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Abstract

This note introduces the double flip move to accelerate the Swendsen-Wang algorithm

for Ising models with mixed boundary conditions below the critical temperature. The

double flip move consists of a geometric flip of the spin lattice followed by a spin value

flip. Both symmetric and approximately symmetric models are considered. We prove the

detailed balance of the double flip move and demonstrate its empirical efficiency in mixing.

Mathematics subject classification: 82B20, 82B80.
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1. Introduction

This note is concerned with the Monte Carlo sampling of Ising models with mixed boundary

conditions. Consider a graph G = (V,E) with the vertex set V and the edge set E. Assume

that V = I∪B, where I is the subset of interior vertices and B the subset of boundary vertices.

Throughout the note, we use i, j to denote the vertices in I and b for the vertices in B. For the

edges, we use e = ij ∈ E to denote an interior edge between two interior vertices i and j, and

e = ib ∈ E for a interior-boundary edge between interior vertex i and boundary vertex b. The

boundary condition is specified by f = (fb)b∈B .

A spin configuration s = (si)i∈I over the interior vertex set I is an assignment of ±1 value to

each vertex i ∈ I. The energy of the spin configuration s is given by the Hamiltonian function

H(s) = −
∑

ij∈E

sisj −
∑

ib∈E

sifb.

At a physical temperature T , the configuration probability of s = (si)i∈I is given by the Gibbs

or Boltzmann distribution

pI(s) =
e−βH(s)

Zβ

∼ exp

(

β
∑

ij∈E

sisj + β
∑

ib∈E

sifb

)

, (1.1)

where β = 1/T is the inverse temperature and Zβ =
∑

s e
−βH(s) is the renormalization constant

(or the partition function).

One key feature of these models is that, below the critical temperature and under certain

boundary conditions, the Gibbs distribution exhibits macroscopically different profiles. Fig. 1.1

provides two such examples, where black denotes +1 and yellow denotes −1. In Fig. 1.1(a),
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(a) (b)

Fig. 1.1. Ising models with mixed boundary condition. (a) a square lattice and (b) a triangular lattice

support on a disk. In each example, the model exhibits two macroscopically different profiles.

the square Ising lattice has the +1 condition on the two vertical sides but the −1 condition

on the two horizontal sides. There are two macroscopic profiles: one contains a dominant

−1 cluster linking two horizontal sides and the other contains a dominant +1 cluster linking

two vertical sides. In Fig. 1.1(b), the Ising lattice supported on a disk has the +1 condition

on two disjoint arcs and the −1 condition on the other two. This model also exhibits two

macroscopically different profiles shown in Fig. 1.1(b). Notice that in each example, due to

the symmetry or approximate symmetry of the Ising lattice as well as the boundary condition,

the two macroscopic profiles have comparable probabilities. Therefore, any effective sampling

algorithm is required to visit both profiles frequently.

One of the most well-known methods for sampling Ising models is the Swendsen-Wang

algorithm [9], which iterates between the following two substeps in each iteration:

1. Given the current spin configuration, generate an edge configuration according the inverse

temperature β (see Section 2 for details).

2. To each connected component (also called cluster) of the edge configuration, assign to all

spins in this cluster all +1 or −1 to with equal probability. This results in a new spin

configuration.

For many boundary conditions including the free boundary condition, the Swendsen-Wang algo-

rithm exhibits rapid mixing for all temperatures. However, for the mixed boundary conditions

shown in Fig. 1.1, the Swendsen-Wang algorithm experiences slow convergence under the criti-

cal temperatures, i.e., T < Tc or equivalently β > βc. The reason is that, for such a boundary

condition, the energy barrier between the two macroscopic profiles is much higher than the

typical energy fluctuation. In other words, the Swendsen-Wang algorithm needs to break a

macroscopic number of edges between aligned adjacent spins in order to transition from one

macroscopic profile to the other. However, breaking so many edges simultaneously is an event

with exponentially small probability.

In this note, we introduce the double flip move that introduces direct transitions between

these dominant profiles. When combined with the Swendsen-Wang algorithm, it accelerates the

mixing of these Ising model under the critical temperature significantly.

When the Ising model exhibits an exact symmetry (typically a reflection that negates the

mixed boundary condition), the double flip move consists of

1. A geometric flip of the spin lattice along a symmetry line.

2. A spin-value flip at the interior vertices of the Ising model.
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The key observation is that these two flips together preserves the alignment between the adjacent

spins, hence introducing a successful Monte Carlo move. When the Ising model exhibits only

an approximate symmetry, the double flip move consists of

1. A geometric flip of the spin lattice along a symmetry line.

2. A matching step that snaps the flipped copy of the interior vertices to the original copy

of the interior vertices.

3. A spin-value flip at the interior vertices of the Ising model.

In both the exact and the approximate symmetry case, we prove the detailed balance of the

double flip move and demonstrate its efficiency when combined with the Swendsen-Wang algo-

rithm.

Related works. Alexander and Yoshida [1, 2] studied the spectral gap of the 2D Ising

models with mixed boundary conditions. More recently, Gheissari and Lubetzky [5] studied

the effect of the boundary condition for the 2D Potts models at the critical temperature. Chat-

terjee and Diaconis [3] showed that, for uniform equilibrium distribution, the convergence to

stationarity can often be considerably speeded up by alternating every step of the Markov chain

with a deterministic move.

Contents. The rest of the note is organized as follows. Section 2 reviews the Swendsen-

Wang algorithm for the Ising models with boundary condition. Section 3 describes the double

flip move for models with exact symmetry and Section 4 extends it to models with approximate

symmetry. Section 5 discusses some future directions.

2. Swendsen-Wang Algorithm

In this section, we briefly review the Swendsen-Wang algorithm, which is a Markov Chain

Monte Carlo method for sampling pI(·). The description here is adapted to the setting with

boundary condition. In each iteration, it generates a new configuration (ti)i∈I from the current

configuration (si)i∈I as follows:

1. Generate an edge configuration w = (we)e∈E . For an interior edge e = ij, if the spin

values si and sj are different, set we=ij = 0. If si and sj are the same, we=ij is sampled

from the Bernoulli distribution Ber(1 − e−2β), i.e., equal to 1 with probability 1 − e−2β

and 0 with probability e−2β . We also perform the same to each interior-boundary edge

e = ib.

2. Regard all edges e ∈ E with we = 1 as linked. Compute the connected components of

the edge configuration w. For each connected component (or cluster) γ, if γ contains

a boundary vertex, set (ti)i∈γ to the spin of the boundary vertex. If not, set all the spins

(ti)i∈γ to all −1 or all +1 with equal probability.

The Swendsen-Wang algorithm satisfies the detailed balance, i.e.,

pI(s)PSW(s, t) = pI(t)PSW(t, s),

where PSW(s, t) is for the transition matrix of Swendsen-Wang. To see this, note that we can

write

PSW(s, t) =
∑

w

Pw(s, t), PSW(t, s) =
∑

w

Pw(t, s),
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where Pw(s, t) is the transition probability from s to t via a compatible edge configuration w

and the sum above is taken over all compatible edge configurations w. Therefore, it is sufficient

to show

pI(s)Pw(s, t) = pI(t)Pw(t, s)

for any compatible edge configuration w. Since the transition probability of going from the

edge configuration w to the spin configurations s and t are the same, it reduces to showing

pI(s)P (s, w) = pI(t)P (t, w),

where P (s, w) is the probability of obtaining the edge configuration w from s and similarly

for P (t, w). In fact pI(s)P (s, w) is independent of the spin configuration s by the following

argument. First, if an interior edge ij ∈ E has configuration wij = 1, then si = sj . Second, if

ij ∈ E has configuration wij = 0, then si and sj can either be the same or different. In the

former case si = sj , the contribution to pI(s)P (s, w) from edge ij is

eβ

eβ + e−β
· e−2β =

e−β

eβ + e−β

up to a normalization constant. In the latter case si = −sj, the contribution is also

e−β

eβ + e−β
· 1 =

e−β

eβ + e−β

up to the same normalization constant. Second, the same argument applies to any interior-

boundary edge ib ∈ E. Putting them together verifies that pI(s)P (s, w) is independent of the

spin configuration s.

Another interpretation of the Swendsen-Wang algorithm is a special case of the data aug-

mentation method [7]. To see this, one introduces the following two related probability distri-

butions [4]: the first one is the joint vertex-edge distribution

pIE(s, w) ∼
∏

ij∈E

(

(1− e−2β)δsi=sjδwij=1 + e−2βδwij=0

)

×
∏

ib∈E

(

(1− e−2β)δsi=fbδwib=1 + e−2βδwib=0

)

, (2.1)

while the second one is the edge distribution

pE(w) ∼
∏

wij=1

(1− e−2β)
∏

wij=0

e−2β ·
∏

wib=1

(1− e−2β)
∏

wib=0

e−2β · 2|Cw|, (2.2)

where Cw is set of connected components of w that contain only the interior vertices. Summing

pIE(s, w) over s or w gives
∑

s

pIE(s, w) = pE(w),
∑

w

pIE(s, w) = pI(s). (2.3)

A direct consequence of (2.3) is that the Swendsen-Wang algorithm can be viewed as a data

augmentation method [7] for sampling the joint vertex-edge distribution pIE(s, w), where the

first substep samples the edge configuration w conditioned on the spin configuration s and the

second substep samples a new spin configuration t conditioned on the edge configuration w.

Once we are able to sample pIE(s, w), taking the marginal of the spin configuration s results in

the distribution pI(s).



Double Flip Move for Ising Models with Mixed Boundary Conditions 5

Though highly effective for Ising models with free boundary conditions, The Swendsen-

Wang algorithm unfortunately does not encourage transitions between the dominant profiles

shown in Fig. 1.1. The reason is that, for these mixed boundary condition, such a transition

requires breaking a macroscopic number of edges between aligned adjacent spins, which has

an exponentially small probability. This is the motivation for introducing the double flip move.

3. Double Flip for Symmetric Models

The double flip move is designed to introduce explicit transitions between the macroscopic

profiles as shown Fig. 1.1. This section assumes that the Ising model enjoys an explicit graph

involution, i.e., there exists a map m : V → V such that:

• m maps I to I and B to B, respectively, and m2 = id,

• ij ∈ E iff m(i) ∼ m(j) ∈ E, and ib ∈ E iff m(i)m(b) ∈ E,

• fm(b) = −fb.

For example, in Fig. 1.1(a) m is the reflection along one of the diagonals of the square, while

in Fig. 1.1(b) m is the reflection along the x axis.

In the double flip move, the first flip implements the map m to the interior vertices in I.

After that, the second flip negates the spin of the mapped interior vertices. More specifically,

the resulting new spin configuration t is defined by

tm(i) = −si, ∀i ∈ I. (3.1)

Since m2 = id, we also have ti = −sm(i) for any i ∈ I.

Theorem 3.1. The double flip move satisfies the detailed balance.

Proof. To show the detailed balance, one needs to prove that, for any two spin configurations

s and t,

pI(s)PDF(s, t) = pI(t)PDF(t, s),

where PDF is the double flip move transition matrix. From the definition of the double flip

move, the transition probabilities P (s, t) and P (t, s) equal to one if s and t satisfy (3.1) and

zero otherwise. Hence, it is sufficient to show pI(s) = pI(t) when (3.1) holds.

For each ij ∈ E,

titj = (−1)2sm(i)sm(j) = sm(i)sm(j).

Taking the sum over all interior edges gives

∑

ij∈E

titj =
∑

ij∈E

sm(i)sm(j) =
∑

ij∈E

sisj .

For each ib ∈ E,

tifb = (−1)2sm(i)fm(b) = sm(i)fm(b).

Taking the sum over all interior edges results in

∑

ib∈E

tifb =
∑

ib∈E

sm(i)fm(b) =
∑

ib∈E

sifb.
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Together,
∑

ij∈E

titj +
∑

ib∈E

tifb =
∑

ij∈E

sisj +
∑

ib∈E

sifb,

i.e., pI(s) = pI(t).

We can now combine the double flip move with the Swendsen-Wang move. For a constant η ∈

(0, 1), each iteration of the combined algorithm performs the double flip move with probability

η and the Swendsen-Wang move with probability 1− η:

1. Choose u from Ber(η), i.e., equal to 1 with probability η.

2. If u is 1, perform the double flip move, else perform the Swendsen-Wang move.

Theorem 3.2. The Swendsen-Wang algorithm with double flip satisfies the detailed balance.

Proof. The combined transition matrix is

PSWDF = ηPDF + (1 − η)PSW.

Section 2 shows that the Swendsen-Wang algorithm satisfies the detailed balance, i.e.,

pI(s)PSW(s, t) = pI(t)PSW(t, s).

The double flip move satisfies the detailed balance as shown above,

pI(s)PDF(s, t) = pI(t)PDF(t, s).

A linear combination of these two statements give

pI(s)PSWDF(s, t) = pI(t)PSWDF(t, s)

and this finishes the proof.

Below we compare the performance of the Swendsen-Wang algorithm (SW) and Swendsen-

Wang with double flip (SWDF) using two examples.

Example 3.1. The Ising model is a square lattice. The mixed boundary condition is +1 at

the two vertical sides and −1 at the two horizontal sides. The graph involution m : V → V is

given by the diagonal reflection. Fig. 3.1(a) shows the model at size n1 = n2 = 20. Fig. 3.1(b)

gives the two dominant macroscopic profiles.

The experiments are performed for the problem size n1 = n2 = 100 at the inverse temper-

ature β = 0.5. We start from the all −1 configuration and carry out 10000 iterations for both

SW and SWDF. For SWDF, we set the parameter η = 1/100. Figs. 3.1(c)-(d) plot the average

spin value
1

|I|

∑

i∈I

si

of these two algorithms, respectively. Fig. 3.1(c) shows that SW fails to introduce transitions

between the −1 and the +1 macroscopic profiles, since the average spin always stays below 0.

On the other hand, Fig. 3.1(d) demonstrates that SWDF explores both profiles with about 100

transitions in between.

We further conduct a comparison between SW and SWDF around βc, the critical inverse

temperature. Fig. 3.2 plots the behavior of SW (left) and SWDF (right) for three β values near
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(a) (b)

(c) (d)

Fig. 3.1. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for −1).

(b) Two dominant macroscopic profiles. (c) The average spin value of the Swendsen-Wang algorithm.

(d) The average spin value of the Swendsen-Wang algorithm with double flip.

the critical temperature: β = 0.45, 0.46, 0.47 from top to bottom. For each case, the plot gives

the average spin value over the iterations. These plots clearly show that SW explores the spin

configurations effectively when β < βc but fails when β > βc. On the other hand, SWDF is

able to explore the whole spin configuration space effectively, uniformly across βc.

Example 3.2. The Ising lattice is still a square. The mixed boundary condition is +1 in the

first and third quadrants but −1 in the second and fourth quadrants. The graph involution

m : V → V is given by the reflection along either the x or the y axis. Fig. 3.3(a) shows the

problem at size n1 = n2 = 20. Fig. 3.3(b) gives the two dominant macroscopic profiles.

Similar to the previous example, the experiments are performed for the problem size n1 =

n2 = 100 at the inverse temperature β = 0.5. We start from the all −1 configuration and carry

out 10000 iterations for both SW and SWDF. The η parameter of SWDF is 1/100. Fig. 3.3(c)

shows that SW fails to introduce transitions between the −1 dominant and the +1 dominant

macroscopic profiles, while Fig. 3.3(d) demonstrates that SWDF explores both profiles with

about 100 transitions in between.

4. Double Flip for Approximately Symmetric Models

The algorithm in Section 3 is efficient but depends on exact symmetries. However, many

Ising models without exact symmetries also exhibit different macroscopic profiles such as in

Fig. 1.1(b). This section extends the double flip move to models with approximate symmetry.
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Fig. 3.2. The comparison of Swendsen-Wang (SW) and Swendsen-Wang with double flip (SWDF)

near the critical temperature. From top to bottom: β = 0.45, 0.46, 0.47 and therefore the physical

temperature decreases. From left to right: SW and SWDF.

Here we take a more geometric viewpoint and assume that the Ising model is embedded in

a domain Ω ⊂ R
2 with the boundary denoted by ∂Ω.

• For each i ∈ I, xi is in the interior of Ω. For each b ∈ B, xb is in ∂Ω.

• The edges ij (interior) and ib (interior-boundary) in the set E are segments between

geometrically nearby vertices.

• ∂Ω = ∂Ω+ ∪ ∂Ω−.

fb =

{

1, if xb ∈ ∂Ω+,

−1, if xb ∈ ∂Ω−.

• Assume that there is a continuous involution µ : Ω̄ → Ω̄ such that µ2 = id, µ(∂Ω+) = ∂Ω−.
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(a) (b)

(c) (d)

Fig. 3.3. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for −1).

(b) The average spin value of the Swendsen-Wang algorithm. (c) The average spin value of the

Swendsen-Wang algorithm with double flip.

Since µ is only defined as an involution of Ω, in general {µ(xi)}i∈I 6= {xi}j∈I and therefore

µ does not directly introduce an involution on the set I of interior vertices. To fix this, we

introduce a discrete involution m : I → I such that

xm(i) ≈ µ(xi). (4.1)

We shall discuss below how to construct m based on µ. For now, we assume the existence of

m and define a Metropolized double flip move for approximately symmetric models.

1. Define a spin configuration t via ti = −sm(i).

2. Evaluate c = min(1, pI(t)/pI(s)).

3. Sample u ∈ [0, 1] uniformly. If u ≤ c, set t to be the new spin configuration. Otherwise,

keep s as the spin configuration.

Since m is an involution and this is a Metropolized move, the following statement holds.

Theorem 4.1. The Metropolized double flip move satisfies the detailed balance.

It can also be combined with the Swendsen-Wang move in the same way as described in

Section 3.

Theorem 4.2. The Swendsen-Wang algorithm with Metropolized double flip satisfies the de-

tailed balance.
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The efficiency of this algorithm depends on the condition that pI(t)/pI(s) is neither too

small or too large. This is in fact promoted by the condition (4.1), since ij ∈ E would imply

xm(i) ≈ µ(xi) ≈ µ(xj) ≈ xm(j),

where the second step uses the continuity of the domain involution µ. Therefore, when ij ∈ E,

m(i)m(j) is also likely to be an edge of E and in particular

sisj = (−1)2sisj = tm(i)tm(j).

If this holds for most pairs ij ∈ E and ib ∈ E, pI(t)/pI(s) is likely to be well-bounded away

from both zero and infinity.

The remaining question is how to construct m : I → I so that m2 = id and (4.1) holds.

One possibility is to formulate this as a matching problem between the geometrically flipped

vertices {µ(xi)}i∈I and the original vertices {xj}j∈I , with a cost defined using either the ℓ2 or

the ℓ∞ distance. Equivalently, this can be viewed as an optimal transport problem between the

two distributions
∑

i∈I

δµ(xi)(·) and
∑

j∈I

δxj
(·).

Once the matching (or the transport map) is available, we define m(i) = j if µ(xi) is matched

with xj . However, this approach has two technical difficulties:

• The computation cost of the matching or optimal transport algorithm [6, 8] can be rela-

tively high.

• The involution condition m2 = id is not guaranteed.

In the implementation, we adopt the following heuristic procedure. Assume without loss of

generality that the domain Ω is centered at the origin.

1. Order the interior vertices {xj}j∈I based on their distances to the origin in the decreasing

order. The distance is typically chosen to be either the ℓ∞ norm or the ℓ2 norm.

2. Mark all vertices j ∈ I as unpaired.

3. Scan the interior vertices in this ordered list. For each xj , if j is already paired, then skip.

If not, find the unpaired i such that µ(xi) is closet to xj , pair i and j

m(i) := j, m(j) := i,

and mark both i and j as paired.

The heuristic is that, by following the order of decreasing distance to the origin, the remaining

unpaired vertices are forced to cluster near the center of the domain, thus reducing the overall

transport cost.

Below we compare the performance of the Swendsen-Wang algorithm (SW) and Swendsen-

Wang with Metropolized double flip (SWDF) using three examples.

Example 4.1. The Ising model is a rectangular lattice where the number of rows and columns

are different, as shown in Fig. 4.1. The mixed boundary condition is +1 at the two vertical sides

and −1 at the two horizontal sides. The diagonal reflection is no longer an exact symmetry.
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(a) (b) (c)

(d) (e)

Fig. 4.1. (a) The rectangular lattice along with the mixed boundary condition (black for +1 and yellow

for −1). (b) Two dominant macroscopic profiles. (c) The transport map from {µ(xi)}i∈I (marked with

+) to {xj}j∈I (marked with ◦). (d) The average spin value of the Swendsen-Wang algorithm. (e) The

average spin value of the Swendsen-Wang algorithm with double flip.

Fig. 4.1(a) shows the system with size 20× 19. Fig. 4.1(b) gives the two dominant macroscopic

profiles. Fig. 4.1(c) plots the transport map between {µ(xi)}i∈I (marked with +) to {xj}j∈I

(marked with ◦). As shown, the transport map is quite local, demonstrating the efficiency of

the heuristic matching procedure.

The experiments are performed for the problem size 100 × 99 at the inverse temperature

β = 0.5. We start from the all −1 configuration and carry out 10000 iterations for both

SW and SWDF. The η parameter of SWDF is η = 1/3. Fig. 4.1(d) shows that SW fails to

introduce transitions between the −1 dominant and the +1 dominant macroscopic profiles,

while Fig. 4.1(e) demonstrates that SWDF explores both profiles with 41 transitions out of

about 3000 trials.

Example 4.2. The Ising model is a random quasi-uniform triangular lattice supported on the

unit disk, as shown in Fig. 4.2. The mixed boundary condition is equal to +1 in the first

and third quadrants but −1 in the second and fourth quadrants. The problem does not have

strict rotation and reflection symmetry due to the random triangulation. Fig. 4.2(a) shows the

triangulation with mesh size h = 0.1. Fig. 4.2(b) gives the two dominant macroscopic profiles.

Fig. 4.2(c) gives the transport map between {µ(xi)}i∈I (marked with +) to {xj}j∈I (marked

with ◦), which is quite local.

The experiments are performed with a finer triangulation with mesh size h = 0.05 at the

inverse temperature β = 0.5. We start from the all −1 configuration and carry out 10000

iterations for both SW and SWDF. The η parameter of SWDF is 1/3. Fig. 4.2(d) shows that
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(a) (b) (c)

(d) (e)

Fig. 4.2. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for −1).

(b) Two dominant macroscopic profiles. (c) The transport map from {µ(xi)}i∈I (marked with +) to

{xj}j∈I (marked with ◦). (d) The average spin value of the Swendsen-Wang algorithm. (e) The average

spin value of the Swendsen-Wang algorithm with double flip.

(a) (b) (c)

(d) (e)

Fig. 4.3. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for −1).

(b) Two dominant macroscopic profiles. (c) The transport map from {µ(xi)}i∈I (marked with +) to

{xj}j∈I (marked with ◦). (d) The average spin value of the Swendsen-Wang algorithm. (e) The average

spin value of the Swendsen-Wang algorithm with double flip.
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SW fails to introduce transitions between the −1 dominant and the +1 dominant macroscopic

profiles, while Fig. 4.2(e) demonstrates that SWDF explores both profiles with 48 transitions

out of about 3000 trials.

Example 4.3. The Ising model is again a random quasi-uniform triangular lattice supported

on the unit disk. The mixed boundary condition is equal to +1 on the two arcs with angle

in [0, π/3] and [π, 5π/3] and −1 on the remaining two arcs. Due to the random triangulation,

the problem does not have strict rotation and reflection symmetry. Fig. 4.3(a) shows the

triangulation with mesh size h = 0.1. Fig. 4.3(b) gives the two dominant macroscopic profiles.

Fig. 4.3(c) plots the transport map between {µ(xi)}i∈I (marked with +) to {xj}j∈I (marked

with ◦).

The experiments are performed with a finer triangulation with mesh size h = 0.05 at the

inverse temperature β = 0.5. We start from the all −1 configuration and carry out 10000

iterations for both SW and SWDF. The η parameter of SWDF is η = 1/3. Fig. 4.3(d) shows that

SW fails to introduce transitions between the −1 dominant and the +1 dominant macroscopic

profiles, while Fig. 4.3(e) demonstrates that SWDF explores both profiles with 35 transitions

out of about 3000 trials.

5. Discussions

This note introduces the double flip move for accelerating the Swendsen-Wang algorithm for

Ising models with mixed boundary conditions. We consider both symmetric and approximately

symmetric models. In both cases, we prove the detailed balance and demonstrated its efficiency

in introducing explicit transitions between different dominant profiles.

There are many unanswered questions. Regarding the symmetric models, one question is

to prove a polynomial mixing time for the examples in Section 3. Regarding the approximately

symmetric models, there are more open questions:

• Is there a fast matching or optimal transport algorithm that ensures m2 = id?

• Better heuristic procedures to construct a matching between {µ(xi)}i∈I and {xj}j∈I?

• Can we bound the acceptance ratio of the Metropolized double flip move under certain

assumptions of the approximate symmetry?

• Proving a rapid mixing result for any approximately symmetric model in Section 4.

• The approximate matching is carried out for the interior vertices in this note. However,

it can be carried out for the edges alternatively.
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