
TOM00051 ACM (Typeset by SPi, Manila, Philippines) 1 of 19 February 24, 2011 15:14

40

SelInv—An Algorithm for Selected Inversion of a Sparse
Symmetric Matrix

LIN LIN, Princeton University
CHAO YANG and JUAN C. MEZA, Lawrence Berkeley National Laboratory
JIANFENG LU, Courant Institute of Mathematical Sciences
LEXING YING, University of Texas at Austin
WEINAN E, Princeton University

We describe an efficient implementation of an algorithm for computing selected elements of a general sparse
symmetric matrix A that can be decomposed as A = LDLT , where L is lower triangular and D is diagonal.
Our implementation, which is called SelInv, is built on top of an efficient supernodal left-looking LDLT

factorization of A. We discuss how computational efficiency can be gained by making use of a relative index
array to handle indirect addressing. We report the performance of SelInv on a collection of sparse matrices
of various sizes and nonzero structures. We also demonstrate how SelInv can be used in electronic structure
calculations.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Algorithm design and analysis; I.1.2
[Symbolic and Algebraic Manipulation]: Algorithms—Algebraic algorithms

General Terms: Design, Performance

Additional Key Words and Phrases: Electronic structure calculation, elimination tree, selected inversion,
sparse LDLT factorization, supernodes

ACM Reference Format:
Lin, L., Yang, C., Meza, J. C., Lu, J., Ying, L., and E, W. 2010. SelInv—An algorithm for selected inversion
of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 4, Article 40 (February 2011), 19 pages.
DOI = 10.1145/1916461.1916464 http://doi.acm.org/10.1145/1916461.1916464

This work was partially supported by NSF under Contract No. DMS-0708026 and No. DMS-0914336, by
Doe under Contract No. DE-FG02-03ER25587, and by ONR under Contract No. N00014-01-1-0674 (L. Lin,
J. Lu, and W. E); by an Alfred P. Sloan fellowship and a startup grant from the University of Texas at
Austin (L. Ying); and by the Director, Office of Science, Division of Mathematical, Information, and Compu-
tational Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (C. Yang and
J. C. Meza). The computational results presented were obtained at the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Director, Office of Advanced Scientific Computing
Research of the U.S. Department of Energy under contract number DE-AC02-05CH11232.
Authors’ addresses: L. Lin, Department of Mathematics, Princeton University, 210 Fine Hall, Washing-
ton Road, Princeton, NJ 08544; email: linlin@math.princeton.edu; C. Yang and J. C. Meza, Computa-
tional Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720;
email: {cyang, JCMeza}@LbL.gov; J. Lu, Courant Institute of Mathematical Sciences, 1119 Warren Weaver
Hall, 251 Mercer St., New York, NY 10012-1185; email: jiangeng@cims.nyu.edu; L. Ying, Department
of Mathematics and ICES, University of Texas at Austin, 1 University Station/C1200, Austin, TX 78712;
email: lexing@math.utex.edu; W. E., Department of Mathematics and Program in Applied Computa-
tional Mathematics, Princeton University, 207 Fine Hall Washington Road, Princeton, NJ 08544; email:
weinan@math.princeton.edu.
c© 2011 Association for Computer Machinery. ACM acknowledges that this contribution was authored or

co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
Permission to make digital or hard copies part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permission@acm.org.
c© 2011 ACM 0098-3500/2011/02-ART40 $10.00

DOI 10.1145/1916461.1916464 http://doi.acm.org/10.1145/1916461.1916464

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 2 of 19 February 24, 2011 15:14

40:2 L. Lin et al.

1. INTRODUCTION

In some scientific applications, we need to calculate a subset of the entries of the in-
verse of a given matrix. A particularly important example is in the electronic struc-
ture analysis of materials using algorithms based on pole expansion [Lin et al. 2009a,
2009c] where the diagonal and sometimes subdiagonals of the discrete Green’s func-
tion or resolvent matrices are needed in order to compute the electron density. Other
examples in which particular entries of the Green’s functions are needed can also be
found in the perturbation analysis of impurities by solving Dyson’s equation in solid
state physics [Economou 2006], or the calculation of retarded and less-than Green’s
function in electronic transport [Datta 1997]. We will call this type of calculations a
selected inversion of a matrix.

From a computational viewpoint, it is natural to ask whether one can develop al-
gorithms for selected inversion that are faster than inverting the whole matrix. This
is possible at least in some cases, for example, when A is obtained from a finite dif-
ference discretization of a Laplacian operator or from lattice models in statistical or
quantum mechanics with a local Hamiltonian. For such matrices, a fast sequential
algorithm has been proposed to extract the diagonal or subdiagonal elements of their
inverse matrices [Lin et al. 2009b]. The complexity of this fast selected inversion al-
gorithm is O(n3/2) for two-dimensional (2D) problems and O(n2) for three-dimensional
(3D) problems, with n being the dimension of A. This is lower than the O(n3) com-
plexity associated with a direct inversion of a general matrix. For sparse matrices,
the implementation of direct inversion can take advantage of the sparsity pattern of
the sparse triangular factor of A. Although the complexity of this approach can be
made lower than O(n3), it is still generally higher than the complexity associated with
selected, inversion, as we will see in Section 5. For a narrower class of matrices such
as those obtained from discretized elliptic operators, the complexity of direct inversion
can be reduced to O(n2) in both 2D and 3D by making use of specialized algorithms
such as the Fast Multipole Method [Greengard and Rokhlin 1987]. However, the se-
lected inversion algorithm we present here is a more general approach. Hence, it can
be applied to a wider class of problems.

The fast selected inversion algorithm in Lin et al. [2009b] contains two steps. The
first step produces an LDLT factorization of the input matrix A. The second step uses
the L and D matrices to compute the selected components of A−1. In the following,
we will simply refer to the first step as factorization, and the second step as selected
inversion. The parallelization of this algorithm on a distributed memory machine was
described in the recent work [Lin et al. 2009d]. We have used the parallel algorithm
to perform a selected inversion of a 2D Laplacian of dimension 4.3 billion on 4,096
processors.

The design and implementation of the fast algorithms proposed in Lin et al. [2009b;
2009d] depend explicitly on the domain shape and the discretization stencil for the
Laplacian operator. This leads to an efficient implementation, but restricts the appli-
cation of the algorithm. On the other hand, LDLT factorization is a general concept.
Therefore, it is natural to ask whether it is possible for the selected inversion algo-
rithm to be generalized to any nonsingular symmetric matrix. This question was in-
vestigated in Takahashi et al. [1973] and Erisman and Tinney [1975] and discussed
recently in Li et al. [2008] and Petersen et al. [2009]. However, no efficient soft-
ware package is currently available for computing a selected inversion of a general
sparse symmetric matrix that admits an LDLT factorization. The present article
intends to fill this gap by describing an efficient algorithm and its implementation
for such a task. The algorithm and its implementation described here will be called
SelInv.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 3 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:3

Our article is organized as follows. We begin with the description of some basic
concepts underlying a selected inversion algorithm in Section 2, and discuss why the
complexity of the algorithm can be made lower than O(n3) when A is sparse. We dis-
cuss the use of supernodes and block algorithms in Section 3, which is key to achieving
high performance. The implementation details of SelInv, which are the main contri-
butions of this article, are provided in Section 4. In particular, we show how a relative
index array similar to that used in a sparse LDLT factorization is set up to handle
indirect addressing efficiently. In Section 5, we report the performance of SelInv on a
collection of sparse matrices. We also demonstrate how SelInv can be used in electronic
structure calculations in Section 6.

Standard linear algebra notation is used for vectors and matrices throughout the
article. We use Ai, j to denote the (i, j)th element of A. Block indices are denoted
by uppercase script letters I, J, etc.. Occasionally, we use a MATLAB [Moler 2004]
script to describe a simple algorithm. In particular, we use the MATLAB-style notation
A(i:j,k:l) to denote a submatrix of A that consists of rows i through j and columns
k through l. Another notion we use to denote such a submatrix is Ai: j,k:l. Furthermore,
we use Ai,∗ and A∗, j to denote the ith row and the jth column of A, respectively. Simi-
larly, AI,∗ and A∗,J are used to denote the Ith block row and the J th block column of
A, respectively.

2. SELECTED INVERSION: BASIC IDEA

An obvious way to obtain selected components of A−1 is to compute A−1 first and then
simply pull out the needed entries. The standard approach for computing A−1 is to
first decompose A as

A = LDLT, (1)

where L is a unit lower triangular matrix and D is a diagonal or a block-diagonal
matrix. Equation (1) is often known as the LDLT factorization of A. For positive
definite matrices, D can always be kept as a diagonal matrix. For general symmetric
matrices, a block LDLT factorization that allows 2×2 block pivots [Bunch and Parlett
1971; Bunch and Kaufman 1977] or partial pivoting [Gilbert and Peierls 1986] may
be used to achieve numerical stability in the factorization. Given such a factorization,
one can obtain A−1 = (x1, x2, . . . , xn) by solving a number of triangular systems

Ly = e j, Dw = y, LTx j = w, (2)

for j = 1, 2, . . . , n, where e j is the jth column of the identity matrix I. The compu-
tational cost of such algorithm is generally O(n3), with n being the dimension of A.
However, when A is sparse, we can exploit the sparsity structure of L and e j to reduce
the complexity of computing selected components of A−1. We will examine this type
of algorithm, which we will refer to as direct inversion, further in Section 5 when we
compare the performance of direct inversion with that of our new fast algorithm.

The alternative algorithms presented in Lin et al. [2009b; 2009d] and summarized
below also perform an LDLT factorization of A first. However, the algorithm does not
require solving (2) directly. Before we present this algorithm, it will be helpful to first
review the major operations involved in the LDLT factorization of A.

Let

A =

(
α b T

b Â

)
(3)

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 4 of 19 February 24, 2011 15:14

40:4 L. Lin et al.

be a nonsingular symmetric matrix. The first step of an LDLT factorization produces
a decomposition of A that can be expressed by

A =

(
1
� I

) (
α

Â − bb T/α

)(
1 �T

I

)
,

where α is often referred to as a pivot, � = b/α and S = Â − bb T/α is known as the
Schur complement. The same type of decomposition can be applied recursively to the
Schur complement S until its dimension becomes 1. The product of lower triangular
matrices produced from the recursive procedure, which all have the form⎛

⎜⎝ I
1
�(i) I

⎞
⎟⎠,

where �(1) = � = b/α, yields the final L factor. At this last step the matrix in the middle
becomes diagonal, which is the D matrix.

To simplify our discussion, we assume here that all pivots produced in the LDLT

factorization are sufficiently large so that no row or column permutation (pivoting)
is needed during the factorization. The discussion can be readily generalized if D
contains 2 × 2 blocks.

The key observation made in Lin et al. [2009b; 2009d] is that A−1 can be
expressed by

A−1 =

(
α−1 + �T S−1� −�T S−1

−S−1� S−1

)
. (4)

This expression suggests that, once α and � are known, the task of computing A−1 can
be reduced to that of computing S−1.

Because a sequence of Schur complements is produced recursively in the LDLT

factorization of A, the computation of A−1 can be organized in a recursive fashion too.
Clearly, the reciprocal of the last entry of D is the (n, n)th entry of A−1. Starting from
this entry, which is also the 1 × 1 Schur complement produced in the (n − 1)th step
of the LDLT factorization procedure, we can construct the inverse of the 2 × 2 Schur
complement produced at the (n − 2)th step of the factorization procedure, using the
recipe given by (4). This 2 × 2 matrix is the trailing 2 × 2 block of A−1. As we proceed
from the lower right corner of L and D toward their upper left corner, more and more
elements of A−1 are recovered. The complete procedure can be easily described by a
MATLAB script shown in Algorithm 1.

Algorithm 1. A MATLAB script for computing the inverse of a dense matrix A given its LDLT

factorization.
Input: A unit triangular matrix L and a diagonal matrix D such that A = LDLT ;
Output: The inverse of A denoted by Ainv.

Ainv(n,n) = 1/D(n,n);

for j = n-1:-1:1

Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);

Ainv(j,j+1:n) = Ainv(j+1:n,j)’;

Ainv(j,j) = 1/D(j,j) - L(j+1:n,j)’*Ainv(j+1:n,j);

end;

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 5 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:5

For the purpose of clarity, we use a separate array Ainv in Algorithm 1 to store the
computed A−1. In practice, A−1 can be computed in place. That is, we can overwrite
the array used to store L and D with the lower triangular and diagonal part of A−1

incrementally.
It is not difficult to observe that, if A is a dense matrix, the complexity of Al-

gorithm 1 is O(n3) because a matrix vector multiplication involving a j × j dense
matrix is performed at the jth iteration of this procedure, and (n − 1) iterations
are required to fully recover A−1. Therefore, when A is dense, this procedure
does not offer any advantage over the standard way of computing A−1. Further-
more, all elements of A−1 are needed and computed. No computational cost can
be saved if we just want to extract selected elements (e.g., the diagonal elements)
of A−1.

However, when A is sparse, a tremendous amount of savings can be achieved if we
are only interested in the diagonal components of A−1. If the vector � in (4) is sparse,
computing �T S−1� does not require all elements of S−1 to be obtained in advance. Only
those elements that appear in the rows and columns corresponding to the nonzero rows
of � are required.

Therefore, to compute the diagonal elements of A−1, we can simply modify the
procedure shown in Algorithm 1 so that at each iteration we only compute selected
elements of A−1 that will be needed by subsequent iterations of this procedure. It
turns out that the elements that need to be computed are completely determined
by the nonzero structure of the lower triangular factor L. To be more specific, at
the jth step of the selected inversion process, we compute (A−1)i, j for all i such that
Li, j �= 0. Therefore, our algorithm for computing the diagonal of A−1 can be easily
illustrated by a MATLAB script (which is not the most efficient implementation)
shown in Algorithm 2. A more efficient algorithm, which uses a special indirect
addressing scheme to retrieve the needed entries of (A−1)i, j, will be discussed in
Section 4.

Algorithm 2. A MATLAB script for computing selected matrix elements of A−1 for a sparse
symmetric matrix A.

Input: A unit triangular matrix L and a diagonal matrix D such that A = LDLT ;
Output: Selected elements of A−1 denoted by Ainv, i.e. the elements (A−1)i, j such that Li, j �= 0.

Ainv(n,n) = 1/D(n,n);

for j = n-1:-1:1

% find the row indices of the nonzero elements in

% the j-th column of L

inz = j + find(L(j+1:n,j)~=0);

Ainv(inz,j) = -Ainv(inz,inz)*L(inz,j);

Ainv(j,inz) = Ainv(inz,j)’;

Ainv(j,j) = 1/D(j,j) - Ainv(j,inz)*L(inz,j);

end;

To see why this type of selected inversion is sufficient, we only need to examine the
nonzero structure of the kth column of L for all k < j since such a nonzero structure
tells us which rows and columns of the trailing subblock of A−1 are needed to complete
the calculation of the (k, k)th entry of A−1. In particular, we would like to find out

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 6 of 19 February 24, 2011 15:14

40:6 L. Lin et al.

Fig. 1. The lower triangular factor L of a sparse 10 × 10 matrix A and the corresponding elimination tree.

which elements in the jth column of A−1 are required for computing A−1
i,k for any k < j

and i ≥ j.
Clearly, when L j,k = 0, the jth column of A−1 is not needed for computing the kth

column of A−1. Therefore, we only need to examine columns k of L such that L j,k �= 0.
A perhaps not so obvious but critical observation is that, for these columns, Li,k �= 0
and L j,k �= 0 implies Li, j �= 0 for all i > j. Hence computing the kth column of A−1 will
not require more matrix elements from the jth column of A−1 than those that have
already been computed (in previous iterations,), that is, elements (A−1)i, j such that
Li, j �= 0 for i ≥ j.

These observations are well known in the sparse matrix factorization literature
[Duff and Reid 1987; George and Liu 1981]. They can be made more precise by us-
ing the notion of elimination tree [Liu 1990]. In such a tree, each node or vertex of the
tree corresponds to a column (or row) of A. Assuming A can be factored as A = LDLT ,
a node p is the parent of a node j if and only if

p = min{i > j|Li, j �= 0}.

If L j,k �= 0 and k < j, then the node k is a descendant of j in the elimina-
tion tree. An example of the elimination tree of a matrix A and its L factor are
shown in Figure 1. Such a tree can be used to clearly describe the dependency
among different columns in a sparse LDLT factorization of A. In particular, it
is not too difficult to show that constructing the jth column of L requires contri-
butions from descendants of j that have a nonzero matrix element in the jth row
[Liu 1990].

Similarly, we may also use the elimination tree to describe which selected elements
within the trailing subblock A−1 are required in order to obtain the (j, j)th element of
A−1. In particular, it is not difficult to show that the selected elements must belong to
the rows and columns of A−1 that are among the ancestors of j.

3. BLOCK ALGORITHMS AND SUPERNODES

The selected inversion procedure described in Algorithm 1 and its sparse version
can be modified to allow a block of rows and columns to be modified simultaneously.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 7 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:7

A block algorithm can be described in terms a block factorization of A. For example, if
A is partitioned as

A =

(
A11 BT

21

B21 A22

)
,

its block LDLT factorization has the form

A =

(
I

L21 I

) (
A11

A22 − B21 A−1
11 BT

21

)(
I LT

21

I

)
, (5)

where L21 = B21 A−1
11 and S = A22 − B21 A−1

11 BT
21 is the Schur complement. The corre-

sponding block version of (4) can be expressed by

A−1 =

(
A−1

11 + LT
21S−1L21 −LT

21S−1

−S−1L21 S−1

)
.

There are at least three advantages of using a block algorithm:

(1) It allows us to use level 3 BLAS (Basic Linear Algebra Subroutine) to develop
an efficient implementation by exploiting the memory hierarchy in modern micro-
processors.

(2) When applied to sparse matrices, it tends to reduce the amount of indirect address-
ing overhead.

(3) It allows 2 × 2 block pivots that can be used to overcome numerical instabilities
that may arise when A is indefinite.

When A is sparse, the columns of A and L can be partitioned into supernodes. A
supernode is a maximal set of contiguous columns {j, j + 1, . . . , j + s} of L such that
they have the same nonzero structure below the (j + s)th row and the lower triangular
part of L j: j+s, j: j+s is completely dense. An example of a supernode partition of the lower
triangular factor L associated with a 49×49 sparse matrix A is shown in Figure 2. The
definition of a supernode can be relaxed to include columns whose nonzero structures
are nearly identical with adjacent columns. However, we will not be concerned with
such an extension in this article. We will use uppercase script letters such as J to
denote a supernode. Following the convention introduced in Ng and Peyton [1993], we
will interpret J either as a supernode index or a set of column indices contained in
that supernode depending on the context.

We should note here that the supernode partition of A or L is completely based on
the nonzero structure of A. Although it is desirable to create supernodes that contain
all 2 × 2 block pivots priori to numerical factorization of A, this is generally difficult to
do for sparse matrices. When the size of a supernode is larger than 1, we can still use
2 × 2 block pivots within this supernode to improve numerical stability of the LDLT

factorization. This type of strategy is often used in multifrontal solvers [Duff and Reid
1983; Ashcraft et al. 1998].

We denote the set of row indices associated with the nonzero rows below the diagonal
block of the J th supernode by SJ . These row indices are further partitioned into nJ
disjoint subsets I1, I2, . . . , InJ such that Ii contains a maximal set of contiguous row
indices and Ii ⊂ K for some supernode K > J . Here K > J means k > j for all
k ∈ K and j ∈ J . In Figure 3, we show how the nonzero rows associated with one of
the supernodes (the 26th supernode which begins at column 27) are partitioned. The

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 8 of 19 February 24, 2011 15:14

40:8 L. Lin et al.

Fig. 2. A supernode partition of L.

purpose of the partition is to create dense submatrices of L that can be easily accessed
and manipulated. The reason we impose the constraint Ii ⊂ K, which is normally not
required in the LDLT factorization of A, will become clear in Section 4. We should
also note that, under this partitioning scheme, it is possible that Ii and I j belong to
the same supernode even if i �= j.

The use of supernodes leads to a necessary but straightforward modification of the
elimination tree. All nodes associated with columns within the same supernode are
collapsed into a single node. The modified elimination tree describes the dependency
among different supernodes in a supernode LDLT factorization of A (see Ng and
Peyton [1993]; Rothberg and Gupta [1994]). Such dependency also defines the order
by which selected blocks of A−1 are computed.

Using the notion of supernodes, we can modify the selected inversion process de-
scribed by the MATLAB script shown in Algorithm 2 to make it more efficient. If
columns of L can be partitioned into nsup supernodes, a supernode-based block selected
inversion algorithm can be described by the pseudocode shown in Algorithm 3.

Algorithm 3. A supernode-based algorithm for computing the selected elements of A−1.

Input: (1) The supernode partition of columns of A: {1, 2, . . . , nsup};
(2) A supernode LDLT factorization of A;

Output: Selected elements of A−1, i.e. (A−1)i, j such that Li, j �= 0.

1: Compute A−1
nsup,nsup

= D−1
nsup,nsup

;
2: for J = nsup − 1, nsup − 2, . . . , 1
3: Identify the nonzero rows in the J -th supernode SJ ;
4: Perform Y = A−1

SJ ,SJ
LSJ ,J ;

5: Calculate A−1
J ,J = D−1

J ,J + Y T LSJ ,J ;
6: Set A−1

SJ ,J ← −Y ;
7: end for

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 9 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:9

4. IMPLEMENTATION DETAILS

We now describe some of the implementation details that allow the selected inver-
sion process described schematically in Algorithm 3 to be carried out in an efficient
manner.

We assume a supernode LDLT factorization has been performed using, for example,
an efficient left-looking algorithm described in Ng and Peyton [1993] and Rothberg
and Gupta [1994]. Such an algorithm typically stores the nonzero elements of L in a
contiguous array using the compressed column format [Duff et al. 1992]. This array
will be overwritten by the selected elements of A−1. The row indices associated with
the nonzero rows of each supernode are stored in a separate integer array. Several
additional integer arrays are used to mark the supernode partition and column
offsets.

As we illustrated in Algorithm 3, the selected inversion process proceeds backward
from the last supernode nsup towards the first supernode. For all supernodes J < nsup,
we need to perform a matrix-matrix multiplication of the form

Y = (A−1)SJ ,SJ LSJ ,J , (6)

where J serves the dual purposes of being a supernode index and an index set that
contains all column indices belonging to the J th supernode, and SJ denotes the set of
row indices associated with nonzero rows within the J th supernode of L.

Recall that the row indices contained in SJ are partitioned into a number of disjoint
subsets I1, I2, . . . , InJ such that Ii ⊂ K for some supernode K > J . Such a partition
corresponds to a row partition of the dense matrix block associated with the J th su-
pernode into nJ submatrices. The same partition is applied to the rows and columns
of the submatrix (A−1)SJ ,SJ except that this submatrix is not stored in a contiguous
array. For example, the nonzero row indices of the 26th supernode in Figure 2, which
consists of columns 27, 28, and 29, can be partitioned as

S26 = {30} ∪ {40, 41} ∪ {43, 44, 45}.
This partition as well as the corresponding partition of the blocks in the trailing A−1

that are used in (6) is highlighted in Figure 3.
We carry out the matrix-matrix multiplication (6) by using Algorithm 4. The outer

loop (line 2) of this algorithm goes through each block column of (A−1)SJ ,SJ indexed by
I j ∈ SJ , and accumulates (A−1)∗,I j LI j,J in the dense matrix Y stored in a contiguous
work array. The inner loop of this algorithm, which starts from line 6, simply goes
through the nonzero blocks of (A−1)∗,I j to perform (A−1)Ii,I j LI j,J , i = j + 1, ..., nJ , one
block at a time. Because A−1 is symmetric, we store only the selected nonzero elements
in the lower triangular part of the matrix (except the diagonal blocks in which both
the upper and lower triangular parts of the matrix are stored in a full dense matrix.)
Hence, our implementation of (6) also computes the contribution of (A−1)T

∗,I j
LIi,J

to Y as the I jth block column of A−1 is accessed (step 10) in the inner loop of
Algorithm 4.

An efficient implementation of Algorithm 4 requires each subblock of A−1
SJ ,SJ

(within
the storage allocated for L) to be identified quickly and the product of (A−1)Ii,I j and
LI j,J , as well as the product of [(A−1)Ii,I j]

T and LIi,J , to be placed at appropriate lo-
cations in the Y array. To achieve these goals, we use an integer array indmap with n
entries to record the relative row positions of the first row of Ii in Y , for i = 2, 3, . . . , nJ .
(The relative positions of all other nonzero rows can be easily calculated once the

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 10 of 19 February 24, 2011 15:14

40:10 L. Lin et al.

Algorithm 4. Compute Y = (A−1)SJ ,SJ LSJ ,J needed in Step 4 of Algorithm 3.

Input: (1) The J -th supernode of L, LSJ ,J , where SJ contains the indices of the nonzero
rows in J . The index set SJ is partitioned into disjoint nJ subsets of contiguous
indices, i.e. SJ = {I1,I2, . . . ,InJ };
(2) The nonzero elements of A−1 that have been computed previously. These
elements are stored in LSK,K for all K > J ;

Output: Y = (A−1)SJ ,SJ LSJ ,J ;

1: Construct an indmap array for nonzero rows in the J -th supernode;
2: for j = 1, 2, . . . , nJ
3: Identify the supernode K that contains I j;
4: Let R1 = indmap(I j);
5: Calculate YR1,∗ ← YR1,∗ + (A−1)I j,I j LI j,J ;
6: for i = j + 1, j + 2, . . . nJ
7: Use indmap to find the first nonzero row in the K-th supernode that belongs to Ii so

that (A−1)Ii,I j can be located;
8: Let R2 = indmap(Ii);
9: Calculate YR2,∗ ← YR2,∗ + (A−1)Ii,I j LI j,J ;

10: Calculate YR1,∗ ← YR1,∗ + [(A−1)Ii,I j]
T LIi,J ;

11: end for
12: end for
13: Reset the nonzero entries of indmap to zero;

Fig. 3. The partition of the nonzero rows in S26 and the matrix elements needed in A−1
30:49,30:49 for the

computation of A−1
30:49,30:49L30:39,27:29.

relative row position of the first row of Ii is determined, because the row numbers
in Ii are contiguous.) To be specific, all the entries of indmap are initialized to be zero.
If k is an element in Ii (all elements in Ii are sorted in an ascending order), then
indmap[k] is set to be the relative distance of row k from the last row of the diagonal
block of the J th supernode in L. For example, in Figure 3, the leftmost supernode S26,

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 11 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:11

Fig. 4. A schematic drawing that illustrates how indmap is used in Steps 9 and 10 in the first outer iteration
of Algorithm 4 for J = 26 in the example given in Figure 3.

which contains columns 27, 28, 29, contains six nonzero rows below its diagonal block.
The nonzero entries of the indmap array for S26 are

indmap[30] = 1,
indmap[40] = 2,
indmap[41] = 3,
indmap[43] = 4,
indmap[44] = 5,
indmap[45] = 6.

These entries of the indmap array are reset to zeros once the calculation of (6) is com-
pleted for each J . A similar indirect addressing scheme was used in Ng and Peyton
[1993] for gathering the contributions from the descendants of the J th supernode that
have already been updated in the previous steps of a left-looking supernodal LDLT

factorization. Our use of indirect addressing collects contributions from the ancestors
of the J th supernode as (A−1)SJ ,J is being updated.

Once the indmap array is properly set up, the sub-block searching process indicated
in line 7 of the pseudocode shown in Algorithm 4 goes through the row indices k of
the nonzero rows of the Kth supernode (which contains I j) until a nonzero indmap[k]
is found (step 7). A separate pointer p to the floating point array allocated for L is
incremented at the same time. When a nonzero indmap[k] is found, the position in the
floating point array pointed by p gives the location of (A−1)Ii,I j required in line 9 of the
special matrix-matrix multiplication procedure shown in Algorithm 4. Meanwhile, the
value of indmap[k] gives the location of the target work array Y at which the product of
(A−1)Ii,I j and LI j,J is accumulated. After lines 9 and 10 are executed in the inner loop
of Algorithm 4, the remaining nonzero rows in the Kth supernode are examined until
the next desired subblock in the Kth supernode of A−1 is found or until all nonzero
rows within this supernode have been examined. Figure 4 shows of how the indmap
array is used to place the product of (A−1)Ii,{30} and L{30},26 as well as the product of
(A−1)T

Ii,{30} and LIi,26 in the Y array at lines 9 and 10 of Algorithm 4 for the example
problem given in Figure 3.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 12 of 19 February 24, 2011 15:14

40:12 L. Lin et al.

Table I. Test Problems

Problem Description
bcsstk14 Roof of the Omni Coliseum, Atlanta
bcsstk24 Calgary Olympic Saddledome arena
bcsstk28 Solid element model, linear statics
bcsstk18 R.E. Ginna Nuclear Power Station
bodyy6 NASA, Alex Pothen
crystm03 FEM crystal free vibration mass matrix
wathen120 Gould,Higham,Scott: matrix from Andy Wathen, Oxford Univ
thermal1 Unstructured FEM, steady state thermal problem, Dani Schmid, Univ. Oslo
shipsec1 DNV-Ex 4 : Ship section/detail from production run-1999-01-17
pwtk Pressurized wind tunnel, stiffness matrix
parabolic fem Diffusion-convection reaction, constant homogeneous diffusion
tmt sym Symmetric electromagnetic problem, David Isaak, Computational EM Works
ecology2 Circuitscape: circuit theory applied to animal/gene flow, B. McRae, UCSB
G3 circuit Circuit simulation problem, Ufuk Okuyucu, AMD, Inc

Table II. Characteristic of Test Problems

Problem n |A| |L|
bcsstk14 1,806 32,630 112,267
bcsstk24 3,562 81,736 278,922
bcsstk28 4,410 111,717 346,864
bcsstk18 11,948 80,519 662,725
bodyy6 19,366 77,057 670,812
crystm03 24,696 304,233 3,762,633
wathen120 36,441 301,101 2,624,133
thermal1 82,654 328,556 2,690,654
shipsec1 140,874 3,977,139 40,019,943
pwtk 217,918 5,926,171 56,409,307
parabolic fem 525,825 2,100,225 34,923,113
tmt sym 726,713 2,903,837 41,296,329
ecology2 999,999 2,997,995 38,516,672
G3 circuit 1,585,478 4,623,152 197,137,253

Before we copy Y to the appropriate location in the array that stores the J th su-
pernode of L, we need to compute the diagonal block of A−1 within this supernode by
the following update:

(A−1)J ,J = (A−1)J ,J + Y T LSJ ,J ,

where (A−1)J ,J , which is stored in the diagonal block of the storage allocated for L,
contains the inverse of the diagonal block DJ ,J (which may contain 2 × 2 pivots) pro-
duced by the supernode LDLT factorization before the update is performed.

5. PERFORMANCE

In this section we report the performance of our selected inversion algorithm SelInv.
Our performance analysis is carried out on the Franklin Cray XT4 supercomputing
system maintained at NERSC.1 Each compute node consists of a 2.3-GHz single socket
quad-core AMD Opteron processor (Budapest) with a theoretical peak performance of
9.2 GFlops/s per core (4 flops/cycle if using SSE128 instructions). Each core has 2
GB of memory. Our test problems are taken from the Harwell-Boeing Test Collection
[Duff et al. 1992] and the University of Florida Matrix Collection [Davis 1997]. These
matrices are widely used benchmark problems for sparse direct methods. The names
of these matrices as well as some of their characteristics are listed in Tables I and II.

1http://www.nersc.gov/

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 13 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:13

Table III. Time Cost, and Flops Results for Factorization and Selected Inversion Process, Respectively; Last
Column Reports the Average Flops Reached by SelInv

Problem Factorization Factorization Selected inversion Selected inversion Average
time (s) flops (G/s) time (s) flops (G/s) flops (G/s)

bcsstk14 0.007 1.43 0.010 2.12 1.85
bcsstk24 0.019 1.75 0.020 3.65 2.71
bcsstk28 0.023 1.63 0.024 3.46 2.54
bcsstk18 0.080 1.80 0.235 1.54 1.60
bodyy6 0.044 1.49 0.090 1.68 1.61
crystm03 0.452 2.26 0.779 2.95 2.70
wathen120 0.251 2.12 0.344 3.47 2.90
thermal1 0.205 1.53 0.443 1.66 1.62
shipsec1 18.48 2.38 17.66 5.45 3.88
pwtk 16.43 2.48 14.55 6.28 4.26
parabolic fem 6.649 2.34 20.06 1.91 2.02
tmt sym 10.64 2.35 13.98 4.02 3.30
ecology2 6.789 2.32 16.04 2.35 2.34
G3 circuit 136.5 2.24 218.7 3.27 2.88

All matrices are real and symmetric. The multiple minimum degree (MMD) matrix
reordering strategy [Liu 1985] is used to minimize the amount of nonzero fills in L.
We used the supernodal left-looking algorithm and code provided by Ng and Peyton
[1993] to perform the LDLT factorization of A. Table III gives the performance result
in terms of computational time as well as floating-point operations per second (flops)
for both the factorization and the selected inversion algorithms, respectively. We also
report the average flops measured on-the-fly using PAPI [Browne et al. 2000]. The
dimension of the matrices we tested ranges from 2000 to 1.5 million, and the number
of nonzero elements in the L factor ranges from 0.1 million to 0.2 billion. For the
largest problem G3 circuit, the overall computation takes only 350 s. Among these
problems, the best performance is obtained with the problem pwtk. For this particular
problem, the factorization part attains 26% of the peak performance of the machine,
and the selected inversion part attains 68% of the peak flops. The average (of the
factorization and inversion) flops ratio is 46%. The flops performance is directly related
to the supernode size distribution due to the reordering strategy. For pwtk, 90% of the
supernodes have sizes larger than 5. By contrast, the dimension of parabolic fem is
more than twice the dimension of pwtk, but 81% of the supernodes contain only one
column. Consequently, SelInv cannot take full advantage of level 3 BLAS when it is
used to solve this problem. As a result, its performance is worse on this problem than
on pwtk.

To demonstrate how much we can gain by using the selected inversion algorithm,
we compare the timing statistics of the selected inversion algorithm with that of the
direct inversion algorithm mentioned in Section 2. In our implementation of the di-
rect inversion algorithm, we compute the diagonal elements of A−1 using eT

j A−1e j =
(L−1e j)T D−1(L−1e j), where e j is the jth column of the identity matrix. When computing
y = L−1e j (via solving Ly = e j), we modify only the nonzero entries of y. The positions of
these entries can be predicted by the traversal of a directed graph constructed from the
nonzero structure of L [Gilbert 1984]. This approach reduces the number of floating-
point operations significantly compared to a naive approach that does not take into
account the sparsity of L or e j. However, it still has a higher asymptotic complexity
compared to the selected inversion algorithm we presented earlier. This can be seen
from the following example in which A is a discretized Laplacian operator obtained
from applying a five-point stencil on an m×m grid in 2D where m = n1/2. Assuming A is
ordered by nested dissection [George 1973] so that the last m columns of A corresponds

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 14 of 19 February 24, 2011 15:14

40:14 L. Lin et al.

Table IV. Timing Comparison Between Selected Inversion and Direct
Inversion; Speedup Factor Defined by Direct Inversion Time Divided by

Selected Inversion Time

Problem Selected inversion Direct inversion Speedup
time (s) time (s) factor

bcsstk14 0.01 sec 0.13 sec 13
bcsstk24 0.02 sec 0.58 sec 29
bcsstk28 0.02 sec 0.88 sec 44
bcsstk18 0.24 sec 5.73 sec 24
bodyy6 0.09 sec 5.37 sec 60
crystm03 0.78 sec 26.89 sec 34
wathen120 0.34 sec 48.34 sec 142
thermal1 0.44 sec 95.06 sec 216
shipsec1 17.66 sec 3346 sec 192
pwtk 14.55 sec 5135 sec 353
parabolic fem 20.06 sec 7054 sec 352
tmt sym 13.98 sec >3 hours >772
ecology2 16.04 sec >3 hours >673
G3 circuit 218.7 sec >3 hours >49

to nodes in the largest separator, we can see that solving Ly = e j, for j = n−m+1, . . . , n,
would require a total of O(m2) = O(n) operations because the lower triangular part of
Ln−m+1:n,n−m+1:n is completely dense. Because these columns belong to a supernode that
is at the root of the elimination tree, they are all reachable from node j on the directed
graph constructed from solving Ly = e j for j = 1, 2, . . . , n − m. Consequently, the over-
all complexity for solving Ly = e j for j = 1, 2, . . . , n is O((n − m)n + n) = O(n2). This
is higher than the O(n3/2) complexity associated with selected inversion. Similarly, if
A is a discretized Laplacian operator obtained from applying a seven-point stencil on
an m × m × m grid in 3D where m = n1/3, the complexity of direct inversion becomes
O(n7/3) because the largest separator contains n2/3 columns, whereas the complexity of
selected inversion is O(n2).

Although it is difficult to perform such analysis for a general sparse matrix, similar
difference in complexity should hold. To provide a more concrete comparison, we list
the timing measurements for both approaches in Table IV as well as the speedup factor.
The speedup factor is defined by the time for selected inversion divided by the time
for direct inversion. In this comparison, selected inversion refers to the second part
of SelInv, that is, the time for LDLT factorization is not counted since factorization
is used in both algorithms. We also terminate the direct inversion algorithm if its
running time is larger than 3 h. We observe that, for the smallest problem bcsstk14,
the speedup factor is already 13. For larger problems, the speedup can be factors of
several hundreds or more.

6. APPLICATION TO ELECTRONIC STRUCTURE CALCULATION OF ALUMINUM

In this section, we show how SelInv can be applied to electronic structure calculations
within the density functional theory (DFT) framework [Hohenberg and Kohn 1964;
Kohn and Sham 1965]. We will focus on methods based on self-consistent field iteration
[Martin 2004]. The most time-consuming part of these calculations is the evaluation
of the electron density

ρ = diag (fβ,μ(H)), (7)

where fβ,μ(t) = 1/(1 + eβ(t−μ)) is the Fermi-Dirac distribution function with β being
a parameter that is proportional to the reciprocal of the temperature and μ being

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 15 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:15

the chemical potential. The symmetric matrix H in (7) is a discretized Kohn-Sham
Hamiltonian [Martin 2004] defined as

H = −1
2

� + Vpse(r) + VH(r) + Vxc(r), (8)

where � is the Laplacian, VH is the Hartree potential, Vxc is the exchange-correlation
potential constructed via the local density approximation (LDA) theory [Martin 2004],
and Vpse is the real space Troullier-Martins ionic pseudopotential [Chelikowsky et al.
1994].

There is another class of methods that are designed to minimize the total energy
of an atomistic system directly [Payne et al. 1992]. Although these algorithms do
not evaluate the charge density ρ via (7), there are other computational issues one
must address in order to make them efficient. We will not discuss these issues in this
article.

One of the standard approaches for evaluating (7) is to compute the invariant sub-
space associated with a few smallest eigenvalues of H. This approach is used in, for
example, PARSEC [Alemany et al 2004], which is a real-space electronic structure
calculation software package. Other algorithms such as subspace iteration methods
[Bekas et al. 2005; Zhou et al. 2006], which reduce the cost of orthogonalization can
also be used. The computational cost of these algorithms is generally O(n3) for metallic
systems that contain a large number of electrons.

An alternative way to evaluate (7) is to use a recently developed pole expansion
technique [Lin et al. 2009a] to approximate fβ,μ. The pole expansion technique ex-
presses electron density ρ as a linear combination of the diagonal of (H − (μ + zi)I)−1,
that is,

ρ ≈
P∑

i=1

Im
(

diag
ωi

H − (μ + zi)I

)
. (9)

Here Im (H) stands for the imaginary part of H. The parameters zi and ωi are
the complex shift and weight associated to the ith pole, respectively. They can
be chosen so that the total number of poles P is minimized for a given accuracy
requirement. At room temperature, the number of poles required in (9) is relatively
small (less than 80). In addition to temperature, the pole expansion (9) also requires
an explicit knowledge of the chemical potential μ, which must be chosen so that the
condition

trace(fβ,μ(H)) = ne (10)

is satisfied. This can be accomplished by solving (10) using a standard Newton’s
method [Burden et al. 2000] or other root-finding algorithms.

In order to use (9), we need to compute the diagonal of the inverse of a number
of complex symmetric (non-Hermitian) matrices H − (zi + μ)I (i = 1, 2, . . . , P). A fast
implementation of the SelInv algorithm described in Section 4 can be used to perform
this calculation efficiently, as the following example shows.

The example we consider here is a quasi-2D aluminum system with a periodic
boundary condition. For simplicity, we only use a local pseudopotential in (8), that is,
Vpse(r) is a diagonal matrix. The Laplacian operator � is discretized using a second-
order seven-point stencil. A room temperature of 300K (which defines the value of
β) is used. The aluminum system has a face-centered cubic (FCC) crystal structure.
We include five-unit cells along both x and y directions, and a one-unit cell along the
z direction in our computational domain. Each unit cell is cubic with a lattice con-
stant of 4.05 Å. Therefore, there are altogether 100 aluminum atoms and 300 valence

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 16 of 19 February 24, 2011 15:14

40:16 L. Lin et al.

Fig. 5. (a) 3D isosurface plot of the electron density together with the electron density restricted to z = 0
plane. (b) The electron density restricted to z = 0 plane.

electrons in the experiment. The position of each aluminum atom is perturbed from
its original position in the crystal by a random displacement around 10−3Å so that no
point group symmetry is assumed in our calculation. The grid size for discretization is
set to 0.21 Å. The resulting Hamiltonian matrix size is 159,048.

We compare the density evaluation (7) performed by both PARSEC and the pole
expansion technique. In PARSEC, the invariant subspace associated with the small-
est 310 eigenvalues is computed using ARPACK [Lehoucq et al. 1998]. Each self-
consistent iteration step takes 2490 s. In the pole expansion approach, we use 60 poles
in (9), which gives a comparable relative error in electron density on the order of 10−5

(in L1 norm.) The MMD reordering scheme is used to reduce the amount of fill in the
LDLT factorization. In addition to using the selected inversion algorithm to evalu-
ate each term in (9), an extra level of coarse-grained parallelism can be utilized by
assigning each pole to a different processor. The evaluation of each term in (9) takes
roughly 1950 s. Therefore, the total amount of time required to evaluate (7) for each
self-consistent iteration step on a single core is 1950 × 60 s. As a result, the perfor-
mance of the selected inversion based pole expansion approach is only comparable to
the invariant subspace computation approach used in PARSEC if the extra level of
coarse-grained parallelism is used.

A 3D isosurface plot of the electron density as well as the electron density plot
restricted on the z = 0 plane are shown in Figure 5.

We also remark that the efficiency of selected inversion can be further improved for
this particular problem. One of the factors that has prevented the SelInv from achiev-
ing even higher performance for this problem is that most of the supernodes produced
from the MMD ordering of H contain only 1 column even though many of these su-
pernodes have similar (but not identical) nonzero structures. Consequently, both the
factorization and inversion are dominated by level 1 BLAS operations. Further perfor-
mance gain is likely to be achieved if we relax the definition of a supernode and treat
some of the zeros in L as nonzero elements. This approach has been demonstrated to
be extremely helpful in Ashcraft and Grimes [1989].

7. CONCLUDING REMARKS

We presented an efficient sequential algorithm for computing selected components of
the inverse of a general sparse symmetric matrix A, and described its implementation
SelInv. Our algorithm consists of two steps. In the first step, we perform an LDLT

factorization of the matrix A using a supernodal left-looking LDLT factorization

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 17 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:17

algorithm developed in Ng and Peyton [1993]. This step can also be implemented using
other existing software packages such as those in Ng and Peyton [1993], Amestoy et al.
[2001], Schenk and Gartner [2006], Ashcraft and Grimes [1999], Gupta et al. [1997],
Gupta [1997], and Raghavan [2002]. In the second step, a selected inversion algorithm
specifically designed for the supernodal nonzero structure of L is used to compute the
nonzero blocks of A−1 that have a corresponding nonzero block in L. The use of supern-
odes enables us to exploit the memory hierarchy of modern microprocessors to achieve
high performance. We described an efficient indirect addressing scheme for gathering
contributions from the ancestors of a supernode J when the selected components of
A−1 within (A−1)∗,J are computed.

We demonstrated the efficiency of our implementation of the selected inversion algo-
rithm by applying our code SelInv to a variety of benchmark problems with dimension
as large as 1.5 million. We were able to achieve a relatively high percentage of the peak
performance on the high performance machine we used to conduct our experiments. In
one case, we were able to achieve 68% of the peak performance.

We also demonstrated how SelInv can be applied to the electronic structure calcu-
lation of an aluminum system using a pole expansion technique [Lin et al. 2009a,
2009c]. We compared the efficiency of our algorithm with the standard real-space
electronic structure calculation software PARSEC. Our comparison showed that the
performance of the pole expansion approach is comparable to that of PARSEC if a
coarse-grained parallelization of the poles is used.

ACKNOWLEDGMENTS

We would like to thank Esmond Ng and Sherry Li for helpful discussion. We would also like to thank
anonymous referees for helpful comments and suggestions.

REFERENCES
ALEMANY, M., JAIN, M., KRONIK, L., AND CHELIKOWSKY, J. 2004. Real-space pseudopotential method for

computing the electronic properties of periodic systems. Phys. Rev. B 69, 075101.

AMESTOY, P., DUFF, I., L’EXCELLENT, J.-Y., AND KOSTER, J. 2001. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41.

ASHCRAFT, C. AND GRIMES, R. 1989. The influence of relaxed supernode partitions on the multifrontal
method. ACM Trans. Math. Softw. 15, 291–309.

ASHCRAFT, C. AND GRIMES, R. 1999. SPOOLES: An object-oriented sparse matrix library. In Proceedings
of the 9th SIAM Conference on Parallel Processing.

ASHCRAFT, C., GRIMES, R. G., AND LEWIS, J. G. 1998. Accurate symmetric indefinite linear equation
solvers. SIAM J. Matrix Anal. Appl. 20, 513–561.

BEKAS, C., KOKIOPOULOU, E., AND SAAD, Y. 2005. Polynomial filtered Lanczos iterations with applications
in Density Functional Theory. SIAM J. Matrix Anal. Appl. 30, 1, 397–418.

BROWNE, S., DONGARRA, J., GARNER, N., HO, G., AND MUCCI, P. 2000. A portable programming interface
for performance evaluation on modern processors. Int. J. High Perform. C. 14, 189.

BUNCH, J. R. AND KAUFMAN, L. 1977. Some stable methods for calculating inertia and solving symmetric
linear systems. Math. Comp. 163–179.

BUNCH, J. R. AND PARLETT, B. N. 1971. Direct methods for solving symmetric indefinite systems of linear
equations. SIAM J. Numer. Anal. 8, 639–655.

BURDEN, R. L., FAIRES, J. D., AND REYNOLDS, A. C. 2000. Numerical Analysis. Brooks Cole, Independence,
KY.

CHELIKOWSKY, J., TROULLIER, N., AND SAAD, Y. 1994. Finite-difference-pseudopotential method: Elec-
tronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243.

DATTA, S. 1997. Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, U.K.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 18 of 19 February 24, 2011 15:14

40:18 L. Lin et al.

DAVIS, T. 1997. University of Florida sparse matrix collection. NA Digest 97, 7.
DUFF, I. AND REID, J. 1987. Direct Methods for Sparse Matrices. Oxford University, London, UK.
DUFF, I., GRIMES, R., AND LEWIS, J. 1992. Users guide for the Harwell-Boeing sparse matrix collection.

Research and Technology Division, Boeing Computer Services, Seattle, WA.
DUFF, I. S. AND REID, J. K. 1983. The multifrontal solution of indefinite sparse symmetric sets of linear

equations. ACM Trans. Math. Softw. 9, 302–325.
ECONOMOU, E. 2006. Green’s Functions in Quantum Physics. Springer Berlin, Germany.
ERISMAN, A. AND TINNEY, W. 1975. On computing certain elements of the inverse of a sparse matrix.

Comm. ACM 18, 177.
GEORGE, A. 1973. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363.
GEORGE, A. AND LIU, J. 1981. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall,

Englewood Cliffs, NJ.
GILBERT, J. 1984. Predicting structure in sparse matrix computations. SIAM J. Matrix Anal. Appl. 15, 4,

62–79.
GILBERT, J. AND PEIERLS, T. 1986. Sparse partial pivoting in time proportional to arithmetic operations.

SIAM J. Sci. Stat. Comput. 9, 5, 862–874.
GREENGARD, L. AND ROKHLIN, V. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73, 2,

325–348.
GUPTA, A. 1997. WSMP: The Watson Sparse Matrix Package. IBM Research rep. RC 21886(98462).
GUPTA, A., KARYPIS, G., AND KUMAR, V. 1997. Highly scalable parallel algorithms for sparse matrix fac-

torization. IEEE Trans. Parall. Distrib. Syst. 8, 502–520.
HOHENBERG, P. AND KOHN, W. 1964. Inhomogeneous electron gas. Phys. Rev. 136, B864.
KOHN, W. AND SHAM, L. 1965. Self-consistent equations including exchange and correlation effects. Phys.

Rev. 140, A1133.
LEHOUCQ, R., SORENSEN, D., AND YANG, C. 1998. ARPACK Users’ Guide: Solution of Large-Scale Eigen-

value Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.
LI, S., AHMED, S., KLIMECK, G., AND DARVE, E. 2008. Computing entries of the inverse of a sparse matrix

using the FIND algorithm. J. Comput. Phys. 227, 9408–9427.
LIN, L., LU, J., CAR, R., AND E, W. 2009a. Multipole representation of the Fermi operator with application

to the electronic structure analysis of metallic systems. Phys. Rev. B 79, 115133.
LIN, L., LU, J., YING, L., CAR, R., AND E, W. 2009b. Fast algorithm for extracting the diagonal of the

inverse matrix with application to the electronic structure analysis of metallic systems. Comm. Math.
Sci. 7, 755–777.

LIN, L., LU, J., YING, L., AND E, W. 2009c. Pole-based approximation of the Fermi-Dirac function. Chinese
Ann. Math. 30B, 729–742.

LIN, L., YANG, C., LU, J., YING, L., AND E, W. 2009d. A fast parallel algorithm for selected inversion of
structured sparse matrices with application to 2D electronic structure calculations. Tech. rep. LBNL-
2677E. Lawrence Berkeley National Laboratory, Berkeley.

LIU, J. 1985. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. Math.
Softw. 11, 141–153.

LIU, J. 1990. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11, 134.
MARTIN, R. 2004. Electronic Structure—Basic Theory and Practical Methods. Cambridge University Press,

Cambridge. UK.
MOLER, C. 2004. Numerical Computing with MATLAB. SIAM, Philadelphia, PA.
NG, E. AND PEYTON, B. 1993. Block sparse Cholesky algorithms on advanced uniprocessor computers.

SIAM J. Sci. Comput. 14, 1034.
PAYNE, M. C., TETER, M. P., ALLEN, D. C., ARIAS, T. A., AND JOANNOPOULOS, J. D. 1992. Iterative mini-

mization techniques for ab initio total energy calculation: Molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 64, 4, 1045–1097.

PETERSEN, D., LI, S., STOKBRO, K., SØRENSEN, H., HANSEN, P., SKELBOE, S., AND DARVE, E. 2009. A
hybrid method for the parallel computation of Green’s functions. J. Comput. Phys. 228, 5020–5039.

RAGHAVAN, P. 2002. DSCPACK: Domain-separator codes for solving sparse linear systems. Tech. rep. CSE-
02-004. Department of Computer Science and Engineering, The Pennsylvania State University, Univer-
sity Park, PA.

ROTHBERG, E. AND GUPTA, A. 1994. An efficient block-oriented approach to parallel sparse choleskyfactor-
ization. SIAM J. Sci. Comput. 15, 1413–1439.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

TOM00051 ACM (Typeset by SPi, Manila, Philippines) 19 of 19 February 24, 2011 15:14

SelInv Algorithm: Selected Inversion of Sparse Symmetric Matrix 40:19

SCHENK, O. AND GARTNER, K. 2006. On fast factorization pivoting methods for symmetric indefinite sys-
tems. Elec. Trans. Numer. Anal. 23, 158–179.

TAKAHASHI, K., FAGAN, J., AND CHIN, M. 1973. Formation of a sparse bus impedance matrix and its
application to short circuit study. In Proceedings of the 8th PICA Conference. Minneapolis, MN.

ZHOU, Y., SAAD, Y., TIAGO, M. L., AND CHELIKOWSKY, J. R. 2006. Self-consistent-field calculations using
chebyshev-filtered subspace iteration. J. Comput. Phys. 219, 172–184.

Received October 2009; revised March 2010; accepted August 2010

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 40, Publication date: February 2011.

