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We present a fast direct algorithm for solutions to linear systems arising from 2D elliptic
equations. We follow the approach in Xia et al. (2009) on combining the multifrontal
method with hierarchical matrices. We present a variant of that approach with additional
hierarchical structure, extend it to quasi-uniform meshes, and detail an adaptive decompo-
sition procedure for general meshes. Linear time complexity is shown for a quasi-regular
grid and demonstrated via numerical results for the adaptive algorithm.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we will consider the solution of an elliptic problem such as:
�divðaðxÞruðxÞÞ þ VðxÞuðxÞ ¼ f ðxÞ on X; u ¼ 0 on oX; ð1Þ
in a two dimensional domain X where a(x) > 0 and V(x) > 0. There are two main classes of solvers for sparse linear systems:
direct [1] and iterative [2] methods. We will only be concerned with direct methods in this paper.

Clearly the naïve inversion of the sparse matrix should be avoided and a sparse Cholesky decomposition should be used
instead. However, the efficiency of the sparse Cholesky decomposition depends on choosing a reordering to reduce fill-in of
non-zeros in the factors. Various graph-theoretic approaches such as the (approximate) minimum degree algorithm [3] or
nested dissection [4] can be used to determine a good reordering, but finding the optimal ordering in general is difficult.

The most efficient direct method for solving this problem is the multifrontal method with nested dissection [5,6,1,7]
(referred to as multifrontal method in short in the rest of this paper). The central idea of this method is to partition the
domain using a nested hierarchical structure and generate the LU (or LDLt) factorization from the bottom up to minimize
the fill-ins. The computational cost of the multifrontal method scales like OðN1:5Þ in two dimensions where N is the number
of degrees of freedom. The multifrontal method is often formulated in a block factorization form in order to take full advan-
tage of the existing dense linear algebra routines (BLAS3). Though quite efficient for many applications, it might still be quite
costly when N is very large.

Recently Xia et al. have worked on improving the multifrontal method with nested dissection to achieve linear complexity,
OðNÞ in [8]. The main observation is that the fill-in blocks of the LDLt factorization are highly compressible using the
hierarchical semiseparable matrix [9] or H-matrix [10] frameworks. By representing and manipulating these blocks efficiently
within these frameworks [11], one obtains linear or almost linear complexity algorithms for the solution of the discrete
. All rights reserved.
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system. In [8], this program is carried out in the setting of regular Cartesian grids. A similar approach is proposed in [12] where
a spiral elimination order replaces the multifrontal nested dissection method. Recently, a substantial amount of research has
also been devoted to developing direct solvers for linear systems from integral equations. In [13] an essentially linear com-
plexity algorithm is presented for the 2D non-oscillatory integral equations, while anOðN1:5Þ algorithm has appeared recently
in [14] for the 3D non-oscillatory case. Fast direct solvers for oscillatory kernels are still out of reach both in 2D and 3D.

The main contribution of the current paper is to extend the approach of [8] to achieve linear complexity in the more gen-
eral settings of unstructured and adaptive grids. The rest of this paper is structured as follows. In Section 2, we introduce the
hierarchical partitioning used in this paper and review the multifrontal method. Our hierarchical structure is essentially a
quadtree, but it also supports a natural hierarchical partitioning of geometric components of the algorithm so that unnec-
essary re-orderings are avoided for the algorithms in the later sections. Section 3 describes the algorithm that combines
the nested dissection multifrontal method and the hierarchical matrix algebra. Our presentation follows the idea in [8]
but is slightly different in the representation and inversion of the Schur complement matrices. For the experts, [8] inverts
these matrices with a bottom-up algorithm, while the description here follows a top-down algorithm. The main advantage
of our approach is that it provides the basic setup to address more general grids and extension to 3D. Section 4 describes the
generalization of the algorithm to quasi-uniform unstructured meshes, while Section 5 presents the algorithm for an
adaptive mesh featuring a range of element sizes and densities (which may, for example, arise from the mesh having been
adaptively refined for a particular problem). Theoretical complexity analyses are complemented by numerical results
demonstrating the properties of the proposed algorithm.

2. Hierarchical partitioning and multifrontal method

Our algorithm and hierarchical matrix decomposition is closely tied to our geometric decomposition while in [8] the ma-
trix manipulations and the relationships between matrices on different levels is more abstract. The steps needed to combine
matrices as one moves up a level in our decomposition flow naturally from easily being able to identify which geometric sets
of vertices give rise to which blocks in our matrices.

For simplicity, we assume that the domain of interest X is [0,1]2. We introduce a uniform (P2Q + 1) � (P2Q + 1) Cartesian
grid covering [0,1]2, where P is a positive integer of Oð1Þ and Q will turn out to be the depth of the hierarchical decompo-
sition to be introduced. The Cartesian grid is further triangulated to support piecewise linear basis functions (see Fig. 1).
Since the Dirichlet zero boundary condition is specified in (1), we will be concerned with solving for the values of u at
the N = (P2Q � 1) � (P2Q � 1) interior vertices. We often use lowercase Greek letters a and b to denote these vertices.

2.1. Hierarchical partitioning

We discretize (1) on the above triangulation with piecewise-linear continuous finite element basis functions {/a(x)}. Each
/a(x) is equal to 1 at vertex a and 0 on the other vertices. The stiffness matrix M is then given by
Fig. 1.
Middle
ðMÞab ¼
Z
½0;1�2
r/aðxÞ � aðxÞr/bðxÞ þ VðxÞ/aðxÞ/bðxÞdx:
Denote the whole domain X = [0,1] � [0,1] by D0;0;0 and more generally define the contiguous blocks on a level q with
Dq;i;j ¼
i

2q ;
iþ 1

2q

� �
� j

2q ;
jþ 1

2q

� �
for 0 6 i; j < 2q;
for 0 6 q 6 Q. Clearly at level q, there are 2q � 2q blocks whose union is equal to X. Notice that Dq;i;j is defined to be a closed
set so it contains vertices on its boundary. For each DQ ;i;j, we can introduce a small matrix MQ;i,j, which is the restriction of M
to the vertices in DQ ;i;j, and formed via:
Left: The whole domain is decomposed into 8 � 8 blocks on the leaf level with 5 � 5 vertices in each block (away from the domain boundary).
: Decomposed into 4 � 4 blocks on the next level with 9 � 9 vertices in each block. Right: Decomposed into 2 � 2 blocks on yet the next level.
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MQ ;i;j
� �

ab
¼
Z
DQ ;i;j

r/aðxÞ � aðxÞr/bðxÞ þ VðxÞ/aðxÞ/bðxÞdx; ð2Þ
where a and b are restricted to the vertices in DQ ;i;j since all basis functions centered on vertices outside DQ ;i;j are zero inside
DQ ;i;j. It is clear that these matrices MQ;i,j sum (after suitable injection) to the full matrix M.

Let Q be the deepest level of our hierarchical decomposition. Using the blocks introduced above, the whole domain is par-
titioned into 2Q � 2Q contiguous blocks:
DQ ;i;j ¼
i

2Q ;
iþ 1

2Q

� �
� j

2Q ;
jþ 1

2Q

� �
for 0 6 i; j < 2Q ;
as illustrated in Fig. 1 (for the case Q = 3). There blocks are called leaf level blocks and the number of vertices in each of them is
(P + 1) � (P + 1) = O(1).

We denote the set of vertices in DQ ;i;j by VQ ;i;j. The vertices of VQ ;i;j can be decomposed into elements (which are vertex set
themselves), depending on how many different blocks the faces containing that vertex belong to.

� Facet element, which includes the vertices contained in a single block. There is only one facet element for each block.
� Segment element, which includes the vertices shared by 2 blocks. There are 4 segment elements (top, bottom, left, and

right) for each block and each segment element is shared by two blocks.
� Corner element, which contains only a corner where 4 blocks meet. There are 4 corner elements for each block and each

corner element is shared by 4 blocks.

Notice that the boundary of a block (away from the boundary of the domain) is made up of 4 segments of length P � 1 and
4 corners. It is convenient to label these facet, segment, and corner elements uniformly in a Cartesian fashion as follows. All
elements at leaf level Q are labelled as EQ ;i;j with 0 6 i, j 6 2Q+1. The vertex set VQ ;i;j of DQ ;i;j is then made up of the 9 elements:
EQ ;2i;2jþ2 EQ ;2iþ1;2jþ2 EQ ;2iþ2;2jþ2

EQ ;2i;2jþ1 EQ ;2iþ1;2jþ1 EQ ;2iþ2;2jþ1

EQ ;2i;2j EQ ;2iþ1;2j EQ ;2iþ2;2j
where the facet element EQ ;2iþ1;2jþ1 is unique to the block DQ ;i;j but the surrounding elements are shared with the neighboring
blocks. It is straightforward that the type of element is determined by the parity of i and j, as indicated in the following table:

To support the multifrontal algorithm to be described, we regard the vertex set VQ ;i;j of the blockDQ ;i;j as the disjoint union
of the interior vertices and those on the boundary of the block (i.e. shared with other blocks). More precisely, we have:
VQ ;i;j ¼ IQ ;i;j ] BQ ;i;j; IQ ;i;j ¼ EQ ;2iþ1;2jþ1; BQ ;i;j ¼
]

06i0 ;j062
ði0 ;j0Þ–ð1;1Þ

EQ ;2iþi0 ;2jþj0 :
Here we use the symbol ] to distinguish disjoint union from the more general union [. In Fig. 2 we show how the vertices
VQ ;i;j in the block DQ ;i;j are the disjoint union of the 9 elements EQ ;2i;2j; . . . ; EQ ;2iþ2;2jþ2 where 1 element EQ ;2iþ1;2jþ1 is in the ‘‘inte-
rior’’ IQ ;i;j of the block and the other 8 are on the ‘‘boundary’’ BQ ;i;j of the block.

Based on what we have introduced so far, we can define the vertex sets and elements for blocks at other levels from bot-
tom up. For a fixed level q < Q, suppose that Vqþ1;i;j; Iqþ1;i;j;Bqþ1;i;j, and Eqþ1;i;j are already defined for blocksDqþ1;i;j on level q + 1.
Then for a block Dq;i;j, its vertex set Vq;i;j is defined to be the union of the boundary vertices of its child blocks, i.e.
Vq;i;j ¼ Bqþ1;2i;2j [ Bqþ1;2iþ1;2j [ Bqþ1;2i;2jþ1 [ Bqþ1;2iþ1;2jþ1:
Notice that only the boundary vertices on level q + 1 appear in this definition and the reason is that only these vertices ‘‘sur-
vive’’ to the next level (level q) in the multifrontal algorithm. The vertex set Vq;i;j is further decomposed into two parts:

� Iq;i;j: interior vertices that are interior to the block Dq;i;j.

� Bq;i;j: boundary vertices that are shared with neighboring blocks.

More precisely, using the definition of the elements from level q + 1 we have:



Fig. 2. Left: The block DQ ;i;j whose set of vertices VQ ;i;j is the disjoint union of 9 elements EQ ;2i;2j; . . . ; EQ ;2iþ2;2jþ2. Right: Near the boundary of the whole
domain, some of these elements may be empty.
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Iq;i;j ¼ Eqþ1;4iþ1;4jþ2 ] Eqþ1;4iþ3;4jþ2 ] Eqþ1;4iþ2;4jþ1 ] Eqþ1;4iþ2;4jþ3 ] Eqþ1;4iþ2;4jþ2;
and
Bq;i;j ¼ Eqþ1;4iþ1;4j ] Eqþ1;4iþ2;4j ] Eqþ1;4iþ3;4j
� �]

Eqþ1;4iþ1;4jþ4 ] Eqþ1;4iþ2;4jþ4 ] Eqþ1;4iþ3;4jþ4
� �

]
Eqþ1;4i;4jþ1 ] Eqþ1;4i;4jþ2 ] Eqþ1;4i;4jþ3
� �]

Eqþ1;4iþ4;4jþ1 ] Eqþ1;4iþ4;4jþ2 ] Eqþ1;4iþ4;4jþ3
� �

]
Eqþ1;4i;4j ] Eqþ1;4iþ4;4j ] Eqþ1;4i;4jþ4 ] Eqþ1;4iþ4;4jþ4:
This decomposition of Vq;i;j into Iq;i;j and Bq;i;j is illustrated in the following diagram:

The interior Iq;i;j at level q consists of 5 elements from level q + 1: 4 segments and 1 corner, while the boundary Bq;i;j is
made up of 16 elements from level q + 1: 8 segments and 8 corners. In order to support the algorithms to be described,
we need introduce a decomposition of Bq;i;j into elements at level q. To do that, we create new elements on level q by com-
bining elements from level q + 1. The rules for combining elements are as follows:

More specifically, each new segment at level q is the disjoint union of 3 contiguous elements (a segment element, a corner

element and another segment element) from level q + 1. Alternatively, we can consider the segment on level q as being com-
posed of the segment-corner-segment group of child elements on level q + 1. In this way a natural geometric hierarchy is cre-
ated for the segment elements and Bq;i;j can be represented at level q as the union of 4 segments and 4 corners.
Bq;i;j ¼ Eq;2iþ1;2j ] Eq;2iþ1;2jþ2 ] Eq;2i;2jþ1 ] Eq;2iþ2;2jþ1

]
Eq;2i;2j ] Eq;2iþ2;2j ] Eq;2i;2jþ2 ] Eq;2iþ2;2jþ2:



1318 P.G. Schmitz, L. Ying / Journal of Computational Physics 231 (2012) 1314–1338
This new decomposition of Bq;i;j at level q is illustrated in the following diagram:

This process of generating Vq;i;j; Iq;i;j;Bq;i;j, and elements on level q from the ones on level q + 1 is repeated until we reach
the top level q = 0. At level 0, due to the zero Dirichlet boundary condition specified in (1), V0;0;0 is made up the vertices on the
largest cross inside the domain, I0;0;0 ¼ V0;0;0, and B0;0;0 ¼ ;.

Let us illustrate the above discussion using a concrete example with Q = 3. At level Q = 3, we start with 8 � 8 blocks on the
leaf level. Each block D2;i;j on level 2 is the union of four child blocks D3;i0 ;j0 with b i0/2c = i and bj0/2c = j for 0 6 i,j < 4. The ver-
tices associated to D2;i;j will be:
Fig. 3.
level. T
vertices
V2;i;j ¼ B3;2i;2j [ B3;2iþ1;2j [ B3;2i;2jþ1 [ B3;2iþ1;2jþ1;
which again decomposes into two disjoint sets, the boundary B2;i;j which contains vertices shared with other blocks on level
2 and the interior I2;i;j which contains vertices unique to that block. Now we can continue by combining 4 adjacent child
blocks on level 2 to obtain the vertex set for D1;i;j:
V1;i;j ¼ B2;2i;2j [ B2;2iþ1;2j [ B2;2i;2jþ1 [ B2;2iþ1;2jþ1
for 0 6 i,j < 2 and again decompose these sets on level 1 into B1;i;j and I1;i;j. Repeating this procedure one more time we arrive
at level 0 with vertex set V0;0;0, (empty) boundary B0;0;0 and interior I0;0;0 with
V0;0;0 ¼ I0;0;0 ¼ E1;2;1 ] E1;2;3 ] E1;1;2 ] E1;3;2 ] E1;2;2:
As we pointed out earlier, the segment elements on the higher levels are naturally endowed with a hierarchical structure, for
example:
E1;2;1 ¼ E2;4;1 ] E2;4;2 ] E2;4;3 ¼ ðE3;8;1 ] E3;8;2 ] E3;8;3Þ
]
E3;8;4

]
E3;8;5 ] E3;8;6 ] E3;8;7ð Þ:
This hierarchical decomposition leads to a tree-like structure on the vertex sets illustrated in Fig. 3. Notice that the interior
vertex sets Iq;i;j on a fixed level q are disjoint. In fact all Iq;i;j are disjoint and their union over all possible choices of
0 6 q 6 Q,0 6 i,j < 2q is the set of interior vertices of the whole domain.

2.2. Multifrontal method

We now describe the multifrontal method using the hierarchical structure introduced above. Our presentation tends to
emphasize the geometric aspect rather than the algebraic aspect of the method. More traditional presentations can be found
Geometric tree of vertex sets resulting from a domain decomposition. Left: Blocks at different levels along a tree path from the leaf level to the top
he gray regions denote the interior vertices Iq;i;j for each block. Right: The union of all interior vertex sets Iq;i;j is equal to the whole set of interior
.
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in standard references [6,7]. The basic tool of multifrontal method is the block LDLt decomposition induced by the Schur
complement. For a 2 � 2 block matrix:
A Bt

B C

 !
;

the Schur complement gives rise to a factorization:
A Bt

B C

 !
¼

I

BA�1 I

� �
A

S

� �
I A�1Bt

I

 !
where S = C � BA�1Bt.
Let us first consider the matrix MQ;i,j defined in (2) for the leaf block DQ ;i;j. Since it is restricted to the vertices in

VQ ;i;j ¼ IQ ;i;j ] BQ ;i;j, we obtain a 2 � 2 block matrix decomposition of MQ;i,j:
MQ ;i;j ¼
AQ ;i;j Bt

Q ;i;j

BQ ;i;j CQ ;i;j

 !
¼ LQ ;i;j

AQ ;i;j

SQ ;i;j

� �
Lt

Q ;i;j; ð3Þ
where AQ ;i;j : IQ ;i;j ! IQ ;i;j;BQ ;i;j : IQ ;i;j ! BQ ;i;j;CQ ;i;j : BQ ;i;j ! BQ ;i;j, and
LQ ;i;j ¼
IIQ ;i;j

BQ ;i;jA
�1
Q ;i;j IBQ ;i;j

 !
:

Here and from now on, we always order the interior vertices IQ ;i;j in front of the boundary ones BQ ;i;j. Extending each MQ;i,j by
zeros for the vertices not in VQ ;i;j and taking the sum over all of them, we get:
M ¼
X

i;j

MQ ;i;j:
Now extend LQ;i,j to the whole vertex set by setting it to be identity on the complement of VQ ;i;j. Since the interior vertex sets
IQ ;i;j are disjoint for different blocks DQ ;i;j, each one of the LQ;i,j commutes with another distinct LQ ;i0 ;j0 . Therefore:
LQ :¼
Y

i;j

LQ ;i;j
is well defined. Note that these LQ;i,j and this product LQ is useful in our presentation but is never formed explicitly in the
actual algorithm, only the BQ ;i;jA

�1
Q ;i;j calculated during the Schur complement is used in our algorithms (detailed later).

We will develop a suitable ordering for the rows and columns of M as we proceed. Define:
IQ :¼
]
i;j

IQ ;i;j and BQ :¼
[
i;j

BQ ;i;j:
The union of these two sets covers the entire set of vertices for which we constructed M, and hence we can write:
M ¼ AQ Bt
Q

BQ CQ

 !
¼ LQ

AQ

SQ

� �
Lt

Q ;
where AQ : IQ ! IQ ; BQ : IQ ! BQ ;CQ : BQ ! BQ , and SQ ¼ CQ � BQ A�1
Q Bt

Q . For each DQ�1;i;j, define a matrix MQ�1;i;j :

VQ�1;i;j ! VQ�1;i;j to be the sum of the matrices SQ ;i0 ;j0 of its four child blocks DQ ;i0 ;j0 . From the fact that the union of VQ�1;i;j is in-
deed BQ , it is not difficult to see that SQ is in fact of the sum of all MQ�1;i,j (if we extend each MQ�1;i,j to be zero outside VQ�1;i;j).
Now recall that each VQ�1;i;j decomposes into IQ�1;i;j and BQ�1;i;j. It then induces a decomposition of BQ into the union of:
IQ�1 :¼
]
i;j

IQ�1;i;j and BQ�1 :¼
[
i;j

BQ�1;i;j:
and provides a 2 � 2 block form for MQ�1;i,j:
MQ�1;i;j :¼ AQ�1;i;j Bt
Q�1;i;j

BQ�1;i;j CQ�1;i;j

 !

where AQ�1;i;j : IQ�1;i;j ! IQ�1;i;j; BQ�1;i;j : IQ�1;i;j ! BQ�1;i;j, and CQ�1;i;j : BQ�1;i;j ! BQ�1;i;j. We can then perform another Schur
complement on this 2 � 2 block matrix to obtain:
MQ�1;i;j ¼ LQ�1;i;j
AQ�1;i;j

SQ�1;i;j

� �
Lt

Q�1;i;j:
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Now the combined effect of:
LQ�1 :¼
Y

i;j

LQ�1;i;j;
where again we extend the LQ�1;i,j by the identity over the rest of BQ , is to factor SQ into:
SQ ¼ LQ�1
AQ�1

SQ�1

� �
Lt

Q�1;
where AQ�1 : IQ�1 ! IQ�1 and SQ�1 : BQ�1 ! BQ�1, and therefore:
M ¼ LQ
AQ

SQ

� �
Lt

Q ¼ LQ LQ�1

AQ

AQ�1

SQ�1

0B@
1CALt

Q�1Lt
Q ;
where we abuse notation extending LQ�1 by the identity on IQ as required. Recall that LQ�1 was the product of the LQ�1;i,j

extended by the identity and we have continued this process to the entire vertex set. Continuing in this fashion at level
q, we decompose Bqþ1 as Iq ] Bq with:
Iq :¼
]
i;j

Iq;i;j and Bq :¼
[
i;j

Bq;i;j;
introduce 2 � 2 block matrices Mq;i,j for each Vq;i;j, and apply the Lq;i,j matrices. Finally, at level 0, we stop at B1 ¼ I0 (since
B0 ¼ ;) and obtain the following factorization for M:
M ¼ LQ LQ�1 . . . L1

AQ

AQ�1

. .
.

A1

A0

0BBBBBBB@

1CCCCCCCALt
1 . . . Lt

Q�1Lt
Q ;
where Aq : Iq ! Iq. Each of the Aq for q = 0, . . . ,Q will in fact be block diagonal if we treat:
Iq :¼
]

06i;j<2q

Iq;i;j;
taking each of the sets Iq;i;j in turn for our ordering.
The solution to (1) can then be found by applying:
M�1 ¼ L�t
Q L�t

Q�1 . . . L�t
1

A�1
Q

A�1
Q�1

. .
.

A�1
1

A�1
0

0BBBBBBBB@

1CCCCCCCCA
L�1

1 . . . L�1
Q�1L�1

Q

to the right side of the linear system, which can be constructed in OðN1:5Þ steps and applied in OðN log NÞ steps. To see this,
consider Q levels with leaf blocks of size (P + 1) � (P + 1) so that N ’ (P2Q)2 = P222Q. For each level q, we use s(q) ’ P2Q�q to
denote the segment size. Then, the cost of multiplying the matrices for each block on level q will be OðsðqÞ3Þwhile the cost of
a matrix–vector multiply will be OðsðqÞ2Þ. Thus the total cost, suppressing constants, for setting up M�1 will be:
XQ

q¼0

ðsðqÞÞ3 � 22q ¼
XQ

q¼0

P323ðQ�qÞ � 22q ¼ O N1:5
� 	
and that for applying it to a vector:
XQ

q¼0

ðsðqÞÞ2 � 22q ¼
XQ

q¼0

P222ðQ�qÞ � 22q ¼ O N log Nð Þ
since Q ¼ Oðlog NÞ.

3. Multifrontal method with hierarchical matrices

In [8], Xia et al. proposed bringing the computational cost to linear complexity O(N) by combining the nested dissection
multifrontal method with hierarchical matrices. Roughly speaking, hierarchical matrices are the matrices for which the
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degrees of freedom are grouped and ordered into hierarchical clusters using a notion of geometric closeness and the off-diag-
onal blocks in this ordering are numerically low-rank. Due to this low-rank property, an N � N hierarchical matrix can be
stored efficiently with O(NlogN) space by approximating the off-diagonal blocks at all scales with low-rank factorizations.
Moreover, most of matrix operations such as matrix–vector product, matrix addition, matrix multiplication, matrix inver-
sion, and some matrix factorizations, can be carried out in the hierarchical matrix algebra in essentially linear time, possibly
with extra logarithmic factors. This topic has experienced rapid development in the past ten years and more details on hier-
archical matrices can be found, for example, in [10,9].

The main observation of Xia et al. in [8] is that the matrices Mq;i,j and its submatrices introduced in the multifrontal algo-
rithm can be represented using hierarchical matrices. Therefore, the Schur complement calculations can be performed with
hierarchical matrix algebra in almost linear time. In order to accommodate our adaptive algorithms where the nested dis-
section stops at different levels for different areas of a mesh we use a top-down construction and manipulation of hierarchi-
cal matrices in contrast to Xia et al.’s bottom-up approach. Table 1 lists the numerical ranks obtained in a test for a large
aligned Cartesian mesh. The ranks exhibit logarithmic growth with small initial values and increase at most by 2 each time
the matrix dimension doubles. This logarithmic growth of the numerical ranks is important for the complexity analysis in
Section 3.3.

The algorithm and implementation proposed in [8] is rather complicated. It was not straightforward to us, at least, how to
generalize their approach to unstructured and adapted meshes. We argue that the geometric decomposition introduced in
Section 2 provides us with a more natural hierarchical structure on which the hierarchical matrix operations of Mq;i,j and its
submatrices can be defined more explicitly and efficiently.

Recall that the matrix Mq;i,j is defined as a linear map from Vq;i;j to itself. Since Vq;i;j is made up of 21 elements from level
q + 1, Mq;i,j has a 21 � 21 block structure. From its 2 � 2 block structure formed by Iq;i;j and Bq;i;j, it induces:

� a5 � 5 block structure for Aq;i,j,
� a 16 � 5 block structure for Bq;i,j, and
� a 16 � 16 block structure for Cq;i,j and Sq;i,j,
where each block in all three cases represents the interaction between two elements on level q + 1. If the interaction is be-
tween two disjoint blocks, the block is then stored in factorized form since it is considered off-diagonal. For example, as Bq;i,j

is between Iq;i;j and Bq;i;j, all its blocks are in factorized form.
If the interaction is a self-interaction, the hierarchical matrix structure is used. For example, the large diagonal blocks of

Aq;i,j,Cq;i,j, and Sq;i,j represent interaction between a segment element Eqþ1;i;j on level q + 1 and itself and they are hence in hier-
archical form. The hierarchical structure of these blocks naturally appears from the geometric decomposition discussed in
Section 2. Let us recall that each segment Eqþ1;i;j (above the leaf level) is decomposed into the union of two segments and
a corner from level q + 1. Using this decomposition, the self-interaction of this segment can be naturally represented as a
Table 1
The maximum numerical ranks for factorized matrices in square off-diagonal blocks observed while solving �Du = f with �a = 10�12 and �r = 10�6. These grow
like Oðlog sÞ.

Segment size s 31 63 127 255 511 1023 2047

A�1 8 9 11 12 13 15 16
B 10 11 13 15 16 18 –
S 10 11 13 15 16 18 19

~_

~_

factorized form as the product of
Low rank submatrix approximated in

two smaller matrices

Fig. 4. Hierarchical subdivision of the sub-block of a matrix representing a segment-segment self-interaction.
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3 � 3 block matrix, with each block representing the interaction between the constituting elements from level q + 1. Each
off-diagonal block can be represented in the low-rank factorized form, while the two large diagonal blocks associated with
two segments from level q + 1 are again represented as 3 � 3 block matrices hierarchically if level q + 1 is above the leaf level.
A typical example is illustrated in Fig. 4. The decomposition of the whole Mq;i,j matrix is illustrated in Fig. 5.

One extra important structure appears in Sq;i;j : Bq;i;j ! Bq;i;j. Recall that the boundary Bq;i;j also has a decomposition in
terms of eight elements on level q, which implies that the matrix Sq;i,j also has an 8 � 8 block decomposition on level q.
The transformation of the 16 � 16 decomposition of Sq;i,j into its 8 � 8 decomposition is an important part of our algorithm
and will be detailed later.
3.1. Algorithms

Under our geometric hierarchical setup, the multifrontal factorization of M with hierarchical matrices takes two stages:

1. At the leaf level we calculate MQ;i,j, which is the restriction M to DQ ;i;j, and then perform the Schur complement to obtain
SQ;i,j.

2. Move up level by level combining the 4 child Sqþ1;i0 ;j0 matrices into the matrix Mq;i,j which again, after the Schur comple-
ment, provides the matrix Sq;i,j of the parent block.

Algorithm 1 shows how the factorized form of M is constructed. Here we use the following convention of referring to a
submatrix: if G 2 RjJ j�jJ j is a matrix whose rows and columns are labeled by the index set J then for X � J we write
GðX ;XÞ 2 RjXj�jXj for the submatrix of G consisting of the rows and columns in X . Manipulating this matrix affects the under-
lying values in G.
Boundary 
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Fig. 5. Block decomposition of Mq;i,j into 21 = 5 + 16 blocks. The relative sizes of segments and corners is typical of leaf elements and in general for higher
levels the segments would be much more dominant. On the top we have labeled the blocks sequentially using i to v for the interior and 1 to 16 for the
boundary with the corresponding elements numbered in the accompanying diagram. On the left we have used the element offsets 0,0–4,4.

Reinterpret as Hierarchical Recompress as Factorized

H
H H

Fig. 6. Illustration of two components of the merge procedure, reinterpreting a group of matrices as hierarchical and recompressing into a new factorized
form.
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Algorithm 1. Setup the factorization of M

1: for i = 0 to 2Q � 1 do
2: for j = 0 to 2Q � 1 do
3: Calculate the matrix MQ;i,j as in (2)
4: Invert AQ;i,j using dense matrix methods.

5: SQ ;i;j  CQ ;i;j � BQ ;i;jA
�1
Q ;i;jB

t
Q ;i;j

6: Store A�1
Q ;i;j, BQ;i,j and SQ;i,j

7: end for
8: end for
9: for q = Q � 1 to 1 do

10: for i = 0 to 2q � 1 do
11: for j = 0 to 2q � 1 do
12: Start with zero Mq;i,j

13: for i0 = 0,1 do
14: for j0 = 0,1 do

15: Mq;i;j Bqþ1;2iþi0 ;2jþj0 ;Bqþ1;2iþi0 ;2jþj0
� 	

 Mq;i;jðBqþ1;2iþi0 ;2jþj0 ;Bqþ1;2iþi0 ;2jþj0 Þ þ Sqþ1;2iþi0 ;2jþj0

16: end for
17: end for

18: Define Mq;i;j ¼
Aq;i;j Bt

q;i;j
Bq;i;j Cq;i;j

� �
19: Invert Aq;i,j

20: Sq;i;j  Cq;i;j � Bq;i;jA
�1
q;i;jB

t
q;i;j

21: Store A�1
q;i;j and Bq;i,j

22: Merge and Store Sq;i,j

23: end for
24: end for
25: end for
26: Start with zero M0;0,0

27: for i0 = 0,1 do
28: for j0 = 0,1 do

29: M0;0;0 B1;i0 ;j0 ;B1;i0 ;j0
� 	

 M0;0;0ðB1;i0 ;j0 ;B1;i0 ;j0 Þ þ S1;i0 ;j0

30: end for
31: end for
32: Invert A0;0,0

33: Store A�1
0;0;0

The step Merge Sq;i,j in Algorithm 1 is required because, as we mentioned earlier, one needs to reinterpret the 16 � 16

block structure corresponding to the 16 boundary elements at level q + 1 as an 8 � 8 block structure corresponding to the
8 merged boundary elements on level q. While the 4 corner vertices are unaffected, the segment-corner-segment merging
of child elements is reflected in combining 3 � 3 submatrices into a new submatrix. The vertex ordering we built up from
the leaf level ensures that, in fact, these 9 submatrices form a contiguous 3 � 3 group. Thus no rearrangement of the rows
and columns of Sq;i,j is required. In terms of the hierarchical matrix representation, if the new submatrix is on the diagonal
and should have a hierarchical representation this is achieved by simply reinterpreting the 3 � 3 submatrices as part of a
new hierarchical decomposition. On the other hand, if the new submatrix is off-diagonal and should be represented in fac-
torized form, this ‘‘recompression’’ can be performed efficiently using QR factorizations since the major parts are already in
factorized form. These two cases are illustrated graphically in Fig. 6.

Note that this merge step is only required to maintain the expected complexity of the hierarchical matrix algebra. The
usual permutations and ‘‘extend-add’’ operations of general multifrontal approaches are avoided because the node ordering
and hierarchical division of our matrices is built up from the lowest level to be compatible with the nested disection. Step 15
of Algorithm 1 which adds together the child Sqþ1;i0 ;j0 matrices is the analogue of ‘‘extend-add’’ but is mainly injection with
some dense matrix addition. The geometric separation of the child domains ensures that at most one of the child Sqþ1;i0 ;j0

matrices contributes to any of the 8 � 8 un-merged child segment-segment interactions in the parent Mq;i,j. While the
illustration in Fig. 5 features segments that are the same size and aligned with each other we shall see later in Section 4 that
our algorithm does not rely on all the segments being the same size or aligned with a grid. The resulting pattern of entries in
the parent Mq;i,j block matrix follows from the topological relationships of exactly four shared segments from the children
meeting in the central corner (away from the domain boundaries) and the segment-corner-segment child elements on
the parent boundary combining to form the parent segments.
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To solve the original Mu = f, we compute u = M�1f using the multifrontal decomposition of the matrix M�1:
Fig. 7.
while t
M�1f ¼ L�t
Q L�t

Q�1 . . . L�t
1

A�1
Q

A�1
Q�1

. .
.

A�1
1

A�1
0

0BBBBBBBB@

1CCCCCCCCA
L�1

1 . . . L�1
Q�1L�1

Q f :
To carry out this calculation, we first apply each factor L�1
Q ;i;j in L�1

Q , then those from L�1
Q�1 and so on. Once we have completed

all the L�1
q;i;j, we apply the diagonal blocks A�1

q;i;j, and then all the L�t
q;i;j for q = 1, . . . ,Q. If we write uIq;i;j

for the (consecutive) group
of components of u corresponding to the set of vertices Iq;i;j, and similarly uBq;i;j

, then the solution can be calculated as in Algo-
rithm 2 where we combine the action of A�1

q;i;j and L�1
q;i;j since they are the only ones which affect uIq;i;j

on the first pass from the
leaves to the root of the tree.

Algorithm 2. Solving Mu = f

1: u f
2: for q = Q to 1 do
3: fori = 0 to 2q � 1 do
4: for j = 0 to 2q � 1 do

5: uIq;i;j  A�1
q;i;juIq;i;j

6: uBq;i;j  uBq;i;j � Bq;i;jA
�1
q;i;juIq;i;j

7: end for
8: end for
9: end for

10: uI0;0;0  A�1
0;0;0uI0;0;0

11: for q = 1 to Q do
12: for i = 0 to 2q � 1 do
13: for j = 0 to 2q � 1do

14: uIq;i;j  uIq;i;j � A�1
q;i;jB

t
q;i;juBq;i;j

15: end for
16: end for
17: end for
3.2. Implementation details

In our implementation, the matrices at several lowest levels are in fact represented as dense matrices, instead of hierar-
chical matrices. This is to avoid small dense matrix computations and to achieve the best complexity at several lowest levels
(see the discussion on page 300 of [11]).
1D domain decomposition into sets J ‘
i at level ‘, with corresponding self-interaction matrix decomposition at level 4. The dark blocks are dense

he others are low rank and can be represented in factorized form.
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We refer the reader to [10] for details on hierarchical matrix operations but present some aspects of our implementation.
The underlying dense matrix algebra is performed using BLAS and LAPACK (in particular Intel’s MKL), for example matrix
inversion of dense matrices is performed via LU-factorization.

The inversion of a hierarchical matrix proceeds using row operations on the block structure. This requires the inversion of
the hierarchical matrices on the diagonal and so the problem is recursive. The recursion ends when the matrices on the diag-
onal are dense and no longer hierarchical, and then the inversion is performed using the dense matrix techniques described
above. Thus inversion requires hierarchical matrix multiplication and addition which we now discuss.

We utilize a simplified one dimensional setting with bisection to illustrate the approach (see Fig. 7).
The index set J 0

1 is partitioned hierarchically with bisection which stops when each set J ‘
i contains only a small number

of indices. We denote the restriction of a matrix G to J ‘
i and J ‘

i0 by G‘
i;i0 .

3.2.1. Matrix addition and subtraction
Consider the sum of two matrices G and H with their off-diagonal factorizations denoted by G‘

i;j � U‘
i;j V ‘

i;j

� 	t
and

H‘
i;j � X‘

i;j Y ‘
i;j

� 	t
. Under the block matrix notation, the sum is
G1
1;1 G1

1;2

G1
2;1 G1

2;2

 !
þ

H1
1;1 H1

1;2

H1
2;1 H1

2;2

 !
¼

G1
1;1 þ H1

1;1 G1
1;2 þ H1

1;2

G1
2;1 þ H1

2;1 G1
2;2 þ H1

2;2

 !
:

First,
G1
1;2 þ H1

1;2 � U1
1;2 V1

1;2

� 	t
þ X1

1;2 Y1
1;2

� 	t
¼ U1

1;2 X1
1;2

� 	
V1

1;2 Y1
1;2

� 	t
:

Notice that the new factorized form for the sum will have an increased size compared to those for G1
1;2 and H1

1;2. One needs to
recompress the last two matrices in order to prevent the size of the low rank factorization from increasing indefinitely. More

precisely, if U1
1;2 has width r1 and X1

1;2 has width r2, then using U1
1;2 X1

1;2

� 	
¼ QR and V1

1;2 Y1
1;2

� 	
¼ eQ eR, the sum we seek is

QRðeQ eRÞt ¼ QðReRtÞeQ t , and we need only perform the SVD, ReRt ¼ URVt , on a square matrix of size r1 + r2. Finally the resulting
factors for the sum will have width r0 6 r1 + r2 if we keep r0 of the singular values (and associated columns from U and V) for
our truncated SVD. Thus:
U1
1;2 X1

1;2

� 	
V1

1;2 Y1
1;2

� 	t
¼ QUR|fflffl{zfflffl}

width r0

eQ V|{z}
width r0

0@ 1At

:

The same procedure is carried out for G1
2;1 þ H1

2;1 to compute the necessary factorization.
Second, let us consider the diagonal blocks. G1

1;1 þ H1
1;1 and G1

2;2 þ H1
2;2 are done recursively since they are two sums of a

similar nature to our original sum, but of smaller size. Eventually the diagonal blocks are dense and standard matrix addition
is performed.

3.2.2. Matrix–vector multiplication
Assuming the vector is also decomposed according to the index sets block multiplication is performed. The two matrices

from each factorized off-diagonal form are dense and the on-diagonal hierarchical matrices are treated recursively. Eventu-
ally the diagonal blocks are dense and standard matrix–vector multiplication is performed. It should be clear that a similar
procedure works for vector–matrix multiplication.

3.2.3. Matrix multiplication
Let us consider the product of two matrices G and H with their off-diagonal factorizations given again by G‘

i;j � U‘
i;j V ‘

i;j

� 	t

and H‘
i;j � X‘

i;j Y‘
i;j

� 	t
. In block matrix form, the product is:
G1
1;1 G1

1;2

G1
2;1 G1

2;2

 !
�

H1
1;1 H1

1;2

H1
2;1 H1

2;2

 !
¼

G1
1;1H1

1;1 þ G1
1;2H1

2;1 G1
1;1H1

1;2 þ G1
1;2H1

2;2

G1
2;1H1

1;1 þ G1
2;2H1

2;1 G1
2;1H1

1;2 þ G1
2;2H1

2;2

 !
:

First, the off-diagonal block:
G1
1;1H1

1;2 þ G1
1;2H1

2;2 � G1
1;1X1

1;2 Y1
1;2

� 	t
þ U1

1;2 V1
1;2

� 	t
H1

2;2:
The computation G1
1;1X1

1;2 is multiplication of a hierarchical matrix with a dense matrix with a small number of columns and

proceeds in essentially the same way as matrix–vector multiplication and similarly V1
1;2

� 	t
H1

2;2 mimics vector–matrix
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multiplication. Once they are done, the remaining sum is then similar to the sum of the factorized off-diagonal parts of the
matrix addition algorithm. The other off-diagonal block G1

2;1H1
1;1 þ G1

2;2H1
2;1 is done in the same way.

Next, consider the diagonal blocks. Take G1
1;1H1

1;1 þ G1
1;2H1

2;1 as an example. The first part G1
1;1H1

1;1 is done using recursion.
The second part is:
G1
1;2H1

2;1 � U1
1;2 V1

1;2

� 	t
X1

2;1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} Y1
2;1

� 	t
:

Performing the middle product first minimizes the computational cost. The final sum G1
1;1H1

1;1 þ G1
1;2H1

2;1 is done using a
matrix addition algorithm similar to the one described above. The same procedure can be carried out for the computation
of G1

2;1H1
1;2 þ G1

2;2H1
2;2.

In general the hierarchical Schur complement matrices on level q combine in groups of 4 by injection and addition to form
the hierarchical matrix on level q � 1 (see Fig. 5 for the typical structure of this new hierarchical matrix). The Schur comple-
ment calculation then involves hierarchical matrix operations and results in a new hierarchical matrix representing the
Schur complement. Only for the lowest levels where we have chosen to use dense matrices instead of hierarchical ones will
the Schur complement be dense.

3.3. Complexity

For the complexity analysis, recall that a leaf node at level Q contains (P + 1) � (P + 1) vertices and N ’ (P2Q)2 =
P222Q = O(22Q). Here all logarithms are taken with base 2.

At level q, the size of a segment element is sðqÞ ¼ P2Q�q ¼ Oð2Q�qÞ, therefore the matrices Mq;i,j,Aq;i,j,Bq;i,j, Cq;i,j, and Sq;i,j are
all of dimensionOðsðqÞÞ. A crucial quantity is the rank of the off-diagonal blocks of these matrices. In our case the rank varies
within the hierarchical form but we have observed that the rank increases logarithmically with segment size, so that the
maximum rank will be Oðlog sðqÞÞ. This agrees with the experimental observations of Börm [15] regarding the ranks of
the factorized blocks for the inverse of an elliptic operator, although he found a theoretical bound of Oððlog sðqÞÞ3Þ. To cover
both the observed and theoretical bounds we will continue our analysis with the general ansatz that the rank will be
Oððlog sðqÞÞqÞ for some integer q P 1.

In Algorithm 1, the dominant computation is the formation of the Schur complement for each block Dq;i;j, which involves
inversion, multiplications, and addition of hierarchical matrices. The cost of these operations is given in [11] as Oðr2ðlog nÞ2nÞ
where r is the maximum rank of the factorized parts, n � n the full size of the matrix and log (n) the number of block
subdivisions (depth of the decomposition tree) in the hierarchical form. In our case, since r ¼ Oððlog sðqÞÞqÞ and
n ¼ OðsðqÞÞ, this is equal to:
O ðlog sðqÞÞ2q � ðlog sðqÞÞ2 � sðqÞ
� 	

¼ O ðlog sðqÞÞ2qþ2 � sðqÞ
� 	

:

Now, since there are 22q Schur complements at each level and Q levels in total, the overall cost of Algorithm 1 is on the order of:
XQ

q¼0

ðQ � qÞ2qþ2 � 2Q�q � 22q ¼ Oð22Q Þ ¼ OðNÞ:
In Algorithm 2, the dominant cost is the matrix vector multiplication in the hierarchical matrix form. In [11], this cost is
shown to be of order Oðr2ðlog nÞ2nÞwhere r is again the maximum rank of the factorized parts, n � n is the size of the matrix.
At level q; r ¼ Oððlog sðqÞÞqÞ and n ¼ OðsðqÞÞ, and the cost is:
O ðlog sðqÞÞ2q � log sðqÞ � sðqÞ
� 	

¼ O ðlog sðqÞÞ2qþ1 � sðqÞ
� 	

:

Summing this cost over 22q Schur complements at each of Q levels gives the cost of Algorithm 2:
XQ

q¼0

ðQ � qÞ2qþ1 � 2Q�q � 22q ¼ Oð22Q Þ ¼ OðNÞ:
To further speed up the addition of the hierarchical matrices one can use probabilistic [16] low-rank approximants in-
stead of those calculated via SVD, but in the multiplication of two factorized low-rank matrices of size n � n and rank r
we still need Oðnr2Þ multiplications.

3.4. Numerical results

All numerical tests are run on a 2.13 GHz processor. Execution times are measured in seconds for the Setup phase (Algo-
rithm 1) and the Solve phase (Algorithm 2).

To test our algorithm we setup the factorized form of M and solve 100 random problems generated as follows: Select
xH 2 RN with independent standard normal components, and calculate f = Mxw using the sparse original M. Then solve
Mx = f and determine the worst relative L2 error:
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;

over the 100 samples.
Following [10] we construct the low rank approximations at the hierarchical levels using common matrix manipulations

such as QR and SVD. During these procedures we keep only (the part of the decomposition corresponding to) those singular
values:

1. larger than the absolute cutoff �a and
2. within the relative cutoff �r of the largest singular value.

Addition and multiplication of hierarchical matrices also involves these kinds of truncated SVD. These two parameters, �a

and �r, can be varied depending on the specific problem and the desired accuracy of the output.
The first test is the Laplace equation � Du = f on [0,1]2 with zero Dirichlet boundary condition. In Table 2 we show how

the setup time and the error vary using fixed �a = 10�12 and various choices of �r. The resulting error compares well with the
cal results for a uniform mesh on [0,1]2 using �a = 10�12 and various choices of �r for �Du = f.

Q �r = 10�4 �r = 10�6 �r = 10�8 �r = 10�10

Setup Error Setup Error Setup Error Setup Error

6129 4 0.84 1.34e�04 0.84 1.47e�06 0.85 8.22e�09 0.84 5.24e�11
5025 5 3.75 2.66e�04 3.85 2.13e�06 3.92 2.70e�08 3.94 1.70e�10
1121 6 16.14 7.60e�04 16.84 5.68e�06 17.27 5.37e�08 17.63 4.07e�10
6529 7 67.59 1.37e�03 71.23 1.58e�05 72.76 9.60e�08 75.72 1.05e�09
0209 8 282.24 2.38e�03 295.41 2.77e�05 306.69 2.99e�07 320.26 2.29e�09
9025 9 1167.50 4.62e�03 1226.11 6.38e�05 1277.76 4.56e�07 1337.95 6.49e�09

cal results for a uniform mesh using �a = 10�12 and �r = 10�6 for � Du = f. In the second set of results �r was initially 10�6 for N = 16129 and then it was
for each increase in size.

�r = 10�6 Halved each step

Setup Solve Error Setup Solve Error

6129 0.84 0.02 1.47e�06 0.85 0.02 1.47e�06
5025 3.85 0.11 2.13e�06 3.86 0.11 9.41e�07
1121 16.84 0.49 5.68e�06 16.93 0.49 1.44e�06
6529 71.23 2.08 1.58e�05 72.39 2.06 1.32e�06
0209 295.41 8.89 2.77e�05 305.49 8.90 1.46e�06
9025 1226.11 36.90 6.38e�05 1266.18 36.74 1.16e�06
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A log–log plot of the time taken for the setup and solve phases of the algorithm against the number of degrees of freedom, along with t = 10�5N for
ison.
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chosen value of �r, with each improvement of 10�2 on �r costing about a 5% increase in runtime. The increase in runtime from
N = 16129 to N = 16769025 is reasonably close to the expected linear increase of 4 each step.

Notice from the results in Table 2 that the error increases slightly with N ([8] experienced a similar increase). To compen-
sate for this, we can reduce �r as N increases as shown in the second test, which uses fixed �a = 10�12 and starts with
�r = 10�6. The results in Table 3 show that the reduction of �r results in a minor impact on computational cost. Because a
smaller �r implies higher ranks, the runtime scaling is slightly worse for the second set, but still close to the ideal factor
of 4. The error remains relatively constant as desired. Alternatively, one could use our solver as a preconditioner for PCG
or GMRES if better accuracy is desired. Plotting runtime against N on a log–log plot as in Fig. 8 allows us to compare the
growth in runtime for the setup and solve algorithms with linear growth.

In the third test reported in Table 4 we solve � div (a(x)ru) = f on [0,1]2 with zero Dirichlet boundary condition for a
more general a(x) which jumps between 10�2 and 102 with �a = 10�12 and �r = 10�10 rather than �r = 10�6 to accommodate
the jumps of order 104 in a(x). The runtime scaling is again close to the optimal value and the error is well controlled.

In the fourth test with results shown in Table 5 we study the case of positive V(x) in �Du + V(x)u = f. One experiment uses
V(x) chosen uniformly in [0,105], while the second experiment uses V(x) that takes value 0 on 95% of the triangles and 105 on
the remaining 5%. The scaling for the two scenarios is very similar but the one with the jumps is slightly slower.

In the fifth test displayed in Table 6 we show how the algorithm can be extended to slightly more general V(x) which are
chosen uniformly in [�100,100] and [�100,0]. In the latter case we set �r = 10�8 in order to maintain an error near our target
10�6. This demonstrates that, while some adjustments have to be made for a non-positive definite system, the algorithm still
works well with close to optimal runtime scaling.
Table 4
Numerical results for a uniform mesh on [0,1]2 using �a = 10�12 and �r = 10�10 for �div (a(x)ru) = f where a(x)
jumps by 104 from one subset of the domain to another, more specifically a(x) 	 10�2 except for two regions
[0.25,050]2 and [0.50, 0.75]2 where a(x) 	 102.

N Setup Solve Error

16129 0.86 0.02 6.24e�06
65025 3.94 0.11 1.21e�05

261121 17.54 0.51 3.15e�05
1046529 74.95 2.25 8.21e�06
4190209 317.93 9.95 1.26e�06

Table 5
Results for �Du + V(x)u = f with a positive V(x). Here we use �a = 10�12 and �r = 10�6. In the first set of results V(x) is chosen uniformly in [0,105] and in second
set of results V(x) is identically 105 on a randomly chosen 5% of the triangles and identically 0 on the remaining 95%.

N V uniformly in [0,105] V jumps between 0 and 105

Setup Solve Error Setup Solve Error

11618 0.79 0.02 3.78e�09 0.90 0.02 4.31e�08
46865 3.96 0.11 1.44e�08 4.26 0.13 9.16e�08

188249 17.17 0.52 3.69e�08 18.26 0.48 1.42e�07
754577 75.72 2.30 8.67e�08 79.79 3.02 2.80e�07

3021473 332.44 7.94 1.75e�07 353.59 11.65 6.51e�07

Table 6
Slightly more general V(x) is also possible. Here are the results for an aligned Cartesian mesh using �a = 10�12 for �Du + V(x)u = f, where for small negative V(x)
we have to adjust �r to maintain the error around 10�6.

N V uniformly in [�100,100] �r = 10�6 V uniformly in [�100,0] �r = 10�8

Setup Solve Error Setup Solve Error

16129 0.95 0.03 1.47e�06 1.01 0.03 8.37e�07
65025 4.09 0.13 2.12e�06 4.58 0.15 7.03e�06

261121 18.49 0.55 5.74e�06 20.33 0.66 3.07e�06
1046529 78.28 2.34 1.57e�05 86.69 2.78 6.29e�06
4190209 328.57 9.98 2.77e�05 369.58 11.78 9.55e�06
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4. Quasi-uniform mesh

In this section, we discuss how to extend the approach described above to quasi-uniform meshes, which are those with:

1. the angles of every triangle uniformly bounded away from zero, and
2. a bounded ratio between the area of the largest and smallest triangles.

Common ways to extend algorithms involving nested disection to unstructured meshes [8, Section 4.6] use graph parti-
tioning algorithms, such as in [17] or other algebraic [18] methods to determine a node ordering and hierarchical disection.
However, there is little control over the topology of the resulting disection and the meeting of separators from different lev-
els. Since our method relies strongly on the clean geometric hierarchy to provide a node ordering and permutation free ma-
trix algebra we introduce our own, more geometric, approach that preserves the relationship between segments and corners
and their parents and children in the resulting geometric hierarchy.
4.1. Algorithm

We first decompose the triangles into a hierarchical structure as follows. Cartesian grid lines are overlaid on the domain,
dividing it into 2Q � 2Q blocks as the uniform case. Now triangles may fall partly in one of these areas and partly in another.
So the contiguous blocks of faces are chosen by assigning a triangle to the block in which its centroid falls. The vertices of all
the triangles in the block form the vertex set for that block.

In the quasi-uniform case the vertex classification is slightly more difficult because blocks may meet at a vertex which is
shared by only 3 blocks instead of the consistent 4 blocks in the uniform case. This situation is illustrated in Fig. 9. To overcome
this issue we introduce the notion of a generalized corner, which can be a group of vertices instead of a single one. This concept
allows us to recover the regular relationship between segments and corners that we observed in the uniform setting where 4
segments meet at a corner. Now similar to the Cartesian case, the vertices VQ ;i;j can be classified into three types of elements:

� Facet element, which includes the vertices contained only in 1 block.
� Segment element, which includes the vertices on the border between 2 blocks.
� Generalized corner element, which includes the vertices shared by at least 3 blocks near a corner.

This definition can lead to generalized corners with more than 1 vertex, but at most a small number such as 3. Once this
classification is available, we can define the elements EQ ;i;j, the interior set IQ ;i;j, and the boundary set BQ ;i;j as before. The rel-
ative sizes of segments and corners is not affected too much and the contribution of the corners to BQ ;i;j and IQ ;i;j is still much
less than that of the segments. In Fig. 10 (left) we illustrate that 4 out of the 9 generalized corners contain more than one
vertex.

Note that, though the number of vertices on a particular segment between two generalized corners may vary, the topological
relationship between the four segments and four corners surrounding the facet is the same as in the aligned Cartesian case.
Fig. 9. Four blocks meeting in a generalized corner.
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Though there are alternative approaches to the domain decomposition that avoid the introduction of the cornering vertices, our
scheme has the advantages of allowing the boundary between two blocks to be shared easily and leading to natural hierarchical
groupings of segment-corner-segment. Other schemes can lead to double boundary layers and difficult groupings. We could
also use a decomposition similar to the one in [8] where the domain is divided into two pieces each time, alternating between
directions parallel to one axis and then the other. This leads to a tree of double the depth and the need to handle two different
forms of lifting values from the matrices corresponding to one level to the level above (merging the parts in the Schur
complement matrices and combining two child Schur complement matrices into the parent matrix). Once EQ ;i;j; IQ ;i;j;BQ ;i;j

are available, we can define these sets for higher level blocks, similar to what has been done in the uniform Cartesian case.
While the sizes of the segments may vary the hierarchical relationship is still the same and all the main steps of the algo-

rithm go through as before. Algorithms 1 and 2 depend only on the definition of the combinatorial relationship between the
elements Eq;i;j. Thus the block decomposition of the matrices and Algorithms 1 and 2 apply without major modification. The
changes to be aware of include allowing for variable size corners (all corners in the uniform case have exactly size 1) and
segments, and making the merging procedure more flexible.

Now in the more general case, when the lengths of the segments are not equal, the analysis would be harder but to obtain
the same complexity we need only have the average segment size on a level halve each time and the range of segment sizes
be bounded by multiples of the average. This would ensure that our decomposition tree would remain the same sort of log-
arithmic depth and the ranks of the off-diagonal blocks will grow at the same sort of rate.
4.2. Numerical results

The first test on a quasi-uniform mesh on [0,1]2 is for the equation � div (a(x)ru) = f where a(x) is a constant on each
triangle chosen independently and uniformly from [10�2,102]. The results with �a = 10�12 and �r = 10�6 are shown in Table
Table 7
Numerical results for a quasi-uniform mesh on [0,1]2 using �a = 10�12 and �r = 10�6 for �div
(a(x)ru) = f where a(x) is chosen uniformly from [10�2,102].

N Setup Solve Error

11618 0.79 0.02 8.21e�07
46865 3.73 0.10 3.05e�06

188249 16.61 0.46 6.53e�06
754577 71.28 1.94 1.18e�05

3021473 306.40 8.43 2.17e�05



Fig. 11. Numerical results for a quasi-uniform mesh on an annulus using �a = 10�12 and �r = 10�6 for �Du = f.
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7. The runtime scaling is almost linear as expected and the error approximately doubles with each quadrupling of the prob-
lem size, as before. The increase of the error can be remedied easily by decreasing �r as N increases, as shown in the Cartesian
case.

The second test is on a more general quasi-uniform mesh on an annulus for � Du = f using �a = 10�12 and �r = 10�6. The
results are shown in Fig. 11 with similar scaling and error behavior. Notice that there are many small or empty blocks created
by the uniform subdivision – we will show how to remedy this in the next section.
5. Adaptive decomposition

For more general domains this regular geometric subdivision method may be non-optimal, since some leaves will
have fewer internal vertices than others, if the mesh is denser in some areas than others. It would increase efficiency
to take these things into account when subdividing. In this section we generalize our approach to the setting of adaptive
meshes.
5.1. Domain decomposition procedure

In the uniform and quasi-uniform cases, the leaf level elements are determined first and the other elements are built from
the bottom up. Now, since we do not know where and on what level we shall stop dividing, we have to work from the top
down, dividing elements as required.

We start by specifying a constant which is the maximum number of vertices allowed in a leaf block. The square
bounding box of the domain is divided into 4 equally sized pieces and every face is assigned to a different one of these
blocks depending on the position of the centroid. The total number of vertices in (the faces in) each block is compared to
the desired leaf size, and if greater the block is divided again. All the blocks on the same level are examined and divided
as required. Once all these blocks have been visited the blocks in the next level are evaluated and divided if necessary.
Eventually all the blocks will contain less than the desired amount of (non-boundary) vertices. Let us illustrate the
division of leaf elements on level q into new leaf elements on level q + 1 using the specific example with two
neighboring blocks Dq;0;0 and Dq;1;0, which cover Eq;i;j (for 0 6 i 6 4 and 0 6 j 6 2) and share the elements Eq;2;j (for
0 6 j 6 2):
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After dividing Dq;0;0, we obtain:

Firstly, four new leaf corners at the lower level are inherited from the upper level:
Eqþ1;0;0 ¼ Eq;0;0 Eqþ1;4;0 ¼ Eq;2;0 Eqþ1;0;4 ¼ Eq;0;2 Eqþ1;4;4 ¼ Eq;2;2
The leaf facet Eq;1;1 needs to be divided into 4 new facets, 4 segments and 1 corner at the center:

Now the new leaf blocks will have their own sets of internal vertices Iqþ1;0;0; . . . ; Iqþ1;1;1 and boundary vertices
Bqþ1;0;0; . . . ;Bqþ1;1;1, so the facets are determined by
Eqþ1;1;1 ¼ Iqþ1;0;0 \ Eq;1;1; Eqþ1;3;1 ¼ Iqþ1;1;0 \ Eq;1;1;

Eqþ1;1;3 ¼ Iqþ1;0;1 \ Eq;1;1; Eqþ1;3;3 ¼ Iqþ1;1;1 \ Eq;1;1:
For convenience, set:
B0qþ1;0;0 ¼ Bqþ1;0;0 \ Eq;1;1; B0qþ1;1;0 ¼ Bqþ1;1;0 \ Eq;1;1;

B0qþ1;0;1 ¼ Bqþ1;0;1 \ Eq;1;1; B0qþ1;1;1 ¼ Bqþ1;1;1 \ Eq;1;1:
These are the parts of the boundaries of the new leaves that are inside Eq;1;1 which will determine the new leaf elements.
Then intersecting 3 at a time and taking the union (recall that our generalized corner is given where more than 2 blocks
meet, and they will meet on their common boundary layers – there are 4 ways to pick 3 blocks to test and so we need to
take the union of the 4 possible intersection results):
Eqþ1;2;2 ¼ B0qþ1;0;0 \ B
0
qþ1;1;0 \ B

0
qþ1;0;1

� 	
[ B0qþ1;0;0 \ B

0
qþ1;1;0 \ B

0
qþ1;1;1

� 	
[ B0qþ1;0;0 \ B

0
qþ1;0;1 \ B

0
qþ1;1;1

� 	
[ B0qþ1;1;0 \ B

0
qþ1;0;1 \ B

0
qþ1;1;1

� 	
;

we can define the new central corner. From there the 4 new leaf segments between the new leaf facets will be determined,
since we want those vertices where the 2 new leaf blocks meet along their common boundary but wish to exclude the cen-
tral corner they may share. Thus:
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Eqþ1;2;1 ¼ B0qþ1;0;0 \ B
0
qþ1;1;0

� 	
n Eqþ1;2;2; Eqþ1;2;3 ¼ B0qþ1;0;1 \ B

0
qþ1;1;1

� 	
n Eqþ1;2;2
and � 	 � 	

Eqþ1;1;2 ¼ B0qþ1;0;0 \ B

0
qþ1;0;1 n Eqþ1;2;2; Eqþ1;1;2 ¼ B0qþ1;1;0 \ B

0
qþ1;1;1 n Eqþ1;2;2:
To determine how the segment Eq;2;1 is divided into new leaf elements Eqþ1;4;1 ] Eqþ1;4;2 ] Eqþ1;4;3 we first determine the corner
that will be created at the middle of the old segment:
Eqþ1;4;2 ¼ Bqþ1;1;0 \ Bqþ1;1;1
� �

\ Eq;2;1;
then the new leaf segments above and below will be:
Eqþ1;4;1 ¼ Bqþ1;1;0 \ Eq;2;1
� �

n Eqþ1;4;2 and Eqþ1;4;3 ¼ Bqþ1;1;0 \ Eq;2;1
� �

n Eqþ1;4;2:
The breakdown of the other 3 segments on the sides of Eq;1;1 is similar.
A complication arises because, since segments are shared between neighboring blocks, two blocks may arrive at a differ-

ent decomposition of the parent segment into segment-corner-segment. So the segment-corner-segment group in the mid-
dle between the two blocks, the elements Eqþ1;4;1; Eqþ1;4;2 and Eqþ1;4;3, has been highlighted with w and # since these elements
are only completely determined by the block divisions on one side if the block on the other side is never further divided.

So we may, for example, find EH

qþ1;4;1 – E#
qþ1;4;1. To resolve this, if another decomposition already exists we intersect the

two tentative segments as follows:
Eqþ1;4;1 ¼ EH

qþ1;4;1 \ E
#
qþ1;4;1 and Eqþ1;4;3 ¼ EH

qþ1;4;3 \ E
#
qþ1;4;3
to form the new leaf segments. The middle corner is then found from:
The common segment (left) on the border between the two sides (a) and (b) is divided differently from the top and from the bottom, this division is
led by reducing the length of the child segments and increasing the central corner to 2 vertices.
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Fig. 13. Hierarchical matrix representing the interaction between segments with different subdivisions.

imes for a non-uniform square using �a = 10�12 and �r = 10�6 for �Du = f. The first 2 sets are from the non-adaptive approach with variable maximum
, and the second 4 from the adaptive approach with indicated maximum leaf size.

Finer Coarser Adaptive

Q Max leaf Setup Q Max leaf Setup Maximum Leaf Size

200 300 350 400

689 5 77 2.23 4 239 1.12 0.83 0.76 0.78 0.79
201 6 86 10.52 5 269 5.61 4.03 3.62 3.71 3.78
697 7 88 47.66 6 291 26.18 18.72 16.46 16.19 16.66
577 8 89 206.89 7 303 116.50 85.45 76.58 73.11 74.32
889 9 90 897.74 8 309 514.67 386.87 347.38 308.77 335.34

Fig. 14. An adaptive decomposition of a mesh showing leaf blocks on various levels.
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Eqþ1;4;2 ¼ Eq;2;1 n Eqþ1;4;1 ] Eqþ1;4;3
� �

;

which has the effect of possibly increasing the size of this element:
Eqþ1;4;2 
 EH

qþ1;4;2 [ E
#
qþ1;4;2:
This approach is clearly motivated by the idea of the generalized corner introduced in Section 4. Now all four affected child
blocks which meet at this corner have consistent boundary elements. In Fig. 12 we show part of a mesh illustrating this
phenomenon.

Once the adaptive decomposition is complete, elements occur at all levels, some of which are the boundaries of blocks
which have since been divided, i.e. they are not leaf elements and have children. These are deleted, leaving only a consistent
decomposition of all the vertices into leaf elements (which may not have similar sizes or depths in the tree). Then, as in the
Top: Uniform mesh on [0,1]2 selectively refined on [0,x] � [0, 1] to produce a large range of triangle size and density. Bottom: Numerical results for
t values of N.
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non-adaptive case, the segments and corners on all levels above the leaves are built up by taking ordered sequences of
vertices for the child elements and merely copying them in the case of parent corners, or concatenating them to form the
segment-corner-segment structure of the parent segment.

The factorized form of M in the adaptive case has a similar structure to the uniform case except that each level is no longer
full and leaves, with their associated dense matrices, can occur on various levels. Again we proceed level by level starting
from the deepest occupied level Q, and construct the products Lq :¼

Q
i;jLq;i;j and the factorization:
Fig. 16
decomp
M ¼ LQ
AQ

SQ

� �
Lt

Q ¼ LQ LQ�1

AQ

AQ�1

SQ�1

0B@
1CALt

Q�1Lt
Q ;
where AQ : IQ ! IQ ;AQ�1 : IQ�1 ! IQ , and SQ�1 : ðIQ ] IQ�1Þc ! ðIQ ] IQ�1Þc . The remaining vertices in the block decompo-
sition are no longer simply the boundary of level Q � 1 but the whole domain is still the disjoint union of all the Iq and we
get as before:
M ¼ LQ LQ�1 . . . L1

AQ

AQ�1

. .
.

A1

A0

0BBBBBBB@

1CCCCCCCALt
1 . . . Lt

Q�1Lt
Q ;
. Setup and Solve times for a punctured annulus mesh using �a = 10�12 and �r = 10�6 for � Du = f. In the second set of results the adaptive
osition was used.
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where Aq : Iq ! Iq. As before, the matrices Aq are block diagonal once we collect all the non-empty Iq;i;j in a given order for
each level q.

In the adaptive case it may happen that two segments may not be subdivisible to the same degree, and so the correspond-
ing submatrices will be subdivided further with respect to the rows than columns (or vice versa) as illustrated in Fig. 13. This
means that our choice of hierarchical matrix structure does not follow a common pattern among all the child Sqþ1;i0 ;j0 matrices
that we wish to combine into the parent Mq;i,j matrix. Thus when we perform the multiplications required for the Schur com-
plement we may have to merge and split blocks so that the two hierarchical matrices we wish to multiply become
compatible.
5.2. Complexity

The complexity analysis in the adaptive case is much harder because we have little control over how segment sizes are
distributed and how deep the decomposition tree may be. The cost of hierarchical matrix multiplication depends on the
number of steps in the hierarchical decomposition. If this grows linearly instead of logarithmically with N we expect worse
performance. The actual scaling will depend on the depth of the tree in various areas and how those trees are combined. Our
numerical experiments suggest that the algorithm will retain linear or almost linear scaling as long as the difference between
the least and most refined areas of the mesh is no more than 10 steps which seems reasonable for most meshes. Further
investigation may reveal the precise characteristics of meshes retaining good performance.

Similarly the cost of the actual decomposition process depends on the number of times a vertex appears before the
leaf level and how densely populated the boundaries of the decomposition regions are compared to the interiors (each
vertex has to be checked on every level it appears and the set manipulations cost slogs for sets of size s). This would
usually lead to OðN log NÞ or OðNlog2NÞ but if the mesh density increases too quickly near a particular point there
may only be a constant number of vertices in the leaves at each level leading to a very deep decomposition and worse
scaling. If this becomes a problem in practice the cost could be amortized over potentially numerous calculations on the
same mesh or consolidated with an h-adaptive scheme. By integrating with the mesh subdivision process one could use
the added information about the distribution of the newly created vertices to choose the two dividing lines to approxi-
mately equalize the number of vertices in each of the 4 resulting subblocks instead of simply choosing the midpoints to
obtain 4 equal areas.
5.3. Numerical results

While the observed scaling remains very similar, the actual runtime depends on the choice of leaf size. Increasing leaf size
(and memory consumption) improves runtime up to a certain point, and then the dense calculations start to dominate and
runtime increases again. In Table 8 we show the results of the uniform and adaptive approach to solving �Du = f using
�a = 10�12 and �r = 10�6 for a non-uniform square similar to the one in Fig. 14. The runtime scaling and value is the best
for the adaptive approach with maximum leaf size 350 while for our largest example the comparable uniform and adaptive
versions, with respective maximum leaf sizes 309 and 300, demonstrate a decrease of about 1/3 in runtime from 514.67 to
347.38 using the adaptive approach.

Another type of mesh for which the adaptive approach is suited is one that has been selectively refined and the ratio of
largest to smallest triangles is quite large such as in the case illustrated in Fig. 15. Note there is almost perfectly linear scaling
in the adaptive case as N increases from 1547911 to 3104328 while the uniform version leads to very large maximum leaves
and a huge jump in runtime for those problems that did not exhaust the available memory.

Finally, in Fig. 16 we compare the adaptive and uniform approaches for a non simply-connected domain for �Du = f with
the usual �a = 10�12 and �r = 10�6. The adaptive approach has a smaller advantage here because the triangle size is relatively
uniform and only the distribution needs to be accommodated.
6. Conclusion and future work

We have presented a fast algorithm for approximate solutions of the large sparse linear systems arising from elliptic
equations via the finite element method. This algorithm is asymptotically linear in runtime and memory requirements.
An explicit procedure for dealing with general, quasi-uniform meshes was described, as well as an adaptive decomposition
method that offers improved performance.

We have only demonstrated the approach for piecewise linear elements but one could generalize the approach to work
with different discretizations such as spectral elements or different methods such as the discontinuous Galerkin [19] meth-
od. One could incorporate our adaptive decomposition method and calculation of the solution into an h-adaptive mesh
refinement system [20] as in [21] so that new degrees of freedom could be incorporated incrementally, where only the parts
of the mesh which have been refined (and their parents in the decomposition tree) would require new calculations. Similarly
one could incrementally take into account the degrees of freedom added and removed via a p-adaptive system, and even-
tually hp-adaptive systems.
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These ideas can be extended to other finite element bases as long as the support of the basis elements is localized. The
boundary layer between blocks might have to be enlarged to ensure that there is no interaction between the internal vertices
at the leaf level when the stencil support grows larger than the one neighborhood. The approach can also be extended to
non-symmetric matrices (a simple test solving �Du + b(x) � ru = f using slightly modified algorithms produced similar
results to those for �Du = f). One could extend to a tetrahedral mesh in three dimensions but the boundaries between
the ‘‘cubes’’ of tetrahedra would have to be carefully managed.

We have not discussed parallelization of the calculations [22], but since all of the calculations on the same level are inde-
pendent they (as well as the underlying block matrix multiplications) could be performed in parallel. Only once there are
fewer blocks per level than processors would extensive inter-processor communication be required. Large scale parallel mul-
tifrontal solvers such as MUMPS [23] illustrate the possible gains of parallelization.

Another situation where the algorithm could be adjusted to improve performance is where a(x) and/or V(x) is perturbed
locally and repeated calculations are required – a calculated factorization could be largely reused as only the parents of the
blocks containing the vertices with changed values would have to be recalculated.
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