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A FAST ALGORITHM FOR THE ENERGY SPACE BOSON

BOLTZMANN COLLISION OPERATOR

JINGWEI HU AND LEXING YING

Abstract. This paper introduces a fast algorithm for the energy space boson
Boltzmann collision operator. Compared to the direct O(N3) calculation and
the previous O(N2 logN) method [Markowich and Pareschi, 2005], the new
algorithm runs in complexity O(N log2 N), which is optimal up to a logarith-
mic factor (N is the number of grid points in energy space). The basic idea is
to partition the 3-D summation domain recursively into elementary shapes so
that the summation within each shape becomes a special double convolution
that can be computed efficiently by the fast Fourier transform. Numerical ex-
amples are presented to illustrate the efficiency and accuracy of the proposed
algorithm.

1. Introduction

The quantum Boltzmann equation or Nordheim-Uehling-Uhlenbeck equation
[16, 23], describes the nonequilibrium dynamics of quantum gases. These are the
low density gases consisting of bosons or fermions which, when cooled to certain
temperatures, evolve and interact in ways that reveal the quantum mechanical na-
ture of the particles. Let F (t,x,v) be the phase space distribution function of time
t, position x, and particle velocity v, then the equation reads (assume a unit mass
for all particles):

(1.1)
∂F

∂t
+ v · ∇xF −∇xV (x) · ∇vF = Q̃(F )(v), x ∈ Ω ⊂ R

3, v ∈ R
3,

where V (x) is the external potential. Q̃(F ) is the collision operator modeling the
interaction of bosons (although most of the discussion also applies to the Fermi
gas, in this paper we will only focus on the Bose gas since it covers the interesting
phenomenon of the Bose-Einstein condensation (BEC)):

Q̃(F )(v)=

∫
R3

∫
R3

∫
R3

W (v,v∗,v
′,v′

∗)δ (v+v∗−v′−v′
∗) δ

(
v2

2
+
v2
∗
2
−v′2

2
−v′2

∗
2

)

· [F ′F ′
∗(1 + F )(1 + F∗) − FF∗(1 + F ′)(1 + F ′

∗)] dv∗dv
′dv′

∗.(1.2)

Here (v,v∗) and (v′,v′
∗) are the velocity pairs before and after collision. F , F∗, F

′,
and F ′

∗ are shorthand notations for F (t,x,v), F (t,x,v∗), F (t,x,v′), and F (t,x,v′
∗)
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272 JINGWEI HU AND LEXING YING

respectively. The collision kernel W is a nonnegative function determined by the
underlying interaction law.

Under the spatially homogeneous and velocity isotropic assumptions, one can
derive from (1.1) the following energy space boson Boltzmann equation [3, 11, 14,
20–22]:

(1.3) ρ(ε)
∂f

∂t
= Q(f)(ε), ε ≥ 0,

with f(t, ε) being the distribution function of time t and particle energy ε. ρ(ε) is
the density of states:

(1.4) ρ(ε) :=

∫
R3

δ

(
ε− v2

2

)
dv = 4π

√
2ε.

Q(f) is the boson Boltzmann collision operator:

Q(f)(ε) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

w(ε, ε∗, ε
′, ε′∗)δ(ε + ε∗ − ε′ − ε′∗)

· [f ′f ′
∗(1 + f)(1 + f∗) − ff∗(1 + f ′)(1 + f ′

∗)] dε∗dε
′dε′∗,(1.5)

where (ε, ε∗) and (ε′, ε′∗) are the particle energies before and after collision. f , f∗,
f ′, and f ′

∗ stand for f(t, ε), f(t, ε∗), f(t, ε′), and f(t, ε′∗). For the simple hard sphere
model, the collision kernel w is given by

(1.6) w(ε, ε∗, ε
′, ε′∗) = ρ(min(ε, ε∗, ε

′, ε′∗)).

A brief derivation of (1.3)–(1.6) and the basic properties of the energy space equa-
tion can be found in Appendix A.

Numerically solving the phase space quantum Boltzmann equation is challenging
mainly due to the multidimensional structure of the collision integral (1.2). The
traditional approach is the Monte Carlo simulation [7]. Over the past decade,
the deterministic scheme, especially the spectral method [2, 6, 9, 10, 15, 17, 18], has
drawn much attention for its high accuracy and low computational cost. However,
all these works were developed for the classical Boltzmann equation. New difficulty
arises when it comes to the quantum case — the collision operator is cubic instead
of quadratic. In the spirit of [15], a fast spectral algorithm [8] was proposed for the
full quantum Boltzmann operator (1.2).

Compared to the phase space description, the energy space equation is greatly
simplified. Nevertheless, many interesting properties of the solution are retained
and both analysis and numerics (none of the above fast algorithms apply) are
nontrivial. For the theoretical work of equation (1.3) and related models, see, for
instance, [1, 4, 5, 13, 22] and references therein. For numerical simulations, we refer
to [3, 11, 14, 20, 21].

The goal of this paper is to design an efficient algorithm for the energy space
boson Boltzmann collision operator (1.5). Our starting point is the following trun-
cated version of Q(f) used in [14]:

QR(f)(ε) =

∫ R

0

∫ R

0

∫ R

0

ρ(min(ε, ε∗, ε
′, ε′∗))δ(ε + ε∗ − ε′ − ε′∗)

· [f ′f ′
∗(1 + f)(1 + f∗) − ff∗(1 + f ′)(1 + f ′

∗)] dε∗dε
′dε′∗, ε ∈ [0, R].(1.7)

How to choose the upper bound R will be made precise in the numerical examples.
Here we only mention that in order to capture the physics R is usually not small.
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We then introduce N uniform discrete points ε0 < ε1 < . . . < εN−1 on [0, R] with
mesh size Δε = R/N . Thus a consistent discretization of (1.7) is written as

QR
i = Δε2

N−1∑
m,n,j=0
m+n=i+j

ρ(εmin)[fmfn(1 + fi)(1 + fj) − fifj(1 + fm)(1 + fn)]

= Δε2(1 + fi)
N−1∑

m,n,j=0
m+n=i+j

ρ(εmin)fmfn(1 + fj)(1.8)

− Δε2fi

N−1∑
m,n,j=0
m+n=i+j

ρ(εmin)fj(1 + fm)(1 + fn),

for i = 0, . . . , N − 1, and

(1.9) εmin := min(εi, εj , εm, εn) = εmin(m,n,i,j).

This is just a simple numerical quadrature rule that takes into account the ap-
proximation of the delta function. Depending on the application, one can either
choose integer grid points (first order method), or half-integer grid points (second
order method). It is not difficult to verify that the scheme (1.8) preserves the main
physical features of the continuous problem: conservation of mass and energy, the
entropy inequality, and the Bose-Einstein distribution as steady state. See [14] for
more details.

Despite its simple form the efficient evaluation of (1.8) still presents a challenge.
Clearly a direct calculation of QR

i (for all i) requires cubic complexity O(N3),
which can be quite expensive for large N . Furthermore, it is well known that a
singularity occurs at the origin when the BEC happens, thus a finer grid is necessary
to maintain the resolution.

In [14] by exploiting the special form of (1.9), Markowich and Pareschi were able
to reduce the above cost to O(N2 logN) (all “log” in this paper refers to logarithm
to base 2). Their approach is based on a 2-D domain decomposition that allows
one to use the fast Fourier transform (FFT) to speed up the inner summation — a
convolution.

In this work, we propose a faster algorithm for (1.8) that runs in only O(N log2 N)
steps, which is optimal up to a logarithmic factor. The main idea is to partition the
3-D summation domain recursively into elementary shapes such that the FFT can
be applied to both inner and outer summations — a special double convolution.

The rest of the paper is organized as follows. In the next section we describe the
fast algorithm in detail and analyze its complexity. Numerical results of computing
the collision operator and solving the time-evolution equation are shown in Section
3. Finally, the concluding remarks are given in Section 4.

2. Fast algorithms for the boson Boltzmann collision operator

We first briefly review the previous O(N2 logN) method in [14], since it provides
a basis for constructing the new algorithm.

2.1. The previous O(N2 logN) algorithm — 2-D domain decomposition.
The key observation behind the method [14] is: if one divides the grid {0, . . . , N−1}2
in the index mn-domain into four parts according to a fixed j ∈ {0, . . . , N − 1}:
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N – 1

N – 1
m

n

j

jO

(iii) (ii)

(i) (iv)

εmin= εi εmin= εn

εmin= εm εmin= εj

Figure 1. 2-D summation domain decomposition.

• region (i): {(m,n) : 0 ≤ m ≤ j, 0 ≤ n ≤ j};
• region (ii): {(m,n) : j < m ≤ N − 1, j < n ≤ N − 1};
• region (iii): {(m,n) : 0 ≤ m ≤ j, j < n ≤ N − 1};
• region (iv): {(m,n) : j < m ≤ N − 1, 0 ≤ n ≤ j},

(see Figure 1 for an illustration), then εmin (1.9) takes a unique value in each region,
i.e.,

min(m,n, i, j) =

⎧⎪⎪⎨
⎪⎪⎩

i in region (i);
j in region (ii);
m in region (iii);
n in region (iv).

Now the computation of (1.8) can be performed in each region separately. We
write

QR
i = Q

(i)
i + Q

(ii)
i + Q

(iii)
i + Q

(iv)
i ,

where Q
(i)
i denotes the summation of m,n in region (i) for each j, and so forth.

Let us take region (iii) for example,

Q
(iii)
i = Δε2(1 + fi)

N−1∑
j=0

⎛
⎜⎜⎝ ∑

0≤m≤j,j<n≤N−1
m+n=i+j

ρ(εm)fmfn

⎞
⎟⎟⎠ (1 + fj)

− Δε2fi

N−1∑
j=0

⎛
⎜⎜⎝ ∑

0≤m≤j,j<n≤N−1
m+n=i+j

ρ(εm)(1 + fm)(1 + fn)

⎞
⎟⎟⎠ fj ,

for i = 0, . . . , N − 1. For the gain term, if we treat ρ(εm)fm as a single function,
then for each fixed j the inner summation is a convolution of functions ρ f and f
defined on truncated portions according to j. Similarly, the inner sum of the loss
term is a convolution of truncated functions ρ(1+f) and (1+f). Either of them can
be computed effectively by the FFT in O(N logN) operations, resulting a function
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g with index i + j. Since g itself depends on j, the outer summation has to be
carried out directly. Therefore, the total cost is O(N2 logN +N2) = O(N2 logN).

2.2. The new O(N log2 N) algorithm — 3-D domain decomposition. We
observe from (1.8) that the main computation task is of the following general form

ui =
∑

m+n=i+j

ρ(εmin)emgnhj , for 0 ≤ i, j,m, n ≤ N − 1,

where {em}, {gn}, and {hj} are sequences indexed by {0, . . . , N − 1}. It turns
out that in order to speed up the calculation, it is more convenient to consider all
possible i that satisfy m+n = i+ j for some 0 ≤ m,n, j ≤ N −1 and then truncate
the result to 0 ≤ i ≤ N − 1. This allows us to consider the 3-D summation domain

D := {(m,n, j) : 0 ≤ m,n, j ≤ N − 1}.
As pointed out earlier, the approach of [14] partitions the 2-D summation domain
{(m,n) : 0 ≤ m,n ≤ N − 1} into four regions for each fixed j. We instead
partition the whole summation domain D into four regions — two pyramids and
two simplexes (the 3-D counterparts of 2-D regions (i)–(iv), see Figure 2):

• region (I): {(m,n, j) : m ≤ j, n ≤ j, 0 ≤ m,n, j ≤ N − 1};
• region (II): {(m,n, j) : j < m, j < n, 0 ≤ m,n, j ≤ N − 1};
• region (III): {(m,n, j) : m ≤ j, j < n, 0 ≤ m,n, j ≤ N − 1};
• region (IV ): {(m,n, j) : j < m, n ≤ j, 0 ≤ m,n, j ≤ N − 1},

and compute the contribution from each region one by one.

o
m

n

j

εmin= εm εmin= εn

εmin= εi εmin= εj

(I) (II)

(III) (IV)

Figure 2. 3-D summation domain decomposition.
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276 JINGWEI HU AND LEXING YING

Within each 3-D region, min(m,n, i, j) takes a fixed value

min(m,n, i, j) =

⎧⎪⎪⎨
⎪⎪⎩

i in region (I);
j in region (II);
m in region (III);
n in region (IV ),

and it is possible to combine the troublesome term ρ(εmin) with one of the sequences
{em}, {gn}, {hj} or treat it as an extra multiplication. Hence, we only need consider
the following simple problem of the form

ui =
∑

m+n=i+j

emgnhj

with the summation taken over a single region and {em}, {gn}, and {hj} are again
defined on {0, . . . , N − 1} (but with slightly different content).

Before discussing the algorithm in detail, we note that the next three summations
will be encountered often later on. Given three sequences {em}, {gn}, and {hj} de-
fined on three independent consecutive integer intervals M, N , and J respectively,
let

pi =
∑

m∈M,n∈N
i=m+n

emgn, i ∈ M + N ,(2.1)

qi =
∑

m∈M,n∈N
i=m−n

emgn, i ∈ M−N ,(2.2)

ri =
∑

m∈M,n∈N ,j∈J
i=m+n−j

emgnhj , i ∈ M + N − J ,(2.3)

where M+N = {m+n : m ∈ M, n ∈ N}, M−N = {m−n : m ∈ M, n ∈ N},
and M + N − J = {m + n − j : m ∈ M, n ∈ N , j ∈ J }. We claim that the
sequences {pi}, {qi}, and {ri} can all be evaluated by fast algorithms. In fact:

• (2.1) is nothing but a simple convolution of {em} and {gn}, which can be
calculated by the FFT.

• To compute (2.2), we first reverse the ordering of {gn}, i.e., introduce a
new sequence {g̃n = g−n} with n ∈ −N , and rewrite qi as

qi =
∑

m∈M,n∈−N
i=m+n

emg−n =
∑

m∈M,n∈−N
i=m+n

emg̃n, i ∈ M−N .

This again falls into the form (2.1).

• For (2.3), we introduce the sequence {h̃j = h−j} with j ∈ −J , then

ri =
∑

m∈M,n∈N ,j∈−J
i=m+n+j

emgnh̃j , i ∈ M + N − J .

This is a double convolution and can also be sped up by the FFT.

Clearly, for any of the above subproblems the computational cost is bounded by

max(|M|, |N |, |J |) log(max(|M|, |N |, |J |)),
where | · | denotes the cardinality of a set.

We are ready to describe the final algorithm.
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o
m
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j

Figure 3. Decomposition of pyramid (I).

Computation of region (I). For region (I), the relevant sum is of the form

uI
i =

∑
m≤j,n≤j,0≤m,n,j≤N−1

m+n=i+j

emgnhj .

In order to compute it efficiently, we partition this pyramid into five parts as shown
in Figure 3.

• Part 1 is a cube:{
(m,n, j) : 0 ≤ m,n ≤ N

2
− 1,

N

2
≤ j ≤ N − 1

}
.

• Part 2 is a wedge:{
(m,n, j) : 0 ≤ n ≤ N

2
− 1,

N

2
≤ m ≤ j ≤ N − 1

}
.

• Part 3 is another wedge:{
(m,n, j) : 0 ≤ m ≤ N

2
− 1,

N

2
≤ n ≤ j ≤ N − 1

}
.

• Part 4 is a pyramid:{
(m,n, j) : m ≤ j, n ≤ j, 0 ≤ m,n, j ≤ N

2
− 1

}
.

• Part 5 is another pyramid:{
(m,n, j) : m ≤ j, n ≤ j,

N

2
≤ m,n, j ≤ N − 1

}
.

We now write uI
i = uI,1

i + uI,2
i + uI,3

i + uI,4
i + uI,5

i , where each uI,k
i stands for the

summation related to the k-th part.
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278 JINGWEI HU AND LEXING YING

• For part 1 (cube), the relevant sum is

uI,1
i =

∑
0≤m,n≤N

2 −1,N2 ≤j≤N−1
m+n=i+j

emgnhj .

This double convolution can be computed as for (2.3) and the cost is
O
(
N
2 log N

2

)
.

• For part 2 (wedge), the relevant sum is

uI,2
i =

N
2 −1∑
n=0

⎛
⎜⎜⎝ ∑

N
2 ≤m≤j≤N−1
m−j=i−n

emhj

⎞
⎟⎟⎠

︸ ︷︷ ︸
ti−n

gn.

The inner sum corresponds to the triangular side of the wedge. At first
sight, this summation is difficult to compute due to the existence of the
constraint m ≤ j. However, notice that m ≤ j is equivalent to i − n ≤ 0
since m− j = i− n. Therefore, all one needs is to compute the inner sum
as for (2.2) and set the resulting vector ti−n to zero at indices greater than
0. The outer summation is computed as for (2.1). Thus the total cost for
this part is also O

(
N
2 log N

2

)
.

• For part 3 (wedge), the relevant sum is

uI,3
i =

N
2 −1∑
m=0

⎛
⎜⎜⎝ ∑

N
2 ≤n≤j≤N−1
n−j=i−m

gnhj

⎞
⎟⎟⎠ em.

This is computed exactly the same as above for part 2.
• Parts 4 and 5 (pyramids) have the same shape as region (I), but only half

its size. Hence it is natural to perform the computation of these two parts
using recursion.

Let us estimate the total complexity of region (I). Assume the computational
cost is T (N), where N stands for the size of the summation domain in each dimen-
sion. We have

T (N) = O

(
N

2
log

N

2

)
︸ ︷︷ ︸

one cube

+ 2O

(
N

2
log

N

2

)
︸ ︷︷ ︸

two wedges

+ 2T

(
N

2

)
︸ ︷︷ ︸
two pyramids

= O (N logN) + 2T

(
N

2

)

= . . . = O

(
N logN + N log

N

2
+ N log

N

4
+ . . .

)
︸ ︷︷ ︸

logN terms

+NT (1)

= O(N log2 N) + O(N) = O(N log2 N).

In the actual implementation, we terminate the recursion whenever the size of
the pyramid is smaller than a certain threshold (e.g. 64 or 128), since then the
quadratic-complexity algorithm [14] becomes competitive.
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Computation of region (II). As the shape of region (II) is similar to region
(I), it can be decomposed as a disjoint union of five parts: one cube, two wedges,
and two self-similar pyramids of half the original size (see Figure 4). Therefore, the
approach discussed for region (I) works with minor modifications. As a result, the
computational cost of region (II) is also O(N log2 N).

n

o
m

j

1

1

2

2

3

3

4

4

5

5

Figure 4. Decomposition of pyramid (II).

Computation of region (III). For region (III), the relevant sum is of the form

uIII
i =

∑
m≤j,j<n,0≤m,n,j≤N−1

m+n=i+j

emgnhj .

We partition this simplex into four parts as shown in Figure 5.

• Part 1 is a wedge:{
(m,n, j) :

N

2
≤ n ≤ N − 1, 0 ≤ m ≤ j ≤ N

2
− 1

}
.

• Part 2 is another wedge:{
(m,n, j) : 0 ≤ m ≤ N

2
− 1,

N

2
≤ j < n ≤ N − 1

}
.

• Part 3 is a simplex:{
(m,n, j) : m ≤ j, j < n, 0 ≤ m,n, j ≤ N

2
− 1

}
.

• Part 4 is another simplex:{
(m,n, j) : m ≤ j, j < n,

N

2
≤ m,n, j ≤ N − 1

}
.
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1

1

2

2

3

3

4

4

j

m
n

o

Figure 5. Decomposition of simplex (III).

We write uIII
i = uIII,1

i + uIII,2
i + uIII,3

i + uIII,4
i accordingly, so that each uIII,k

i

stands for the summation associated with the k-th part.

• In part 1 (wedge), the relevant sum is

uIII,1
i =

N−1∑
n=N

2

⎛
⎜⎜⎝ ∑

0≤m≤j≤N
2 −1

m−j=i−n

emhj

⎞
⎟⎟⎠ gn.

Similarly to part 2 of region (I), we compute the inner sum as for (2.2) and
set the resultant vector to zero at indices greater than 0. The outer sum is
computed as for (2.1). Thus the total cost of this part is O

(
N
2 log N

2

)
.

• In part 2 (wedge), the relevant sum is

uIII,2
i =

N
2 −1∑
m=0

⎛
⎜⎜⎝ ∑

N
2 ≤j<n≤N−1
n−j=i−m

gnhj

⎞
⎟⎟⎠ em.

This one is computed almost the same as above for part 1, with the only
exception that we set the result of the inner sum to zero at indices less than
or equal to 0 (since now i−m = n− j > 0).

• Parts 3 and 4 (simplexes) have the same shape as region (III) but only
half its size, so the computation associated with them can be done using
recursion again.
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Assume the computational cost for region (III) is T (N), where N is the size of
the summation domain in each dimension. Then

T (N) = 2O

(
N

2
log

N

2

)
︸ ︷︷ ︸

two wedges

+ 2T

(
N

2

)
︸ ︷︷ ︸

two simplexes

,

which again yields an algorithm of O(N log2 N).

Computation of region (IV ). As the shape of region (IV ) is similar to that of
region (III), it can be decomposed as a disjoint union of four parts: two wedges,
and two self-similar simplexes of half the original size (see Figure 6). Therefore, the
approach discussed for region (III) works with minor modifications. As a result,

the cost of region (IV ) is also O(N log2 N).

j

m
n

o

1

1

2

23

3

4

4

Figure 6. Decomposition of simplex (IV ).

3. Numerical results

In this section we provide several numerical examples to demonstrate the ef-
ficiency and accuracy of the new algorithm. We first test its performance on the
collision operator, and then use it to solve the time-evolution equation. In all the ex-
amples, the grid points are chosen as ε0 = Δε/2, ε1 = 3Δε/2, . . ., εN−1 = R−Δε/2
(second-order quadrature rule).

3.1. Computing the collision operator. We first examine the proposed algo-
rithm by simply applying it to the distribution function

f(ε) = 3 exp
(
−(ε− 10)2

)
, ε ∈ [0, R], R = 30.
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Remark 3.1. R = 30 is chosen such that R ≥ 2R0, where supp(f) ≈ [0, R0]. Indeed,
if ε > R, then f(ε) = 0; also by conservation of energy ε′ + ε′∗ = ε + ε∗ ≥ ε > R ≥
2R0, so one of ε′, ε′∗ must be bigger than R0, i.e., f(ε′) = 0 or f(ε′∗) = 0; either
way QR(f)(ε) ≡ 0 (see Figure 7).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

ε

f(ε)

0 5 10 15 20 25 30

0

2000

ε

Q(f)(ε)

Figure 7. Left: the distribution function f(ε). Right: the nu-
merical QR(f)(ε) computed by the new algorithm. N = 2048.

The results for different N are reported in Table 1. For comparison, the method
in [14] is referred to as quadratic algorithm, and our method as linear algorithm.
Column 5 confirms the linear complexity of the new algorithm. The speedup factor
over the quadratic algorithm is about 24 for N = 2048.

Table 1. The average running time and the relative error between
the quadratic algorithm in [14] and our linear algorithm.

N quadratic algorithm Tq
Tq(N)

Tq(N/2)
linear algorithm Tl

Tl(N)
Tl(N/2)

‖Ql −Qq‖2/‖Qq‖2
128 0.386s – 0.278s – 3.2620e-16
256 1.450s 3.76 0.510s 1.83 8.2386e-16
512 5.579s 3.85 0.926s 1.82 1.2436e-15
1024 22.334s 4.00 1.816s 1.96 1.9140e-15
2048 88.980s 3.98 3.696s 2.04 2.0821e-15

3.2. Solving the boson Boltzmann equation. We now solve the equation (1.3)
using the new fast algorithm. The time derivative is approximated by an explicit
second-order Runge-Kutta method. We will only consider the Bose gas in the
nondegenerate regime (z < 1). Modeling the degenerate Bose gas (z > 1) is a very
complicated issue due the singularity of the distribution function (A.7) at the origin
and is beyond the scope of this paper.

Suppose the initial condition is given by

f0(ε) = e−(ε−10)2/10, ε ∈ [0, R], R = 120.

The corresponding equilibrium takes the form (A.5) with z ≈ 0.6336, β ≈ 0.1236.
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Remark 3.2. The reason to choose such a large R is because the final equilib-
rium Mz,β(ε) has a larger compact support than f0(ε). Moreover, the functions
ρ(ε)Mz,β(ε) and ρ(ε)εMz,β(ε) (the integrands in the mass and energy (A.2), (A.3))
spread even wider (see Figure 8). In order to capture the real physics, R has to be
large enough to include all mass and energy.
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Figure 8. Left: the initial distribution f0(ε), ρ(ε)f0(ε), and
ρ(ε)εf0(ε). Right: the exact equilibrium Mz,β(ε), ρ(ε)Mz,β(ε),
and ρ(ε)εMz,β(ε).

Figure 9 shows the distribution function f(t, ε) at different times together with
the exact equilibrium Mz,β(ε). The conservation of mass and energy, and the
entropy growth can be observed from Figure 10. Here the number of grid points is
N = 2048. The time step size is Δt = 0.005.

At certain time t, we expect the numerical solution f(t, ε) converges to the exact
equilibrium Mz,β(ε) as N increases. This can be seen from Table 2.

Table 2. The relative error between f and Mz,β at fixed time
t = 0.5 (Δt = 0.005) and the cubic spline extrapolated value of
f(0) (Ref: the exact value Mz,β(0) = 1.7294).

N ‖f −Mz,β‖2/‖Mz,β‖2 extrapolated value of f(0)
128 0.0121 1.6894
256 0.0047 1.7168
512 0.0017 1.7252
1024 0.0006 1.7279
2048 0.0002 1.7289
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Figure 9. The numerical solution f at t = 0, 0.025, 0.05, and 0.5,
and the exact equilibrium Mz,β . N = 2048. Δt = 0.005.
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Figure 10. The time evolution of mass, energy, and entropy. N =
2048. Δt = 0.005.
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4. Conclusions and future work

A fast linear (optimal up to a logarithmic factor) algorithm is constructed for
the energy space boson Boltzmann collision operator. The idea is to decompose
the 3-D summation domain into elementary shapes: cubes, wedges, and self-similar
pyramids and simplexes such that the collision kernel acquires a single value within
each region. The summations in the cubes and wedges are double convolutions that
can be evaluated efficiently using the FFT, while the self-similar parts are treated
recursively, yielding an algorithm of O(N log2 N). Numerical results further confirm
the linear complexity of the algorithm and demonstrate its robustness in solving
the time-evolution equation.

So far we have not touched the degenerate Bose gas yet. It seems that a loga-
rithmic grid is more suitable to describe the condensation at the origin. The design
of fast algorithms in this framework will be investigated in the future.

Appendix A. The energy space boson Boltzmann equation

In this appendix, we give a formal derivation of the energy space boson Boltz-
mann equation from its original form in the phase space, and summarize its basic
properties. Part of the arguments can be found in one place or another such as
[4, 12, 14, 19, 21, 22].

We will start from the following spatially homogeneous equation (a similar
derivation carries through for the spatially inhomogeneous case and when there
is an external potential):

(A.1)
∂F

∂t
= Q̃(F )(v), v ∈ R

3,

where the distribution F only depends on time t and velocity v. The collision
operator Q̃(F ) is given by (1.2), and we consider the simple case of W ≡ 1 which
corresponds to the hard sphere model.

We now make the assumption that F (t,v) is isotropic in v, i.e., one can define
an energy space distribution f(t, ε) such that f(t, ε) = F (t,v) with ε = v2/2. By
a change of variables, the total mass of particles (per unit volume) is

(A.2) M :=

∫
R3

F (t,v) dv =

∫ ∞

0

4π
√

2ε f(t, ε) dε,

and the total energy is

(A.3) E :=

∫
R3

v2

2
F (t,v) dv =

∫ ∞

0

4π
√

2ε εf(t, ε) dε.

Therefore, it is convenient to introduce the function ρ(ε) as in (1.4).
Similarly the collision operator (1.2) can be transformed into

Q̃(F ) =
4π2

ρ(ε)

∫ ∞

0

∫ ∞

0

∫ ∞

0

ρ(min(ε, ε∗, ε
′, ε′∗))δ (ε + ε∗ − ε′ − ε′∗)

· [f ′f ′
∗(1 + f)(1 + f∗) − ff∗(1 + f ′)(1 + f ′

∗)] dε∗dε
′dε′∗,(A.4)

where the equality∫
S2

∫
S2

∫
S2

δ (rσ + r∗σ∗ − r′σ′ − r′∗σ
′
∗) dσ∗dσ

′dσ′
∗ =

4π2

rr∗r′r′∗
min(r, r∗, r

′, r′∗),
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(v = rσ, r = |v| and σ is the surface element) and the definition of ρ(ε) have been
used.

Substituting (A.4) back into (A.1), we get the energy space boson Boltzmann
equation (1.3) presented at the beginning of the paper (differ by a constant).

A.1. Properties. The quantum collision operator (1.5) has 1 and ε as collision
invariants: ∫ ∞

0

Q(f) dε =

∫ ∞

0

εQ(f) dε = 0,

so the total mass and energy are conserved:

M =

∫ ∞

0

ρ(ε) f(t, ε) dε ≡
∫ ∞

0

ρ(ε) f0(ε) dε,

E =

∫ ∞

0

ρ(ε) εf(t, ε) dε ≡
∫ ∞

0

ρ(ε) εf0(ε) dε,

where f0(ε) is the initial condition.
Q(f) also satisfies Boltzmann’s H-theorem:

d

dt
S(ε) =

∫ ∞

0

Q(f)[ln(1 + f) − ln f ] dε ≥ 0,

where

S(ε) :=

∫ ∞

0

ρ(ε)[(1 + f) ln(1 + f) − f ln f ] dε

is the entropy.
The entropy is always nondecreasing, and reaches its maximum if and only if f

attains the equilibrium (the Bose-Einstein distribution):

(A.5) M(z,β)(ε) =
1

z−1eβε − 1
.

Here z is the fugacity, β is the inverse temperature (β = 1/T ; z = eμ/T , μ is
the chemical potential). Given M(z,β), the corresponding mass and energy can be
expressed as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M =

(
2π

β

) 3
2

G 3
2
(z), z ≤ 1,

E =
3

2β

(
2π

β

) 3
2

G 5
2
(z), z ≤ 1,

where Gν(z) is the Bose-Einstein function of order ν:

Gν(z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1ex − 1
dx, 0 < z < 1, ν > 0; z = 1, ν > 1.(A.6)

For small z, the integrand in (A.6) can be expanded in powers of z,

Gν(z) =
∞∑

n=1

zn

nν
= z +

z2

2ν
+

z3

3ν
+ . . . .

Thus the Bose gas behaves like a classical gas when z � 1. On the other hand, it
becomes degenerate as z → 1.
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The famous BEC happens when z > 1. The equilibrium state M(z,β) is then
composed of two parts (in the sense of maximizing entropy):

(A.7) M(z,β)(ε) =
1

eβε − 1
+

ln z

ρ(ε)
δ(ε),

with z being now an indicator of the condensate mass. Correspondingly, M and E
are given by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M =

(
2π

β

) 3
2

G 3
2
(1) + ln z, z > 1,

E =
3

2β

(
2π

β

) 3
2

G 5
2
(1), z > 1.

Note that Gν(1) is just the Riemann-Zeta function ζ(ν) convergent for ν > 1. In
particular, G3/2(1) ≈ 2.6124, G5/2(1) ≈ 1.3415.
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