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Abstract

This note introduces the double flip move to accelerate the Swendsen-Wang algorithm
for Ising models with mixed boundary conditions below the critical temperature. The
double flip move consists of a geometric flip of the spin lattice followed by a spin value
flip. Both symmetric and approximately symmetric models are considered. We prove the
detailed balance of the double flip move and demonstrate its empirical efficiency in mixing.
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1. Introduction

This note is concerned with the Monte Carlo sampling of Ising models with mixed boundary
conditions. Consider a graph G = (V, E) with the vertex set V' and the edge set E. Assume
that V = IUB, where [ is the subset of interior vertices and B the subset of boundary vertices.
Throughout the note, we use ¢, j to denote the vertices in I and b for the vertices in B. For the
edges, we use e = ij € F to denote an interior edge between two interior vertices ¢ and j, and
e = ib € E for a interior-boundary edge between interior vertex ¢ and boundary vertex b. The
boundary condition is specified by f = (fb)secB-

A spin configuration s = (s;);cs over the interior vertex set I is an assignment of +1 value to
each vertex ¢ € I. The energy of the spin configuration s is given by the Hamiltonian function

H(s) = - Z 8iSj — Z 5 fo-

ijeE ibeEE

At a physical temperature T, the configuration probability of s = (s;);es is given by the Gibbs
or Boltzmann distribution

)
pi(s) = 7 ~ exp <5 Z sisj+ Z 5ifb>a (1.1)

ijEE ibeE

where 8 = 1/T is the inverse temperature and Zz = >__, e ##(*) is the renormalization constant
(or the partition function).

One key feature of these models is that, below the critical temperature and under certain
boundary conditions, the Gibbs distribution exhibits macroscopically different profiles. Fig. 1.1
provides two such examples, where black denotes +1 and yellow denotes —1. In Fig. 1.1(a),
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(a) (b)

Fig. 1.1. Ising models with mixed boundary condition. (a) a square lattice and (b) a triangular lattice
support on a disk. In each example, the model exhibits two macroscopically different profiles.

the square Ising lattice has the +1 condition on the two vertical sides but the —1 condition
on the two horizontal sides. There are two macroscopic profiles: one contains a dominant
—1 cluster linking two horizontal sides and the other contains a dominant +1 cluster linking
two vertical sides. In Fig. 1.1(b), the Ising lattice supported on a disk has the +1 condition
on two disjoint arcs and the —1 condition on the other two. This model also exhibits two
macroscopically different profiles shown in Fig. 1.1(b). Notice that in each example, due to
the symmetry or approximate symmetry of the Ising lattice as well as the boundary condition,
the two macroscopic profiles have comparable probabilities. Therefore, any effective sampling
algorithm is required to visit both profiles frequently.

One of the most well-known methods for sampling Ising models is the Swendsen-Wang
algorithm [9], which iterates between the following two substeps in each iteration:

1. Given the current spin configuration, generate an edge configuration according the inverse
temperature § (see Section 2 for details).

2. To each connected component (also called cluster) of the edge configuration, assign to all
spins in this cluster all +1 or —1 to with equal probability. This results in a new spin
configuration.

For many boundary conditions including the free boundary condition, the Swendsen-Wang algo-
rithm exhibits rapid mixing for all temperatures. However, for the mixed boundary conditions
shown in Fig. 1.1, the Swendsen-Wang algorithm experiences slow convergence under the criti-
cal temperatures, i.e., T' < T, or equivalently 5 > (.. The reason is that, for such a boundary
condition, the energy barrier between the two macroscopic profiles is much higher than the
typical energy fluctuation. In other words, the Swendsen-Wang algorithm needs to break a
macroscopic number of edges between aligned adjacent spins in order to transition from one
macroscopic profile to the other. However, breaking so many edges simultaneously is an event
with exponentially small probability.

In this note, we introduce the double flip move that introduces direct transitions between
these dominant profiles. When combined with the Swendsen-Wang algorithm, it accelerates the
mixing of these Ising model under the critical temperature significantly.

When the Ising model exhibits an exact symmetry (typically a reflection that negates the
mixed boundary condition), the double flip move consists of

1. A geometric flip of the spin lattice along a symmetry line.

2. A spin-value flip at the interior vertices of the Ising model.
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The key observation is that these two flips together preserves the alignment between the adjacent
spins, hence introducing a successful Monte Carlo move. When the Ising model exhibits only
an approximate symmetry, the double flip move consists of

1. A geometric flip of the spin lattice along a symmetry line.

2. A matching step that snaps the flipped copy of the interior vertices to the original copy
of the interior vertices.

3. A spin-value flip at the interior vertices of the Ising model.

In both the exact and the approximate symmetry case, we prove the detailed balance of the
double flip move and demonstrate its efficiency when combined with the Swendsen-Wang algo-
rithm.

Related works. Alexander and Yoshida [1,2] studied the spectral gap of the 2D Ising
models with mixed boundary conditions. More recently, Gheissari and Lubetzky [5] studied
the effect of the boundary condition for the 2D Potts models at the critical temperature. Chat-
terjee and Diaconis [3] showed that, for uniform equilibrium distribution, the convergence to
stationarity can often be considerably speeded up by alternating every step of the Markov chain
with a deterministic move.

Contents. The rest of the note is organized as follows. Section 2 reviews the Swendsen-
Wang algorithm for the Ising models with boundary condition. Section 3 describes the double
flip move for models with exact symmetry and Section 4 extends it to models with approximate
symmetry. Section 5 discusses some future directions.

2. Swendsen-Wang Algorithm

In this section, we briefly review the Swendsen-Wang algorithm, which is a Markov Chain
Monte Carlo method for sampling p;(-). The description here is adapted to the setting with
boundary condition. In each iteration, it generates a new configuration (¢;);c; from the current
configuration (s;);cr as follows:

1. Generate an edge configuration w = (we)ecp. For an interior edge e = ij, if the spin
values s; and s; are different, set we—;; = 0. If s; and s; are the same, we—;; is sampled
from the Bernoulli distribution Ber(1 — e~2#), i.e., equal to 1 with probability 1 — =27
and 0 with probability e=2#. We also perform the same to each interior-boundary edge
e =1b.

2. Regard all edges e € E with w. = 1 as linked. Compute the connected components of
the edge configuration w. For each connected component (or cluster) ~, if 4 contains
a boundary vertex, set (t;);cy to the spin of the boundary vertex. If not, set all the spins
(t;)iey to all =1 or all +1 with equal probability.

The Swendsen-Wang algorithm satisfies the detailed balance, i.e.,

pI(S)PSW(57 t) = pl(t)PSW(t7 5)7

where Psw (s,t) is for the transition matrix of Swendsen-Wang. To see this, note that we can
write

Psw(s,t) =Y _ Pu(s,t), Pswl(t,s)=>_ Pul(ts),
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where P, (s,t) is the transition probability from s to ¢ via a compatible edge configuration w
and the sum above is taken over all compatible edge configurations w. Therefore, it is sufficient
to show

p1(s) P (s,t) = p1(t) P (2, 5)

for any compatible edge configuration w. Since the transition probability of going from the
edge configuration w to the spin configurations s and t are the same, it reduces to showing

pi(s)P(s,w) = pi(t)P(t, w),

where P(s,w) is the probability of obtaining the edge configuration w from s and similarly
for P(t,w). In fact pr(s)P(s,w) is independent of the spin configuration s by the following
argument. First, if an interior edge ij € E has configuration w;; = 1, then s; = s;. Second, if
ij € F has configuration w;; = 0, then s; and s; can either be the same or different. In the
former case s; = s;, the contribution to pi(s)P(s,w) from edge ij is

B -8B
e
_ & e
eﬁ —+ e*ﬁ eﬁ —+ e*ﬁ
up to a normalization constant. In the latter case s; = —s;, the contribution is also
e B e B

eﬁ{»e*ﬁ eﬁ+e*ﬁ

up to the same normalization constant. Second, the same argument applies to any interior-
boundary edge ib € E. Putting them together verifies that pr(s)P(s,w) is independent of the
spin configuration s.

Another interpretation of the Swendsen-Wang algorithm is a special case of the data aug-
mentation method [7]. To see this, one introduces the following two related probability distri-
butions [4]: the first one is the joint vertex-edge distribution

PIE (s, w) ~ H (1- 67%)581.:5]' Ow, =1+ 672ﬁ5w”:0)
ijEE
X H ((1 - 672ﬁ)55i:fb5wib:1 =+ 672ﬁ5“’ib:0) ) (2-1)

beE

while the second one is the edge distribution

pr(w) ~ H (1—e29) H e 2. H (1—e%9) H e 28 . 9lCul, (2.2)

wij=1 wi;=0 wip=1 wip=0

where C,, is set of connected components of w that contain only the interior vertices. Summing
pie(S, w) over s or w gives

Y pm(s,w) =pe(w), Y pm(s,w) = pi(s). (2.3)

A direct consequence of (2.3) is that the Swendsen-Wang algorithm can be viewed as a data
augmentation method [7] for sampling the joint vertex-edge distribution pig(s,w), where the
first substep samples the edge configuration w conditioned on the spin configuration s and the
second substep samples a new spin configuration ¢ conditioned on the edge configuration w.
Once we are able to sample pig(s, w), taking the marginal of the spin configuration s results in
the distribution pi(s).
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Though highly effective for Ising models with free boundary conditions, The Swendsen-
Wang algorithm unfortunately does not encourage transitions between the dominant profiles
shown in Fig. 1.1. The reason is that, for these mixed boundary condition, such a transition
requires breaking a macroscopic number of edges between aligned adjacent spins, which has
an exponentially small probability. This is the motivation for introducing the double flip move.

3. Double Flip for Symmetric Models

The double flip move is designed to introduce explicit transitions between the macroscopic
profiles as shown Fig. 1.1. This section assumes that the Ising model enjoys an explicit graph
involution, i.e., there exists a map m : V' — V such that:

e m maps I to I and B to B, respectively, and m? = id,
e ij € Eiff m(i) ~m(j) € E, and ib € E iff m(i)m(b) € E,

® finw = —Jo

For example, in Fig. 1.1(a) m is the reflection along one of the diagonals of the square, while
in Fig. 1.1(b) m is the reflection along the z axis.

In the double flip move, the first flip implements the map m to the interior vertices in I.
After that, the second flip negates the spin of the mapped interior vertices. More specifically,
the resulting new spin configuration t is defined by

tm(i) =—s;, Viel. (31)
Since m? = id, we also have t; = —8m(i) for any i € I.
Theorem 3.1. The double flip move satisfies the detailed balance.

Proof. To show the detailed balance, one needs to prove that, for any two spin configurations
s and t,

p1(s)Ppr(s,t) = pi(t)Por(t, s),

where Ppp is the double flip move transition matrix. From the definition of the double flip
move, the transition probabilities P(s,t) and P(t,s) equal to one if s and ¢ satisfy (3.1) and
zero otherwise. Hence, it is sufficient to show pi(s) = p1(¢) when (3.1) holds.

For each 75 € E,

tit; = (=1)"Sm() Sm(3) = Sm(@)Sm()-
Taking the sum over all interior edges gives

Z titj = Z Sm(i)sm(j) = Z 5S5j-

ijeE ijEE ijEE
For each ib € E,

tifs = (=1)%Sm@i) fn(b) = Sm(i) fm(b)-
Taking the sum over all interior edges results in

Z tifo = Z Sm(i) fm(b) = Z 8i fo-

beE beE beE
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Together,

Z tit; + Z tifo = Z 5i85 + Z sifv,

ijEE ibEE ijEE ibEE
ie., pi(s) = pi(t).

We can now combine the double flip move with the Swendsen-Wang move. For a constant ) €
(0,1), each iteration of the combined algorithm performs the double flip move with probability
1 and the Swendsen-Wang move with probability 1 — »:

1. Choose u from Ber(n), i.e., equal to 1 with probability 7.

2. If u is 1, perform the double flip move, else perform the Swendsen-Wang move.
Theorem 3.2. The Swendsen-Wang algorithm with double flip satisfies the detailed balance.

Proof. The combined transition matrix is
Pswpr = nPpr + (1 — 1) Psw.

Section 2 shows that the Swendsen-Wang algorithm satisfies the detailed balance, i.e.,

p1(s)Psw (s,t) = p1(t) Psw (¢, s).

The double flip move satisfies the detailed balance as shown above,

pI(S)PDF (S, t) = D1 (t)PDF (t, S).

A linear combination of these two statements give

pi(s)Pswor (s, t) = pi(t) Pswor(t, s)
and this finishes the proof.

Below we compare the performance of the Swendsen-Wang algorithm (SW) and Swendsen-
Wang with double flip (SWDF) using two examples.

Example 3.1. The Ising model is a square lattice. The mixed boundary condition is +1 at
the two vertical sides and —1 at the two horizontal sides. The graph involution m : V. — V is
given by the diagonal reflection. Fig. 3.1(a) shows the model at size ny = ny = 20. Fig. 3.1(b)
gives the two dominant macroscopic profiles.

The experiments are performed for the problem size n; = no = 100 at the inverse temper-
ature f = 0.5. We start from the all —1 configuration and carry out 10000 iterations for both
SW and SWDF. For SWDF, we set the parameter n = 1/100. Figs. 3.1(c)-(d) plot the average

spin value
1
o™

of these two algorithms, respectively. Fig. 3.1(c) shows that SW fails to introduce transitions
between the —1 and the +1 macroscopic profiles, since the average spin always stays below 0.
On the other hand, Fig. 3.1(d) demonstrates that SWDF explores both profiles with about 100
transitions in between.

We further conduct a comparison between SW and SWDF around f., the critical inverse
temperature. Fig. 3.2 plots the behavior of SW (left) and SWDF (right) for three 8 values near
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Fig. 3.1. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for —1).
(b) Two dominant macroscopic profiles. (c) The average spin value of the Swendsen-Wang algorithm.
(d) The average spin value of the Swendsen-Wang algorithm with double flip.

the critical temperature: 8 = 0.45,0.46,0.47 from top to bottom. For each case, the plot gives
the average spin value over the iterations. These plots clearly show that SW explores the spin
configurations effectively when 8 < (. but fails when 8 > .. On the other hand, SWDF is
able to explore the whole spin configuration space effectively, uniformly across S..

Example 3.2. The Ising lattice is still a square. The mixed boundary condition is +1 in the
first and third quadrants but —1 in the second and fourth quadrants. The graph involution
m :V — V is given by the reflection along either the x or the y axis. Fig. 3.3(a) shows the
problem at size n; = ns = 20. Fig. 3.3(b) gives the two dominant macroscopic profiles.

Similar to the previous example, the experiments are performed for the problem size n; =
ng = 100 at the inverse temperature 8 = 0.5. We start from the all —1 configuration and carry
out 10000 iterations for both SW and SWDF. The n parameter of SWDF is 1/100. Fig. 3.3(c)
shows that SW fails to introduce transitions between the —1 dominant and the +1 dominant
macroscopic profiles, while Fig. 3.3(d) demonstrates that SWDF explores both profiles with
about 100 transitions in between.

4. Double Flip for Approximately Symmetric Models

The algorithm in Section 3 is efficient but depends on exact symmetries. However, many
Ising models without exact symmetries also exhibit different macroscopic profiles such as in
Fig. 1.1(b). This section extends the double flip move to models with approximate symmetry.
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Fig. 3.2. The comparison of Swendsen-Wang (SW) and Swendsen-Wang with double flip (SWDF)
near the critical temperature. From top to bottom: # = 0.45,0.46,0.47 and therefore the physical
temperature decreases. From left to right: SW and SWDF.

Here we take a more geometric viewpoint and assume that the Ising model is embedded in
a domain 2 C R? with the boundary denoted by €.

geometrically nearby vertices.

90 = 99, U Q..

L,
_17

if Tp

if Ty

For each ¢ € I, x; is in the interior of €2. For each b € B, x} is in 0f).

The edges ij (interior) and ib (interior-boundary) in the set E are segments between

|

Assume that there is a continuous involution x :  — Q such that u? = id, u(09Q4) = 9Q_.

€ 09,
€ 0.,
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Fig. 3.3. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for —1).
(b) The average spin value of the Swendsen-Wang algorithm. (c) The average spin value of the
Swendsen-Wang algorithm with double flip.

Since p is only defined as an involution of €2, in general {p(x;) bier # {x:}jer and therefore
1 does not directly introduce an involution on the set I of interior vertices. To fix this, we
introduce a discrete involution m : I — I such that

Ty R (). (4.1)

We shall discuss below how to construct m based on p. For now, we assume the existence of
m and define a Metropolized double flip move for approximately symmetric models.

1. Define a spin configuration ¢ via t; = —sy,(;)-
2. Evaluate ¢ = min(1, p1(¢)/p1(s)).

3. Sample u € [0, 1] uniformly. If u < ¢, set ¢ to be the new spin configuration. Otherwise,
keep s as the spin configuration.

Since m is an involution and this is a Metropolized move, the following statement holds.
Theorem 4.1. The Metropolized double flip move satisfies the detailed balance.

It can also be combined with the Swendsen-Wang move in the same way as described in
Section 3.

Theorem 4.2. The Swendsen-Wang algorithm with Metropolized double flip satisfies the de-
tailed balance.
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The efficiency of this algorithm depends on the condition that pi(t)/pi(s) is neither too
small or too large. This is in fact promoted by the condition (4.1), since ij € E would imply

Ty R p(x5) = p(25) R Ty,

where the second step uses the continuity of the domain involution p. Therefore, when ij € E,
m(i)m(j) is also likely to be an edge of E and in particular

8i8; = (—1)281'Sj = tm(i)lm()-

If this holds for most pairs ij € E and ib € E, pi(t)/pi(s) is likely to be well-bounded away
from both zero and infinity.

The remaining question is how to construct m : I — I so that m? = id and (4.1) holds.
One possibility is to formulate this as a matching problem between the geometrically flipped
vertices {u(x;)}ier and the original vertices {z,},er, with a cost defined using either the £5 or
the /o, distance. Equivalently, this can be viewed as an optimal transport problem between the

> Ou@n() and Y6 ().

iel jer

two distributions

Once the matching (or the transport map) is available, we define m(i) = j if u(z;) is matched
with z;. However, this approach has two technical difficulties:

e The computation cost of the matching or optimal transport algorithm [6,8] can be rela-
tively high.

e The involution condition m? = id is not guaranteed.

In the implementation, we adopt the following heuristic procedure. Assume without loss of
generality that the domain 2 is centered at the origin.

1. Order the interior vertices {xz; } jer based on their distances to the origin in the decreasing
order. The distance is typically chosen to be either the ., norm or the ¢ norm.

2. Mark all vertices j € I as unpaired.

3. Scan the interior vertices in this ordered list. For each x;, if j is already paired, then skip.
If not, find the unpaired ¢ such that p(z;) is closet to x;, pair ¢ and j

m(i) = j, m(j) =1,
and mark both ¢ and j as paired.

The heuristic is that, by following the order of decreasing distance to the origin, the remaining
unpaired vertices are forced to cluster near the center of the domain, thus reducing the overall
transport cost.

Below we compare the performance of the Swendsen-Wang algorithm (SW) and Swendsen-
Wang with Metropolized double flip (SWDF) using three examples.

Example 4.1. The Ising model is a rectangular lattice where the number of rows and columns
are different, as shown in Fig. 4.1. The mixed boundary condition is 41 at the two vertical sides
and —1 at the two horizontal sides. The diagonal reflection is no longer an exact symmetry.
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Fig. 4.1. (a) The rectangular lattice along with the mixed boundary condition (black for +1 and yellow
for —1). (b) Two dominant macroscopic profiles. (¢) The transport map from {u(z;)}icr (marked with
+) to {z;}jer (marked with o). (d) The average spin value of the Swendsen-Wang algorithm. (e) The
average spin value of the Swendsen-Wang algorithm with double flip.

Fig. 4.1(a) shows the system with size 20 x 19. Fig. 4.1(b) gives the two dominant macroscopic
profiles. Fig. 4.1(c) plots the transport map between {p(z;)}icr (marked with +) to {x;}jer
(marked with o). As shown, the transport map is quite local, demonstrating the efficiency of
the heuristic matching procedure.

The experiments are performed for the problem size 100 x 99 at the inverse temperature
B = 0.5. We start from the all —1 configuration and carry out 10000 iterations for both
SW and SWDF. The 7 parameter of SWDF is n = 1/3. Fig. 4.1(d) shows that SW fails to
introduce transitions between the —1 dominant and the +1 dominant macroscopic profiles,
while Fig. 4.1(e) demonstrates that SWDF explores both profiles with 41 transitions out of
about 3000 trials.

Example 4.2. The Ising model is a random quasi-uniform triangular lattice supported on the
unit disk, as shown in Fig. 4.2. The mixed boundary condition is equal to +1 in the first
and third quadrants but —1 in the second and fourth quadrants. The problem does not have
strict rotation and reflection symmetry due to the random triangulation. Fig. 4.2(a) shows the
triangulation with mesh size h = 0.1. Fig. 4.2(b) gives the two dominant macroscopic profiles.
Fig. 4.2(c) gives the transport map between {y(z;)}icr (marked with +) to {z;};er (marked
with o), which is quite local.

The experiments are performed with a finer triangulation with mesh size h = 0.05 at the
inverse temperature 5 = 0.5. We start from the all —1 configuration and carry out 10000
iterations for both SW and SWDF. The n parameter of SWDF is 1/3. Fig. 4.2(d) shows that
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Fig. 4.2. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for —1).
(b) Two dominant macroscopic profiles. (c) The transport map from {u(z;)}icr (marked with +) to
{z;j}jer (marked with o). (d) The average spin value of the Swendsen-Wang algorithm. (e) The average
spin value of the Swendsen-Wang algorithm with double flip.
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Fig. 4.3. (a) The lattice along with the mixed boundary condition (black for +1 and yellow for —1).
(b) Two dominant macroscopic profiles. (c) The transport map from {u(x;)}icr (marked with +) to
{zj}jer (marked with o). (d) The average spin value of the Swendsen-Wang algorithm. (e) The average
spin value of the Swendsen-Wang algorithm with double flip.
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SW fails to introduce transitions between the —1 dominant and the +1 dominant macroscopic
profiles, while Fig. 4.2(e) demonstrates that SWDF explores both profiles with 48 transitions
out of about 3000 trials.

Example 4.3. The Ising model is again a random quasi-uniform triangular lattice supported
on the unit disk. The mixed boundary condition is equal to +1 on the two arcs with angle
in [0,7/3] and [7,57/3] and —1 on the remaining two arcs. Due to the random triangulation,
the problem does not have strict rotation and reflection symmetry. Fig. 4.3(a) shows the
triangulation with mesh size h = 0.1. Fig. 4.3(b) gives the two dominant macroscopic profiles.
Fig. 4.3(c) plots the transport map between {y(z;)}icr (marked with +) to {z;};er (marked
with o).

The experiments are performed with a finer triangulation with mesh size h = 0.05 at the
inverse temperature 5 = 0.5. We start from the all —1 configuration and carry out 10000
iterations for both SW and SWDF. The n parameter of SWDF is n = 1/3. Fig. 4.3(d) shows that
SW fails to introduce transitions between the —1 dominant and the +1 dominant macroscopic
profiles, while Fig. 4.3(e) demonstrates that SWDF explores both profiles with 35 transitions
out of about 3000 trials.

5. Discussions

This note introduces the double flip move for accelerating the Swendsen-Wang algorithm for
Ising models with mixed boundary conditions. We consider both symmetric and approximately
symmetric models. In both cases, we prove the detailed balance and demonstrated its efficiency
in introducing explicit transitions between different dominant profiles.

There are many unanswered questions. Regarding the symmetric models, one question is
to prove a polynomial mixing time for the examples in Section 3. Regarding the approximately
symmetric models, there are more open questions:

o Is there a fast matching or optimal transport algorithm that ensures m? = id?
o Better heuristic procedures to construct a matching between {u(z;)}ier and {z;}jer?

e Can we bound the acceptance ratio of the Metropolized double flip move under certain
assumptions of the approximate symmetry?

¢ Proving a rapid mixing result for any approximately symmetric model in Section 4.

e The approximate matching is carried out for the interior vertices in this note. However,
it can be carried out for the edges alternatively.
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