = f (17)

where A is a sparse SPD matrix if b > 0.
We first introduce the notion of active and inactive DOFs.

• A set � of DOFs of A are called active if A�� is not a diagonal matrix or A�̄� is a
nonzero matrix;

• A set � of DOFs of A are called inactive if A�� is a diagonal matrix and A�̄� is a
zero matrix.

Here �̄ refers to the complement of the set�. Sparse elimination and skeletonization pro-
vide concrete examples of active and inactiveDOFs. For example, sparse elimination turns
the indices I from active DOFs ofA to inactive DOFs of Ã = STI ASI in (5). Skeletonization
turns the indices��F from active DOFs of A to inactive DOFs of Ã = ST��F Q

T
F AQFS��F in (10).

With these notations, the sequential HIF in [22] is summarized as follows. A more
illustrative representation of the sequential HIF is given on the left column of Fig. 5.

• Preliminary Let A0 = A be the sparse symmetric matrix in (17), �0 be the initial
active DOFs of A, which includes all indices.

• Level � for � = 0, . . . , L − 1.

– Preliminary LetA� denote thematrix before any elimination at level �.�� is the
corresponding activeDOFs. Let us recall the notations in Sect. 2.1.C�

j denotes the
active DOFs in the cell at level � indexedwith j.F�

j and I
�
j denote the surrounding

faces and interior active DOFs in the corresponding cell, respectively.
– Sparse elimination We first focus on a single cell at level � indexed with j, i.e.,
C�
j . To simplify the notation, we drop the superscript and subscript for now and

introduce C = C�
j , I = I�j , F = F�

j , and R = R�
j . Based on the discretization and

previous level eliminations, the interior active DOFs interact only with itself and
its surrounding faces. The interactions of the interior active DOFs and the rest
DOFs are empty and the corresponding matrix is zero, A�(R, I) = 0. Hence, by
applying sparse elimination, we have,

STI A
�SI =

⎡

⎢
⎣

DI

B�
FF

(
A�
RF
)T

A�
RF A�

RR

⎤

⎥
⎦ , (18)

where the explicit definitions of B�
FF and SI are given in the discussion of sparse

elimination. This factorization eliminates I from the active DOFs of A�.
Looping over all cells C�

j at level �, we obtain

Ã� =
⎛

⎝
∏

I∈I�

SI

⎞

⎠

T

A�

⎛

⎝
∏

I∈I�

SI

⎞

⎠ , (19)

�̃� = �� \
⋃

I∈I�

I. (20)

Li and Ying Res Math Sci (2017) 4:12 Page 9 of 23

Now all the active interior DOFs at level � are eliminated from ��.
– Skeletonization Each face at level � not only interacts within its own cell but also
interacts with faces of neighbor cells. Since the interaction between any two dif-
ferent faces is low rank, this leads us to apply skeletonization. The skeletonization
for any face F ∈ F� gives,

ST��F Q
T
F Ã

�QFS��F =

⎡

⎢⎢
⎣

D̃��F
B̃�

F̂ F̂

(
Ã�

RF̂

)T

Ã�

RF̂ Ã�
RR

⎤

⎥⎥
⎦ , (21)

where F̂ is the skeleton DOFs of F ,��F is the redundant DOFs of F , and R refers to
the rest DOFs. Due to the elimination from previous levels, |F | scales as O(m2�)
and Ã�

RF contains a nonzero submatrix of size O(m2�) × O(m2�). Therefore, the
interpolative decomposition can be formed efficiently. Readers are referred to
Sect. 2.3 for the explicit forms of each matrix in (21).
Looping over all faces at level �, we obtain

A�+1 ≈
⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

T

Ã�

⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

=
⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

T ⎛

⎝
∏

I∈I�

SI

⎞

⎠

T

A�

⎛

⎝
∏

I∈I�

SI

⎞

⎠

⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

=
(
W �
)T

A�W �, (22)

whereW � = (∏I∈I� SI
) (∏

F∈F� S��FQF
)
. The active DOFs for the next level are

now defined as,

��+1 = �̃� \
⋃

F∈F�

��F = �� \
⎛

⎝

⎛

⎝
⋃

I∈I�

I

⎞

⎠
⋃
⎛

⎝
⋃

F∈F�

��F
⎞

⎠

⎞

⎠ . (23)

• Level L Finally, AL and �L are the matrix and active DOFs at level L. Up to a permu-
tation, AL can be factorized as

AL =
[
AL

�L�L

DR

]

=
[
L�L

I

][
D�L

DR

][
LT

�L

I

]

:= (WL)−TD
(
WL)−1.

(24)

Combining all these factorization results

A ≈ (W 0)−T · · · (WL−1)−T (WL)−TD
(
WL)−1(WL−1)−1 · · · (W 0)−1 ≡ F

(25)

and

A−1 ≈ W 0 · · ·WL−1WLD−1(WL)T (WL−1)T · · · (W 0)T = F−1. (26)

A−1 is factorized into a multiplicative sequence of matricesW � and eachW � corre-
sponding to level � is again a multiplicative sequence of sparse matrices, SI , S��F and
QF . Due to the fact that any SI , S��F or QF contains a small non-trivial (i.e., neither

Li and Ying Res Math Sci (2017) 4:12 Page 10 of 23

identity nor empty)matrix of sizeO(N 1/3

2L−�)×O(N 1/3

2L−�), the overall complexity for strong
and applying W � is O(N/2�). Hence, the application of the inverse of A is of O(N)
computation and memory complexity.

3 Distributed-memory HIF
This section describes the algorithm for the distributed-memory HIF.

3.1 Process tree

For simplicity, assume that there are 8L processes. We introduce a process tree that has
L + 1 levels and resembles the hierarchical structure of the computation domain. Each
node of this process tree is called a process group. First at the leaf level, there are 8L

leaf process groups denoted as {p0j }j. Here j = (j1, j2, j3), 0 ≤ j1, j2, j3 < 2L, and the
superscript 0 refers to the leaf level (level 0). Each group at this level only contains a
single process. Each node at level 1 of the process tree is constructed by merging 8 leaf
processes. More precisely, we denote the process group at level 1 as p1j for j = (j1, j2, j3),
0 ≤ j1, j2, j3 < 2L−1, and p1j = ⋃
jc/2�=j p0jc . Similarly, we recursively define the node
at level � as p�

j = ⋃
jc/2�=j p
�−1
jc . Finally, the process group pL0 at the root includes all

processes. Figure 4 illustrates the process tree. Each cube in the process tree is a process
group.

3.2 Distributed-memory method

Same as in Sect. 2.4, we define the n × n × n grid on Ω = [0, 1)3 for n = m2L, where
m = O(1) is a small positive integer and L = O(logN) is the level number of the root level.
Discretizing (1) with seven-point stencil on the grid provides the linear system Au = f ,
where A is a sparse N × N SPD matrix, u ∈ R

N is the unknown function at grid points,
and f ∈ R

N is the given function at grid points.
Given the process tree (Sect. 3.1) with 8L processes and the sequential HIF structure

(Sect. 2.4), the construction of the distributed-memory hierarchical interpolative factor-
ization (DHIF) consists of the following steps.

• Preliminary Construct the process tree with 8L processes. Each process group p0j
owns the data corresponding to cell C0

j and the set of active DOFs in C0
j is denoted as

�0
j , where j = (j1, j2, j3) and 0 ≤ j1, j2, j3 < 2L. Set A0 = A and let the process group

p0j own A0(:,�0
j), which is a sparse tall-skinny matrix with O(N/P) nonzero entries.

• Level � for � = 0, . . . , L − 1.

Fig. 4 Process tree: 64 processes are organized in the process tree

Li and Ying Res Math Sci (2017) 4:12 Page 11 of 23

– Preliminary Let A� denote the matrix before any elimination at level �. ��
j

denotes the active DOFs owned by the process group p�
j for j = (j1, j2, j3), 0 ≤

j1, j2, j3 < 2L−�, and the nonzero submatrix of A�(:,��
j) is distributed among the

process group p�
j using the two-dimensional block-cyclic distribution.

– Sparse elimination The process group p�
j owns A

�(:,��
j), which is sufficient for

performing sparse elimination for I�j . To simplify the notation, we define I = I�j
as the active interior DOFs of cell C�

j , F = F�
j as the surrounding faces, and

R = R�
j as the rest active DOFs. Sparse elimination at level � within the process

group p�
j performs essentially

STI A
�SI =

⎡

⎢
⎣

DI

B�
FF

(
A�
RF
)T

A�
RF A�

RR

⎤

⎥
⎦ , (27)

where B�
FF = A�

FF − A�
FI
(
A�
II
)−1(A�

FI
)T ,

SI =
⎡

⎢
⎣

(
L�
I
)−T −(A�

II
)−1(A�

FI
)T

I
I

⎤

⎥
⎦ (28)

with L�
I DI
(
L�
I
)T = A�

II . Since A�(:,��
j) is owned locally by p�

j , both A�
FI and A�

II
are local matrices. All non-trivial (i.e., neither identity nor empty) submatrices
in SI are formed locally and stored locally for application. On the other hand,
updating on A�

FF requires some communication in the next step.
– Communication after sparse elimination After all sparse eliminations are per-
formed, some communication is required to update A�

FF for each cell C�
j . For the

problem (1) with the periodic boundary conditions, each face at level � is the sur-
rounding face of exactly two cells. The owning process groups of these two cells
need to communicate with each other to apply the additive updates, a submatrix
of−A�

FI
(
A�
II
)−1(A�

FI
)T . Once all communications are finished, the parallel sparse

elimination does the rest of the computation, which can be conceptually denoted
as

Ã� =
⎛

⎝
∏

I∈I�

SI

⎞

⎠

T

A�

⎛

⎝
∏

I∈I�

SI

⎞

⎠ ,

�̃�
j = ��

j \
⋃

I∈I�

I,
(29)

for j = (j1, j2, j3), 0 ≤ j1, j2, j3 < 2L−�.
– Skeletonization For each face F owned by p�

j , the corresponding matrices
Ã�(:, F) are stored locally. Similar to the parallel sparse elimination part, most
operations are local at the process group p�

j and can be carried out using the dense
parallel linear algebra efficiently. By forming a parallel interpolative decomposi-
tion (ID) for Ã�

RF =
[
Ã�

RF̂T
�
F Ã�

RF̂

]
, the parallel skeletonization can be, concep-

tually, written as

Li and Ying Res Math Sci (2017) 4:12 Page 12 of 23

S��FQF Ã�(QF)T
(
S��F
)T ≈

⎡

⎢
⎢
⎣

D��F
B̃�

F̂ F̂ Ã�

RF̂

Ã�

RF̂ Ã�
RR

⎤

⎥
⎥
⎦ , (30)

where the definitions ofQF and S��F are given in the discussion of skeletonization.
Since Ã���F ��F , Ã

�

F̂��F , Ã
�

F̂ F̂ and T �
F are all owned by p�

j , it requires only local operations
to form

B̃���F ��F = Ã���F ��F −
(
T �
F

)T
Ã�

F̂��F −
(
Ã�

F̂��F
)T

T �
F +
(
T �
F

)T
Ã�

F̂ F̂ T
�
F ,

B̃�

F̂��F = Ã�

F̂��F − Ã�

F̂ F̂ T
�
F ,

B̃�

F̂ F̂ = Ã�

F̂ F̂ − B̃�

F̂��F
(
B̃���F ��F
)−1(

B̃�

F̂��F
)T

.

(31)

Similarly, L��F , which is the LDLT factor of B̃��F ��F , is also formed within the process
group p�

j . Moreover, since non-trivial blocks in QF and S��F are both local, this
implies that the applications of QF and S��F are local operations. As a result, the
parallel skeletonization factorizes A� conceptually as

A�+1 ≈
⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

T

Ã�

⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

=
⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠

T⎛

⎝
∏

I∈I�

SI

⎞

⎠

T

A�

⎛

⎝
∏

I∈I�

SI

⎞

⎠

⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠ (32)

and we can define

W � =
⎛

⎝
∏

I∈I�

SI

⎞

⎠

⎛

⎝
∏

F∈F�

S��FQF

⎞

⎠ ,

�
�+1/2
j = �̃�

j \
⋃

F∈F�

��F

= ��
j \
⎛

⎝

⎛

⎝
⋃

F∈F�

��F
⎞

⎠
⋃
⎛

⎝
⋃

I∈I�

I

⎞

⎠

⎞

⎠ .

(33)

We would like to emphasize that the factors W � are evenly distributed among
the process groups at level � and that all non-trivial blocks are stored locally.
– Merging and redistribution Toward the end of the factorization at level �, we
need to merge the process groups and redistribute the data associated with the
active DOFs in order to prepare for thework at level �+1. For each process group
at level �+1, p�+1

j , for j = (j1, j2, j3), 0 ≤ j1, j2, j3 < 2L−�−1, we first form its active
DOF set ��+1

j by merging �
�+1/2
jc from all its children p�

jc , where
jc/2� = j. In
addition,A�+1(:, s�+1

j) is separately owned by {p�
jc }
jc/2�=j. A redistribution among

p�+1
j is needed inorder to reduce the communication cost for futureparallel dense

linear algebra. Although this redistribution requires a global communication
among p�+1

j , the complexities for message and bandwidth are bounded by the
cost for parallel dense linear algebra. Actually, as we shall see in the numerical
results, its cost is far lower than that of the parallel dense linear algebra.

Li and Ying Res Math Sci (2017) 4:12 Page 13 of 23

• Level L factorizationThe parallel factorization at level L is quite similar to the sequen-
tial one. After factorizations from all previous levels,AL(�L

0 ,�
L
0) is distributed among

pL0. A parallel LDLT factorization of AL
�L
0�L

0
= AL(�L

0 ,�
L
0) among the processes in pL0

results

AL =
[
AL

�L
0�L

0
DR

]

=
[
LL

�L
0
I

][
DL

�L
0
DR

]⎡

⎣

(
LL

�L
0

)T

I

⎤

⎦ = (WL)−TD
(
WL)−1.

(34)

Consequently, we form the DHIF for A and A−1 as

A ≈ (W 0)−T · · · (WL−1)−T (WL)−TD
(
WL)−1(WL−1)−1 · · · (W 0)−1 ≡ F (35)

and

A−1 ≈ W 0 · · ·WL−1WLD−1(WL)T (WL−1)T · · · (W 0)T = F−1. (36)

The factors, W � are evenly distributed among all processes and the application of
F−1 is basically a sequence of parallel dense matrix–vector multiplications.

In Fig. 5, we illustrate an example of DHIF for problem of size 24× 24× 24 withm = 6
and L = 2. The computation is distributed on a process tree with 43 = 64 processes.
Particularly, Fig. 5 highlights the DOFs owned by process groups involving p0(0,1,0), i.e.,
p0(0,1,0), p

1
(0,0,0), and p2(0,0,0). Yellow points denote interior active DOFs, blue and brown

points denote face active DOFs, and black points denote edge active DOFs. Meanwhile,
we also have unfaded and faded groups of points. Unfaded points are owned by the process
groups involving p0(0,1,0). In other words, p

0
(0,1,0) is the owner for part of the unfaded points.

The faded points are owned by other process groups. In the second row and the fourth
row, we also see faded brown points, which indicates the required communication to
process p0(0,1,0). Here Fig. 5 works through two levels of the elimination processes of the
DHIF step by step.

3.3 Complexity analysis

3.3.1 Memory complexity

There are two places in the distributed algorithm that require heavy memory usage. The
first one is to store the original matrix A and its updated version A� for each level �.
As we mentioned above in the parallel algorithm, A� contains at most O(N) nonzeros
and they are evenly distributed on P processes as follows. At level �, there are 8L−�

cells, empirically each of which contains O(N 1/3

2L−�) active DOFs. Meanwhile, each cell is
evenly owned by a process group with 8� processes. Hence, O((N 1/3

2L−�)2) nonzero entries of
A�(:, s�j) are evenly distributed on process group p�

j with 8� processes. Overall, there are
O(8L−� · N 2/3

4L−�) = O(N · 2−�) nonzero entries in A� evenly distributed on 8L−� · 8� = P
processes, and each process owns O(NP · 2−�) data for A�. Moreover, the factorization at
level � does not rely on the matrix A�′ for �′ < � − 1. Therefore, the memory cost for
storing A�s is O(NP) for each process.
The second place is to store the factorsW �. It is not difficult to see that thememory cost

for each W � is the same as A�. Only non-trivial blocks in SI , QF , and S��F require storage.
Since each of these non-trivial blocks is of size O(N 1/3

2L−�) × O(N 1/3

2L−�) and evenly distributed

Li and Ying Res Math Sci (2017) 4:12 Page 14 of 23

Fig. 5 Distributed-memory hierarchical interpolative factorization

on 8� processes, the overall memory requirement for eachW � on a process isO(NP · 2−�).
Therefore, O(NP) memory is required on each process to store allW �s.

3.3.2 Computation complexity

The majority of the computation work goes to the construction of SI , QF , and S��F . As
stated in the previous section, at level �, each non-trivial dense matrix in these factors

Li and Ying Res Math Sci (2017) 4:12 Page 15 of 23

is of size O(N 1/3

2L−�) × O(N 1/3

2L−�). The construction adopts the matrix–matrix multiplication,
the interpolative decomposition (pivotingQR), the LDLT factorization, and the triangular
matrix inversion. Each of these operation is of cubic computation complexities and the
corresponding parallel computation cost over 8� processes isO(NP). Since there are only a
constant number of these operations per process at a single level, the total computational
complexity across all O(logN) levels is O(N logN

P).
The application computational complexity is simply the complexity of applying each

nonzero entries inW �s once, hence, the overall computational complexity is the same as
the memory complexity O(NP).

3.3.3 Communication complexity

The communication complexity is composed of three parts: the communication in the
parallel dense linear algebra, the communication after sparse elimination, and the merg-
ing and redistribution step within DHIF. It is clear to see that the communication cost for
the second part is bounded by either of the rest. Hence, we will simply derive the commu-
nication cost for the first and third parts. Here, we adopt the simplified communication
model, Tcomm = α + β , where α is the latency and β is the inverse bandwidth.
At level �, the parallel dense linear algebra involves the matrix–matrix multiplication,

the ID, the LDLT factorization, and the triangular matrix inversion for matrices of size
O(N 1/3

2L−�)×O(N 1/3

2L−�). All these basic operations are carried out on a process group of size 8�.
Following the discussion in [5], the communication cost for these operations is bounded
byO(�3

√
8�)α+O(N 2/3

4L−�8� �)β . Summing over all levels, one can control the communication
cost of the parallel dense linear algebra part by

O
(√

P log3 P
)

α + O
(
N 2/3

P2/3

)
β . (37)

On the other hand, themerging and redistribution step at level � involves 8�+1 processes
and redistributes matrices of size O(N 1/3

2L−� · 8) × O(N 1/3

2L−� · 8). The current implementation
adopts theMPI routineMPI_AllToAll to handle the redistribution on a 2D process mesh.
Further, we assume the all-to-all communication sends and receives long messages. The
standard upper bound for the cost of this routine isO(

√
8�+1)α +O(N 2/3

4L−�
√
8�+1 · 64)β [37].

Therefore, the overall cost is

O
(√

P
)

α + O
(
N 2/3
√
P

)
β . (38)

The complexity of the latency part is not scalable. However, empirically, the cost for this
communication is relatively small in the actual running time.

4 Numerical results
Here we present a couple of numerical examples to demonstrate the parallel effi-
ciency of the distributed-memory HIF. The algorithm is implemented in C++11 and
all inter-process communication is expressed via the message passing interface (MPI).
The distributed-memory dense linear algebra computation is done through the Elemen-
tal library [31]. All numerical examples are performed on Edison at the National Energy
ResearchScientificComputing center (NERSC).Thenumbers of processes used are always
powers of two, ranging from 1 to 8192. The memory allocated for each process is limited
to 2GB.

Li and Ying Res Math Sci (2017) 4:12 Page 16 of 23

All numerical results aremeasured in twoways: the strong scaling andweak scaling. The
strong scalingmeasurement fixes the problem size and increases the number of processes.
For a fixed problem size, let TS

P be the running time of P processes. The strong scaling
efficiency is defined as,

ES = TS
1

P · TS
P
. (39)

In the case thatTS
1 is not available, e.g., the fixed problem cannot fit into the single process

memory, we adopt the first available running time, TS
m, associating with the smallest

number of processes,m, as a reference. And the modified strong scaling efficiency is,

ES = m · TS
m

P · TS
P
. (40)

Theweak scalingmeasurement fixes the ratio between the problem size and the number
of processes. For a fixed ratio, we define the weak scaling efficiency as,

EW = TW
m

TW
P

, (41)

where TW
m is the first available running time with m processes and TW

P is the running
time of P processes.
The notations used in the following tables andfigures are listed inTable 2. For simplicity,

all examples are defined overΩ = [0, 1)3 with periodic boundary condition, discretized on
a uniformgrid, n×n×n, with n being the number of points in each dimension andN = n3.
The PDEs defined in (1) are discretized using the second-order central difference method
with seven-point stencil, which is the same as (16). Octrees are adopted to partition the
computation domain with the block size at leaf level bounded by 64.

Example 1 Wefirst consider the problem in (1) with a(x) ≡ 1 and b(x) ≡ 0.1. The relative
precision of the ID is set to be ε = 10−3.

As shown in Table 3, given the tolerance ε = 10−3 the relative error remains well below
this for all N and P. The number of skeleton points on the root level, |�L|, grows linearly
as the one-dimensional problem size increases. The empirical linear scaling of the root
skeleton size strongly supports the quasi-linear scaling for the factorization, linear scaling

Table 2 Notations for the numerical results

Notation Explanation

ε Relative precision of the ID

N Total number of DOFs in the problem

es Relative error for solving,
∥∥(I − F−1A)x

∥∥ / ‖x‖, where x is a Gaussian
random vector

|�L| Number of remaining active DOFs at the root level

mf Maximummemory required to perform the factorization in GB across

all processes

tf Time for constructing the factorization in seconds

ESf Strong scaling efficiency for factorization time

ts Time for applying F−1 to a vector in seconds

ESs Strong scaling efficiency for application time

niter Number of iterations to solve Au = f with GMRES with F−1 being a

preconditioner to a tolerance of 10−12

Li and Ying Res Math Sci (2017) 4:12 Page 17 of 23

Table 3 Example 1: numerical results

N P es |sL| mf tf ES
f (%) ts ES

s (%) niter
323 1 4.84e−04 3440 1.92e−01 4.85e+00 100 1.36e−01 100 6

2 5.26e−04 3440 9.60e−02 2.60e+00 93 6.65e−02 103 6

4 3.78e−04 3440 4.80e−02 1.45e+00 84 3.47e−02 98 6

8 4.93e−04 3440 2.40e−02 8.38e−01 72 1.99e−02 85 6

16 3.97e−04 3440 1.20e−02 5.83e−01 52 1.31e−02 65 6

32 7.33e−04 3440 6.03e−03 4.35e−01 35 1.47e−02 29 6

643 2 5.92e−04 7760 9.07e−01 3.87e+01 100 6.08e−01 100 6

4 5.98e−04 7760 4.54e−01 2.36e+01 82 2.99e−01 102 6

8 5.59e−04 7760 2.27e−01 1.48e+01 65 1.61e−01 94 6

16 6.30e−04 7760 1.13e−01 1.03e+01 47 9.52e−02 80 6

32 5.89e−04 7760 5.68e−02 5.34e+00 45 6.88e−02 55 6

64 5.45e−04 7760 2.84e−02 2.67e+00 45 4.10e−02 46 6

128 5.43e−04 7760 1.42e−02 1.52e+00 40 3.43e−02 28 6

256 6.29e−04 7760 7.14e−03 1.27e+00 24 2.69e−02 18 6

1283 16 6.19e−04 16,208 9.77e−01 1.43e+02 100 8.24e−01 100 6

32 5.98e−04 16,208 4.89e−01 7.40e+01 97 4.37e−01 94 6

64 5.85e−04 16,208 2.44e−01 3.87e+01 92 2.26e−01 91 6

128 6.23e−04 16,208 1.22e−01 2.11e+01 85 1.40e−01 74 6

256 6.14e−04 16,208 6.12e−02 1.00e+01 89 9.76e−02 53 6

512 5.96e−04 16,208 3.06e−02 5.80e+00 77 1.98e−01 13 6

1024 5.86e−04 16,208 1.54e−02 3.46e+00 65 6.13e−02 21 6

2563 128 6.18e−04 33,104 1.01e+00 2.24e+02 100 9.18e−01 100 6

256 6.11e−04 33,104 5.07e−01 1.19e+02 94 4.88e−01 94 6

512 6.06e−04 33,104 2.53e−01 6.33e+01 88 2.85e−01 81 6

1024 6.25e−04 33,104 1.27e−01 3.19e+01 88 1.86e−01 62 6

2048 6.18e−04 33,104 6.35e−02 2.44e+01 57 1.58e−01 36 6

4096 6.16e−04 33,104 3.18e−02 1.27e+01 55 1.73e−01 17 6

8192 6.14e−04 33,104 1.60e−02 1.16e+01 30 4.14e−01 3 6

5123 1024 6.16e−04 66,896 1.03e+00 3.32e+02 100 1.08e+00 100 6

2048 6.15e−04 66,896 5.16e−01 1.84e+02 90 6.53e−01 82 6

4096 6.14e−04 66,896 2.58e−01 9.55e+01 87 4.90e−01 55 6

8192 6.13e−04 66,896 1.29e−01 5.58e+01 74 4.58e−01 29 6

10243 8192 6.15e−04 134,480 1.04e+00 4.67e+02 100 1.48e+00 100 6

for the application, and linear scaling for memory cost. The column labeled with mf in
Table 3, or alternatively Fig. 6c, illustrates the perfect strong scaling for the memory cost.
Since the bottleneck for most parallel algorithms is the memory cost, this point is espe-
cially important in practice. Perfect distribution of the memory usage allows us to solve
very large problem on a massive number of processes, even through the communication
penalty on massive parallel computing would be relatively large. The factorization time
and application time show good scaling up to thousands of processes. Figure 6a, b presents
the strong scaling plot for the running time of factorization and application, respectively.
Together with Fig. 6d, which illustrates the timing for each part of the factorization, we
conclude that the communication cost beside the parallel dense linear algebra (labeled
with “El”) remains small comparing to the cost of the parallel dense linear algebra. It is
the parallel dense linear algebra part that stops the strong scaling. As it is also well known
that parallel dense linear algebra achieves good weak scaling, so does our DHIF imple-

Li and Ying Res Math Sci (2017) 4:12 Page 18 of 23

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

T
im

e
(s

ec
)

Scaling for DHIF Factorization

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

a

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
(s

ec
)

Strong Scaling for DHIF Application

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

b

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
(s

ec
)

Strong Scaling for DHIF Peak Memory

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

c

1 8 64 512 4096

P

10 0

10 1

10 2

T
im

e
(s

ec
)

Stacked Bar for Uniform-Time with Ratio=32768

El
SpComm
SkelComm
Merge
RootMrg

d

Fig. 6 Example 1. a is the scaling plot for the DHIF factorization time, the solid lines indicate the weak scaling
results, the dashed lines are the strong scaling results, and the dotted lines are the reference lines for perfect
strong scaling; the line style applies to all figures below; b is the strong scaling for the DHIF application time; c
is the strong scaling for the DHIF peak memory usage; d shows a stacked bar plot for factorization time for
fixed ratio between the problem size and the number of processes

mentation. Finally, the last column of Table 3 shows the number of iterations for solving
Au = f using the GMRES algorithm with a relative tolerance of 10−12 and with the DHIF
as a preconditioner. As the numbers in the entire column are equal to 6, this shows that
DHIF serves an excellent preconditioner with the iteration number almost independent
of the problem size.

Example 2 The second example is a problem of (1) with high-contrast random field a(x)
and b(x) ≡ 0.1. The high-contrast random field a(x) is defined as follows,

1. Generate uniform random value aj between 0 and 1 for each discretization point;
2. Convolve the random value aj with an isotropic three-dimensional Gaussian with

standard deviation 1;
3. Quantize the field via

aj =
{
0.1, aj ≤ 0.5
1000, aj > 0.5

. (42)

The given tolerance is set to be 10−5.

Li and Ying Res Math Sci (2017) 4:12 Page 19 of 23

Figure 7 shows a slice in a realization of the random field. The corresponding matrix A
is clearly of high contrast. Solving such a problem is harder than Example 1 due to the
raise of the condition number. The performance results of our algorithm are presented in
Table 4. As we expect, the relative error for solving is lower than that in Table 3 and the
number of iterations in GMRES is higher.
Table 4 and Fig. 8 demonstrate the efficiency of the DHIF for high-contrast random

field. Almost all comments regarding the numerical results in Example 1 apply here. To
focus on the difference between Example 1 and Example 2, the most noticeable difference
is about the relative error, es. Though we give a higher relative precision ε = 10−5, the
relative error for Example 2 is about 3 × 10−3, which is about ten times larger than es
in Example 1. The reason for the decrease of accuracy is most likely the increase of the
condition number for Example 2. This also increases the number of iterations in GMRES.
However, both es and niter remain roughly constant for varying problem sizes. This means
thatDHIF still serves as a robust and efficient solver andpreconditioner for such problems.
Another difference is the number of skeleton points on the root level, |�L|. Due to the
fact that the field a(x) is random, and different rows in Table 4 actually adopt different
realizations, the small fluctuation of |�L| for the same N and different P is expected.
Overall |�L| still grows linearly as n = N 1/3 increases. This again supports the complexity
analysis given above.

Example 3 The third example provides a concrete comparison between the proposed
DHIF and multigrid method (hypre [13]). The problem behaves similar as example 2
without randomness, (1) with high-contrast field a(x) and b(x) ≡ 0.1. The high-contrast
field a(x) is defined as follows,

a(x) =
{
1000,

∑3
i=1
 xin

7 � ≡ 0 (mod 2),
0.1,

∑3
i=1
 xin

7 � ≡ 1 (mod 2),
(43)

where n is the number of grid points on each dimension.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 7 A slice in a random field realization of size 1283

Li and Ying Res Math Sci (2017) 4:12 Page 20 of 23

Table 4 Example 2: numerical results

N P es |sL| mf tf ES
f (%) ts ES

s (%) niter
323 1 3.02e−03 3865 2.00e−01 5.80e+00 100 1.34e−01 100 7

2 3.39e−03 3632 9.31e−02 2.48e+00 117 6.69e−02 100 7

4 2.69e−03 3934 5.13e−02 1.72e+00 84 3.75e−02 89 7

8 3.18e−03 3660 2.37e−02 9.50e−01 76 2.20e−02 76 7

16 3.13e−03 3693 1.24e−02 6.22e−01 58 1.32e−02 63 7

32 3.00e−03 3744 6.42e−03 4.83e−01 38 1.49e−02 28 7

643 2 3.29e−03 8580 9.45e−01 4.33e+01 100 6.15e−01 100 7

4 3.13e−03 8938 4.94e−01 2.91e+01 74 3.10e−01 99 7

8 3.09e−03 9600 2.51e−01 1.98e+01 55 1.68e−01 91 7

16 3.07e−03 8919 1.19e−01 1.27e+01 43 9.86e−02 78 7

32 3.09e−03 9478 6.59e−02 6.99e+00 39 7.89e−02 49 7

64 3.18e−03 9111 3.03e−02 3.17e+00 43 4.90e−02 39 7

128 3.02e−03 9419 1.58e−02 2.15e+00 31 3.31e−02 29 7

256 3.03e−03 9349 7.97e−03 1.60e+00 21 3.66e−02 13 7

1283 16 3.16e−03 19,855 1.07e+00 2.11e+02 100 8.89e−01 100 7

32 3.09e−03 20,487 5.58e−01 1.18e+02 90 4.86e−01 91 7

64 3.06e−03 21,345 2.78e−01 6.43e+01 82 2.45e−01 91 7

128 3.10e−03 20,344 1.37e−01 3.39e+01 78 1.34e−01 83 7

256 3.07e−03 21,152 7.43e−02 1.76e+01 75 1.10e−01 51 7

512 3.07e−03 20,779 3.51e−02 8.46e+00 78 8.80e−02 32 7

1024 3.04e−03 21,361 1.76e−02 5.38e+00 61 6.31e−02 22 7

2563 128 3.11e−03 42,420 1.14e+00 4.15e+02 100 1.04e+00 100 7

256 3.12e−03 43,828 5.91e−01 2.12e+02 98 5.77e−01 90 8

512 3.11e−03 44,126 2.90e−01 1.25e+02 83 3.86e−01 67 7

1024 3.08e−03 43,302 1.46e−01 6.31e+01 82 2.12e−01 61 7

2048 3.09e−03 44,131 7.78e−02 3.43e+01 76 1.86e−01 35 7

4096 3.10e−03 43,691 3.71e−02 1.96e+01 66 2.28e−01 14 7

8192 3.10e−03 43,952 1.85e−02 2.05e+01 32 4.03e−01 4 7

5123 1024 3.11e−03 88,070 1.16e+00 6.37e+02 100 1.22e+00 100 7

2048 3.11e−03 88,577 6.11e−01 3.47e+02 92 6.84e−01 89 8

4096 3.11e−03 88,757 3.03e−01 1.89e+02 84 5.31e−01 58 7

8192 3.11e−03 85,877 1.50e−01 1.02e+02 78 6.20e−01 25 7

10243 8192 3.11e−03 177,323 1.18e+00 9.35e+02 100 1.95e+00 100 8

WeadoptGMRES iterativemethod in bothDHIF and hypre to solve the elliptic problem
to a relative error 10−12. The given tolerance inDHIF is set to be 10−4. And SMG interface
in hypre is used as preconditioner for the problem on regular grids. The numerical results
for DHIF and hypre are given in Table 5.

As we can read fromTable 5, there are a few advantages of DHIF over hypre in the given
settings. First, DHIF is faster than hypre’s SMG except for small problems with small
numbers of processes. And the number of iterations grows as the problem size grows in
hypre, while it remains almost the same in DHIF. In truly large problems, the advantages
of DHIF are more pronounced. Second, the scalability of DHIF appears to be better than
that of hypre’s SMG. Finally, DHIF only requires powers of two numbers of processes,
whereas hypre’s SMG requires powers of eight for 3D problems.

Li and Ying Res Math Sci (2017) 4:12 Page 21 of 23

100 101 102 103 104

P

100

101

102

103

T
im

e
(s

ec
)

Scaling for DHIF Factorization

N = 323

N = 643

N = 128 3

N = 2563

N = 5123

N = 10243

a

100 101 102 103 104

P

10-2

10-1

100

T
im

e
(s

ec
)

Strong Scaling for DHIF Application

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

b

100 101 102 103 104

P

10-2

10-1

100

T
im

e
(s

ec
)

Strong Scaling for DHIF Peak Memory

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

c

1 8 64 512 4096
P

100

101

102

103

T
im

e
(s

ec
)

Stacked Bar for HighCont-Time with Ratio=32768

El
SpComm
SkelComm
Merge
RootMrg

d

Fig. 8 Example 2. a provides a scaling plot for DHIF factorization time; b is the strong scaling for DHIF
application time; c is the strong scaling for DHIF peak memory usage; d shows a stacked bar plot for
factorization time for fixed ratio between problem size and number of processes

Table 5 Numerical results for DHIF and hypre

N P DHIF hypre

tsetup(s) tsolve(s) niter tsetup(s) tsolve(s) niter
643 8 15.27 18.10 21 0.29 9.67 67

64 2.46 3.45 21 1.47 17.37 60

1283 64 29.20 24.53 22 1.78 140.90 394

512 3.93 4.41 22 2.11 113.57 455

2563 512 59.66 26.33 21 4.11 258.22 492

4096 11.58 6.78 21 8.97 191.15 375

tsetup is the setup time which is identical to tf in previous examples for DHIF; tsolve is the total iterative solving time using
GMRES; niter is the number of iterations in GMRES

5 Conclusion
In this paper, we introduced the distributed-memory hierarchical interpolative factor-
ization (DHIF) for solving discretized elliptic partial differential equations in 3D. The
computational and memory complexity for DHIF is

O
(
N logN

P

)
and O

(
N
P

)
, (44)

Li and Ying Res Math Sci (2017) 4:12 Page 22 of 23

respectively, where N is the total number of DOFs and P is the number of processes. The
communication cost is

O
(√

P log3 P
)

α + O
(
N 2/3
√
P

)
β , (45)

where α is the latency and β is the inverse bandwidth. Not only the factorization is
efficient, the application can also be done in O(NP) operations. Numerical examples in
Sect. 4 illustrate the efficiency and parallel scaling of the algorithm. The results show that
DHIF can be used both as a direct solver and as an efficient preconditioner for iterative
solvers.
We have described the algorithm using the periodic boundary condition in order to

simplify the presentation. However, the implementation can be extended in a straightfor-
ward way to problemswith other type of boundary conditions. The discretization adopted
here is the standard Cartesian grid. For more general discretizations such as finite ele-
ment methods on unstructured meshes, one can generalize the current implementation
by combining with the idea proposed in [36].
Herewe have only considered the parallelization of theHIF for differential equations. As

shown in [22], the HIF is also applicable to solving integral equations with non-oscillatory
kernels. Parallelization of this algorithm is also of practical importance.

Author details
1ICME, Stanford University, Stanford, CA, USA, 2Department of Mathematics, Stanford University, Stanford, CA, USA.

Acknowledgements
Y. Li and L. Ying are partially supported by the National Science Foundation under award DMS-1521830 and the U.S.
Department of Energy’s Advanced Scientific Computing Research program under award
DE-FC02-13ER26134/DE-SC0009409. The authors would like to thank K. Ho, V. Minden, A. Benson, and A. Damle for
helpful discussions. We especially thank J. Poulson for the parallel dense linear algebra package Elemental. We
acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin (URL: http://www.tacc.
utexas.edu) for providing HPC resources that have contributed to the research results reported in the early versions of
this paper. This research, in the current version, used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Received: 1 July 2016 Accepted: 27 February 2017

References
1. Ambikasaran, S., Darve, E.: An O(N logN) fast direct solver for partial hierarchically semi-separable matrices: with

application to radial basis function interpolation. SIAM J. Sci. Comput. 57(3), 477–501 (2013)
2. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by

means of block low-rank representations. SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015)
3. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput.

Methods Appl. Mech. Eng. 184(24), 501–520 (2000)
4. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic

scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)
5. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in numerical linear algebra. SIAM J. Matrix

Anal. Appl. 32(3), 866–901 (2011)
6. Bebendorf, M.: Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth

coefficients. Math. Comput. 74(251), 1179–1199 (2005)
7. Bebendorf, M., Hackbusch, W.: Existence ofH-matrix approximants to the inverse FE-matrix of elliptic operators with

L∞-coefficients. Numer. Math. 95(1), 1–28 (2003)
8. Börm, S.: Approximation of solution operators of elliptic partial differential equations byH- andH2-matrices. Numer.

Math. 115(2), 165–193 (2010)
9. Briggs,W.L., Henson, V.E., McCormick, S.F.: AMultigrid Tutorial, 2nd edn. Society for Industrial andAppliedMathematics

(2000). doi:10.1137/1.9780898719505
10. Chandrasekaran, S., Dewilde, P., Gu, M., Pals, T., Sun, X., van der Veen, A.-J., White, D.: Some fast algorithms for

sequentially semiseparable representations. SIAM J. Matrix Anal. Appl. 27(2), 341–364 (2005)
11. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur

complements of discretized elliptic PDEs. SIAM J. Matrix Anal. Appl. 31(5), 2261–2290 (2010)
12. Cheng, H., Gimbutas, Z., Martinsson, P.-G., Rokhlin, V.: On the compression of low rank matrices. SIAM J. Sci. Comput.

26(4), 1389–1404 (2005)

http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://dx.doi.org/10.1137/1.9780898719505

Li and Ying Res Math Sci (2017) 4:12 Page 23 of 23

13. Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R.S., and Yang, U.M.: A survey of parallelization techniques for multigrid
solvers. Parallel Process. Sci. Comput., chapter 10, pp. 179–201. Society for Industrial and Applied Mathematics (2006)

14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw.
9(3), 302–325 (1983)

15. Falgout, R.D., Jones, J.E.: Multigrid on massively parallel architectures. In: Dick, E., Riemslagh, K., Vierendeels, J. (eds.)
Multigrid Methods VI. Lecture Notes in Computational Science and Engineering, vol. 14, pp. 101–107. Springer, Berlin
(2000). doi:10.1007/978-3-642-58312-4_13

16. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)
17. Gillman, A., Martinsson, P.-G.: A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via

a high-order composite spectral collocation method. SIAM J. Sci. Comput. 36(4), A2023–A2046 (2014)
18. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices. Computing 62(2),

89–108 (1999)
19. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptiveH2-matrices. Computing 69(1), 1–35 (2002)
20. Hackbusch, W., Khoromskij, B.N.: A sparseH-matrix arithmetic. II. Application to multi-dimensional problems. Com-

puting 64(1), 21–47 (2000)
21. Hao, S., Martinsson, P.-G.: A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of

Poincaré-Steklov operators. J. Comput. Appl. Math. 308, 419–434 (2016). doi:10.1016/j.cam.2016.05.013
22. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: differential equations. Commun. Pure

Appl. Math. 69(8), 1415–1451 (2016). doi:10.1002/cpa.21582
23. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: integral equations. Commun. Pure Appl.

Math. 69(7), 1314–1353 (2016)
24. Izadi, M.: ParallelH-matrix arithmetic on distributed-memory systems. Comput. Vis. Sci. 15(2), 87–97 (2012)
25. Kriemann, R.:H-LU factorization on many-core systems. Comput. Vis. Sci. 16(3), 105 (2013)
26. Liu, J.W.H.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34(1), 82–109 (1992)
27. Liu, X., Xia, J., Hoop, M.V.D.E.: Parallel randomized and matrix-free direct solvers for large structured dense linear

systems. SIAM J. Sci. Comput. 38(5), 1–32 (2016)
28. Martinsson, P.-G.: A fast direct solver for a class of elliptic partial differential equations. SIAM J. Sci. Comput. 38(3),

316–330 (2009)
29. Martinsson, P.G.: Blocked rank-revealing QR factorizations: how randomized sampling can be used to avoid single-

vector pivoting. arXiv:1505.08115 (2015)
30. Poulson, J., Engquist, B., Li, S., Ying, L.: A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations.

SIAM J. Sci. Comput. 35(3), C194–C212 (2013)
31. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: a new framework for distributed

memory dense matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)
32. Pouransari, H., Coulier, P., Darve, E.: Fast hierarchical solvers for sparse matrices using low-rank approximation.

arXiv:1510.07363 (2016)
33. Saad, Y.: Parallel iterative methods for sparse linear systems. Stud. Comput. Math. 8, 423–440 (2001)
34. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics (2003).

doi:10.1137/1.9780898718003
35. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231(4),

1314–1338 (2012)
36. Schmitz, P.G., Ying, L.: A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J.

Comput. Phys. 258, 227–245 (2014)
37. Scott, D.S.: Efficient all-to-all communication patterns in hypercube and mesh topologies. In: Distributed Memory

Computing Conference, pp. 398–403. IEEE (1991)
38. Wang, S., Li, X.S., Rouet, F.H., Xia, J., De Hoop, M.V.: A parallel geometric multifrontal solver using hierarchically

semiseparable structure. ACM Trans. Math. Softw. 42(3), 21:1–21:21 (2016)
39. Xia, J.: Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci. Comput. 35(2),

A832–A860 (2013)
40. Xia, J.: Randomized sparse direct solvers. SIAM J. Matrix Anal. Appl. 34(1), 197–227 (2013)
41. Xia, J., Chandrasekaran, S., Gu,M., Li, X.S.: Superfastmultifrontalmethod for large structured linear systemsof equations.

SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)
42. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear

Algebr. Appl. 17(6), 953–976 (2010)
43. Xin, Z., Xia, J., De Hoop, M.V., Cauley, S., Balakrishnan, V.: A distributed-memory randomized structured multifrontal

method for sparse direct solutions. Purdue GMIG Rep. 14(17), 1–25 (2014)

http://dx.doi.org/10.1007/978-3-642-58312-4_13
http://dx.doi.org/10.1016/j.cam.2016.05.013
http://dx.doi.org/10.1002/cpa.21582
http://arxiv.org/abs/1505.08115
http://arxiv.org/abs/1510.07363
http://dx.doi.org/10.1137/1.9780898718003

	Distributed-memory hierarchical interpolative factorization
	Abstract
	1 Background
	1.1 Previous work
	1.2 Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Sparse elimination
	2.3 Skeletonization
	2.4 Sequential HIF

	3 Distributed-memory HIF
	3.1 Process tree
	3.2 Distributed-memory method
	3.3 Complexity analysis
	3.3.1 Memory complexity
	3.3.2 Computation complexity
	3.3.3 Communication complexity

	4 Numerical results
	5 Conclusion
	Acknowledgements
	References

